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Abstract. In our first model, individuals have opinions in [0, 1]d. Connections are
broken at rate proportional to their length ℓ, an end point is chosen at random, and
a new connection to a random individual is proposed. In version (i) the new edge
is always accepted. In version (ii) a new connection of length ℓ′ is accepted with
probability min{ℓ/ℓ′, 1}. Our second model is a dynamic version of preferential
attachment. Edges are chosen at random for deletion, then one endpoint chosen at
random connects to vertex z with probability proportional to f(d(z)), where d(z) is
the degree of z, f(k) = θ(k+1)+(1−θ)(d̄+1), and d̄ is the average degree. In words,
this is a mixture of degree-proportional and at random rewiring. The common
feature of these models is that they have stationary distributions that satisfy the
detailed balance condition, and are given by explicit formulas. In addition, the
equilibrium of the first model is closely related to long range percolation, and of
the second to the configuration model of random graphs. As a result, we obtain
explicit results about the degree distribution, connectivity and diameter for each
model.
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1. Introduction

In this article we study two models of social networks that evolve stochastically in
time: (a) an opinion-dependent rewiring model and (b) a degree-dependent rewiring
model.

1.1. Opinion-dependent rewiring model. There have been a number of studies re-
cently in which the structure of a network coevolves with the opinions of its members
(Gil and Zanette, 2006; Zanette and Gil, 2006; Kozma and Barrat, 2008a,b; Holme
and Newman, 2006; Kimura and Hayakawa, 2008; Vazquez et al., 2008; Herrera
et al., 2011; Durrett et al., 2012). Here we will study the simpler case of stub-
born individuals who do not change their opinions. The starting point for this
investigation was a paper of Henry, Pralat, and Zhang (HPZ) (Henry et al., 2011)
who considered a model in which N individuals have opinions chosen uniformly
in [−1, 1]d and at any time there are M edges connecting them. In their discrete
time formulation, on each step an edge (x, y) is chosen at random and the edge is
broken with probability pd(x, y) where d(x, y) is the dissimilarity of x and y and p
is chosen small enough so that this probability cannot exceed 1. For simplicity, we
will take d(x, y) to be the usual Euclidean distance but to have more connection
with long-range percolation in Section 2, one might want to take d(x, y) = |x− y|β .

In this and all other models we consider, when an edge is broken, we pick an
endpoint x of the edge at random and connect it to a new vertex 6= x and not
already a neighbor of x. In the HPZ model the choice of new vertex is made at
random from all legal possibilities. HPZ assumed d(x, y) ∈ (0, 1) for all x, y, and
discretized their model so that all edges had lengths in {1/K, 2/K, . . . ,K/K} to
conclude that in equilibrium the average number of edges of length i/K satisfied

Ni =
M/i

∑K
j=1 1/j

where M is the number of edges.
In this paper, we use a continuous time formulation in which edges of length ℓ

break at rate ℓ. For convenience, we switch the opinion space to [0, 1]d, but retain
the assumption that opinions are chosen independently and uniformly at random.
As in the HPZ model, broken edges are given an orientation (x, y) uniformly at
random and x connects to a new vertex that does not make a self loop or parallel
edge. In addition to (i) the random rewiring version of HPZ, we also consider (ii) a
Metropolis-Hastings (MH) dynamics in which a randomly chosen edge of length ℓ′

is accepted with probability min{ℓ/ℓ′, 1}, and otherwise the original edge {x, y} is
retained. Figure 1.1 shows a sample of each dynamic at equilibrium when d = 2.

1.2. Degree-dependent rewiring model. In our second model, we begin with a graph
that has N vertices and M edges, and at rate 1 edges are chosen to be broken.
When an edge is chosen, we pick an endpoint x of the edge at random and connect
it to a vertex z chosen with probability proportional to f(d(z)), where d(z) denotes
the degree of vertex z. Let

f(i) = θ(i + 1) + (1 − θ)(d̄ + 1),

where d̄ = 2M/N is the average degree and θ ∈ [0, 1]. We add 1 in the first factor so
that vertices of degree 0 can be chosen. Otherwise, they will accumulate over time
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Figure 1.1. Sample graphs at equilibrium for the opinion-
dependent rewiring model in dimension 2 with N = 50, M = 100.
The random rewiring dynamics (a) yield a graph that appears more
dense because edges tend to be longer than for the Metropolis-
Hastings dynamics (b).

and there will be no stationary distribution. We put d̄+ 1 in the second factor, so
choosing a vertex with probability proportional to f(d(z)) is equivalent to flipping
a coin with probability θ of heads and then choosing a vertex with probability
proportional to d(z) + 1 if the coin is heads and uniformly at random otherwise.
Thus, the parameter θ dictates people’s preferences towards forming friendships
with more popular people.

This is a variant of the original preferential attachment model of Barabási and
Albert (1999), which has been widely studied for randomly grown graphs, where it
leads to a power-law degree distribution (see Krapivsky et al., 2000; Kumar et al.,
2000; Cooper and Frieze, 2003; Mitzenmacher, 2004). In contrast, we use it here
to define a dynamic random graph with a fixed number of vertices and edges. A
similar model on dense (M ≍ N2) multigraphs was considered by Ráth and Szakács
(2012) and Ráth (2012). The evolution of the process for θ = 1 was studied, and the
limiting behavior of the stationary distribution was described using the machinery
of dense random graphs.

2. Results: Opinion-dependent rewiring

2.1. Stationary distribution. Let v(G) and e(G) be the number of vertices and edges
of a graph G, and let |e| be the length of the edge e. We assume throughout that
2M/N → λ > 0 as N → ∞.

Theorem 2.1. Conditional on the locations of the N vertices, the equilibrium
distribution for the opinion-dependent rewiring model is given by

π1(G) =

{

C(α,N,M)
∏

e∈G |e|−α if v(G) = N , e(G) = M

0 otherwise,

where α = 1 for random rewiring, and α = 2 for the MH dynamics.

To prove this result, we check in Section 4 that the detailed balance condition is
satisfied. While it is nice to have an explicit formula for π1(G), if one wants to gen-
erate graphs with this distribution one must simulate the chain, which can be time
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consuming. To avoid this problem, we give another construction of π1. Consider a
percolation model on N vertices in which edge e is present with probability g(|e|),
independent of the other edges. This percolation model resembles both long-range
percolation (Schulman, 1983; Newman and Schulman, 1986; Aizenman and New-
man, 1986; Benjamini and Berger, 2001; Coppersmith et al., 2002; Biskup, 2004,
2011) and inhomogeneous percolation (Bollobás et al., 2007), and we will exploit
the connections to each of these below. Letting µ denote the probability measure
on graphs in the percolation model, conditional on the locations of the vertices,

µ(G) =
∏

e∈G

g(|e|)
1 − g(|e|)

∏

e

(1 − g(|e|)) if v(G) = N.

The second product depends only on the set of vertices, so it can be absorbed into
the normalizing constant. If we let

g(k) =
b

b+ kα
, then

g(|e|)
1 − g(|e|) =

b

|e|α , (2.1)

and π1(G) can be viewed as the probability of G under µ conditioned on the number
of edges being M .

A consequence of this conditioning is that the number of edges under the equi-
librium measure π1 is always fixed at M , while the number of edges under µ is
random, with mean M if b is chosen appropriately. In order to draw conclusions
about π1 from features of µ, we need to account for this difference between the
models. To do so, let µb denote the measure µ with the given choice of b, and
assume that we first fix the locations of the vertices, so for b′ < b′′, the measures
µb′ and µb′′ can be coupled such that if G′ ∼ µb′ and G′′ ∼ µb′′ , then G′ ⊆ G′′. We
choose b′ and b′′ so that Ee(G′) = M(1 −M−1/3) and Ee(G′′) = M(1 + M−1/3)
(note that b′, b′′ depend on the locations of the vertices, and the expectations are
conditional on the locations). Then with high probability e(G′) < M < e(G′′), so
we can couple G,G′ and G′′ such that G ∼ π1 has exactly M edges, and with high
probability G′ ⊆ G ⊆ G′′. By this coupling, it is sufficient to study the behavior
of the degree distribution, giant component size and typical pairwise distances for
µb, since these features for G can be inferred from their values for G′ and G′′ as
follows.

• Giant component size. It is clear that the fraction of vertices in the
largest component of G is bounded below and above by the fractions of
vertices in the largest components of G′ and G′′, which are asymptotically
equal.

• Degree distribution. Much like giant component size, the distribution of
the degree of a randomly selected vertex of G is stochastically dominated
by that of G′′ and dominates that of G′. A vertex in G′′ is adjacent to, on
average, O(M−1/3) more edges than in G′, so the two degree distributions
are close.

• Typical pairwise distances. The distances between two randomly se-
lected vertices in the giant components of G′ and G′′ are asymptotically
equal. If two vertices are chosen at random from G, their distance is
bounded below by their distance in G′′ and above by their distance in
G′. Their distance in G′ could be infinite, but since the giant component
of G contains at most O(N2/3) more vertices than that of G′, with high
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Figure 2.2. Expected degree function, λ(x), for d = 2 and α = 1
in the opinion-dependent rewiring model with mean degree λ = 4.

probability the two randomly selected vertices are in the giant component
of G′.

We now choose b(N,M) so that the expected value under µ of e(G) is M and
2M/N → λ as N → ∞. Writing Q as short-hand for [0, 1]d we want

N2

∫

Q

∫

Q

b

b+ |x− y|α dy dx = 2M,

so b(N,M) → 0. There are two cases with different behavior. Changing to polar
coordinates, we see that

∫

|z|<1

|z|−αdz

{

<∞ α < d

= ∞ α ≥ d.

In the first case b(N,M) ∼ cλ/N and the expected degree of a vertex at x,

λ(x) = lim
N→∞

N

∫

Q

b

b+ |x− y|α dy = cλ

∫

Q

|x− y|−α dy, (2.2)

is not constant. Figure 2.2 shows the function λ(x) for α = 1 and d = 2, where we
numerically evaluated c1 ≈ 0.336, and cλ = λc1 by integrating equation (2.2). If
α ≥ d we have Nb(N,M) → 0, so most connections are to vertices at distance o(1)
from x and λ(x) ≡ λ (on the interior of Q, where all vertices lie with probability 1).
This implies the following classification of the degree distribution, defined as the
limiting distribution (as N → ∞) of the degree of a vertex chosen uniformly at
random from the graph at stationarity. The proof of Theorem 2.2 is deferred to
Section 4.

Theorem 2.2. If N is large then the degree distribution of the opinion dependent
model is approximately Poisson with mean λ when α ≥ d, but a mixture of Poissons
when α < d.
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Figure 2.3 shows the degree distribution in d = 2 when α = 1 and α = 2. In the
second case the observed degree distribution is close to Poisson as expected. This is
also true in the first case even though Theorem 2.2 predicts a mixture of Poissons,
which by Figure 2.2 involves means from 2.5 to 4.6. This is not a contradiction since
the mixture turns out to be close to a Poisson. Computations for a simplified version
of our situation in which U ∼ Uniform(2.5, 4.6) and (X |U = u) ∼ Poisson(u), show
a total variation distance of 0.024 between X and Y ∼ Poisson(3.54).

Figure 2.3. Degree distributions at equilibrium for the opinion-
dependent rewiring model with (a) random rewiring and (b)
Metropolis-Hastings rewiring in dimension 2 with N = 5000,
M = 10000, averaged over 100 times.

2.2. Connectivity and typical distances. The stationary distribution of the opinion-
dependent rewiring model resembles long-range percolation, so we can derive results
about connectivity and distances in the network at equilibrium from analogous
statements about the percolation model. A vertex at x will connect to an average
of λ(x) other vertices with the ones chosen being distributed according to

cλ
λ(x)

1

|x− y|α .

When N is large the first stages of growth of the component of x are a multitype
branching process in which the spatial location gives the type.

If we divide space into cubes of side 1/k and declare that each point in one of the
small cubes Qi gives birth like its midpoint xi then we get a multitype branching
process with a finite set of types. Letting Mij be the mean number of children
of type j from a parent of type i, the mean matrix for the nth generation is then
given by the nth power of the matrix Mn

i,j. Mi,j is a positive symmetric matrix
so the entries grow exponentially at a rate νn given by the maximum eigenvalue
ν = max{‖Mv‖2 : ‖v‖2 = 1} where ‖v‖2 = (

∑

i v
2
i )1/2 is the usual measure of a

vector’s length.
One can analyze the original branching process with types in Q = [0, 1]d by

discretizing and passing to the limit. Fortunately for us, Bollobás, Janson, and
Riordan (BJR) (Bollobás et al., 2007) have already worked out the details in exactly
the form we need. The vertices of their graph are x1, x2, . . . xn, which in our case
are chosen at random from Q. To make the connection with their notation let
κ(x, y) = cλ/|x− y|α and make a connection from xi to xj with probability

pi,j = min{1, κ(xi, xj)/N}.
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In the case α < d,

λ(x) =

∫

[0,1]d
κ(x, y) dy <∞ has sup

x
λ(x) <∞

and the conditions of their Definition 2.7 are satisfied.
To determine conditions for the existence of a giant component, BJR introduce

the operator

(Tκϕ)(x) =

∫

Q

κ(x, y)ϕ(y) dy

The kernel κ(x, y) is the continuous analogue of the matrix Mi,j . Again we are
interested in its maximal eigenvalue νκ:

νκ = max{‖Tκϕ‖2 : ‖ϕ‖2 = 1}.
This quantity can also be described by a variational problem:

νκ = max{
∫

Q×Q

ϕ(x)κ(x, y)ϕ(y) dx dy : ‖ϕ‖2 = 1}.

Taking ϕ ≡ 1 we see that νκ ≥
∫

Q λ(x) dx = λ, the average degree.

Theorem 2.3. If α < d and νκ > 1, then with high probability a giant component
will exist, which contains a positive fraction of the vertices (see Bollobás et al., 2007
Theorem 3.9). Furthermore, if u, v are two (randomly selected) vertices in the giant
component, then the distance between u and v will be ∼ logN/ log νκ in probability
(see Bollobás et al., 2007 Theorem 3.14).

The results above take care of our two special cases α = 1, 2 in d ≥ 3 and α = 1
in d = 2. Figure 2.4 shows the sizes of the giant component in a simulation of the
case α = 1, d = 2. Let λc be the critical value for percolation, such that a giant
component of linear size exists with high probability when λ > λc, and with high
probability all components are of size o(N) when λ < λc. Our simulations suggest
that λc ≈ 1. Since νκ ≥ λ, it follows that λc ≤ 1. Numerical computation of the
eigenvalue νκ in this case suggests λc ≈ 0.98, though this is difficult to discern from
the simulations of the dynamic graph model. Figure 2.5 plots the average distances
between vertices in the giant component versus logN in the cases d = 2, α = 1 and
d = 3, α = 2. In all cases M = 2N so the average degree is 4. The dependence on
logN is linear and is close to the slope of 1/ log(4) = 0.7213 one would have if νκ
was equal to the average degree.

To see what happens when α ≥ d, we fix x ∈ (0, 1)d. The number of vertices
within distance N−1/d of x converges to a Poisson random variable, and is therefore
O(1). Thus, by truncating the integral and changing to polar coordinates, the
expected number of edges to the vertex at x in the percolation model is

E

∑

y∈GN

b

b + |x− y|α ∼ bN

∫

N−1/d≤|z|≤1

|z|−α dz

= bN

∫

N−1/d≤r≤1

rd−α−1 Cddr

∼
{

bCdN logN α = d

bCdN
α/d α > d,
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Figure 2.4. Fraction of vertices in the largest component at equi-
librium for the opinion-dependent rewiring model with random
rewiring (α = 1) and Metropolis-Hastings rewiring (α = 2) in
dimension 2 with N = 1000, averaged over 100 times.

where the expectation is taken over the locations of the vertices in GN , C2 = 2π
and C1 = 2. So to have mean degree λ we will take bλ = λ/(CdN logN) when
α = d ∈ {1, 2} and bλ = λ/(2πN2) when α = 2, d = 1.

Conjecture 2.4. Let α = d ∈ {1, 2} and λc = 1. If λ > 1 the distance between
typical vertices in the giant component is ∼ logN/ logλ.

The conjecture is heuristically motivated by considering a discrete time branch-
ing random walk in which a birth from a vertex at x to a vertex at y occurs with
probability bλ/(bλ + |x − y|d), which resembles a truncated Cauchy distribution
when α = d ∈ {1, 2}. The cluster containing the vertex x is well approximated by
the graph of the branching random walk started from vertex x up to time O(logN),
because the probability that two random walks started from x will collide before this
time is O(1/ logN). At time (1 + ǫ) logN/(2 logλ) in the branching random walk,
there are of order N (1+ǫ)/2 particles spread out sufficiently randomly on [0, 1]d, so
if we start a cluster from x and one from y they are likely to intersect by this time
if they both survive. If |x− y| is of order 1, then the branching random walks are
unlikely to intersect earlier, as jumps of order 1 have probability O(1/ logN).

This conjecture is further supported by our simulations. Figure 2.4 plots the
size of the giant component when α = d = 2 and suggests that λc ≈ 1. Figure 2.5
plots the average pairwise distances between vertices in the giant component versus
logN in the case d = 2, α = 2, and M = 2N . The dependence on logN is linear
and is close to the predicted slope of 1/ log(4) = 0.7213.

When α > d, the probability of a connection from a vertex at x to a vertex at
x+ kN−1/d is

b

b+ (|k|N−1/d)α
=

cλ
cλ + |k|α .
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Figure 2.5. Typical distances in the giant component at equilib-
rium for the opinion-dependent rewiring model (a) in dimension 2
with random rewiring (α = 1) and Metropolis-Hastings rewiring
(α = 2), and (b) in dimension with 3 with Metropolis-Hastings
rewiring. In all cases M = 2N , and data points are averaged over
100 times.

If we restrict our attention to α ∈ {1, 2}, then the only example of this situation is
d = 1, α = 2. This is related to a percolation model on the integers in the infinite
graph setting, first studied by Aizenman and Newman (1986) To be precise, they
study a model in which the probability of an edge from x to y is p < 1 if |x−y| < M
and is b/|x−y|2 if |x−y| ≥M . They show that if b ≤ 1 there is no infinite component
for any value of p < 1, while if there is an infinite component with density ρ then
bρ2 ≥ 1.

Benjamini and Berger (2001) were first to study long-range percolation on the
circle Z mod N , which is more relevant to our setting. On this object the natural
distance is d(x, y) = min{|x − y|, N − |x − y|}. To avoid probabilities > 1 they
supposed that the probability of an edge from x to y was 1 − exp(−βd(x, y)−α).
Combining their results with later work we summarize the results for the diameter
of the model on the d-dimensional cube {1, 2, . . .N}d as follows.

• Biskup (2004, 2011) If d < α < 2d then the diameter is (logN)∆+o(1) where
∆ = 1/ log2(2d/α).

• Coppersmith et al. (2002); Ding and Sly (2013) If α = 2d then the diameter
is ≤ Nη(d, β). If α = 2, d = 1, then the diameter and the typical pairwise
distances scale as Nθ(β), where θ(β) ∈ (0, 1) is not explicitly known.

Since our α is an integer, the only overlap with the long range percolation systems
considered above occurs for α = 2, d = 1, where the behavior of the diameter
and typical pairwise distances should scale as Nη for some η. However, the model
studied by Ding and Sly (2013) included all nearest-neighbor edges with proba-
bility 1, while in our model this is not the case. By analogy with the results for
d < α < 2d, which hold without the assumption that nearest-neighbor edges are
present (Biskup, 2004), we expect that the typical distances between vertices in the
giant component scales as ≍ Nη. However, this remains an open problem, as does
the precise value of the exponent, should it exist.

Figure 2.6 plots the distance versus N in the model with d = 1, α = 2. The
fitted curve is Nη with η = 0.402.
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Figure 2.6. Distance versus N in the opinion-dependent rewiring
model with d = 1, α = 2. The fit curve is Distance = N0.402.

3. Results: Degree-dependent rewiring

3.1. Stationary distribution. Let F (k) =
∏k−1

i=0 f(i) for k ≥ 1 and let F (0) = 1. In
Section 5 we prove the following result by checking that π2 satisfies the detailed
balance condition.

Theorem 3.1. Let di denote the degree of vertex i in the graph G. The stationary
distribution for the degree-dependent rewiring model is given by

π2(G) =

{

c(θ,N,M)
∏N

i=1 F (di) if
∑N

i=1 di = 2M

0 otherwise.

The stationary distribution π2(G) only depends on the sequence of degrees, and is
uniform over all graphs with the same degree sequence. This is also true for the con-
figuration model (Molloy and Reed, 1995), which has i.i.d. degrees D1, D2, . . . , DN .
To build the graph from the degrees, one conditions on the sum D1+D2+ · · ·+DN

being even, attaches Di half-edges to vertex i, and pairs the half-edges at random.
A graph generated by the configuration model can have self-loops or parallel

edges, but if the degree distribution has finite second moment, there is positive
probability that it does not (Janson et al., 2000). A second difficulty in comparing
with π2(G) is that we may not have

∑

iDi = 2M . To avoid these problems we will
consider a conditioned version of the configuration model.

In the configuration model, if g(k) is the probability that a vertex has degree k
and

∑

k kg(k) = 2M/N then

P (D1 = d1, D2 = d2, . . . , DN = dN ) ∼ c1(M)

N
∏

i=1

g(di),

where c1(M) ∼ c/
√
M . If G is a simple graph with the given degree sequence

P (G|D1 = d1, . . . , DN = dN ) = c2(M)

N
∏

i=1

di!,

where 1/c2(M) = (2M)!/M !2M is the number of ways of pairing the 2M half-
edges. To see this, note that the adjacency matrix of G tells us the vertices that
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are neighbors of i, and then we have di! ways of assigning the neighbors to the
half-edges at i.

To make the connection between the degree-dependent rewiring model and the
configuration model, we note that if, for a constant γ > 0, we put γdi inside the
product and change the normalizing constant in π2(G) then we want

c′(θ,N,M)

N
∏

i=1

F (di)γ
di

di!
= c1(M)c2(M)

N
∏

i=1

g(di).

Thus, the degree-dependent rewiring model will look like the configuration model
with

g(k) = cγF (k)γk/k!, (3.1)

where the constants γ and cγ are chosen to make the probabilities sum to one and
the average degree d̄ = 2M/N . There is a unique solution because the distribution
g(k) is stochastically increasing in γ. At this point, the reader might worry that the
conditioning will keep us from using the body of results that have been developed
for the configuration model. Molloy and Reed (1995) developed their results for
the configuration model under the mild assumptions that, in the graph of size n,
the degree sequence, vk(n) := #{i ∈ [n] : di = k}/n ≥ 0, had

∑

k vk(n) = 1,
∑

k kvk(n) even, k(k− 2)vk(n) → k(k− 2)g(k) uniformly, and
∑

k k(k− 2)vk(n) →
∑

k k(k − 2)g(k) with the sum converging uniformly. Our model satisfies these
conditions.

To understand the nature of g we begin with the extreme cases. When θ = 0
our process reduces to random rewiring, so the degree distribution will be Poisson.
To get this from the formulas above, note that F (k) = (d̄ + 1)k so cγ = e−γ(d̄+1)

and we take γ = d̄/(d̄+ 1) = 2M/(2M +N) to have the right mean degree. When
θ = 1, F (k) = k!, which cancels with the k! in the denominator. This means we
should take cγ = (1 − γ) so that we have the shifted geometric distribution that
takes values k ∈ {0, 1, 2 . . .}. To have the right mean we set

1

1 − γ
− 1 =

2M

N
or γ =

2M

2M +N
.

The distributions for 0 < θ < 1 interpolate between the Poisson and geometric.
Writing

f(i) = θ

(

i+
(1 − θ)d̄ + 1

θ

)

≡ θ(i+ κ),

where the second equation defines κ, we have

F (k) = θkΓ(k + κ)/Γ(κ),

where Γ(r) =
∫∞

0
xr−1e−x dx is the usual gamma function that has Γ(r) = (r −

1)Γ(r − 1). From this it follows that the degree distribution is negative binomial,

g(k) =
Γ(k + κ)

k!Γ(κ)
(1 − γθ)κ(γθ)k, (3.2)

where again

γ =
2M

2M +N
is chosen to give us the correct mean degree. Figure 3.7 shows the degree distribu-
tion for θ = 1/2 is in agreement with the theoretical prediction.
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Figure 3.7. Observed and predicted equilibrium degree distri-
bution for the degree-dependent rewiring model with θ = 1/2,
N = 5000,M = 10000.

3.2. Connectivity and typical distances. To determine properties of the degree-
dependent rewiring models, we consider properties of the configuration model, for
which the condition for the existence of a giant component are simple and explicit.
Let g(k) denote the degree distribution. Let µ =

∑

k kg(k) be the mean degree, let
qk−1 = kg(k)/µ be the size-biased degree distribution, and let ν =

∑

j jqj be its

mean. Let φ(x) =
∑

x g(k)xk, and ψ(x) =
∑

j qjx
j be the generating functions for

the degree distributions, and let ρ be the smallest solution of ψ(ρ) = ρ in [0, 1].

Theorem 3.2. If ν > 1 then there is a giant component which contains a fraction
1 − φ(ρ) vertices, and the distance between two typical (uniformly chosen) vertices
in the giant component is ∼ logν(N) in probability. If ν < 1, then the largest
connected component is o(N) with high probability.

For a complete proof see Theorems 3.1.3 and 3.4.1 in (Durrett, 2007). To explain
this result we recall the reasoning behind it. To see if there is a giant component
we begin by examining the component containing 1. Vertex 1 will have j neighbors
with probability g(j), but one of its neighbors will have degree k with probability
kg(k)/µ, since vertex 1 has k chances to connect to a vertex of degree k. In the early
stages of examining the component containing 1, the number of vertices at distance
m, Zm, will be a branching process in which the average number of children in
all generations after the first is ν. If ν > 1 there is positive probability that the
branching process does not die out, which corresponds to having a giant component.
To compute the typical distance between vertices in the giant component we note
that EZm = µνm−1 and EZm ≈ N when m = logν N = logN/ log ν.

The generating functions, φ and ψ, can be computed explicitly in our case, so we
can infer the critical value for the mean degree and the size of the giant component.
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Proposition 3.3. If 0 < θ ≤ 1 , κ = [(1 − θ)d̄ + 1]/θ, and β = γθ = 2M
2M+N θ then

φ(x) =

[

1 − β

1 − βx

]κ

, ψ(x) =

[

1 − β

1 − βx

]κ+1

.

Therefore,

ν =

∞
∑

k=1

kqk =
(κ+ 1)β

1 − β
, and

d̄crit =
−θ +

√
θ2 − θ + 1

1 − θ
,

where d̄crit is the critical value for the mean degree such that a giant component
exists for d̄ > d̄crit but not for d̄ < d̄crit.

Proof : Using the expression for g(k) from (3.2),

ψ′(x) =
1

µ

∞
∑

k=0

(k + 1)k g(k + 1)xk−1

=
1

µ

∞
∑

k=1

(k + 1)k (1 − β)κβk+1Γ(k + κ+ 1)

(k + 1)! Γ(κ)
xk−1

=
1

µ

∞
∑

k=1

k(k − 1) (1 − β)κβk+1Γ(k + κ)

k! Γ(κ)
xk−1

+
κ+ 1

µ

∞
∑

k=1

k (1 − β)κβk+1Γ(k + κ)

k! Γ(κ)
xk−1

= βxψ′(x) + (κ+ 1)βψ(x).

Solving this differential equation with boundary condition ψ(1) = 1 yields the
desired expression for ψ(x).

The derivation for φ(x) is analogous. Then by evaluating ψ′(1) we obtain the
expression for ν = ψ′(1), and setting ν = 1 and solving gives the expression for d̄crit.

�

When θ = 0 the degree distribution and the size biased distribution are both
Poisson, so the generating functions in this case are φ(x) = ψ(x) = exp(−d̄(1−x)),
and the critical value is d̄crit = 1.

Figure 3.8 shows the sizes of the largest component in simulations for θ = 0, 1/2, 1
as the mean degree is varied. Given the small size of the graph there is considerable
run to run variability but there is good agreement with the theoretical calculations.

4. Opinion-dependent rewiring model

For convenience, in this section we assume that each oriented edge (x, y) is chosen
at a rate equal to its length. This speeds up the dynamics by a factor of 2 but has
no effect on the stationary distribution. Consider graphs G and H that differ by
one edge, such that {x, y} is in G but not H , and {x, z} is in H but not G. For a
transition from G to H , the following must occur.

(1) The oriented edge (x, y) is selected. This occurs at rate d(x, y).
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Figure 3.8. Fraction of vertices in the largest component at
equilibrium for the degree-dependent rewiring model, N = 3000.
Lines indicate the theoretical limiting curves for θ = 1, 0.5, 0 from
left to right. There are 15 independent data points shown for each
set of parameter values.

(2) Vertex z is selected. This occurs with probability 1/(N − d(x) − 1) since
z 6= x and cannot be a neighbor of x.

(3) The rewiring is accepted. This occurs with probability 1 for the random
rewiring dynamics or min{1, d(x, y)/d(x, z)} for the Metropolis-Hastings
dynamics.

Therefore the transition rate for the MH dynamics is

P (G,H) =
d(x, y)

N − d(x) − 1
· min

(

1,
d(x, y)

d(x, z)

)

, (4.1)

with the second factor omitted in the random rewiring case.

Proof of Theorem 2.1: Consider first the random rewiring dynamics. To have de-
tailed balance, we want to have

(

∏

e∈EG

1

|e|

)

d(x, y)

N − d(x) − 1
=

(

∏

e∈EH

1

|e|

)

d(x, z)

N − d(x) − 1
,

which holds since each side is equal to
(

∏

e∈EG∩EH

1

|e|

)

1

N − d(x) − 1
.

For the MH dynamics, suppose without loss of generality that d(x, y) < d(x, z). To
have detailed balance, we want to have

(

∏

e∈EG

1

|e|2

)

d(x, y)2/d(x, z)

N − d(x) − 1
=

(

∏

e∈EH

1

|e|2

)

d(x, z)

N − d(x) − 1
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which holds since multiplying by d(x, z) makes each side is equal to
(

∏

e∈EG∩EH

1

|e|

)

1

(N − d(x) − 1)
.

�

Proof of Theorem 2.2: Assume first that the opinions are chosen in [0, 1]d according
to a Poisson process with intensity N , and consider the degree of the vertex at x. It
is sufficient to consider µ and infer the result for π1 by the aforementioned coupling
between the edges conditioned on the locations of the vertices. In the percolation
model, µ, x is initially attached to all other vertices, then these links are indepen-
dently kept or removed according to g(|e|) as in (2.1). This is an inhomogeneous
thinning of the original Poisson process, so the distribution of the number of edges
to x is Poisson with mean λ(x) given by (2.2) if α < d and λ(x) = 2M/N otherwise.
In our model, the N vertices are chosen uniformly in [0, 1]d, which can be viewed
as a Poisson process conditioned to have exactly N points. To account for this, we
consider two coupled Poisson processes with intensities N(1 ± N−1/3), such that
with high probability (as N → ∞) the number of vertices in the two processes
straddles N . For each Poisson process the degree of x converges to Poisson(λ(x))
as N → ∞. �

5. Degree-dependent rewiring model

Recall that f(i) = θ (i + 1) + (1 − θ) (d + 1), where i is the degree of a vertex,
and d is the mean degree of the graph. The first step is to note:

∑

x

f(d(x)) = θ

(

∑

x

d(x) +N

)

+ (1 − θ)(N d+N)

= θ (2M +N) + (1 − θ)(2M +N) = 2M +N,

(5.1)

since the sum of the degrees = 2M = Nd̄.
Again consider graphs G and H that differ by one edge, with {x, y} in G but not

H , and {x, z} in H but not G. For a transition from G to H , the following must
occur.

(1) The oriented edge (x, y) is selected. This occurs at rate 1.
(2) Vertex z is selected. This occurs with probability f(d(z))/(2M+N) by (5.1).

Let the degree of y in G be j and the degree of z in H be k. Thus, the degree of y
in H is j − 1, and the degree of z in G is k − 1. Therefore the transition rate is

P (G,H) =
f(k − 1)

2M +N
. (5.2)

Let F (k) =
∏k−1

i=0 f(i) for k ≥ 1 and F (0) = 1.

Proof of Theorem 3.1: To have detailed balance we want

f(k − 1)

2M +N

∏

w∈G

F (dG(w)) =
f(j − 1)

2M +N

∏

w∈H

F (dH(w)), (5.3)
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where dG and dH denote the degrees in the respective graphs. This holds since
each side is equal to

F (j)F (k)

2M + N

∏

w 6=y,z

F (d(w)).

To see this note that F (i) = f(i− 1)F (i− 1). �
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