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P.le Aldo Moro 2, 00185 Roma, Italy
E-mail address: bertini@mat.uniroma1.it
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Abstract. We analyze the Gallavotti-Cohen functional, defined as the empirical
power dissipated by the non-conservative part of the drift, for a diffusion process in
Rn. In particular we prove a large deviation principle in the limit in which the noise
vanishes and the time interval diverges. The corresponding rate functional, which
satisfies the fluctuation theorem, is expressed in terms of a variational problem
on the classical Freidlin-Wentzell functional. As shown in an example, the rate
functional can be not strictly convex.

1. Introduction

The so-called Gallavotti-Cohen functional and the associated fluctuation theorem
have been originally introduced in the context of chaotic deterministic dynamical
systems Gallavotti and Cohen (1995). Subsequently, they have been extended to
stochastic systems, originally in Kurchan (1998) and in more generality in Lebowitz
and Spohn (1999); Maes (1999). Since then, this topic has become a basic issue
in nonequilibrium statistical mechanics, see e.g. Bodineau and Lefevere (2008);
Carmona (2007); Eckmann and Hairer (2003); Jiang et al. (2004); Maes et al. (2000);
Maes and Netočný (2003); Rey-Bellet and Thomas (2000, 2002); Wu (2001); van
Zon and Cohen (2004), and it has even been the object of true experiments Ciliberto
and Laroche (1998).

We here consider the simple setting of a diffusion process in Rn with constant
diffusion coefficient, defined as the solution of the stochastic differential equation

dξt = c(ξt)dt+
√
ε dβt (1.1)
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where β is a standard n-dimensional Brownian motion, c is a smooth vector field
on Rn, and ε > 0 is the diffusion coefficient. Under suitable assumptions on the
drift c, there exists a unique stationary distribution µε having a strictly positive
smooth density ̺ε : Rn → (0,+∞) with respect to Lebesgue measure. We recall
that the corresponding stationary process, obtained by choosing in (1.1) the initial
condition with law µε, is reversible if and only if the drift is conservative, that is c =
−(1/2)∇V for some V : Rn → R. In this case ̺ε(x) = Cε exp{−ε−1V (x)}. When
c is not conservative, the forward and backward time evolutions of the stationary
process have different laws, and the stationary distribution is not - in general -
explicitly known.

The Gallavotti-Cohen functional is a random variable on the canonical path
space C(R+;R

n) expressed in terms of the Radon-Nikodym derivative of the law
of the stationary process with respect to its time reversal. The standard definition
is the following. Let Pε

µε
, a probability measure on C

(
R+;R

n
)
, be the law of the

stationary process. By stationarity, Pε
µε

can be extended to a probability measure

on C
(
R;Rn

)
. Denoting with θ the time reversal, we set Pε,∗

µε
= Pε

µε
◦ θ−1. Given

T > 0, the Gallavotti-Cohen functional can then be defined as the random variable
on C(R+;R

n) which is Pε
µε

a.s. given by

W̃T = − ε

T
log

dPε,∗
µε,T

dPε
µε,T

(1.2)

where the subscript T denotes the measures induced by the restriction to the time

interval [0, T ] and we used a normalization in which W̃T is finite as ε → 0 and

T → ∞. Of course, Pε,∗
µε

= Pε
µε
, i.e. W̃T ≡ 0, if and only if the stationary process

is reversible. By denoting with Eε
µε

the expectation with respect to Pε
µε
, from

Jensen inequality it follows Eε
µε

(
W̃T

)
≥ 0. In fact, Eε

µε

(
W̃T

)
is proportional to the

relative entropy of Pε
µε,T

with respect to Pε,∗
µε,T

, thus providing a natural measure
of irreversibility.

By denoting with Xt the canonical coordinates on C(R+;R
n), an informal com-

putation Lebowitz and Spohn (1999) based on the Girsanov formula shows that
Pε
µε

a.s.

W̃T =
2

T

∫ T

0

〈c(Xt), ◦dXt〉 −
ε

T
log

̺ε(XT )

̺ε(X0)
, (1.3)

where 〈·, ·〉 is the inner product in Rn and ◦dXt denotes the Stratonovich integral

with respect to Xt. By writing the entropy balance, the random variable W̃T can
finally be interpreted as the empirical production of the Gibbs entropy Lebowitz
and Spohn (1999).

The content of the so-called fluctuation theorem is the following. Fix the diffusion
coefficient ε > 0 and look for the large deviations asymptotic of the family of

probability measures on R given by {Pε
µε

◦ (W̃T )
−1}T>0 as T → ∞. Suppose they

satisfy a large deviation principle that we informally write as

Pε
µε

(
WT ≈ q

)
≍ exp

{
− TRε(q)

}
. (1.4)

Then the odd part of the rate function Rε is linear. More precisely, with our choice
of the normalization, Rε(q) − Rε(−q) = −ε−1q. This means that the ratio be-
tween the probability of the events {WT ≈ q} and {WT ≈ −q} becomes fixed,
independently of the model, in the limit T → ∞. Provided (1.4) holds, a simple
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argument based on the definition (1.2) and time reversal shows that the rate func-
tion Rε satisfies the fluctuation theorem. Indeed, from the very definition of Pε,∗

µε
,

the statement of the fluctuation theorem can be written as a true identity even for
finite T , see again Lebowitz and Spohn (1999).

On the other hand, in the present setting of a diffusion process with non compact
state space, i.e. Rn, it is not really so clear that (1.4) holds. The main issue is
the possible unboundedness of c and the necessary unboundedness of log ̺ε in the
decomposition (1.3). In particular these boundary terms may lead to a violation
of the fluctuation theorem, see Section 3.2 in Bonetto et al. (2006) and references
therein. In the case of a compact state space, the standard procedure to prove (1.4)
is the following Lebowitz and Spohn (1999). Modify the definition of the Gallavotti-
Cohen functional by dropping from (1.3) the boundary term log ̺ε(XT )/̺ε(X0),

which does not matter in the limit T → ∞. In other words, let ŴT be the random
variable on C(R+;R

n) which is Pε
µε

a.s. defined by

ŴT =
2

T

∫ T

0

〈c(Xt), ◦dXt〉, (1.5)

so that ŴT can be interpreted as the empirical power dissipated by the vector field
c in the time interval [0, T ].

Using Girsanov theorem, Feynman-Kac formula, and Perron-Frobenius theorem,
see Lebowitz and Spohn (1999), we informally deduce that for each λ ∈ R

lim
T→∞

1

T
log Eε

µε

(
exp

{
λTWT

})
= eε(λ)

where eε(λ) is the eigenvalue with maximal real part (which is real) of the differ-
ential operator Aε,λ on Rn given by

Aε,λf(x) =
ε

2
∆f(x) + (1 + 2λε)

〈
c(x),∇f(x)

〉

+ 2λ(1 + λε)
〈
c(x), c(x)

〉
f(x) + λε∇ · c(x) f(x)

(1.6)

where ∆f is the Laplacian of f , ∇f is the gradient of f , and ∇ · c is the divergence
of c. From Hölder inequality if follows that eε is a convex function; provided it
is also smooth, by using the Gärtner-Ellis theorem, we deduce that the sequence

of probability measures {Pε
µε

◦ (ŴT )
−1}T>0 satisfies a large deviation principle as

T → ∞ with convex rate function given by the Legendre transform of eε. The
fluctuation theorem is then deduced from the identity eε(λ) = eε(−ε−1 − λ). The
latter follows from the fact that Aε,λ and its formal adjoint have the same maximal

eigenvalue. Since the definition of W̃T in (1.3) involves explicitly the density ̺ε,

which in general is not known, the definition of ŴT in (1.5) is more concrete and
somewhat more appealing.

In the setting of a non compact space state, if the vector field c is unbounded, the
differential operator Aε,λ is not bounded from above and the previous procedure
can not be applied. In this paper, we assume that the vector field c admits the
decomposition c = −(1/2)∇V + b which is orthogonal in the sense that for each
x ∈ Rn we have 〈∇V (x), b(x)〉 = 0. We also assume that the potential V (x) is
super-linear as |x| → ∞ and that b is a nonconservative smooth bounded vector
field with bounded derivatives. In this setting, we define the Gallavotti-Cohen



746 L. Bertini and G. Di Gesù

functional as the random variable on C(R+;R
n) which is Pε

µε
a.s. defined by

WT =
2

T

∫ T

0

〈b(Xt), ◦dXt〉 (1.7)

namely, as the empirical power dissipated by the nonconservative part of the vector
field c. With this definition, as proven here, it is possible to carry out the analysis
outlined below (1.5) and obtain a large deviation principle for the sequence {Pε

µε
◦

(WT )
−1}T>0. The corresponding rate function R

ε, which is strictly convex, satisfies
the fluctuation theorem. In order to compare (1.7) with the previous definitions, we
point out that in the small noise limit by classical Freidlin-Wentzell results Freidlin
and Wentzell (1998, Thm. 4.3.1) ρε ≈ e−V/ε so that (1.7) informally agrees with
the original definition (1.2).

Having clarified the definition of the Gallavotti-Cohen functional in a non com-
pact state space, we next discuss the main topic of the present paper, which is
the analysis of the large deviation properties of the sequence {Pε

µε
◦ (WT )

−1} for
ε → 0 and T → ∞. The motivation for such analysis is the following. While the
fluctuation theorem establishes a general, model independent, symmetry property
of the rate function, the rate function itself, which appears to be experimentally
accessible, may encode other, model dependent, relevant properties of the system
which may be best revealed by the small noise limit. For instance, as here shown,
while for fixed ε > 0 the rate function Rε is strictly convex, affine pieces can appear
in the small noise limit.

As suggested in Kurchan (2007), one possibility is to consider the limit ε → 0
after the limit T → ∞ and discuss the asymptotic of the rate function Rε. Since
the latter is obtained as the Legendre transform of the maximal eigenvalue of a
differential operator similar to Aε,λ in (1.6), this immediately becomes a problem
in semiclassical spectral theory. We here instead look at the asymptotic in the
opposite order of the limits namely, we consider first the small noise limit ε → 0
and then the long time limit T → ∞. If the vector field c has a unique globally
attractive attractor, we expect that the order in which these limits are taken does
not matter. However, as here explicitly shown, this is not the case if there are several
attractors. From a physical viewpoint, the relevant order of the limits depends on
the details of the experimental setting; the analysis here performed is applicable as
long as the noise is small and the power dissipated by the drift is measured over a
time scale which is much shorter than the (possible) metastable time scales. From
a mathematical viewpoint, the asymptotic here considered amounts to analyze the
variational convergence, as T → ∞, of the sequence of rate functions describing the
large deviations asymptotic of the sequence {Pε

µε
◦ (WT )

−1}ε>0 for a fixed T > 0.
We mention that this order of the asymptotics is analogous to the one discussed in
the context of the fluctuations of the empirical current in stochastic lattice gases
Bertini et al. (2006); Derrida (2007), where the small noise limit corresponds to the
limit of infinitely many particles.

Our result is informally stated as follows. We show that the sequence of proba-
bility measures {Pε

µε
◦ (WT )

−1}ε>0,T>0 satisfies the large deviation principle

Pε
µε

(
WT ≈ q

)
≍ exp

{
− Tε−1s(q)

}

as we let first ε → 0 and then T → ∞. The associated convex rate function
s : R → R+, which satisfies the fluctuation theorem s(q)− s(−q) = −q, is obtained
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by minimizing the normalized Freidlin-Wentzell functional over all closed paths
for which the power dissipated by the vector field b equals q. We remark that,
differently from what happens in the classical problem of the exit from a domain,
the cost is measured here per unit of time and the constraint depends on the whole
path. By constructing a simple example, we also show that the function s is neither
- in general - strictly convex nor continuously differentiable.

2. Notation and results

We denote by 〈·, ·〉 the canonical inner product in Rn and by | · | the associated
Euclidean norm. The gradient and the divergence in Rn are respectively denoted
by ∇ and ∇·. Fix a function V : Rn → R and a vector field b : Rn → Rn. We
assume they satisfy the following conditions:

(A) V ∈ C2(Rn) and lim
|x|→∞

〈
∇V (x), x

〉

|x| = +∞;

(B) the vector field b is not conservative and b ∈ C1
b(R

n;Rn), namely b is a
continuously differentiable bounded vector field with bounded derivatives;

(C) for each x ∈ Rn 〈∇V (x), b(x)〉 = 0.

Observe that the assumption (A) implies a superlinear growth of the potential
V , i.e.

lim
|x|→∞

V (x)

|x| = +∞.

In particular,
∫
dx exp{−ε−1V (x)} < ∞. We shall denote by c : Rn → Rn the

continuously differentiable vector field defined by

c(x) := −1

2
∇V (x) + b(x). (2.1)

Fix a standard filtered probability space (Ω,F ,Ft,P) carrying an n-dimensional
Brownian motion β. The expectation with respect to P is denoted by E. Given
ε > 0 and x ∈ Rn we consider the stochastic differential equation

{
dξxt = c(ξxt )dt+

√
ε dβt,

ξx0 = x.
(2.2)

Assumptions (A) and (B), together with definition (2.1), yield

lim
|x|→∞

〈
c(x), x

〉
= −∞.

By standard criteria, see e.g. Theorems III.4.1 and III.5.1 in Has′minskĭı (1980),
we deduce the existence and uniqueness of a unique non-exploding strong solution
to (2.2) as well as the existence of a unique stationary probability measure µε for
the Markov family {ξx, x ∈ Rn}. We consider the canonical path space C(R+;R

n)
endowed with the topology of uniform convergence in compacts and the associated
Borel σ-algebra. The canonical coordinate on C(R+;R

n) is denoted by Xt. We
denote by Pε

x, a probability measure on C(R+;R
n), the law of the process {ξxt , t ∈

R+}. Given a Borel probability measure ν on Rn we set Pε
ν :=

∫
dν(x)Pε

x and
denote by Eε

ν the corresponding expectation. In particular, Pε
µε

is the law of the
stationary process associated to (2.2).
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As discussed in the introduction, given ε, T > 0 and a Borel probability measure
ν on Rn, we let the Gallavotti-Cohen functional WT be the real random variable
on C(R+;R

n) which is Pε
ν a.s. defined by

WT :=
2

T

∫ T

0

〈
b(Xt), ◦dXt

〉
=

2

T

∫ T

0

〈b(Xt), dXt〉+
ε

T

∫ T

0

dt∇ · b (Xt). (2.3)

Here, ◦dXt denotes the Stratonovich integral with respect to the semimartingale
Xt. In the second equality we rewrote WT in terms of the Ito integral by using
(2.2) and the orthogonality condition (C).

The main purpose of this paper is to analyze the large deviations behavior of the
family of Borel probability measures on R given by {Pε

ν ◦ (WT )
−1}ε>0,T>0 when

ε → 0 and T → ∞. We first discuss briefly the typical behavior. Fix ε > 0 and
the initial distribution ν. By (2.3) and the ergodicity of the process ξx, see e.g.
Has′minskĭı (1980, Thm. IV.5.1), in the limit T → ∞ we have Pε

ν a.s.

lim
T→∞

WT =

∫
dµε(x)

[
2
∣∣b(x)

∣∣2 + ε∇ · b(x)
]
.

If the dynamical system ẋ = c(x) admits a unique equilibrium solution O which is
globally attractive, µε converges weakly to δO as ε→ 0. Hence, as b(O) = 0,

lim
ε→0

lim
T→∞

WT = 0.

In the presence of metastable states, e.g. when c has several critical points (and
no other attractors), the sequence {µε} concentrates on the critical points of c
corresponding to the deepest minima of V and the above statement still holds.
Observe that this limiting behavior is independent on the initial distribution ν. On
the other hand, if we denote by xt the solution to ẋ = c(x) with initial condition
x0 = x and choose ν = δx, for T > 0 fixed we have

lim
ε→0

WT =
2

T

∫ T

0

dt
∣∣b(xt)

∣∣2,

where the limit is in probability with respect to Pε
x. If the dynamical system

ẋ = c(x) admits a unique equilibrium solution which is globally attractive, in the
limit as T → ∞ we obtain the same result as before. On the other hand, if c has
not a unique attractor, there are initial conditions x ∈ Rn such that the limiting
behavior of WT is different. Thus - in general - the order in which the limits ε→ 0
and T → ∞ are taken is relevant.

In view of definition (2.3) and our assumptions on V and b, for ε > 0 fixed the
large deviation principle for the sequence of probability measures {Pε

µε
◦(WT )

−1}T>0

can be proven along the same lines outlined in the introduction.

Theorem 2.1. Fix ε > 0 and assume the function V : Rn → R also satisfies

lim
|x|→∞

[∣∣∇V (x)
∣∣2 − 2∆V (x)

]
= +∞. (2.4)

For each λ ∈ R the limit

eε(λ) := lim
T→∞

1

T
log Eε

µε

(
exp

{
λTWT

})

exists and defines a convex real analytic function eε : R → R. Let Rε be the
Legendre transform of eε, i.e. Rε(q) := supλ

{
λq−eε(λ)

}
. Then the family of Borel

probability measures on R given by {Pε
µε

◦ (WT )
−1}T>0 satisfies a large deviation
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principle with speed T and essentially strictly convex rate function Rε. Namely, for
each closed set C ⊂ R and each open set O ⊂ R we have

lim
T→∞

1

T
logPε

µε

(
WT ∈ C

)
≤ − inf

q∈C
Rε(q),

lim
T→∞

1

T
logPε

µε

(
WT ∈ O

)
≥ − inf

q∈O
Rε(q).

Finally, Rε satisfies the fluctuation theorem Rε(q)−Rε(−q) = −ε−1q.

Remark. The large deviation principle stated above still holds, with the same
rate function, if the stationary measure µε is replaced by a probability measure νε
such that νε(dx) = fε(x)dx and fε : Rn → R+ is a probability density satisfying∫
dx fε(x)

2 exp{ε−1V (x)} <∞.

Our next result is the large deviations asymptotic for the family of probabilities
{Pε

x ◦ (WT )
−1}ε>0,T>0 as we let first ε→ 0 and then T → ∞. As discussed in the

introduction, if the limits are taken in this order it is possible to express the rate
function as the solution of a suitable variational problem. Before stating the result,
we define the relevant rate function. Given T > 0, let

HT :=
{
ϕ ∈ AC

(
[0, T ];Rn

)
:

∫ T

0

dt
∣∣ϕ̇t

∣∣2 <∞
}

where AC
(
[0, T ];Rn

)
denotes the set of absolutely continuous paths from [0, T ] to

Rn. Furthermore, given x ∈ Rn, we set

Hx
T :=

{
ϕ ∈ HT : ϕ0 = x

}
.

For x ∈ R
n and T > 0 we let IxT : C

(
[0, T ];Rn

)
→ [0,+∞] be the Freidlin-Wentzell

rate functional associated to (2.2) namely,

IxT (ϕ) :=





1

2

∫ T

0

dt
∣∣ϕ̇t − c(ϕt)

∣∣2 if ϕ ∈ Hx
T ,

+∞ otherwise.

(2.5)

For T > 0 we let LT : HT → R be the power dissipated by the nonconservative
vector field b namely,

LT (ϕ) :=
2

T

∫ T

0

dt 〈b(ϕt), ϕ̇t〉. (2.6)

For x, y ∈ Rn and q ∈ R we then introduce the following subsets of C
(
[0, T ];Rn

)

Ax
T (q) :=

{
ϕ ∈ Hx

T : LT (ϕ) = q
}

Axy
T (q) :=

{
ϕ ∈ Hx

T : ϕT = y , LT (ϕ) = q
} (2.7)

and set

Sxy
T (q) := inf

{
IxT (ϕ) , ϕ ∈ Axy

T (q)
}
. (2.8)

Given x ∈ Rn, we finally define the function sx : R → R+ by

sx(q) := inf
T>0

1

T
Sxx
T (q). (2.9)

We show below, see Theorem 4.1, that the function sx is in fact independent of x.
In the sequel, we therefore denote it simply by s.
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Theorem 2.2. The family of Borel probability measures on R given by {Pε
x ◦

(WT )
−1}ε>0,T>0 satisfies, as we let first ε → 0 and then T → ∞, a large devi-

ation principle, uniform with respect to x in compact subsets of Rn, with speed
ε−1T and convex rate function s. Namely, for each nonempty compact K ⊂ Rn,
each closed set C ⊂ R, and each open set O ⊂ R we have

lim
T→∞

lim
ε→0

sup
x∈K

ε

T
logPε

x

(
WT ∈ C

)
≤ − inf

q∈C
s(q),

lim
T→∞

lim
ε→0

inf
x∈K

ε

T
logPε

x

(
WT ∈ O

)
≥ − inf

q∈O
s(q).

Finally, s satisfies the fluctuation theorem s(q)− s(−q) = −q.
Remark. The above theorem, together with the exponential tightness of the family
{µε}ε>0, implies the large deviation principle, with the same rate function, for the
sequence {Pε

µε
◦ (WT )

−1}ε>0,T>0.

The rest of the paper is organized as follows. The proof of Theorem 2.1 is
detailed in Appendix A. In Section 3 we discuss the large deviation principle for
the family {Pε

x ◦ (WT )
−1} when T is fixed and ε → 0. By analyzing, in Section 4,

the variational convergence of the associated rate functions as T → ∞ we then
complete the proof of Theorem 2.2. Finally, in Section 5 we give a simple example
of a vector field c for which s is not strictly convex.

3. Small noise asymptotic for a fixed time interval

We start by proving the so-called exponential tightness of the family of proba-
bility measures {Pε

x ◦ (WT )
−1}ε>0,T>0 as ε → 0 and T → ∞. We emphasize that

this result holds independently of the order of the limits.

Lemma 3.1. We have

lim
ℓ→∞

lim
ε→0
T→∞

sup
x∈Rn

ε

T
logPε

x

(
|WT | > ℓ

)
= −∞.

Proof : We denote by M the martingale part in the representation of WT given in
(2.3), i.e.

Mt := 2

∫ t

0

〈
b(Xs), dXs − c(Xs)ds

〉
= 2

∫ t

0

〈
b(Xs), dXs − b(Xs)ds

〉

so that

WT =
1

T

∫ T

0

dt
[
2|b(Xt)|2 + ε∇ · b(xt)

]
+
MT

T
.

Note that M is indeed a martingale with respect to the probability Pε
x. In view

of assumption (B), |b|2 and ∇ · b are bounded real functions. It is thus enough to
show

lim
ℓ→∞

lim
ε→0
T→∞

sup
x∈Rn

ε

T
logPε

x

(
|MT | > ℓT

)
= −∞.

Again by the boundedness of b, the process M is a continuous martingale whose
quadratic variation admits the bound [M ]t ≤ ε4Bt with B := supx |b(x)|2. By
applying Bernstein exponential inequality for martingales, see e.g. Revuz and Yor
(1991, IV.3.16), we get

Pε
x

(
|MT | > ℓT

)
≤ 2 exp

{
− ℓ2 T

8 εB

}
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which concludes the proof. �

In the remaining part of this section we prove the large deviation principle for
the family {Pε

x ◦ (WT )
−1}ε>0 for a fixed T > 0.

Theorem 3.2. Fix x ∈ Rn and T > 0. Recall (2.7), (2.8) and let Sx
T : R → [0,+∞]

be defined by

Sx
T (q) := inf

y∈Rn
Sxy
T (q) = inf

{
IxT (ϕ) , ϕ ∈ Ax

T (q)
}
. (3.1)

Let {xε} ⊂ Rn be a sequence converging to x. Then the family of Borel probability
measures on R given by {Pε

xε
◦(WT )

−1}ε>0 satisfies a large deviation principle with

speed ε−1 and rate function Sx
T , i.e. for each closed set C ⊂ R and each open set

O ⊂ R we have

lim
ε→0

ε logPε
xε

(
WT ∈ C

)
≤ − inf

q∈C
Sx
T (q),

lim
ε→0

ε logPε
xε

(
WT ∈ O

)
≥ − inf

q∈O
Sx
T (q).

Since the random variable WT is not a continuous function on the path space
C(R+;R

n), this result cannot be obtained directly from the usual Freidlin-Wentzell
estimates Freidlin and Wentzell (1998) by contraction principle and some work is
needed. We proceed by adding Wt as a n + 1-th coordinate to the underlying
diffusion process ξxt . We then exploit the Freidlin-Wentzell theory for this extended
(degenerate) diffusion process and finally project on the coordinate we are interested
in.

Proof : Consider the map from C(R+;R
n) to C(R+;R

n+1) which is Pε
x a.s. defined

by Xt 7→ (Xt, tWt) and denote by Qε
x the push forward of Pε

x. The probability
measure Qε

x on C(R+;R
n+1) can be realized as the distribution of the Rn+1-valued

diffusion process ηx which is the unique strong solution of the stochastic differential
equation {

dηxt =
[
c0(η

x
t ) + ε c1(η

x
t )
]
dt+

√
ε σ(ηxt )dβt ,

ηx0 = (x, 0).

Denoting by y = (x, z) the coordinates in Rn+1 with x ∈ Rn and z ∈ R, the vector
fields c0, c1 : Rn+1 → Rn+1 are given by

c0(y) =

(
c(x)

2|b(x)|2
)

c1(y) =

(
0

∇ · c(x)

)

while σ is the map from Rn+1 to the set of (n+ 1)× n matrices given by

σ(y) =

(
1In×n

2b(x)

)

where 1In×n stands for the identity operator on R
n. The corresponding diffusion

coefficient is the (n+ 1)× (n+ 1) matrix given by

a(y) := σ(y)σ(y)⊺ =




1In×n 2b(x)

2b(x)⊺ 4|b(x)|2


 .

Observe that a(y) is singular for every y ∈ Rn+1. More precisely, Ker a(y) is the
one dimensional subspace spanned by the eigenvector v0(y) := (2b(x),−1) corre-
sponding to the zero eigenvalue of a(y).
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Let Qε
x,T be the restriction of the probability Qε

x to the time interval [0, T ]. In

order to obtain the large deviation asymptotic of the family {Qε
xε,T

}ε>0 as ε→ 0, we
need an extension of the classical Freidlin-Wentzell results to the case in which the
drift depends on ε and the diffusion matrix is degenerate. Such a generalization is
proven in Azencott (1980, Thm. III.2.13) and gives the following. Given y ∈ Rn+1,

let aV(y) be the restriction of the linear operator a(y) to V(y) :=
(
Ker a(y)

)⊥
and

denote by a−1
V its inverse. Then, as ε → 0, the family of probability measures on

C([0, T ];Rn+1) given by {Qε
xε,T

}ε>0 satisfies a large deviation principle with speed

ε−1 and rate functional Jx
T : C([0, T ],Rn+1) → [0,+∞] given by

Jx
T (ψ) =





1

2

∫ T

0

dt
〈
ψ̇t − c0(ψt) , a

−1
V (ψt) [ψ̇t − c0(ψt)]

〉
if ψ ∈ H̃x

T

+∞ otherwise

where

H̃x
T :=

{
ψ ∈ AC([0, T ];Rn+1) :

∫ T

0

dt
∣∣ψ̇t

∣∣2 <∞ ,

ψ0 = (x, 0) , and ψ̇t − c0(ψt) ∈ V(ψt) for a.e. t ∈ [0, T ]
}
.

Fix y = (x, z) ∈ Rn × R and observe that a vector ζ in Rn+1 belongs to V(y) if
and only if ζ =

(
ξ, 2〈b(x), ξ〉

)
for some vector ξ in R

n. Therefore, recalling (2.6),

H̃x
T =

{
(ϕ, χ) ∈ C([0, T ];Rn × R) : ϕ ∈ Hx

T , χt = tLt(ϕ)
}
.

An elementary computation shows that if ζ =
(
ξ, 2〈b(x), ξ〉

)
for some ξ in Rn

then 〈ζ, a−1
V (y)ζ〉 = |ξ|2. Consider the projection π : C([0, T ];Rn × R) → R given

by π(ϕ, χ) = χT /T . The previous statement and the last displayed equation imply

Sx
T (q) = inf

{
Jx
T (ϕ, χ) , π(ϕ, χ) = q

}
.

The proof is then concluded by contraction principle. �

4. Long time asymptotic of the rate function

In this section we conclude the proof of Theorem 2.2 by showing that the sequence
of rate functions {Sx

T/T }T>0 converges to s as T → ∞. As the relevant quantities
involved in the large deviations asymptotic are the minima of Sx

T , the appropriate
notion of convergence is the so-called Γ-convergence. We recall its definition and
basic properties, see e.g. Braides (2002). Let X be a complete separable metric
space (simply R in our application); a sequence of functions Fn : X → [0,+∞] is
said to Γ-converge to F : X → [0,+∞] iff the two following conditions are satisfied
for each x ∈ X . For any sequence xn → x we have limn Fn(xn) ≥ F (x) (Γ-liminf

inequality). There exists a sequence xn → x such that limn Fn(xn) ≤ F (x) (Γ-
limsup inequality). It is easy to show that Γ-convergence of {Fn}, together with
its equi-coercivity, implies the convergence of the minima of Fn. It is also easy
to check that the Γ-convergence of a sequence {Fn} implies a lower bound on the
infimum over a compact set and an upper bound of the infimum over an open set,
see e.g. Braides (2002, Prop. 1.18). Hence, in view of the exponential tightness in
Lemma 3.1 and Theorem 3.2, the proof of Theorem 2.2 is a consequence of the
following result.
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Theorem 4.1. The following statements hold.

(i) The function sx, as defined in (2.9), is independent of x and convex. Fur-
thermore, for each x ∈ Rn and q ∈ R

s(q) = lim
T→∞

Sxx
T (q)

T
. (4.1)

Finally, s satisfies the fluctuation theorem s(q)− s(−q) = −q.
(ii) Recall (3.1) and let {xT } ⊂ Rn be a bounded sequence. For T > 0 let

sT : R → [0,+∞) be the function defined by sT (q) := T−1 SxT

T (q). Then,
as T → ∞, the sequence of real functions {sT }T>0 Γ-converges to s.

Postponing the proof of the above statements, we first show that they imply
Theorem 2.2.

Proof of Theorem 2.2: We start by showing the large deviations upper bound. Fix
T, ε > 0. In view of the representation used in Section 3, the map Rn ∋ x 7→
Pε
x◦(WT )

−1 is continuous with respect to the weak topology of probability measures
on R. Given a closed set C ⊂ R, the map Rn ∋ x 7→ Pε

x

(
WT ∈ C

)
∈ R is therefore

upper semicontinuous. Hence, given a nonempty compact K ⊂ Rn, there exists a
sequence {xT,ε} ⊂ K such that

sup
x∈K

Pε
x

(
WT ∈ C

)
= Pε

xT,ε

(
WT ∈ C

)
.

By taking, if necessary, a subsequence we may assume that {xT,ε}ε>0 converges to
some xT ∈ K. The large deviations upper bound in Theorem 3.2 now yields

lim
ε→0

sup
x∈K

ε

T
logPε

x

(
WT ∈ C

)
≤ − inf

q∈C

1

T
SxT

T (q).

In view of the exponential tightness proven in Lemma 3.1, we may assume that
C is a compact subset of R. Since {xT } ⊂ K, by item (ii) in Theorem 4.1 and
Braides (2002, Prop. 1.18) we deduce

lim
T→∞

inf
q∈C

1

T
SxT

T (q) = lim
T→∞

inf
q∈C

sT (q) ≥ inf
q∈C

s(q),

which concludes the proof of the large deviations upper bound.
The proof of the large deviations lower bound is analogous and the other state-

ments follow directly from item (i) in Theorem 4.1. �

In order to prove Theorem 4.1, we start by the following topological lemma.

Lemma 4.2. Fix q ∈ R and x, y ∈ R
n. Then:

(i) for each T > 0 the set Axy
T (q), as defined in (2.7), is not empty;

(ii) there exist reals T0, C ∈ (0,∞), depending on q and x, y, such that for any
T ≥ T0

Sxy
T (q) ≤ C T.

Proof : The idea of the proof is quite simple. Since the vector field b is not con-
servative, there exists a closed path for which the power dissipated by b does not
vanish. We thus only need to go from x to such closed path, repeat it an appropriate
number of times, and then go to y.

Fix q ∈ R and x, y ∈ Rn. For suitable constants T0, C > 0, given T ≥ T0 we
shall exhibit a path ϕ ∈ Axy

T (q) such that IxT (ϕ) ≤ C T . Since the work done by
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the vector field b along the path ϕ, i.e.
∫ T

0
dt 〈b(ϕt), ϕ̇t〉, is invariant with respect to

reparameterizations of ϕ, this will prove both the statements of the lemma.
Since the vector field b is not conservative, there exists a point in Rn, say z, and

a closed path ξ̃ ∈ Hz
1 such that ξ̃0 = ξ̃1 = z and L1(ξ̃) = q 6= 0. By denoting with ξ̂

the time reversal of ξ̃ we also have L1(ξ̂) = −q. By the continuity of the functional
L1 on Hz

1 and the fact that R
n is simply connected, for each p ∈ [−|q̄|, |q̄|] there

exists a path ξ ∈ Hz
1 such that ξ0 = ξ1 = z and L1(ξ) = p. Given λ > 0 we let

ξλ ∈ Azz
λ−1(λp) be defined by ξλt := ξλt and extend it by periodicity to a function

defined on R. Given u, v ∈ Rn, let ζuvt := u+ t(v−u), t ∈ [0, 1] and ℓuv := L1(ζ
uv).

Given a positive integer N and T1 ≥ 0 we then define the path ϕ, going from x to
y in the time interval [0, 2 + T1 +Nλ−1], by

ϕt :=





ζxzt t ∈ [0, 1)

ξλt−1 t ∈ [1, 1 +Nλ−1)

ζzyt−(1+Nλ−1) t ∈ [1 +Nλ−1, 2 +Nλ−1)

y t ∈ [2 +Nλ−1, 2 + T1 +Nλ−1].

(4.2)

Then, by construction,

L2+T1+Nλ−1(ϕ) =
1

2 + T1 +Nλ−1

(
ℓxz + ℓzy +Np

)

and

Ix2+T1+Nλ−1(ϕ) = Ix1 (ζ
xz) +NIzλ−1 (ξλ) + Iz1 (ζ

zy) +
T1
2

|c(y)|2.

We now choose λ = λ(q) > 0 such that |q|λ−1 ≤ (1/2)|q̄|, T1 ∈ [0, λ−1), and let
T0 = T0(x, y, q) > 2 + λ−1 be such that

∣∣∣ (2 + T1)q − ℓxz − ℓzy
λ(T0 − 2)− 1

∣∣∣ ≤ 1

2
|q̄|.

For T ≥ T0 we next choose N = [λ(T − 2)], where [·] denotes the integer part,
T1 = (T − 2)− λ−1[λ(T − 2)], and

p = λ−1q +
(2 + T1)q − ℓxz − ℓzy

N
.

Note that T1 ∈ [0, λ−1) and p ∈ [−|q̄|, |q̄|] by the previous choices. As it is simple
to check, the path ϕ above constructed then satisfies LT (ϕ) = q and the bound
IxT (ϕ) ≤ CT for some C = C(x, y, q) independent of T ≥ T0. �

Proof of Theorem 4.1, item (i). Fix x ∈ Rn, q ∈ R and T1, T2 > 0. From Lem-
ma 4.2 and the goodness of the rate function IxT it follows there exist ϕi ∈ Axx

Ti
(q)

such that Sxx
Ti

(q) = IxTi
(ϕi), i = 1, 2. By considering the path ϕt, t ∈ [0, T1 + T2]

given by

ϕt := 1I[0,T1)(t)ϕ
1
t + 1I[T1,T1+T2](t)ϕ

2
t−T1

we deduce that the sequence {Sxx
T (q)}T>0 is subadditive, i.e.

Sxx
T1+T2

(q) ≤ Sxx
T1

(q) + Sxx
T2

(q).

Recalling (2.9), the subadditivity just proven implies (4.1). By using the existence
of the limit and again Lemma 4.2, it is now simple to show that sx does not depend
on x and that it is convex.
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To prove the fluctuation theorem, observe that in view of (2.6), (2.8), and the
orthogonality condition (C)

1

T
Sxx
T (q) = inf

{ 1

2T

∫ T

0

dt
[∣∣ϕ̇t

∣∣2 +
∣∣c(ϕt)

∣∣2
]
− 1

2
q , ϕ ∈ Axx

T (q)
}
.

In particular, if ϕ is a minimizer for the right hand side above, then the path ϕ∗

defined by ϕ∗
t := ϕT−t is a minimizer for the analogous problem with q replaced by

−q. Hence
1

T
Sxx
T (q)− 1

T
Sxx
T (−q) = −q

and the statement follows by taking the limit T → ∞. �

Proof of Theorem 4.1, item (ii), Γ-limsup inequality. Fix a sequence Tn → ∞ and

q ∈ R. We need to show there exists a sequence qn → q such that limn sTn
(qn) ≤

s(q). We claim it is enough to choose the constant sequence qn = q. Indeed, letting
xn := xTn

, from the very definition (3.1) of Sx
T it follows

lim
n
sTn

(q) = lim
n

1

Tn
Sxn

Tn
(q) ≤ lim

n

1

Tn
Sxnxn

Tn
(q). (4.3)

Since {xn} is a bounded sequence, from Lemma 4.2 and (4.1) it easily follows that

lim
n

1

Tn
Sxnxn

Tn
(q) = s(q) (4.4)

which concludes the proof. �

In order to prove the Γ-liminf inequality in Theorem 4.1, we need to show that
in the inequality in (4.3) we did not loose much. On the other hand, if we let ϕT,x

be a minimizer for the variational problem on the right hand side of (3.1), there

is no reason for ϕT,x
T to be equal to x. In the next proposition, we show that we

can extend ϕT,x to a path ψ defined on a the longer time interval [0, T + τ ] in such
a way that ψT+τ = x and the loss in the inequality in (4.3) becomes negligible as
T → ∞.

Proposition 4.3. Fix q ∈ R, a bounded sequence {xn} ⊂ Rn, and sequences Tn →
∞, qn → q. Let ϕn ∈ Axn

Tn
(qn) be such that Sxn

Tn
(qn) = Ixn

Tn
(ϕn) and set yn := ϕn

Tn
.

There exist sequences τn → ∞ and γn ∈ Aynxn
τn (q̂n), where q̂n := q+(q− qn)Tn/τn,

such that

lim
n

τn
Tn

= 0 lim
n

1

Tn
Iyn

τn (γ
n) = 0. (4.5)

Assuming the above proposition, we conclude the proof of Theorem 4.1.

Proof of Theorem 4.1, item (ii), Γ-liminf inequality. Fix q ∈ R, a sequence Tn →
∞, and a sequence qn → q. We need to show that limn sTn

(qn) ≥ s(q). We define
xn := xTn

so that sTn
(qn) = T−1

n Sxn

Tn
(qn).

Let ϕn ∈ Axn

Tn
(qn), {yn} ⊂ Rn, τn → ∞, {q̂n} ⊂ R, and γn ∈ Aynxn

τn (q̂n) be as in
the statement of Proposition 4.3. Define the path ψn ∈ Hxn

Tn+τn
by

ψn
t := 1I[0,Tn)(t)ϕ

n
t + 1I[Tn,Tn+τn](t) γ

n
t−Tn

.

From the definition of q̂n it follows that ψn ∈ Axnxn

Tn+τn
(q). Since

Ixn

Tn+τn
(ψn) = Ixn

Tn
(ϕn) + Iyn

τn (γ
n),
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we have

Sxn

Tn
(qn) = Ixn

Tn+τn
(ψn)− Iyn

τn (γ
n) ≥ Sxnxn

Tn+τn
(q)− Iyn

τn (γ
n).

Divide the previous inequality by Tn and take the liminf as n → ∞. Since {xn} is
bounded, the proof is achieved by using (4.4) and (4.5). �

The two following lemmata are used in the proof of Proposition 4.3. In the first
one we show that the endpoint of the minimizer for the variational problem on the
right hand side of (3.1) is at most at distance O(T ) from the initial point x. In the
second one we then show we can get back to a compact independent of T in a time
which is o(T ).

Lemma 4.4. Let {yn} ⊂ Rn be as in the statement of Proposition 4.3. Then there
exists a constant C > 0 such that |yn| ≤ C(Tn + 1) for any n ≥ 1.

Proof : Let {xn} ⊂ Rn, Tn → ∞, qn → q and ϕn ∈ Axn

Tn
(qn) be as in the statement

of Proposition 4.3. Since {xn} is bounded, by Lemma 4.2 there exists a constant
C1 > 0 independent of n such that for any n large enough Ixn

Tn
(ϕn) ≤ C1Tn. Hence,

by expanding the square in the definition (2.5) of Ixn

T ,

C1 ≥ 1

Tn

∫ Tn

0

dt
[1
2
|ϕ̇n

t |2 −
〈
b(ϕn

t ), ϕ̇
n
t

〉
+

1

2

〈
∇V (ϕn

t ), ϕ̇
n
t

〉]

=
1

2Tn

∫ Tn

0

dt |ϕ̇n
t |2 −

qn
2

+
V (yn)− V (xn)

2Tn
·

Since {xn} is bounded and lim|x|→∞ V (x) = +∞, from the above bound it follows

there exists a constant C2 > 0 independent of n such that
∫ Tn

0 dt |ϕ̇n
t |2 ≤ C2Tn.

This yields |yn − xn| ≤ C3Tn for some C3 > 0 and concludes the proof. �

Lemma 4.5. Let xyt , t ∈ R+, be the solution to ẋ = c(x) with initial condition
x0 = y. There exists a compact K ⊂ Rn independent of y such that the following
statement holds. Denote by σK(y) := inf{t ≥ 0 : xyt ∈ K} the hitting time of K;
then

lim
|y|→∞

σK(y)

|y| = 0.

Proof : By assumption (A) there exists a Lipschitz function ℓ : R+ → R such
that ℓ(r) → +∞ as r → ∞ and for any x ∈ Rn

〈
∇V (x), x

〉
≥ 2 ℓ(|x|) |x|. Set

B := supx |b(x)| and let R0 ∈ R+ be such that ℓ(r) ≥ B + 1 for any r ≥ R0. We
claim the lemma holds with K given by the ball of radius R0. Indeed, recalling
(2.1) and using a standard comparison argument, if |y| > R0 we have that |xyt | ≤ rt
where rt solves the Cauchy problem

{
ṙ = −ℓ(r) +B,

r0 = |y|.

Hence,

lim
|y|→∞

σK(y)

|y| ≤ lim
|y|→∞

1

|y|

∫ |y|

R0

dr
1

ℓ(r)−B
= 0

where we used that ℓ(r) → ∞ as r → ∞. �
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Proof of Proposition 4.3: Let K ⊂ Rn be as in Lemma 4.5 and denote by σn ≥ 0
the hitting time of K for the path x with initial condition yn. Observe that,

by Lemmata 4.4 and 4.5, limn σn/Tn = 0. Set zn := xσn
∈ K and let q

(1)
n :=

2σ−1
n

∫ σn

0
dt

∣∣b(xt)
∣∣2 be the power dissipated by vector field b along the path xt,

t ∈ [0, σn]. Note that q
(1)
n is bounded by the boundedness of b.

Choose a sequence σ̃n → ∞ such that σ̃n/Tn → 0, supn σn/σ̃n < ∞, and

supn(q− qn)Tn/(σn + σ̃n) <∞. Set τn := σn + σ̃n and q
(2)
n := σ̃−1

n

(
τnq̂n − σnq

(1)
n

)
.

Observe that q
(2)
n is bounded by the boundedness of q

(1)
n and the choice of σ̃n. Let

ψn
t , t ∈ [0, σ̃n] be the path constructed in Lemma 4.2, see in particular (4.2), with

x replaced by zn, y replaced by xn, q replaced by q
(2)
n , and T replaced by σ̃n.

Finally, define the path γn going form yn to xn in the time interval [0, τn] by
γnt := 1I[0,σn)(t) xt + 1I[σn,τn](t)ψ

n
t−σn

. Then, by construction,

Lτn(γ
n) =

1

τn

[
σnq

(1)
n + σ̃nLσ̃n

(ψn)
]

and

Iyn

τn (γ
n) = 0 + Izn1 (ζznz) +NIzλ−1(ξλ) + Iz1 (ζ

zxn) +
T1
2

|c(xn)|2.

Since {zn} ⊂ K and {xn}, {q(2)n } are bounded, we conclude the proof by choosing
sequences {λn} ⊂ R+, {Nn} ⊂ N, and {pn} ⊂ [−|q̄|, |q̄|] as in Lemma 4.2. Note in

particular that with such choices Lσ̃n
(ψn) = q

(2)
n , λn is bounded, and limnNn/Tn =

0. �

5. An example with not strictly convex rate function

We here show that metastable behavior of the process in the small noise limit can
lead to a rate functional s with affine parts. Let U : R+ → R+ be a smooth function
with two local minima at 0 and R0 > 0 and super-linear growth as r → ∞. Set
V (x) := U(|x|). Let also the smooth vector field b : R2 → R2 be defined by b(x) =
A(|x|)x⊥ = A(|x|) (x2,−x1) where A : R+ → R+ is a smooth function with compact
support in (0,+∞) such that A(R0) > 0. Set finally c(x) := −(1/2)∇V (x) + b(x).
Recalling s has been defined in (2.9), we claim that in this case it is not strictly
convex.

Consider the dynamical system

ẋ = −1

2
∇V (x) + b(x).

By the above choices, it has the equilibrium solution x = 0 and the periodic solution
x̄(t) = R0

(
cos(ωt), sin(ωt)

)
where ω = A(R0)/R0. Let

q̄ :=
2ω

2π

∫ 2π/ω

0

dt
〈
b
(
x̄(t)

)
, ˙̄x(t)

〉

be the power dissipated along the periodic solution x̄. Note that q̄ > 0. By choosing
the test paths ϕ = 0 and ϕ = x̄ we deduce s(0) = s(q̄) = 0. Therefore, by the
positivity and convexity of s, we have s(q) = 0 for any q ∈ [0, q̄]. Moreover, the
fluctuation theorem s(q)− s(−q) = −q implies that s(q) = −q for q ∈ [−q̄, 0].
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Appendix A. Large deviations principle as T → ∞

As the diffusion coefficient ε is here kept fixed, to simplify the notation we set
ε = 1 and drop the dependence from ε from the notation. We also assume the
arbitrary constant in the definition of V has been chosen so that exp{−V (x)} is
a probability density in Rn and denote by ℘ the probability given by d℘(x) =
exp{−V (x)} dx. Let H be the complex Hilbert space H = L2(Rn; d℘); we denote
by (·, ·) and ‖ · ‖ the inner product and the norm in H. Hereafter, we assume that
the function V : Rn → R satisfies (2.4) without further mention.

Fix a Borel probability measure ν on Rn and consider the moment generating
function of the random variable tWt with respect to the probability Pν . Recalling
(2.3) and the assumption (B), a straightforward application of the Girsanov formula
yields the following representation. For each λ ∈ R

Eν
(
exp

{
λtWt

})
=

∫
dν(x)E exp

{∫ t

0

dsUλ

(
ξλ,xs

)}
(A.1)

where, for x ∈ Rn, the process ξλ,x is the solution to the stochastic differential
equation 



dξλ,xt =

[
− 1

2
∇V

(
ξλ,xt

)
+ (1 + 2λ) b

(
ξλ,xt

)]
dt+ dβt

ξλ,x0 = x
(A.2)

and Uλ : Rn → R is the function defined by

Uλ(x) := 2λ(1 + λ)|b(x)|2 + λ∇ · b(x). (A.3)

For λ ∈ C, let A◦
λ be the operator on H with dense domain C∞

0 (Rn), the set of
smooth functions with compact support, and given by

A◦
λf(x) :=

1

2
∆f(x)− 1

2
〈∇V (x),∇f(x)〉+(1+2λ)〈b(x),∇f(x)〉+Uλ(x)f(x). (A.4)

We denote by Aλ the closure of A◦
λ; its domain Dλ is given by

Dλ =
{
f ∈ H : ∃{fn} ⊂ C∞

0 (Rn) s.t. fn → f in H and A◦
λfn converges in H

}
.

The adjoint of Aλ in H is denoted by A′
λ.

Lemma A.1. The set Dλ is independent on λ and coincides with the domain of A′
λ

for any λ ∈ C. Moreover, Aλ generates a compact strongly continuous semigroup
T λ
t on H. Finally, if λ ∈ R then the semigroup T λ

t is positive and irreducible and
for f ∈ H the representation

T λ
t f (x) = E

(
exp

{∫ t

0

dsUλ(ξ
λ,x
s )

}
f
(
ξλ,xt

))
(A.5)

holds.

Before proving this result, we clarify the used terminology. The semigroup T λ
t is

positive (positivity preserving in the terminology of Reed and Simon (1980)) if f ≥ 0
implies T λ

t f ≥ 0 for any t ≥ 0. Given f ∈ H, we write f > 0 iff f ≥ 0 and f 6= 0.
We write f ≫ 0 iff f(x) > 0 ℘ a.e. Then, see Arendt et al. (1986, Def. C-III.3.1), the
positive semigroup T λ

t is irreducible (ergodic in the terminology of Reed and Simon
(1980)) if, given f > 0 and g > 0 in H, there exists t0 ≥ 0 such that

(
g, T λ

t0f
)
> 0.

An equivalent characterization of irreducibility is the following: for sufficiently large
z in the resolvent set of the generator Aλ the resolvent Rz = (z−Aλ)

−1 is positivity
improving, i.e. f > 0 implies Rzf ≫ 0.
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Proof : Fix λ ∈ C. On C∞
0 (Rn) define the operators

H◦
0f(x) =

1

2
∆f(x) − 1

2
〈∇V (x),∇f(x)〉

H◦
1f(x) = (1 + 2λ) 〈b(x),∇f(x)〉 + Uλ(x)f(x)

so that A◦
λ = H◦

0 +H◦
1 .

Step 1. The operator H◦
0 with domain C∞

0 (Rn) is essentially self-adjoint in H and
its closure has compact resolvent.

To complete this step, it is enough to consider the well-known ground state
transformation and apply standard criteria for Schrödinger operators. Here the
details. Let U : H → L2(Rn; dx) be the isometry defined by Uf = exp{−V/2}f .
By an explicit computation

UH◦
0U

−1 = −
[
− 1

2
∆ +

1

8
|∇V |2 − 1

4
∆V

]

Recalling the assumption (2.4), the step now follows from Reed and Simon (1980,
Thm X.29) and Reed and Simon (1980, Thm XIII.67). We denote by (H0,D) the
closure of H◦

0 . Observe that

(H0f, f) = −1

2
‖∇f‖2 (A.6)

which implies that H0 is negative.

Step 2. The operator H◦
1 is H◦

0 -bounded with H◦
0 -bound equal to 0, i.e. for each

γ > 0 there exists a constant Cγ , such that for any f ∈ C∞
0 (Rn)

‖H◦
1f‖ ≤ γ‖H◦

0f‖+ Cγ‖f‖. (A.7)

Observe that this implies that H◦
1 can be uniquely extended to D. We denote this

extension by (H1,D). Moreover the bound (A.7) holds, with H◦
0 and H◦

1 replaced
by H0 and H1, for any f ∈ D.

To prove (A.7), let g ∈ H, f ∈ C∞
0 (Rn). By assumption (B) and Cauchy-

Schwarz inequality, for any γ > 0 we have

(
g,H◦

1f
)
≤ (1 + 2|λ|)

∫
d℘(x) |b(x)| |g(x)| |∇f(x)|+ C‖g‖ ‖f‖

≤ (1 + 2|λ|)
[γ
2
‖∇f‖2 + 1

2γ
sup
x

|b(x)|2 ‖g‖2
]
+ C‖g‖‖f‖

for some constant C depending on λ and the vector field b. Thanks to (A.6), by
taking the supremum over g with ‖g‖ = 1 and redefining γ, we deduce

‖H◦
1f‖ ≤ γ‖f‖‖H◦

0f‖+ Cγ(1 + ‖f‖)
for some constant Cγ ∈ (0,+∞). Replacing above f with f/‖f‖ the step follows.

Step 3. The operator (H1,D) is (H0,D)-compact.
We need to show that for some z (hence for all z in the resolvent set of H0,

which by (A.6) is not empty) H1R0,z is compact, where R0,z denotes the resolvent
of the operator (H0,D). Fix a bounded sequence {fn} ⊂ H. By Step 1 there exists
a subsequence, still denoted by fn, such that {R0,zfn} converges. By linearity, we
can assume that R0,zfn → 0; we shall show that H1R0,zfn → 0 as well. Indeed, by
Step 2 for any γ > 0 we have

‖H1R0,zfn‖ ≤ γ‖H0Rz(H0)fn‖+ Cγ‖Rz(H0)fn‖.
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Since for each z in the resolvent set of H0 the operator H0Rz(H0) is bounded, the
result follows by taking first the limit n→ ∞ and then γ ↓ 0.

Step 4. For every λ ∈ C, Dλ = D and Aλ generates a compact semigroup on H.
The first statement follows from Kato (1995, Thm. IV.1.11). Moreover, since by

(A.6) H0 generates a strongly continuous holomorphic semigroup on H, the same
is true for Aλ by Reed and Simon (1980, Thm. X.54) and Step 2. One can easily
check that for z sufficiently large the resolvent Rz of Aλ satisfies

Rz = R0,z +RzH1R0,z

hence, by Steps 1 and 3, the operator Aλ has compact resolvent. Since a holo-
morphic strongly continuous semigroup whose generator has compact resolvent is
always compact Engel and Nagel (2000, Thm. II.4.29) this concludes the step.

Step 5. The operator A′
λ has domain D.

Observe that trivially the domain of A′
λ contains D. Define on C∞

0 the formal
adjoint H∗

1 of H1 in H. In view of assumption (C), an elementary computation
shows that

H∗
1f(x) = −(1 + 2λ)〈b(x),∇f(x)〉 + Uλ(x)f(x)

where z is the complex conjugate of z. Notice that Step 2 holds also with H◦
1

replaced by H∗
1 . As in Step 3, we can then conclude that the adjoint H ′

1 of H1

is (H0,D)-compact. By Beals (1964) it follows that A′
λ = (H0,D) + H1, so the

domain of A′
λ can not be larger than D.

Step 6. If λ ∈ R, then the semigroup T λ
t := exp{tAλ} is positive, irreducible and

satisfies (A.5).
In view of the assumptions (B), the function Uλ defined in (A.3) is continuous

and bounded, hence (A.5) for f ∈ C∞
0 (Rn) follows from the classical Feynman-Kac

formula. By monotone approximation it holds for every f ∈ H. In particular T λ
t is

positive. To prove irreducibility we show that the resolvent Rz of Aλ is positivity
improving for z sufficiently large. Given f ∈ H, f > 0 we can find a function
g ∈ C∞

0 (Rn) such that 0 < g ≤ f . For sufficiently large z in the resolvent of
Aλ, we have that h := Rzg ≥ 0 since the semigroup is positive. Furthermore
Aλh − zh = −g < 0. By elliptic regularity h ∈ C2(Rn), so h 6= 0 and for large
enough z the maximum principle Protter and Weinberger (1984, Thm. II.6) gives
h≫ 0. Again by positivity of the semigroup Rzf ≥ Rzg = h≫ 0, which gives the
irreducibility. �

Given λ ∈ R, let e(λ) := sup{Re z, z ∈ specAλ} be the spectral bound of the
operator Aλ. We recall, see Arendt et al. (1986), that e(λ) is strictly dominant iff
there exists δ > 0 such that Re z ≤ e(λ)− δ for any z ∈ specAλ \ {e(λ)}. We recall
also that an eigenvalue is simple iff it is a pole of order 1 of the resolvent.

Lemma A.2. Fix λ ∈ R. Then e(λ) is strictly dominant and a simple eigenvalue
of Aλ and of A′

λ. Moreover, there exist corresponding eigenvectors Ψλ and Ψ′
λ of

Aλ and A′
λ such that Ψλ,Ψ

′
λ ≫ 0 and (Ψλ,Ψ

′
λ) = 1. In particular, the projection

given by Pλ = (Ψ′
λ, ·)Ψλ is positivity improving and there exist constants δ, C > 0

such that for any t ≥ 0
∥∥T λ

t − ete(λ) Pλ

∥∥ ≤ C et[e(λ)−δ]

where ‖ · ‖ denotes the operator norm.
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Proof : The lemma follows from standard spectral theory of positive semigroups,
see Arendt et al. (1986, Thm. C-III.1.1, Prop. C-III.3.5) and Engel and Nagel (2000,
Thm. V.3.7). Notice that, by compactness and irreducibility of the semigroup, one
can exclude that the spectrum is empty. This follows essentially from a result of
de Pagter, see Arendt et al. (1986, Thm. C-III.3.7). �

Remark. If λ = 0 the semigroup T λ
t is Markovian, i.e. T 0

t 1 = 1. In this case
e(0) = 0 and Ψ0 = 1. It is also simple to check that the stationary measure µ of
the solution to (2.2) for ε = 1, which coincides with (A.2) for λ = 0, is given by
dµ = Z−1Ψ′

0d℘, where Z =
∫
d℘(x)Ψ′

0(x) and Ψ′
0 is a strictly positive eigenvector

of A′
0 corresponding to the eigenvalue e(0) = 0.

Lemma A.3. The map R ∋ λ 7→ e(λ) is real analytic.

Proof : In view of Lemma A.1, it is straightforward to check that the family of
linear operators {Aλ}λ∈C is a holomorphic family of type (A) in the sense of Kato
(1995, VII § 2). Fix λ0 ∈ R. By the Kato-Rellich theorem Reed and Simon (1980,
Thm. XII.8) there is an analytic function λ 7→ a(λ) ∈ C such that a(λ0) = e(λ0)
and a(λ) is the only eigenvalue of Aλ near e(λ). From the definition of e(λ) and
the analyticity of a(λ) it easily follows that for λ ∈ R we have a(λ) = e(λ), which
proves the lemma. �

Proof of Theorem 2.1: The representation (A.1) and Lemma A.1 yield

Eµ
(
exp

{
λtWt

})
=

∫
dµ(x)T λ

t 1 (x) (A.8)

where 1 denotes the function in H identically equal to one. Using Lemma A.2 and
the remark following it we get

lim
t→∞

1

t
log Eµ exp

{
λtWt

}
= lim

t→∞

1

t
log

[
Z−1

(
Ψ′

0, T
λ
t 1

) ]
= e(λ). (A.9)

An application of Hölder inequality yields the convexity of e. Moreover, in view
of Lemma A.3, the function e is real analytic. The large deviation principle for
the family {Pµ ◦ (WT )

−1}T>0 now follows from the Gärtner-Ellis theorem, see e.g.
Dembo and Zeitouni (1998, Thm. 2.3.6). Finally, by the smoothness of e and
Rockafellar (1970, Thm. 26.3), R is essentially strictly convex.

Recall that A′
λ denotes the adjoint in H of the operator Aλ. By using assumption

(C), an elementary computation shows that for λ ∈ R the restriction to C∞
0 (Rn)

of the operator A′
λ is given by

A′
λf(x) =

1

2
∆f(x) − 1

2
〈∇V (x),∇f(x)〉 − (1 + 2λ)〈b(x),∇f(x)〉

+
[
2λ(1 + λ)|b(x)|2 − (1 + λ)∇ · b(x)

]
f(x).

In particular, by Lemma A.1, A′
λ = A−1−λ. Lemma A.2 then gives e(λ) = e(−1−

λ) and the fluctuation theorem R(q) − R(−q) = −q follows by taking Legendre
transforms. �
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