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Abstract. Sums of m-dependent integer-valued random variables are approxi-
mated by compound Poisson, negative binomial and binomial distributions and
signed compound Poisson measures. Estimates are obtained for the total variation
metric. The results are then applied to statistics of m-dependent (k1, k2) events
and 2-runs. Heinrich’s method and smoothing properties of convolutions are used
for the proofs.

1. The setup

In this paper, we consider sums S, = X; + X5 + --- + X,, of non-identically
distributed 1-dependent random variables concentrated on nonnegative integers.
Our aim is to estimate the closeness of S, to compound Poisson, negative binomial
and binomial distributions, under some conditions for factorial moments. For the
proof of the main results, we use Heinrich’s (see Heinrich, 1982, 1987) version of
the characteristic function method. Though this method does not allow to obtain
small absolute constants, it is flexible enough for obtaining asymptotically sharp
constants, as demonstrated for 2-runs statistic. Moreover, our approach allows for
construction of asymptotic expansions.

We recall that the sequence of random variables { X} }x>1 is called m-dependent
if, for 1 < s <t < 00, t — s > m, the sigma algebras generated by Xi,..., X, and
Xy, X441 ... are independent. It is clear that, by grouping consecutive summands,
we can reduce the sum of m-dependent variables to the sum of 1-dependent ones.
Therefore, the results of this paper can be applied for some cases of m-dependent
variables, as exemplified by binomial approximation to (k1, k2) events.
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Let us introduce some necessary notations. Let {Y;}x>1 be a sequence of arbi-
trary real or complex-valued random variables. We assume that E(Y;) = EY; and,
for k > 2, define E(Y1,Ys,---Y%) by

~

k—1
E(Y1,Ya, -, Vi) =EViYa---Yi = > B(Yi, -+, Y))EYj 1 - Yi.
=1

We define j-th factorial moment of Xy, by v;(k) = EXy(Xp —1) - (Xp —Jj+1),
(k=1,2,....n,j=1,2,...). Let

Ih = ES,= v (k),
=
r, = %(VarSn —ES,) = % g (vak) — Vi (k) + éE(Xk—lek)v
no- 2 ; (o (k) — 3 (k)vak) + 203 (1))
- kzn% (vi(k — 1) + 11 (k) E(Xk-1, Xk)
% kZ: (B(Xpo1(Xpo1 — 1), Xp) + E(Xp—1, Xi(Xi — 1))

For the sake of convenience, we assume that X, =0 and v;(k) = 0if k¥ <0 and
> = 0if & > n. We denote the distribution and characteristic function of S,
by F, and ﬁn(t), respectively. Below we show that I'y, 2I'y and 6I'3 are factorial
cumulants of F),, that is,

F,(t) = exp{Ty (e — 1) + Ty(e"* — 1) + T3(e — 1) + ... }.

For approximation of F},, it is natural to use measures or distributions which allow
similar expressions.

Let I, denote the distribution concentrated at real a and set I = Iy. Henceforth,
the products and powers of measures are understood in the convolution sense.
Further, for a measure M, we set M? = I and

— 1
M. _ _ Lok
e .—exp{M}—Z o MF".
k=0
The total variation norm of measure M is denoted by

o0

1Ml =D [M{k}.

k=—o0

We use symbol C' to denote all (in general, different) positive absolute constants.
We use symbols 6 and © to denote all real or complex quantities satisfying |0] < 1
and all measures of finite variation satisfying ||©|| = 1, respectively.
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Next we define approximations of this paper. Let
Pois(I'y) = exp{T'1(I; — I)}, G =exp{T1(ly —I)+To(l — I)?}.

It is easy to see that Pois(I'1) is Poisson distribution with parameter I';. In general,
G is a signed measure, since I's can be negative. Signed compound Poisson measures
similar to G are used in numerous papers, see Barbour and Cekanavicius (2002);
Barbour and Xia (1999); Cekanavicius and Vellaisamy (2010); Roos (2003), and
the references therein. In comparison to the Poisson distribution, the main benefit
of G is matching of two moments, which then allows for the accuracy comparable
to the one achieved by the normal approximation. This fact is illustrated in the
next two sections. From a practical point of view, signed measures are not always
convenient to use, since for calculation of their 'probabilities’ one needs inverse
Fourier transform or recursive algorithms. Therefore, we also prove estimates for
such widely used distributions as binomial and negative binomial. We define the
binomial distribution of this paper as

Bi(N.p) = (T +5(h— D). N=|§], N=s i 5=l

| | R T

Here, we use | N| to denote the integer part of N, that is, N = N + ¢, for some
0 < e < 1. Also, we define negative binomial distribution and choose its parameters
in the following way:

NB(r,q){j} = Fﬁ}—z{)m—qﬂ (G € Zy),
rl-q _ N
S <—q ) — 2T, (1.1)

Note that symbols ¢ and p are not related and, in general, § + p # 1.

2. Known results

There are many results dealing with approximations to the sum of dependent
integer-valued random variables. Note, however, that with very few exceptions:
a) all papers are devoted to the sums of indicator variables only; b) results are
not related to k-dependent variables. For example, indicators connected in a
Markov chain are investigated in Cekanavicius and Vellaisamy (2010); Xia and
Zhang (2009). The most general results, containing k-dependent variables as par-
tial cases, are obtained for birth-death processes with some stochastic ordering, see
Brown and Xia (2001); Daly et al. (2012); Eichelsbacher and Roos (1999) and the
references therein.

Arguably the best explored case of sums of k-dependent integer-valued random
variables is k-runs. Let n; ~ Be(p;) (i=1,2,...) be independent Bernoulli variables.
Let us define & = Hi’:_l ni, S* =31 &. The sum S* is called k-runs statistic.
Note that frequently 7;4nm is treated as n; for 1 < i < nand m = £1,+2,....
Approximations of 2 or k-runs statistic by Poisson, negative binomial distribution
or signed compound Poisson measure are considered in Barbour and Xia (1999);
Brown and Xia (2001); Daly et al. (2012); Rollin (2005); Wang and Xia (2008).
Particularly in Brown and Xia (2001) it was proved that, if k = 2 and p; = p, n > 2
and p < 2/3, then
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64.4p
(n =11 -p)*

Here ¢ = (2p — 3p®)/(1 + 2p — 3p?) and (1 — q)/q = np®.

The k-runs statistic has very explicit dependency of summands. Meanwhile,
our aim is to obtain a general result which includes sums of independent random
variables as a particular case. Except for examples, no specific assumptions about
the structure of summands are made. For bounded and identically distributed
random variables a similar approach is taken in Petrauskiene and Cekanavicius
(2011). We give one example from Petrauskiené and Cekanavicius (2011) in the
notation of the previous Section. Let the X; be identically distributed, |X;| < C,
and, for n — oo,

vi(l) =0(1), wva(l) =o0(r1(1)), EX1X2=o0(ri(1)), nwn(l)—>oco. (2.2)

I1£(5™) = NB(7, g)|| < (2.1)

Then
R
| — Gl = O(m)
where
R = Vg(l) + Vl(l)ug(l) + Vlg(l) + E(Xl (Xl —1)Xo + X1 X2(Xo — 1))

+1(1HEX1 Xe + EX7 X0 X5,

Condition (2.2) implies that X; form a triangular array and P(X; = k) = o(1),
k > 1. Thus, the classical case of a sequence of random variables, so typical for
CLT, is completely excluded. Moreover, assumption | X;| < C seems rather strong.
For example, then one can not consider Poisson or geometric random variables as
possible summands.

3. Results
All results are obtained under the following conditions:

vi(k) < 1/100, wva(k) <wvi(k), wva(k)<oo, (k=1,2,...,n), (3.1)
A= S vi (k) — 1.52Zn: vy (k) — 122n: EX_1 X5 > 0. (3.2)
= k=1

k=1 k=2

The last condition is satisfied, if the following two assumptions hold

k=1 k=2
Moreover, if (3.1) and (3.3) hold, then A > 0.2T';. Indeed, then
EXp 1 X < |COU(Xk,1,Xk) + Vl(k — 1)V1(k)| < |OO’U(Xk,1, Xk)| + 001V1(k)

Conditions above are weaker than (2.2). For example, X; are not necessarily
bounded by some absolute constant.
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Next we define remainder terms. Let

Ry =

M=

{valh) + V3 (k) + BXi 1 X},

el
Il
—

R =

M=

{uf(k) + 1 (k)wa (k) + v3(k) + B (Xu_1, X&)

b
I

1
ik —2) + 1 (k — 1)+ 01 (k) EXp_1 Xp + B+ (Xp_2, Xe_1, Xk)},

_|_

[ ®) + B0 +0) + (BX1X,)

&
I
NIE

el
Il

1

i (k —2) + 1 (k — 1) + 01 (k)] [vs (k) + EF (Xp_1, X3)]

iy

vi(k — DE* (Xj—2, Xp—1, Xi) + B (Xp—2, Xp—1, X3)

+
NE

=0
+E§F(Xk71, X3) +ET(Xp 3, X2, Xi_1, Xk)}-

Here
Et(X;) = EX;, ET(X1,X,)=EX,X,+EX,EX>,
Et(X1,...,Xy) = EXi...X
k—lA
+Y BN (X1, Xo, o XEX 1 Xya - X,
j=1
Ef (Xi 1, X3) = EY(Xp1(Xp_1—1), Xg) + EF(Xpo1, Xp(Xp — 1)),
Ef (Xp—2, X5-1,Xr) = ET(Xp—2(Xp—a—1), Xp—1, Xx)

+EF(Xp0, Xp 1 (X1 — 1), Xi)
+BT (X, X1, Xi(Xi — 1)),

Ef (Xp1,Xk) = BY(Xpo1(Xp1 — 1)(Xpo1 —2), Xz)
+EN (X1 (Xpm1 — 1), Xp(Xi — 1))
+BT (Xp—1, Xp( X — (X5 — 2)).

For better understanding of the order of remainder terms, let us consider the case
of Bernoulli variables P(X; = 1) =1 — P(X; = 0) = p;. If all X; are independent,
then Ry = CY /'p? and Ry = CY.['p}. If X; are 1-dependent, then at least
Ry < CY lpiand Ry < CY Y pi/ 2 If some additional information about X; is
available (for example, that they form 2-runs), then the estimates are somewhat in
between.

Our aim is investigation of approximations with at least two parameters. How-
ever, for the sake of completeness, we start with the Poisson approximation. Note
that Poisson approximation (for indicator variables) is considered in Arratia et al.
(1990); Barbour et al. (1992) under much more general conditions than assumed in
this paper.
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Theorem 3.1. Let conditions (3.1) and (3.2) be satisfied. Then, for all n,

| F, — Pois(I')|| < CRo{1 + T'1min(1,A™")} min(1, A1), (3.4)
| Fn — Pois(T)(I + To(1 — 1)?)|| < C{1+Tymin(1,A™")}(R§ min(1,A"?)
+ Ry min(1, A\7%/2)). (3.5)

If all X; ~ Be(1, p;) are independent, then the order of accuracy in (3.4) is correct
(see, for example, Barbour et al., 1992) and is equal to C Y 7 p?(1V > 1 pi)~ "
Similarly, in (3.5) the order of accuracy is C'(maxp;)?. As one can expect, the
accuracy of approximation is trivial, if all p; are uniformly bounded from zero, i.e.,

> (. The accuracy of approximation is much better for G.

Theorem 3.2. Let conditions (3.1) and (3.2) be satisfied. Then, for all n,

|F, — G| € CR1{1 + 'y min(1,A™1)} min(1, \7%/2), (3.6)
|F — GUI +T5(I — D)%) < C{1+Timin(1,A\"")} (R min(1,\"?)
+Rymin(1, A7?)). (3.7)

If, instead of (3.2), we assume (3.3), then A > CT; and 1+ 'y min(1,\"1) < C.
If, in addition, all X; do not depend on n and are bounded, then estimates in
(3.6) and (3.7) are of orders O(n~'/?) and O(n~'), respectively. Thus, the order of
accuracy is comparable to CLT and Edgeworth’s expansion. If all X; ~ Be(1, p;)
are independent, then the order of accuracy in (3.6) is the right one (see Kruopis,
1986) and is equal to C'S°7 p3 (1 v ] pi)~3/2.

Approximation G has two parameters, but: a) is not always a distribution, b)

s ”probabilities” are not easily calculable. Some authors argue (see, for exam-
ple Brown and Xia, 2001) that, therefore, probabilistic approximations are more
preferable. We start from the negative binomial approximation. Observe, that the
negative binomial approximation is meaningful only if Vars, > ES,,.

Theorem 3.3. Let conditions (5.1) and (3.3) be satisfied and let T's > 0. Then,
for all n,
|F, —NB(r,q)| < Cmin(1,T7%?)(Ry +T2I7h), (3.8)
|Fy — NB(r,q) (I + [[5 — AT5(301) ')(I1 — I)*)|| < C{R min(1,T7?)
+Romin(1,T7?%) + T30, 13 — 402%(3T) ! min(1, T %)
4030 2 min(1,T7%)}. (3.9)
It seems that asymptotic expansion for the negative binomial approximation was
so far never considered in the context of 1-dependent summands. If all X; do not
depend on n and are bounded, the accuracies of approximation in (3.8) and (3.9)
are O(n~'/?) and O(n~1), respectively.
If VarS,, < ES,,, it is more natural to use the binomial approximation.

Theorem 3.4. Let conditions (3.1) and (3.3) be satisfied, T1 > 1 and Ty < 0.
Then, for all n,

IF, — BiN,p)| < CEIry"% + Ry /), (3.10)
|Fn = Bi(N,p) (I + [Ts — Np*/3](Iy — I)*)|| < C{RiT;?
FRT T2+ DoPT T + T30 + D30T %) (3.11)
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If all the X; do not depend on n and are bounded, the accuracies of approxima-
tion in (3.10) and (3.11) are O(n~/2) and O(n~1), respectively.

In this paper we consider the total variation norm only. It must be noted that
formula of inversion for probabilities allows to prove local estimates too. If A > 1,
then local estimates are equal to (3.4) — (3.11) multiplied by factor A=1/2,

4. Applications

1. Asymptotically sharp constant for the negative binomial approx-
imation to 2-runs. As already mentioned above, the 2- runs statistic is one of
the best investigated cases of sums of 1-dependent discrete random variables. It is
easy to check that the rate of accuracy in (2.1) is O(pn~'/2). However, the con-
stant 64.4 is not particularly small. Here, we shall show, that, on the other hand,
asymptotically sharp constant is small. Asymptotically sharp constant can be used
heuristically to get the idea about the magnitude of constant in (3.8). We shall
consider 2-runs with edge effects, which we think to be more realistic case than S*.
Let S¢ = & +&a+- - -+&,, where § = n;m;41 and n; ~ Be(p), (i =1,2,...,n+1) are
independent Bernoulli variables. The sum S* differs from S¢ by the last summand
only, which is equal to 7,,m1. As shown in Petrauskienc and Cekanavicius (2010),
for S¢ we have

np*(2 — 3p) — 2p°(1 —p)

Fl = np27 F2 = 2 )

r np*(3 —12p + 10p?) — 6p*(1 — p)(1 — 2p)
3 = .
3

Let NB(r, q) be defined as in (1.1) and

~ 1 /2
Crv = —\/j(1 +4e7%/2) = 0.5033...
3V
Theorem 4.1. Let p < 1/20, np? > 1. Then

1£(50) - NB(r )] - Crv L < o 2o+ 1),

We now get the following corollary.

Corollary 4.2. Let p — 0 and np? — oo, as n — co. Then
L(S¢) — NB(r, q ~

n—00 p

2. Binomial approximation to N(ki, ko) events. Let n; ~ Be(p),(0 <
p < 1) be independent Bernoulli variables and let Y; = (1 — nj_m41) -+ (1 —
Nk Mj—kot1 " Nj—174, J = mym + 1,...,n, k1 + k2 = m. Further, we assume
that k1 > 0 and ko > 0. Let N(n;k1,k2) =Yy, + Yig1 + - + Y. We denote the
distribution of N(n;ki,ks) by H. Let a(p) = (1 — p)k1p*2. Tt is well known that
N (n;kq, ko) has limiting Poisson distribution and the accuracy of Poisson approxi-
mation is O(a(p)), see Huang and Tsai (1991) and Vellaisamy (2004), respectively.
However, Poisson approximation has just one parameter. Consequently, the close-
ness of p to zero is crucial. We can expect any two-parametric approximation to
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be more universal. It is proved in Upadhye (2009) that
EN(n;k1,ke) = (n—m+ 1)a(p),

VarN(n; ki, k2) = (n—m+ 1a(p) + (1 —4m + 3m? —n(2m — 1))a®(p).
Under quite mild assumptions VarN (n; k1, k2) < EN(n; ki, k2). Consequently, the
natural probabilistic approximation is binomial one. The binomial approximation
to N (n; k1, k1) was already considered in Upadhye (2009). Regrettably, the estimate
in Upadhye (2009) contains expression which is of the constant order when a(p) — 0.

Note that Y7,Ys,... are m-dependent. Consequently, results of the previous

Section can not be applied directly. However, one can group summands in the
following natural way:

N(nyki, k) = Y +Ymqr+ -+ Yomo1) + (Yo + Yormp1 + -+ Yap_1) + ...
= Xi+Xo+...

Each X, with probable exception of the last one, contains m summands. It is
not difficult to check that Xi, Xs,... are 1-dependent Bernoulli variables. All
parameters can be written explicitly. Set N = | N| be the integer part of N,

N (n—m+1)° ., N=N+e¢ 0<e<l,
(n—m+1)2m—-1)—m(m—1)
. (n—m+1)a(p)
=
For the asymptotic expansion we need the following notation

A= @(n—m—l—l)m(m—l).

The two-parametric binomial approximation is more natural, when
EN(n; k1, ko) > 1, which means that we deal with large values of n only.
Theorem 4.3. Let (n —m + 1)a(p) = 1 and ma(p) < 0.01. Then

a3/2(p)m2

|H = Bi(N,p)|| < C\/n—jwﬂ-l’ (4.1)
[H = Bi(V.p) (I + A(h - 1P)| < ce@me@mtd) )

n—m+1

Note that the assumption ma(p) < 0.01 in Theorem 4.3 is not very restrictive
on p when k1, ko > 1. For example, it is satisfied for p < 1/4 and N(n;4,4).

Theorem 4.4. Let (n —m + 1)a(p) = 1 and ma(p) < 0.01. Then
a2 (p)m(m — 1)
2vVn—m+1 ‘
a®/?(p)ym(m — 1) ( 1 n 1
Vn—m+1 V(n—m+1a(p) N-1

Constant C'(m) depends on m.

|H - Bi(N,p)|| — Crv

< C(m)

Corollary 4.5. Let m be fized, a(p) — 0, (n —m+ 1)a(p) = oo, as n — co. Then

- [H-Bi(N,p)|[vn—m+1 _ Crv

oo @Ppmm-1) 2
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5. Auxiliary results

In this section, some auxiliary results from other papers are collected. For the
sake of brevity, further we will use the notation U = I; — I. First, we need repre-
sentation of the characteristic function F'(¢) as product of functions.

Lemma 5.1. Let conditions (3.1) and (3.2) be satisfied. Then
E(t) = e1(t)pa(t) - n(t),
where 1 (t) = Eel*Xt and, for k=2,...,n,

eltXi — 1), (eltXit1 — 1), ... (!X — 1))
)+ Z 0 ) pir1(t) ... pr—_1(t) -

Pult) = 1+ B(et — 1

Lemma 5.1 follows from more general Lemma 3.1 in Heinrich (1982). Represen-
tation holds for all ¢, since the assumption of Lemma 3.1

VEleitXs — 12 < /2BjeitXe — 1 < /2 (k) < V002 < 1/6

is satisfied for all ¢.

Lemma 5.2. Lett € (0,00),0<p<1andn,j=1,2,.... We then have
3 25\3/2
e < 2 e < ()7,
te te

. n + ] —1/2 .
iyl < ("T7) -

The first inequality was proved in Roos (2001), formula (29). The second bound
follows from formula (3.8) in Deheuvels and Pfeifer (1988) and the properties of the
total variation norm. For the proof of the third estimate, see Lemma 4 from Roos
(2000).

Lemma 5.3. Lett >0 and p € (0,1). Then

3Crv|  C

3Crv C
13/2 ’ g2 S

(np(1 = p))*/21 = (np(1 - p))*’

The statements in Lemma 5.3 follow from a more general Proposition 4 in Roos
(1999) and from Cekanavicius and Roos (20006).

1% —

1031+ pU)") -

Lemma 5.4. Let A >0 and k=0,1,2,.... Then
: k —Asin?(t/2 C(k) T : k_—XAsin?(¢/2 ( )
| sin(t/2)|*e (t/2) < R _F|sm(t/2)| e /2 qt < T A7)

Both estimates are trivial. Note that, for |¢t| < 7, we have |sin(¢/2)| > |t|/7.

Lemma 5.5. Let M be finite variation measure concentrated on integers,
>k [E[|M{k}| < co. Then for any v € R and u > 0 the following inequality is valid

Il < (1+um) (5 / T+ e Ty Fa) 6

The estimate (5.1) is well-known; see, for example, Presman (1986).
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Lemma 5.6. (Bergstrom, 1951) For all numbers A,B > 0, s =0,1,2,...,n, the
following identity holds:

A = Z (Z)B”‘W(A—B)er an (m;1>A"‘m(A—B)S+1Bm‘S‘1. (5.2)

m=0 m=s—+1

Lemma 5.7. Let s =1,2,3. For allt € R,

) 1t _ 1) | it 1|s+1
Eexp{itX;} = 1+ Zw + Ovey (k )T,
S it ( Ait -1 it s
) ;o ielt(e* — 1) e’ — 1]
E(exp{lth}) = Z l/l(k)# + 91/5+1 (k)m

=1
Lemma 5.7 is a particular case of Lemma 3 from Siaulys and Cekanavicius (1988).

Lemma 5.8. (Heinrich, 1982) Let Zy,Za, ..., Zy be 1-dependent complez-valued
random variables with E|Z,,|?> < oo, 1 < m < k. Then

k
E(Z1, Za, -+, Zi)| < 260 T (Bl Z )2

m=1

6. Preliminary results

Let z = e — 1 and Z; = exp{itX;} — 1. As before we assume that v;(k) = 0
and Xy = 0 for £ < 0. Also, we omit the argument ¢, wherever possible and, for
example, write ¢y, instead of ¢y ().

The next lemma can easily be proved by induction.

Lemma 6.1. For allt € R and k > 2, the following estimate holds:
EX(121), 1 Ze)) S ABF(1Zal, ... | Za ). (6.1)

Lemma 6.2. Let maxy v1(k) < 0.01. Then, fork=1,2,...,n

1 1 10
oe-1 < T 1< (62)
k=1 < [2l[(0.66)w1(k — 1) + (413) ()], (6.3)
lor —1—EZ| < sin®(t/2)[(0.374)v1(k) 4 (0.288)v1 (k — 1)
+(15.58)EXy—1 Xk + (0.1)EXp o Xg—1]- (6.4)
Proof: We repeatedly apply below the following trivial inequalities:
<2 1Zd<2 1% < Xl (6.5)

The second estimate in (6.2) follows from the first estimate:
lok] = [1— ok —1f| 21— (1/10) = 9/10.

The first estimate in (6.2) follows from (6.3) and (6.5) and by the assumption of
the lemma. It remains to prove the (6.3) and (6.4). Both proofs are very similar.
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From Lemma 5.1 and equation (6.2), we get

\E(Ze_1, Z1)| N E(Z—2, Z—1, Zi)|

lor — 1 —EZ;| <

|<Pk 1| |90k—390k—1|

|E(Zk 3, Zi)| | | B(Zk—a, ..., Z)|

|<Pk 3 SDk—1| |90k—4"'<Pk—1|
[N

B(Zis,.. .. 20)] B(Z;,.... %)

[ok—5-pr-1l = leipie -l

1 10\~
V1,200 + () B2 2200

/N
+

9
3 4
10 ~ 10 ~
(5) |E(Zk—3,...,Zx)| + 5) |E(Zk—4,...,Zy)|
10\° ~
+<§) |E(Zk—5,..., Zk)|
E=6 10N FI
+ > [E(Zj,...,Z)]. (6.6)

By (6.5) and Lemma 5.8, we obtain
E|Zj| < vi(h)lz] < 0.02]sin(t/2)],
BIZj|* < 2B|Z;| < 2n1(5)l2] = 4 (j )|Sin(t/2)| (6.7)

B(Zj,...20)| < 2Fiok=itD/2), (= ;+1)/2H 0)
< 2O PV (k) (k —101’Hl

t
< 4F T sin? 5[1/1(1<:) +vi(k —1)]0.1k—1

= 10sin? g[l/l(k) + v (k — 1))(0.4). (6.8)
Consequently,
k—6 k—j k—6 k—j
Z (1—90> |E(Zj,...,Zk)| < 10 sin? %[Ul(k)-f—l/l(k— 1)] (%)
j=1 j=1

< 2sin? %[Vl(k) +v1(k —1)](0.0694).  (6.9)

By 1-dependence, (6.5) and Holder’s inequality (see also Heinrich, 1982), we have
for j > 3,

k k
[I VEZE< [[ v2u(l

|EZk7j e Zyl <
i=k—j i=k—j
< 2UHN/215|GHD/2 /) (K — 1)y (k) (0.1)7 71
< 2j—1|z|2V1(k — 1) +un(k) (0.1

2
= 2sin?(t/2)[v1(k — 1) + v1(k)](0.1)7 (6.10)
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Moreover, for any j,

|EZj_1Zj| < 2E|Z | 4|sm(t/2)|u1( )

|EZj,12j| § |Z|2EXj,1Xj = 4sm (t/2)EXj,1Xj (611)
and

|EZ; 2Z; 17;| < 2B|Z;_17Z;| < 8sin(t/2)EX; 1 X;. (6.12)

Therefore, from (6.7), we have

|E(Zj-1, Z;)| E|Z;_1Z;| 4+ v1(j — 1) (j)|2]

<
< 2.02|z|11(5) < 0.0404] sin(t/2)]. (6.13)

Similarly, applying (6.10), (6.11), (6.12) and (6.15), we obtain the following rough
estimates:

B(Zj_2,Zj-1,7Z;)| < |2||sin(t/2)[{0.201(j — 1) + 0.28041(j)}

< 0.01sin?(t/2),
|E(Zj—s,...,Z;)| < |z||sin(¢/2)]{0.04401(j — 1) + 0.1348u4(5)}

< 0.0036sin*(t/2), (6.14)
B(Zj_a,., Z;)] < |2||sin(t/2)[{0.0169v1(j — 1) + 0.0405v,(5)}

<

0.00115 sin?(t/2).
Taking into account that v1(k — 1) < 0.01, we get
E(Z1-1,20)] < ElZi1Zi] + va(k = Dua (k)]
< sin®(t/2){4EX)_1 X}, + 0.04vy (k)}. (6.15)
Similarly, taking into account (6.10)—(6.14), we get
B(Zk—2, Z—1, Zi)| < sin®(t/2){8.08EX;_1 X + 0.08EX_o X441
+0.0008v1 (k — 1)},
B(Zi—ss..., Z)| < sin®(t/2){0.3216EX;_1 X} + 0.080; (k — 1)
+0.1v1(k)},

B(Zk-as- . Z1)| < sin®(t/2){0.3632EX;_1.X}, + 0.01760, (k — 1)
+0.0248v4 (k)},
B(Zi—ss..., Z1)| < sin(t/2){0.0944EX,_1 X + 0.0068v,(k — 1)

+0.0091v; (k)}. (6.16)

Combining (6.9), (6.15)—(6.16) with (6.6) we prove (6.4).

For the proof of (6.3), we apply mathematical induction. Let us assume that
(6.2) holds for first k£ —1 functions and let & > 6. Then the proof is almost identical
to the proof of (6.4). We expand ¢y, just like in (6.6):

10 ~
lor — 1] < E|Zk|+( >|E(Zk 1, Zk)| —i—Z( ) |E(ZJ,...,Zk)|.

Applying (6.10), (6.7) and (6.13)—(6.14), we easily complete the proof of (6.3). The
proof for k < 6 is analogous. O
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Lemma 6.3. Let v1(k) < 0.01, vo(k) < oo, for 1 <k <n. Then, for allt € R,
lor] < 1— A sin®(t/2) < exp{—Apsin®(t/2)}
and

IF(t)] < [] x| < exp{—1.3Xsin(t/2)}.
k=1

Here \j, = 1.60611 (k) — 0.288v1 (k — 1) — 205 (k) — 0.1EX )2 X1 — 15.58EX},_1.X,
and X is defined by (3.2).

Proof: From Lemma 5.7 it follows that

k 2
1+EZ;g:Eexp{ith}:1+V1(k)z+9%'
Therefore
vo(k
(ol <1+ BZul + lox 1~ BZy| < [+ m(k)z] + 222 4y —1 - B2,

Applying the definition of the square of the absolute value for complex number we
get

11+ 1 (k)2|? = (1 — vi(k) cost)? + (v (k) sint)? = 1 — 4wy (k) (1 — vy (k)) sin?(t/2).

Consequently,

11+ v (k)z] < \/1 — 4 (E)(1 — vy (k) sin?(t/2) < 1—2v1(k)(1 — v1(k)) sin®(¢/2).

Combining the last estimate with (6.4), we get the first estimate of the lemma. The

second estimate follows immediately. O
For expansions of ¢ in powers of z, we use the following notation:
va(k ~
2(k) = # + E(Xk-1, X&),
vs(k)  Eo(Xp-1,Xk) = .
v3(k) = Sé ) Eal k21 J + E(Xk—2, Xp—1, Xi) = v1(k — 1)E(Xp—1, Xi),
3
ro(k) = (k) + > vi(k—1)+EXx 1 X,
1=0
5 ~
ri(k) = wvs(k)+ > ik —1)+vi(k— 1)EXp 1 Xk + B (Xe1, Xa)
1=0

+ET(Xg_2, Xi_1, X),
7
ro(k) = wa(k)+ Z vitk =)+ v3(k) + vk —1) + (EXp_1X3)?
=0

+(EXp—2Xp1)? + (1 (k — 2) + 11 (k — 1)BF (Xp_1, Xi)
3
+> ik — DEF (Xp—2, X1, Xi) + B (Xp—1, X5)
=0
+ES (Xp—2, Xp—1, Xg) + E¥(Xp—3, Xp—2, Xp—1, X)-
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Lemma 6.4. Let condition (5.1) be satisfied, k = 1,...,n. Then, for all t € R,

or = 1+uv(k)z+0C|2)%ro(k), (6.17)
o = L4+uvi(k)z+vy2(k)2® +0C|z*r (k), (6.18)
or = 1+4v1(k)z+v(k)2% 4 v3(k)23 4+ 0C|z|*ra (K), (6.19)
%1_1 = 14 COl (k= 2) + (k- 1)), (6.20)
%11 = 1-v(k—1)z+COlz*{ra(k — 1)
+Zu1 1) + EXp—2X41}, (6.21)
%1_1 = 1—V1(k:—1)z—< (kz 1)—u1(k—1)+E(Xk 2, Xp_ 1)> 2
6
+C0)z| { 1)+ > vk — 1) + B (Xp—2, Xi1)
=1
+E* (X535, X592, Xi_1)
Tk —2) + (k- 1)k _1)+Exk,2xk,l]}, (6.22)
ﬁ 1 OO {va(k = 3) 4k —2) + 1 (k — 1)}, (6.23)
(o —1)? = vi(k)2* +CO|z° [V1( -1)
o (k { +Zu1 ~ 1)+ EX;_ 1Xk} (6.24)
(o —1)> = i(k)2°
3
+O€|z|4{y22(k) +> vtk -1+ (EXk,le)Q}. (6.25)
=0

Proof: Further on we assume that k > 7. For smaller values of k, all proofs just
become shorter. The lemma is proved in four steps. First, we prove (6.17), (6.18),
(6.20) and (6.23). Second, we obtain (6.21) and (6.24). Then we prove (6.22) and
(6.25). The final step is the proof of (6.19). At each step, we employ results from
the previous step. Since all proofs are very similar, we give just some of them.
Due to (6.2), we have

1 1
Pk—1 1—(1—<Pk1

21—% 1)) =1+ COI1 — 1]

Therefore, (6.20) and (6.23) follow from (6.3) and (6.2).
From Lemmas 5.1, 5.7, 6.1, equation (6.2) and second estimate in (6.8), we get

o~ ~ k— -~
E(Zi-1,Z0)| | |E(Zi2,Zu-1,2)| | "= |E(Z),..., Z0)

| o1l | or—20k-1] = leipirr - ol
< 14 (k)2 + COlzPva(k) + COBT (| Zia |, | Zx])

|(pk| = 1+EZ+
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+C01212\/vi(k — 3)vi(k — 2)vi(k — vy (k)
3
= 1+unk)z+ 09|z|2{I/2(k) + EXpo 1 Xi + (k= D (k) + Y v (k — z)}
1=0

= 14w (k)z + CO|z*ro(k),
which proves (6.17).
The proof of (6.18) is almost identical. We take longer expansion in Lemma 5.1
and note that due to (5.2)

Zk = Xppz + 0X3,(X), — 1)%.
Therefore,
E(Ze1,Z) = BE(Xp_12+012Xp1(Xp_1 — 1), Zg) = 2EX5_1 2y,
+C02PEY (X1 (Xp—1 — 1), Xi)
= 2°E(Xp_1, Xi) + COl2PES (Xp1, Xi).

The other proofs are simple repetition of the given ones with the only exception
that results from previous steps are used. For example, for the proof of (6.19), we
apply Lemma 5.1 and get

k—1 |E(Z Z0)| k—1 k=3 k=7
o] =1+ EZ+ ) AL =1+EZ+ ) + )+
— |pj it pr-l iThee johes =1
By ((3.8)
Z)| .
= < Clz|* i (k v (k) <ClMY vk =)
Z |<PJ803+1 “pp-1] ; '
and by (6.1)
k-3 k—3
|| < X BHIZL 1) < CBF(Zesl - 1Z4)
j=k—6 j=k—6
< Cl2'E (Xi-s, ..., Xp).
For other summands, we apply Lemma 5.7 and use the previous estimates. ([

Hereafter, the prime denotes the derivative with respect to t.

Lemma 6.5. Let condition (3.1) hold. Then, for all t € R,

(E(Zj,.. . 2Z)) = Y E(Zj,....Z},.... %),

B(Z;,.... 2, ..., Z)|

N

k
2BU=i)+11/2 | (k—1)/2 H Vi ().
l=j
Proof: The first identity was proved in Heinrich (1982). Applying (6.10) we obtain

k
E(Zj,....2},.... Z)| < 289\ JB|Z)2 [ [ VEIZ.

I£i
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Due to assumption (3.1), va(l) < v1(l). Therefore,
E|Z]]? = E[ie" X)|* = EX] = EX;(X; — 1+ 1) = va(1) + 11(1) < 211 (1).
Combining the last estimate with E|Z;|? < 2E|Z;| < 2|z|v1(1), the proof follows. [

Lemma 6.6. Let condition (3.1) be satisfied, k =1,...,n and @y, be defined as in
Lemma 5.1. Then, for allt € R,

o = 3300 (k) + va(k—1)], (6.26)
o = (k)2 +0C|z|(ro(k) + BN (Xin_2, Xk_1)), (6.27)
G = (k)2 + (k) + 001 ([ (k — 2) + v (B) EXp-1 Xa
B (Xis, Xn_s, Xp—a) + B (Xp_s, Xp_2, Xe1) + rl(k:)>, (6.28)
G = (k)2 + (k) () +y5(k)() + 0C|2P (ra(k)
BN (X Xio1) + B (Xies, ... ,XH)). (6.29)
Proof: Note that
(E(zj,...,zk))’: (EB(Zj,...Zn)  EB(Zy,..., %) ’“Z:i P
i Pr—1 Pj--- Pk Pj---Pk m:j@m

Now the proof is just a repetition of the proof of Lemma 6.4. For example, (6.26)
is easily verifiable for k = 0, 1. Let us assume that it holds for 1,2,...,k — 1. From
Lemmas 5.1 and 5.7 and equatlon (6.2), we get

o< + — |(B
k—j k R
( > SNEZ, .2 2
i=j
10\ "7 ) 10
+Z( ) |E(Z],...,Zk)|(k—3)33-0.02-(3).

By Lemma 6.5,

/

|E Gy Zy)| -
Z Z|90m|

Pk 1|

N

B(Zyseo s 20 20 < (k= 1) + ul(k)](o.o4)k*j%.

Combining the last two estimates and (6.8), the proof of (6.26) is completed.
We omit the proofs of remaining expansions and note only that

(@X Z 1) = iXeltX = el Xelt(X—D)
X - 1)(X -2
= X (1 S (X -1zt Q%Mﬂ,

due to Bergstrom’s identity. (I
Let,forj=1,...,nand 1 =2,...,n

(0 = esp{mtie ~ 1)+ (222D L Box x) )@ - 12},
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Lemma 6.7. Let conditions in (5.1) be satisfied, k = 1,2,...,n. Then, for
teR,
g = 14+C0z|[pi(k—1)+v1(k)], (6.
g, = COlvi(k—1)+w1(k)], (6.
g = 1+u(k )z—|—72(k)z2+C9|z|3{V13(k— 1)—|—V13(k)
+vi(k)va(k) + [ (k — 1) + v1 (k)JEXg 1 X }, (6.
g = (k)2 +y2(k)(z%) + COlz[*{vf (k — 1) + 17 (k)
+v1(k)va(k) + [1(k — 1) + v1 (k) EXp—1 Xy }, (6.
g = L+u(k)z +2(k)2* +33(k)2°
+CO|z {vi(k = 1) + vi(k) + V3 (k) + (X, Xi)*}, (6.
g = (k)2 +y2(k)(z%) +33(k) (%)
+CO|z*{vi(k — 1)+ vi(k) + v53 (k) + (EX)—1Xk)?}, (6.
lge] < exp{—=Apsin®(t/2)}. (6.

Here A\, is as in Lemma 6.5 and

ia(h) = 2 4 BCr, X +

Proof: For any complex number b, we have

b2 bs |b|s+l
=14+b+ — 40 lof
= 1tbt gt O Ty

Due to (3.1), v2(j) < v1(j). Therefore,

EX;o1X; < \EX? L EX? < V(- 1) + 01— D][e() +n())]

< 2V = Dr(G) <2m( = 1) +n(h)) (6.

Therefore, the exponent of g is bounded by some absolute constant C' and (6.
and (6.31) easily follow. We have

g = L4uvi(k)z+72(k)2® + CO{vi (k) + v3 (k) + v (k)va(k)
Fui(k)EY (Xpo1, Xp) + v (k — D3 (k) + (B4 (Xi-1, X0))? ).

Moreover,
vi(k) <wm(kva(k), vk = Dwi(k) <vi(k = 1) + (k)
and
(BY(Xp1, X)) < 2BEXp1Xp)? + 202k — )3 (k)
< 2k —1) + v (B)EXk 1 Xy + 205 (k — 1) + 203 (k).

Thus, (6.32) easily follows. The estimates (6.33) — (6.35) are proved similarly.
For the proof of (6.36), note that

E*(Xp_1, Xr) S EXp 1 Xp +0.011(k),  v2(k) < 0.01 (k)

and

all

37)
30)

gl < exp{ —20n(k) sin(£/2) + 2[va (k) + (k) + 2B (X-1, X)] sin?(¢/2) }

< exp{—1.92ul(k) sin?(t/2) + 2va (k) sin?(t/2) + 4EX;_1 X, sin? (t/z)},
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which completes the proof. ([
For asymptotic expansions, we need a few smoothing estimates.

Lemma 6.8. Let conditions (3.1) and (5.2) be satisfied, 0 < o < 1, and M be any
finite (signed) measure. Then

| M exp{T1U + al'yU?}|| < C|| M exp{0.9AU}||.
Proof: Due to (3.1) and (3.2), we have

ry—31T >T1 - 1. 552 va(k) —0.0155I' — 3.1 ZEXk,le —0.031T"; > 0.9).
k=1

Thus,
| M exp{T'\U + ol2U}||
< IMexp{(Ty — 3.1Ta))U || exp{3.1T5|U + alsU2}|
< || M exp{0.9AU}|||| exp{3.1|T2|U + oIy U?}|.
It remains to prove that the second exponent measure is bounded by some absolute

constant. Note that the total variation of any distribution equals unity. Therefore,
by Lemma 5.2

o

Hexp{3.1|r2|U+ar2U2}H Hexp{?) 1|F2|U}(I+

N

o™ m
1+ Z W||U2 exp{3.1|To|U/m}|

m=1

N

1+ <C
Z mme~ m\/27r 3.1|Tzle

Combining both inequalities given above, we complete the proof of the lemma. [

Lemma 6.9. Let conditions (3.1) and (3.3) be satisfied. Then

4

NB(r,g) = exp{F1U+F2U2+3

1—‘2 3 2F2 4
U U'e
I 0. 7}

— exp{rlU +T,U% + §F2 Uo— 7} — exp{FlU +DoU%0— 7}

— exp{FlU + FlUQG)%} - exp{0.5F1U}®C. (6.38)

Proof: Due to (3.3),

N =
NS

[ = (v3 (k) —vi (K +ZOOU (Xk—1, Xk)

k=1

el
Il
—

- 3
k Cov(Xg_1,X)| < —=TI.
1V2( )+kz:;| ov(Xg—1, Xk)| g

N
N =
NE

el
Il

Therefore,

1—7 2T 1-—
1_2T2 5 ( ; )|U| 0151 + 17]) < 0.3
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Consequently, from (1.1),

NB(r,q) =

|

@

»

e}
— =
.=
7 N\

—
s
()
N———
<
3
<
——

I
@
»
o
=
<
_|_
=

Recalling that (1 — g)/g = T'1, we obtain all equalities except the last one. The

last equality is equivalent to

3
|exp{osmiv+Tivto Y| < €
which is proved similarly to Lemma 6.8.

Lemma 6.10. Let conditions (5.1) and (3.3) be satisfied. Then

Bi(N,p) = exp{—Ni(_%U)j}
j=1

= expi WU +T2U? +U%9

2112 3 A

50I'2¢ Np°U3 5

- U + ToU? + U2028 e—}
expy LU + + 21T 3 3

szU2 5

= exps [ U + 3

{
{
{
- exp{o 5F1U}®C

Proof: Due to (3.3),

ITo| < % Z(Vg(k) +0.01v1(k)) + Z |Cov(Xp—1, X)|

k=1 k=1
< T1(0.025 4+ 0.005 + 0.05) = 0.08T;.
Therefore,
NS VRN VRPN | - U IS
N — € N —1 F1—2|F2| 21F1 5
and 120y _ 2fry
€ 2 2
=< == < < 0.16.
N N I3 Iy
Consequently,
N 1 100
Np? = 2Ty = = 2|Ty| ———= =2|T <1+ ~9—>
P T2l |2|1—e/N T2
and )
Np? 50T
———=I5+40 2e.
2 ARSTIvE

50I'%¢  Np3U®  Np*U* ®§

@—} - exp{rlU + FlUQG)é}

(6.39)

(6.40)
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Taking into account (6.39), we prove

Bi(N,p) = expi—-N)Y_

-

{
{ 2 3 + 4 3
{
{

N(pU)2+N(pU)3 Np*U* 5}

6_

2 3 3

N@EU)? 5y L1
@5} - exp{r1U+r1U @6}'

N(ﬁU>2+N(ﬁU)3 5}

|
@
"
ol
e
g
+

2

Combining (6.40) with the last expansions, we obtain all equalities except the last
one whose proof is similar to that of Lemma 6.8. O

7. Proofs

Proof of Theorem 3.2: Let ]/\4\(15) = J1 + J2, where

j:l j=1 m:l j#m
Jo = ng+z = Gm) ng ng(1+Fsz3)-
j=1 m=1 Jj#Em J=1

We estimate J; and Jy separately. Further we frequently apply the following
estimate

H exp{—\;sin®(t/2)} < exp{—1.3\sin’(t/2)} exp{(A\ + ) sin®(t/2)}
Jj=1,j#m,l
< Cexp{—1.3\sin?(t/2)}, (7.1)

which is valid for any m,l € {1,2,...,n}, since all A\; < C.
Applying the generalized Bergstrom identity from Celkanavicius (1998), (7.1),
Lemmas 6.3, 6.4 , 6.7 and 5.4, we obtain

n n -1 -1
| 1] = sz—gz H%Z H 9
1=2 j=l+1 m=1 J:l,j;ﬁm

< CZ|<Pz—gl|Z|90m—gm| [T exp{—1.3\sin%(t/2)}
=2 =

j=1,j7#m,l
< Cexp{—1.3\sin?(t/2)} (Z|g0k—gk|) < Cexp{—1.3\sin*(t/2)} R|z|°

< Cexp{—Asin?(t/2)} R min(1,\™%).
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Similarly, taking into account (6.19),(6.30), (6.34) and (6.36), we get

FARESE | ZCESVEVES | 7R | D ]
7j=1 7j=1 7j=1 m=1
+‘ > (om —gm)<ng -1 gg>‘
m=1 j=1 j#Em

= ’ gj(Z(@m_gm)_rBZB)“"’Z — Gm) ng ’
j=1 m=1 m=1 Jj#Em

< CORolz|*exp{—1.3)sin*(t/2)} < C exp{—Asin?(t/2)} Ry min(1, A~ ?).

Therefore,
M (t)] < Cexp{—Asin®(t/2)}(R2 min(1,A"%) + Ry min(1,A"2)). (7.2)

Let ¢r = grexp{—ivi(k)t}, g = grexp{—irvi(k)t} . Observe that |@; — g <
C(|lo;— gl +vi(k)|ei — gi]). Moreover, taking into account (6.27), (6.28) and (6.37),
we get

|¢2| g |<P2_Vl(l)2/|+V1(l)|eit—gpl|

< ol — (D)2 + i)z + (DL — o] < Cl2l Yl =)

and similar estimate holds for |gj|.
Taking into account (7.1), Lemmas 6.3, 6.4, 6.6 and 6.7 we prove that

n -1
e meay| < Sl 11 |sm|Z|<pm anl II 13
1=2 j=l+1 j=1,7#m
n — -1
+Z|<m gAZm I1 |@|Z|¢m—§m| IT 13l
j=l+1 i= l+1i7$j m=1 J=Lj#m
-1
+Z|<Pz al H |soJ|Z| . | R
j=1+1 j=Lj#m
-1 -1
+Z|<m al H m@wm ISR/ I
j=l+1 j=1,7#m k=1,k#m,j
< Coxp{-L3rsin’(1/2)) (Zm gl|2|wm il
n 2 n
+(Z|¢z—gz> > (85 + 135) )
Jj=1
< Cexp{—1.3\sin?(t/2)}(R?|z|°(1 + T1|2|*) + R%|2|'T1)
< Cexp{—Asin?(t/2)}(1 + Ty min(1, A\™1)) R? min(1, A~%/2). (7.3)
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Similarly

VAN
—
—=
igx
~—
(7=
3
3
I
Ne)
3
|
2
w
2
Y
2

+ > lom = gmllgm — 1|’( II éj)/’

m=1 j#EmM
+ 3 om = gol| TT d]0130n] + 22 m)
m=1 k#m
Applying Lemmas 6.6, 6.7 and 5.4, it is not difficult to prove that the derivative
given above is less than C|z|°T'; Ry exp{—1.3\sin(¢/2)}. Combining this estimate
with (7.3) we obtain
I(e"THA(1)] < Cexp{—Asin®(t/2)}(1 + Ty min(1, A\~ ")(R? min(1, A~%/2)
+ Ry min(1, \73/2)).

For the proof of (3.7), we use (7.2), (5.1) with v =T'; and u = max(1,T). For
the proof of (3.6) we use identity

n n n n j—1
[Hei 119 =>_wi—9) [] @]9 (7.4)
=1 =1 =1 =511 =1

The rest of the proof is very similar to the proof of (3.7) and, therefore, omitted. O
Proof of Theorem 3.1: For the proof of (3.4) we use (7.4) with g; replaced by
exp{r1(j)z}. Now the proof is very similar to the proofs of (3.7) and (3.6) and,
therefore, omitted. Applying Lemma 6.8 and using the following identity

e —1-b=0 /1(1 — 7)e"bdr, (7.5)
0
we get
HG — Pois(Ty)(I + F2U2)H - H exp{T1U} /01(1 — 1) (7U?)? eXp{TP2U2}dTH

1
< / |IT2U* exp{T1 U 4 7T5U?}||dT
0

< O U exp{0.9AU}|| < CRZ min(1, A72).
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Combining this estimate with Bergstrom expansion (s = 1) for G, we prove (3.5).

O
Proof of Theorem 3.3: Applying (6.38) and Lemma 5.2, we obtain
AT'2 1
¢-N(ra)| = [e-cen{Fivteg}|
H (r.9) “PAUT Y Yo

= o 1 (exp{/;_?ys@ L ar|

1 2 2
L3573 2 ary a1 H
c/ HU exp{F1U+F2U U 90.7} dr

N

N

2
HU3 exp 0. 5I‘1U}H —mln(l ;%)

Combining the last estimate with (3.6), we prove (3.8).

Let ) 5
4T oT
M, = 313’ U3, M,:= 1“22 U4®— Ms :=T5U3 — M.

Then by Lemmas 6.9 and 5.2 and using equation (7.5),

NB(r,q) = Gexp{M; + M}

= G(I—i— M + M} /01(1 —7) exp{TMl}dT) (I—i— M, /01 exp{:ng}d:v)

1
= G+ M) +M12/ (1 —7)Gexp{rM;}dr
0

1
+/ / Mo(I + My + ME(1 —7))G exp{rM; + xM,}drdx
o Jo

= G(I+ M)+ exp{0.501U}(M?OC + [My + M, M]OC + M{M,0C)
= G(I+ M)+ exp{0.25T, U} 2U*OC.
By the triangle inequality,
[Fn = NB(r,@)(I + M)
< ||Fy = GU +T3U3)|| + |G 4+ T3U?) — G(I + My)(I + Ms)||
+C|| exp{0.25T U TSI U + M)|| =: Ja1 + Ja2 + Jas.
By Lemmas 6.8 and 5.2,
Jo < C|lexp{0.9\U 3T 1(T's — 4T3(30,) " HUY||
< D07 HT3 — 4T%(3T) Y min(1,T7%).
Similarly
Js3 < Ol exp{0.250,U TS 20|
+C|| exp{0.25T U TSI 2(T'3 — 4T2(30)~HU”||
< CT3T2min(1,T72) + CT30 2|05 — 4T2(30) ! min(1,T; 7/?).
Combining the last two estimates and applying (3.7) for Js1, we prove (3.9). O
Proof of Theorem 5./: Let

- Np3U3 N Np*U*
i oo NP a7, o NP

5 50I'2
1= 3 s 9 1= O0- + U2 2¢

1 3 2112

M3 = 1—‘3U3 - Ml. (76)
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Since the proof is almost identical to that of Theorem 3.3, it is omitted. ]
Proof of Theorem j.1: Let M3 be defined as (7.6). Observe that

k) =p°, wn(k) =w(k) =0, EXp1X, <Cp®, EXp X 1Xk < Cp',
EXj_3--- X, <Cp®, Ty <Cnp®, T3<Cnp*, R <Cnp*, Ry<Cnp’.

and
4
Ms = —%U?’ + U30Cnp°.
From Lemmas 6.9 and 5.2, we have

H (NB(T, q) — exp{anU})U3 H

1

< Hexp{np2U} / (F2U2®/0.7)exp{T(F2U2@/O.7)}dTU3H
0

C

3 2 5
< Cnp?|| exp{0.5np~U}U”| < - (7.7)
Applying (3.9), (7.7) and Lemmas 6.9 and 6.8, we obtain
1P~ NB(ra) - S8 < |7 = N+ 25) )+ [INB ) — L2
) ﬁ ) ) ﬁ
Cp _ 4773 np4 773 ~Tvp
< 22 L INB(rg)(M U3 /3 ‘—NB,U— }
L INBO )M + U 3)] + |- INB (] -
C 2 4
< o+ o INBO ) — exp{mU U
. -
H exp (o) - S22
Cp®> np* 9 3 3Cry Cp> C
< V3| - 2V |2
N | exp{np*U}U”|| | S Un +
(]
Proof of Theorem J.3: The direct consequence of conditions (n —m + 1)a(p) > 1

and ma(p) < 0.01 are the following estimates

- (n—m+1) 100m

= = = 50.
2m—1—-m(m—-1)/(n—m+1) 2m

(n—m+1) > 100m,

We have

1
N

N
<”—m; 1>a<p>< : >

p o (omilab) (nomi ) (N )

14+ =

N —¢

= w21 (e g ) < (e ) (1 )
2.05a(p)m < 0.03. (7.8)

N

The sum N has n — m + 1 summands. After grouping, we get K 1-dependent
random variables containing m initial summands each, and (possibly) one additional
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variable, equal to the sum of dm initial summands. Here

— 1 — 1
K:V mt J nEmEl _g4s, 0<s<l. (7.9)
m m
The analysis of the structure of new variables X; shows that, for j =1,..., K
X, - 1, with probability ma(p),

T 0, with probability 1 — ma(p),

1, with probability dma(p),
XK1 = . .

0, with probability 1 — dma(p).

Consequently,

va(j) = va(§) = valj) = B5 (X1, X5) = B (X1, Xp, Xs) = Ea(X1, X5) = 0.
For calculation of EX; X5, note that there are the following non-zero product events:
a) the first summand of X; equals 1 and any of the summands of X5 equals 1 (m
variants); b) the second summand of X; equals 1 and any of the summands of Xo,
beginning from the second one, equals 1 (m — 1 variant) and etc. Each event has
the probability of occurrence a?(p). Therefore,

EX1X2:az(p)(m—l-(m—1)+(m—2)+...+1):M.

2
Similarly arguing we obtain the following relations for j =1,..., K, (j=2,..., K
and j = 3,..., K if more variables are involved) and X1 (if 6 > 0):
m(m + 1)a?
EXj = ma(p), EXj_lXj = #, EXK+1 = (5ma(p),
5 m(m —1)a?(p)
E(Xj—17Xj) = _f7
m(m + 1)(m + 2)a(p)
EXj_QXj_lXj = 6 s
= a’(p)m(m —1)(m — 2)
E(Xj 2, X;-1,X;) = G ;
dm(ém + 1)a?
BX Xy, = CrOmr Do)
~ a?(p)dm(dm + 1 —2m
E(Xk, XKkt1) = (®)om( 5 )7
dm(dm + 1)(6m + 2)a®
B Xy < O D+ 20)
-~ 3(p)dm(9m? — 9 2
BXk XX = L@oml ”; m+2) (7.10)

It is obvious, that I’y = (n — m + 1)a(p). Taking into account (7.9) and (7.10) we
can calculate I's:

I, = —%[Km2a2(]9) + 0°m2a®(p)] — i 1)m(;n —De(e)
o )Om b L om) GO 1 4 ) — (0 +8) = (m — 1)
S (p) [(m=—m+1)2m—1) —m(m —1)]. (7.11)

2
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Similarly,

a*(p)
6
Making use of all the formulas given above and noting that m > 2, we to get the

estimate

Ri < K(ma(p))® + 3ma(p)[(K — 2)m(m + 1)a*(p)/2 + ém(dm + 1)a’(p) /2]
+(dma(p))® + C(K + 8)m’a’(p) < Cm’a’(p)(K + )
< C(n—m+1)m2a®(p).
Similarly,
E+(X1,X2,X3,X4) < Cm*a*(p), Ry < C(n—m+ )m3a*(p).
Using (7.11) and (7.8), we get
Np® I‘1§QE4_F§<1 NL>24F§ AT3 e <2+ ¢ >

s = [(n—=m+1)B3m—1)3m —2) —4m((2m — 1)(m — 1)].

3 3 312 —¢) 30 31N -« N—e
3
— ?()p) (n —m+1)(2m — 1)* + 0Cm>a®(p).
Similarly,
_ a’(p) 3.3
;= 6 (n—m+1)(3m —1)(3m — 2) + 6Cm?>a’(p).
Therefore,
—3
s — NTp = A+ COm>a®(p)
By Lemma 5.2
3,3
mial ()| BN < C e lb)
(n —m+1a(p)y/(n —m+1a(p)
m>a?(p)
< _ .
= n—m+1 (7.12)

Next, we check the conditions in (3.3). Indeed, we already noted that v»(j) = 0.
Now

o Km(m —1)a*(p) = dm2ma?

(K = 1)|B(X1, Xo)| + [B(Xk 1, Xk)| < 5 + 5
2ma?
< 202 (p)  ——— = <0. ,
< (K+5)2ma(p)\n_m+1 2mal’ < 0.02T4
It remains to apply Theorem 3.4 and (7.12). ([

Proof of Theorem 4./: We have

~ a/2 mim —
JH = Bi(N, p)]| — Gy e p)mlm — 1)

| < =BV, ) (1 + AU?)|

2vn —m+1
a3
+||Biv, p)U? (4 - #(” —m+min =)
G/S ~
n ép)(n—m+1)m(m—1)‘||B1(N’1_9)U3|_(NI_)(?;C#
43 3C 1
+ ép>(n—m+1)m(m_1)(N]3§;/2 (1—1_9)3/2_ ‘
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We easily check that

v 1-(1-p)° _Pl+(1-p)+(1-5)?
(1-p)*/2 (1 =P332+ (1 =532  (1-p)*2[1+ (1-Dp)*?
= a(p)C(m)b.
All that now remains is to apply (4.2) and use Lemmas 5.2 and 5.3. ]
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