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Abstract. The card-cyclic-to-random shuffle is the card shuffle where the n cards are la-

beled 1, . . . , n according to their starting positions. Then the cards are mixed by first pick-

ing card 1 from the deck and reinserting it at a uniformly random position, then repeating

for card 2, then for card 3 and so on until all cards have been reinserted in this way. Then

the procedure starts over again, by first picking the card with label 1 and reinserting, and

so on. Morris et al. (2014) recently showed that the order of the number of shuffles needed

to mix the deck in this way is n logn. In the present paper, we consider a variant of this

shuffle with relabeling, i.e. a shuffle that differs from the above in that after one round, i.e.

after all cards have been reinserted once, we relabel the cards according to the positions in

the deck that they now have. The relabeling is then repeated after each round of shuffling.

It is shown that even in this case, the correct order of mixing is n logn.

1. Introduction

The subject of mixing times for Markov chains is an important and exciting research

field that has attracted a lot of attention in recent decades. An outstanding subclass of

Markov chains that has been studied extensively is card shuffling, i.e. Markov chains on

the symmetric group Sn of permutations of n items that one can think of as the cards of a

deck.

One of the early card shuffles to be studied was the random transpositions shuffle, where

each step of the shuffle is made by picking two cards uniformly and independently at

random and then swapping them. It was shown by Diaconis and Shahshahani (1981) that

the mixing time of this shuffle has a sharp threshold at 1
2n logn shuffles. It is easy to see

that at least order of n logn shuffles is required, since, by the coupon collector’s problem,

it takes this order of shuffles until most cards have been touched at all. Closely related

to the random transpositions shuffle is the top-to-random shuffle where at each step the

card presently in position one is moved to a uniform random position. The sharp threshold

for this shuffle is n logn and again it is easy to see that at least order of n logn steps is

required for mixing, for similar reasons.
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In recent years some more systematic variants of these shuffles have been proposed and

analyzed. Mossel et al. (2004) and Saloff-Coste and Zúñiga (2007) analyzed the cyclic-to-

random shuffle, where at time t the card presently in position t mod n is swapped with a

uniformly random card. Clearly at least once per n steps, each card will be touched and

one of the interesting questions about this shuffle was if O(n) shuffles is also sufficient

to mix the whole deck. The answer turns out to be negative; indeed the mixing time is

still of order n logn. Pinsky (2015) later introduced the card-cyclic-to-random shuffle

(CCR shuffle), where at time t the card with label t mod n (i.e. the card that started out in

position t mod n) is moved to a uniformly random position. Again it is obvious that every

card will be touched once every n steps and again one main question was if this way of

systematically randomizing the cards, suffices to mix the whole deck in O(n), or at least

o(n logn), steps. Again the answer turns out to be negative; Morris et al. (2014) prove

that n logn is still the correct order. In this paper we investigate the card-cyclic-to-random

shuffle with relabeling (the CCRR shuffle for short). For k = 1, 2, . . . let round k consist

of steps kn + 1, kn + 2, . . . , kn + n of shuffling. The CCRR shuffle is the shuffle that

is exactly as the card-cyclic-to-random shuffle for the first round. After that however, the

cards are relabeled 1, . . . , n according to their positions after the first round. Next a new

round of CCR shuffling is carried out according to the new labels. After that the cards

are relabeled again and a new round of CCR is done, and so on. The main result of this

paper is that relabeling does not help to speed up mixing either, at least not more than by a

constant.

Theorem 1.1. The mixing time of the card-cyclic-to-random transpositions with relabeling

is of order n logn.

Here, the mixing time is given by

τmix := min{t : ‖P(Xt ∈ ·)− π‖TV ≤ 1

4
}

where Xt ∈ Sn is the state of the deck of cards after t steps of shuffling, π is the uniform

distribution on Sn and ‖ · ‖TV is the total variation norm, given in general by

‖µ‖TV :=
1

2

∑

x∈S

|µ(x)| = max{µ(A) : A ⊂ S}

for a signed measure µ on a finite space S.

2. Proof of the main result

For the upper bound on τmix, it suffices to note that the proof in Morris et al. (2014)

for the CCR shuffle goes through exactly as it stands there. Hence we will focus entirely

on the lower bound. The idea of the proof of the lower bound draws on the idea behind

Wilson’s technique introduced in Wilson (2003, 2004), namely to use an eigenvector of the

transition matrix for the movement of a single card to build a test function. However since

estimating the variance of the test function will in fact be quite simple here, we will not

need Wilson’s Lemma explicitly. A rough outline of the proof is

(1) Show that the position of a given card after one round of CCRR is determined, up

to a random term of order
√
n, by where it was reinserted.

(2) In the light of 1, study the idealized motion of a single card which is a deterministic

function of where it was reinserted.

(3) Show that the transition matrix for one round of idealized single card motion has

a spectral gap bounded away from 1.
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(4) Use the eigenvector corresponding to the second eigenvalue to construct a test

statistic.

(5) Estimate, using 1, the expectation and variance of the test statistic applied to the

CCRR shuffle and establish the lower bound using Chebyshev’s inequality.

Because of the cyclic structure of the shuffle, the movement of a single card is not time-

homogenous if we consider individual steps of the shuffle. However in terms of rounds,

the movement of a given card is indeed a time-homogenous Markov chain. Let A = A(n)
denote the transition matrix of this chain on n cards. It turns out that when analyzing

this Markov chain, it is convenient to denote the possible positions a card can have in

the deck as 1/n, 2/n, 3/n, . . . , 1 (instead of the usual 1, 2, . . . , n). Write Qn := [n]/n =
{1/n, 2/n, . . . , 1} for the set of positions. As usual, we will identify a card with its starting

position, i.e. when we speak of card a, a ∈ Qn, we are considering the card that starts in

position a. Since this is the na’th card from the top in the starting order of the deck, we

may sometimes also speak of this card as card na.

It is difficult to come up with a closed-form expression for A, but the action of A can

be probabilistically described as follows. Consider a card that starts a round in position

a ∈ Qn. Let us refer to the cards 1/n, . . . , a − 1/n as white cards and to the cards

a+ 1/n, . . . , 1 as black cards. Now in a first stage the na− 1 white cards are sequentially

picked out and reinserted at independent uniform positions. During this stage a certain

number of cards will be reinserted above card a in the deck whereas the others will be

uniformly spread out among the black cards below card a. The cards that in this stage end

up above card a will form a well-mixed layer of white cards. Note that during stage 1, card

a will move gradually higher up in the deck. (Here we say that if a < b, then position a is

higher up than, or above, position b.)
Next, after stage 1, card a itself is picked out and reinserted at a uniformly random

position U = Un ∈ Qn; this is stage 2. In the third and final stage, the black cards are

picked out and reinserted. If card a was reinserted in the white layer at the top, then card

a will move gradually down the deck during the whole of this stage, whereas if not, then

stage 3 divides into the two sub-stages where in the first of these, stage 3a, the black cards

above card a are reinserted and a moves upwards and in the second, stage 3b, the black

cards below card a are reinserted and a moves down the deck.

Even though we will not need the exact distribution of where card a ends up under this

procedure, we will still need a good approximate control. The following two lemmas will

be useful for that.

Lemma 2.1. Let the sequence Y0, Y1, . . . , Yn(1−a) be recursively defined by Y0 = a ∈ Qn

and Yt+1 = Yt + 1/n with probability Yt and Yt+1 = Yt with probability 1 − Yt (where

these events are conditionally independent of Y0, Y1, . . . , Yt−1 given Yt). Then

E[Yt] =

(

1 +
1

n

)t

a

and

Var(Yt+1) ≤
a

n2

2t
∑

j=t

(

1 +
1

n

)j

− a2

n2
t

(

1 +
1

n

)2t

.

In particular, for all t,

Var(Yt) <
2

5
n−1.
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Proof : By conditioning on Yt we get that

E[Yt+1] = E

[

Yt

(

Yt +
1

n

)

+ (1− Yt)Yt

]

= E

[(

1 +
1

n

)

Yt

]

which proves the expression for the expectation. For the variance part, write vt := Var(Yt).
Then v0 = 0 and recursively

Var(Yt+1) = E[Var(Yt+1|Yt)] + Var(E[Yt+1|Yt]).
By definition of the Yt’s, Var(Yt+1|Yt) = Yt(1 − Yt)/n

2 and by the above E[Yt+1|Yt] =
(1 + 1/n)Yt. For for first term we have

E[Var(Yt+1|Yt)] =
E[Yt]

n2
− E[Y 2

t ]

n2

=
(1 + 1/n)ty0

n2
− 1

n2

(

vt + a2
(

1 +
1

n

)2t
)

.

Adding the second term and writing c := 1 + 1/n gives

vt+1 =

(

c2 − 1

n2

)

vt +
cta

n2

(

1− cta
)

(2.1)

< c2vt +
1

n2
cta− 1

n2
c2ta2.

This recursion is readily solved and gives

vt+1 <
a

n2

2t
∑

j=t

cj − a2

n2
tc2t.

By (2.1), vt is increasing in t, so we get an upper bound on plugging in t = n(1 − a) on

the right hand side and then get

vt+1 <
ea

n

(

e1−2a − e−a − a(1 − a)e1−2a
)

<
2

5
n−1,

where the second inequality from standard optimization over a.

�

Lemma 2.2. Let X ∈ L2(R) be a random variable and f : R → R be contractive, i.e.

|f(x)− f(y)| ≤ |x− y| for all x, y ∈ R. Then

Var(f(X)) ≤ Var(X).

Proof : Let X1 and X2 be two independent copies of X . Then

Var(X) =
1

2
Var(X1 −X2)

=
1

2
E[|X1 −X2|2]

≥ 1

2
E[|f(X1)− f(X2)|2]

= Var(f(X)).

�
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FIGURE 2.1. The functionGb(u) for b = 0.3, 0.5, 0.7, 0.9. The smaller

the b, the larger the ascent at the origin.

Let Z = Zn be the position that card a = an ∈ Qn ends up in after one round of

shuffling. For each b ∈ [0, 1], define Gb : [0, 1] → [0, 1] as

Gb(u) =

{

e1−bu, u ≤ u0(b) := 1− (1 − b)eb

ee
−b(1−u) − (1 − u)e1−b, u > u0(b)

(2.2)

Note that Gb(u) is continuous in (b, u) and for each b, Gb is differentiable for u 6= u0(b).
See Figure 2.1 to see a plot ofGb for a few different b. The functionsGb play a central rôle

in the following lemma, which gives control over the asymptotic distribution, expectation

and variance of Z given U . The limiting distribution is known and due to Pinsky, see

Theorem 4 of Pinsky (2015). Since we will also need a quantified bound on the variance,

we will for self containedness, reprove the result below.

Lemma 2.3. For all u ∈ Qn,

E[Z|U = u] ∈
(

1± 2

n

)

Ga(u). (2.3)

and

Var(Z|U = u) < 9n−1,

or equivalently, writing Z = E[Z|U ] +D,

Var(D) < 9n−1. (2.4)

In particular, if an → a ∈ [0, 1], then

Zn
d→ Ga(V )

where V is uniform on [0, 1].

Proof : Let W = Wn ∈ Qn be such that nW is the number of white cards that go to the

top layer of white cards in stage 1. We will start by estimating the variance of Z given



798 J. Jonasson

W = w and U = u. If u ≤ w, so that stage 2 moves card a to the top white layer, then by

Lemma 2.1

E[Z|U = u,W = w] =

(

1 +
1

n

)n(1−a)

u

and

Var(Z|U = u,W = w) <
2

5
n−1.

The case u > w takes some more work. In order to not overly burden the notation, we

will until further notice, point out the conditioning on U = u and/or W = w by writing

indexes u and/or w at the conditional expectations and variances.

Let S ∈ Qn be such that nS is the number of black cards in positionsw+1/n, . . . , u−
1/n; these are the black cards that get reinserted in stage 3a. Let nN be the number of

cards below card a after these nS black cards have been reinserted. Note that when the

first part of stage 3 starts, then card a is in u and at that point, the number of black cards

below a is n(1− a− S); these are the ones that will get reinserted in the stage 3b. Hence

by Lemma 2.1,

Eu,w[Z|N,S] =
(

1 +
1

n

)n(1−a−S)

(1−N)

and

Eu,w[N |S] =
(

1 +
1

n

)nS

(1− u).

Hence

Eu,w[Z|S] = (1 − Eu,w[N |S])
(

1 +
1

n

)n(1−a−S)

=

(

1 +
1

n

)n(1−a−S)

−
(

1 +
1

n

)n(1−a)

(1− u).

It follows that

Eu,w[Z] = Eu,w

[

(

1 +
1

n

)n(1−a−S)
]

−
(

1 +
1

n

)n(1−a)

(1− u). (2.5)

We also get that

Varu,w(Z|S) = Eu,w [Varu,w(Z|N,S)|S] + Varu,w (Eu,w[Z|N,S]|S)

<
2

5
n−1 + Varu,w

(

(

1 +
1

n

)n(1−a−S)

(1 −N)
∣

∣

∣
S

)

=
2

5
n−1 +

(

1 +
1

n

)2n(1−a−S)
2

5
n−1

<
2

5
(1 + e2)n−1.
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Therefore

Varu,w(Z) = Eu,w [Varu,w(Z|S)] + Varu,w (Eu,w[Z|S])

<
2

5
(1 + e2)n−1 + Varu,w

(

(

1 +
1

n

)n(1−a−S)
)

≤ 2

5
(1 + e2)n−1 + Varu,w(eS)

<

(

2

5
+

13

20
e2
)

n−1

by Lemma 2.2, since the map S → (1/e)(1 + 1/n)n(1−a−S) is contractive and nS, given

U = u and W = w, is hypergeometric with variance at most n/4.

Now bring back the conditioning on W into ordinary notation. What we have just

shown is among other things, that Varu(Z|W ) < Cn with C := 2/5 + 13e2/20. Thus

Varu(Z) = Eu[Varu(Z|W )] +Varu(Eu[Z|W ]) < Cn+Varu(Eu[Z|W ]). However, by

(2.5)

|Eu [Z|W = w] − Eu [Z|W = w − 1/n]|

=

∣

∣

∣

∣

∣

Eu

[

(

1 +
1

n

)n(1−a−S)
∣

∣

∣
W = w

]

− Eu

[

(

1 +
1

n

)n(1−a−S)
∣

∣

∣
W = w − 1/n

]∣

∣

∣

∣

∣

≤ Eu

[

(

1 +
1

n

)n(1−a−S)((

1 +
1

n

)

− 1

)

∣

∣

∣
W = w

]

≤ e

n
,

where the first inequality uses that the conditional distributions of nS given W = w and

W = w − 1/n respectively, can easily be coupled so that the realizations do not differ by

more than 1. It now follows that

Varu(Eu[Z|W ]) ≤ e2Varu(W ) <
2

5
e2n−1

where the second inequality follows from Lemma 2.1. Hence

Varu(Z) <

(

8 + 21e2

20

)

n−1 < 9n−1.

This allows us to write Z = E[Z|U ] +D, where D = Z − E[Z|U ] has

Var(D) = E [Var(D|U)] = E [Var(Z|U)] < 9n−1.

This finishes the proof of the variance part of the lemma.

Next let n → ∞, considering for each n card an, where an → a ∈ [0, 1]. Then, by

Lemma 2.1, E[1−Wn] → (1− a)ea so since Var(Wn) ≤ 2n−1/5 → 0, Wn converges in

probability to u0(a) = 1−(1−a)ea. GivenUn = un → u andWn = wn → u0(a), we get

by the above that for the case u < u0(a), so that un < wn eventually, that Zn
P→ e1−au.

For u > u0(a), so that un > wn eventually, nS is hypergeometric and has expectation

n(un − wn)(1 − an)/(1 − wn). Plugging in the limit u0(a) of wn, it follows that Sn

converges in probability to 1− a− e−a(1−u). Plugging this into (2.5) together with (2.4)

and the fact that Wn
P→ u0(a), gives that conditionally on U = un → u with un > Wn,

Zn
P→ ee

−a(1−a) − (1 − u)e1−a.

Summing up, we get that the position of a card starting from position an ∈ Qn, an → a,

after one round of CCRR shuffling converges in distribution to that of Ga(V ) where V is
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uniform on [0, 1], as desired. Also, taking µ := Eu,w[S], we have, since Varu,w(S) ≤
n−1/4,

Eu,w[e
−S ] = e−µ

Eu,w[e
−(S−µ)] ∈ e−µ(1, 1 + Var(S)) ⊆ e−µ

(

1± 1

4n

)

.

Plugging this into (2.5) , letting n → ∞ and again using the convergence of Wn gives

(2.3). �

Recall that we write A = A(n) for the transition matrix of the movement of a card

under one round of CCRR. Write B = B(n) = [bij ] for the transition matrix of a card

that moves according to Ga(V ). More precisely, let V be uniform on [0, 1] and let bij be

the probability that Ga(V ) ∈ (j − 1/n, j), i, j ∈ {1/n, 2/n, . . . , 1}, where a is chosen

uniformly at random in (i − 1/n, i). The precise definition of B is taken so that the

stationary distribution under B is uniform. In particular B is doubly stochastic and BT is

the transition matrix of the reversed Markov chain.

The next lemma states that the matrixB has a nontrivial eigenvalue bounded away from

0.

Lemma 2.4. The transition matrix B(n) has a (possibly complex) second eigenvalue λ
such that |λ| > 0.08.

Remark. Matlab evaluations up to n = 105 strongly suggest that the second eigenvalue is

real and in the interval (0.21, 0.22).

Proof : Write B = S + D where S is the symmetric matrix (B + BT )/2 and D is the

skew-symmetric matrix (B −BT )/2. We claim the following.

Lemma 2.5. The second largest eigenvalue of S is at least 0.21

Lemma 2.6. The (purely imaginary) eigenvalues λ of D satisfy |λ| < 0.13. In particular,

the L2,2-norm of D satisfies ‖D‖2,2 < 0.13.

The usefulness of Lemmas 2.5 and 2.6 and a strategy for proving them, follow from the

following facts on stability of eigenvalues, i.e. what can happen to the spectrum of a matrix

under perturbations. These results and their elementary proofs can be found e.g. at Tao

(2008). Recall that a square matrix C is said to be normal if CCT = CTC and note that

S and D are both normal.

Lemma 2.7. Let C be a normal n× n matrix. Suppose that C has an eigenvalue λ0 and

that E is any n × n matrix with ‖E‖2,2 < ǫ. Then there exists an eigenvalue λ of C + E
such that |λ− λ0| < ǫ.

Moreover if λ is a complex number such that there exists a unit vector φ such that

‖Cφ− λφ‖2 < ǫ, then C has an eigenvalue λ0 with |λ− λ0| < ǫ.

Hence Lemma 2.4 follows immediately from Lemmas 2.5 and 2.6 together with Lemma

2.7. �

Proof of Lemma 2.5 and Lemma 2.6. In the proof of these lemmas, it will be convenient to

use the following convention: when a function f is defined on {1/n, 2/n, . . . , 1} we will

identify it with its extension to [0, 1] defined by f(a) = f(n−1⌈na⌉). By this convention,

‖f‖2 of the unextended n-dimensional vector f is
√
n times ‖f‖2 of the extended f as a

function in L2[0, 1].
Let us first study S. That (λ, φ) is an eigenvalue/eigenvector pair for S means that

E[φ(X1)|X0 = a] = λφ(a) for all a = 1/n, 2/n, . . . , 1, where X1 = X1(n) is the
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position of a card after one move according to S, starting from X0. Write Y = Y (n)
for a random variable distributed as the position after one move according to B(n) and

let Y ∗(n) be distributed according to the position after one step of B(n)T . (Recall that

B(n) is doubly stochastic, so that B(n)T is the transition matrix of the reversed CCRR.)

ThusX1 is the (uniform) convex combination of Y and Y ∗. The idea now is to find (κ, ψ)
close enough to an eigenvalue/eigenvector pair to allow us to draw the desired conclusion

from Lemma 2.7. We do this with the aid of Matlab. Some more details on the Matlab

computations, in particular the code, can be found in the appendix.

We use Matlab to compute the eigenvalue κ = 0.2293... and corresponding eigenvector

χ with n = 104, scaled so that ‖χ‖2 = 1. Next let n = 105 and extend χ to ψ, the linear

interpolation of (a slightly smoothed out version (see the appendix) of) χ. Then we find

that

‖E[ψ(X1(n))|X0(n) = ·]− κψ(·))‖2 < 0.0012. (2.6)

To arrive at the desired conclusion, a good uniform bound on the norm of the difference

between E[ψ(X1(m))|X0 = ·] and E[ψ(X1(n))|X0 = ·] for m > n = 105 will also be

established. The idea is to show that the total variation norm of the difference between the

distributions of Ga(V ) and Ga+1/m(V ) for arbitrary a ∈ (0, 1), is small. Then this bound

will be used to infer the existence of a coupling (Ya, Ya+1/m) of two random variables

distributed according to these, such that P(Ya 6= Ya+1/m) small. This together with the

fact that ‖ψ‖∞ is not too large will then establish the desired bound.

Note that the distribution function of Ga(V ) is G−1
a and the density is (d/dx)G−1

a (x).
Recall from (2.2) that u0(a) = 1− (1−a)ea is the breakpoint in the expression forGa(u).

Claim. We have

‖Ga(V )−Ga+1/m(V )‖TV = max
x

|G−1
a (x) −G−1

a+1/m(x)|

and the difference |G−1
a (x) −G−1

a+1/m(x)| is maximized when either

x = x0 := Ga+1/m(u0(a+ 1/m)) or x = Ga(u0(a)).

Proof of claim. Write b := a + 1/m. To prove the claim, it suffices to show that

(d/dx)(G−1
a (x)−G−1

b (x)) is negative for x < Ga(u0(a)) and x > Gb(u0(b)) and positive

for Ga(u0(a)) < x < Gb(u0(b)). This is equivalent to showing that G′
a(G

−1
a (x)) −

G′
b(G

−1
b (x)) is positive for x < Ga(u0(a)) and x > Gb(u0(b)) and negative for x between

the two bounds. The derivative of Ga is given by

G′
a(u) =

{

e1−a, u < u0(a)

e1−a − e−aee
−a(1−u), u > u0(a)

(2.7)

Note that G′′
a ≥ 0 on (u0(a), 1] so that G′

a is non-decreasing on (u0(a), 1]. (This is

obviously true on [0, u0(a)) as well, but we will not need that here.) For x < Ga(u0(a)),
the difference of the derivatives is constantly e1−a − e1−a−1/m > 0. When Ga(u0(a)) <
x < Gb(u0(b)), G

′
b(G

−1
b (x)) = e1−b, whereas G′

a(G
−1
a (x)) ≤ e1−a − 1, since G′

a is

increasing, which is obviously smaller.

For x > Gb(u0(b)), let z := G−1
a (x) and y := G−1

b (x). Then, since G′
a is increasing,

we have

z − y ≥ Gb(z)−Ga(z)

G′
b(z)

.

We want to bound this from below. We have

ee
−a(1−z) − ee

−b(1−z) = ee
−b(1−z)(e(e

−a
−e−b)(1−z) − 1).
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Since b > 1/m,

e(e
−a

−e−b)(1−z) = ee
−b(e1/m−1)(1−z) ≤ 1 +

1

m
(1 − z).

Hence

Gb(z)−Ga(z)

G′
b(z)

=
ee

−b(1−z) − e1−b − ee
−a(1−z) + e1−a

e1−b − ee−b(1−z)

≥ m−1e1−b −m−1(1− z)ee
−b(1−z)

e1−b − ee−b(1−z)

≥ m−1(1− z)(e1−b − ee
−b(1−z))

e1−b − ee−b(1−z)

= m−1(1− z)

Therefore 1− y = 1− z + z − y ≥ (1 + 1/m)(1− z), so

G′
a(z)−G′

b(y) = e1−a − e1−b + ee
−b(1−y) − ee

−a(1−z)

≥ m−1e1−b + ee
−b(1−z)(1+1/m) − ee

−a(1−z)

≥ m−1e1−b + ee
−a(1−z)

(

ee
−b(1+1/m)−e−a(1−z) − 1

)

≥ m−1e1−b + ee
−a(1−z)

(

em
−2e−a(1−z) − 1

)

≥ m−1e1−b − 2m−2 ≥ 0,

This proves the claim. ✷

Now we have that

0 ≤ G−1
a+1/m(Ga(u0(a))) −G−1

a (Ga(u0(a)))

= (ea+1/m−1 − ea−1)Ga(u0(a))

≤ e−1/m(e1/m − 1)Ga(u0(a))

≤ m−1.

Also

0 ≤ G−1
a (x0)−G−1

a+1/m(x0) = G−1
a (x0)− u0(a+ 1/m).

Now Ga(u0(a)) = e1−a − e(1− a) from which it follows that

x0 −Ga(u0(a)) = Ga+1/m(u0(a+ 1/m))−Ga(u0(a))

= e1−a − e1−a−1/m +
e

m

≤ e

m

(

1− e−a−1/m
)

≤ 2ea

m
.

The derivative of Ga was given above in (2.7) and is minimized as u ↓ u0(a) and then

tends to e1−a − e1−2a > a/2. Since (d/dx)G−1
a (x) = 1/G′

a(G
−1
a (x)), it follows that

G−1
a (x0) ≤ u0(a) +

1

a/2
(x0 −Ga(u0(a)))

≤ u0(a) + 4em−1.
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Since G−1
a+1/m(x0) = u0(a+ 1/m) > u0(a), it follows that

G−1
a (x0)−G−1

a+1/m(x0) < 4em−1 < 11m−1.

Equivalently, for a ∈ {1/n, 2/n, . . . , 1− 1/n} and all l,

|
l
∑

j=1

ba+1/m,j −
l
∑

j=1

ba,j | ≤ |G−1
a+1/m(l)−G−1

a (l)|

< 11m−1. (2.8)

This means that the total variation distance between the distributions of two cards making

a move according to B, starting from i and i + 1/m respectively, is bounded by 11/m.

Writing Ya(m) for a random variable distributed according to the position after one round

of CCRR for a card that starts in position a, a consequence of this is that one can construct

a coupling of Ya(m) and Ya+1/m(m) such that P(Ya(m) 6= Ya+1/m(m)) < 11/m. More

generally, for k < m, one can couple so that P(Ya(m) 6= Ya+k/m(m)) < 11k/m. This

entails, with ψ̂ := maxx ψ(x) −minx ψ(x) < 4.5, that

|E[ψ(Ya(m))]− E[ψ(Ya+k/m(m))]| < 11ψ̂km−1 < 50km−1. (2.9)

Next we give a bound corresponding to (2.9) for BT . Note that G′
a(j) = G′

a(j + 1/m)
for a such that j + 1/m < u0(a) and that when j > u0(a), G

′
a(j) < G′

a(j + 1/m),
whereas when j < u0(a) < j+1/m, thenG′

a(j) > G′
a(j +1/m). Hence bi,j+1/m − bi,j

is zero for u0(i) > b + 1/m, negative for u0(i) < b and positive for the i’s such that

j < u0(i) < j + 1/m. Hence the sum

T :=
∑

i:j<u0(i)<j+1/m

(bi,j+1/m − bi,j)

gives the total variation distance between the distributions of two cards making one move

according to BT and starting from j and j + 1/m respectively. The number of i’s in the

sum equals at most m(u−1
0 (j + 1/m)− u−1

0 (j)) + 1 and

bi,j+1/m ≤ 1 ∧ 1

m(Gi)′+(u0(i))
< 1 ∧ 2

mi

where the second inequality follows from the bound (Gi)
′
+(u) > i/2 from above. Each

of the i’s in the sum T is an i such that j < u0(i), i.e. i > u−1
0 (j). Hence T is bounded

by 2(u−1
0 (j + 1/m)− u−1

0 (j) + 1/m)/u−1
0 (j). Now u′0(a) = aea, so by the Mean Value

Theorem, for some a > u−1
0 (j),

u−1
0 (j + 1/m)− u−1

0 (j) <
e−a

ma
≤ 1

ma
<

1

u−1
0 (j)

.

Hence T is bounded by 1 ∧ 2/mu−1
0 (j)2. Since u0(a) = 1 − (1 − a)ea ≤ a2, we have

u−1
0 (j) ≥ √

j and hence

T ≤ 1 ∧ 2

mj
.

Now, in analogy with the above, let Y ∗
a (m) be distributed as the position of a card after

one move according to BT , started from a. Then one can construct a coupling such that

P(Y ∗
a (m) 6= Y ∗

a+k/m(m)) < 1 ∧ 2k/ma and hence

|E[ψ(Y ∗
a (m))]− E[ψ(Y ∗

a+k/m(m))]| < ψ̂

(

1 ∧ 2k

ma

)

< 4.5

(

1 ∧ 2k

ma

)

. (2.10)
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Now compare E[ψ(Ya(m)] and E[ψ(Ya(n))]. For convenience, assume that n|m and set

m = nl. For a = k/n− r/m, 0 ≤ r ≤ l − 1, we have by convention that E[ψ(Ya(n)] =
E[ψ(Ya0

(n))], where a0 := n−1⌈na⌉ = (k + 1)/n. Then (2.9) shows that

|E[ψ(Ya(m))]− E[ψ(Ya0
(m))| < 50

n
= 0.0005.

From our Matlab calculations, we get maxx |ψ′(x)| < 100. Then it is clear that

|E[ψ(Ya0
(m))]− E[ψ(Ya0

(n))]| ≤ 100

n
= 0.001.

Hence

‖E[ψ(Y·(m))]− E[ψ(Y·(n))]‖2 < 0.0015. (2.11)

Analogously for comparing E[ψ(Y ∗
a (m)] with E[ψ(Y ∗

a (n))], use (2.10) to get

|E[ψ(Y ∗
a (m))] − E[ψ(Y ∗

a0
(m))]| < 4.5

(

1 ∧ 2r

(k − 1)l

)

and hence some straightforward calculations give, using (2.10), that
∑l

1 k
2 ≤ (l + 1)3/3

and that
∑∞

1 1/k2 = π2/6,

‖E[ψ(Y ∗
· (m))]− E[ψ(Y ∗

· (n))]‖2 < 0.001 +
2 · 4.5√

n

√

1 +
5

24
+

1

3

(

π2

6
− 1

)

< 0.001 +
10√
n
< 0.033. (2.12)

Since X1 is the convex combination of Y and Y ∗, it follows from (2.11) and (2.12) that

E[ψ(X·(m))]− E[ψ(X·(n))]‖2 < 0.018. (2.13)

Combining (2.13) with (2.6), we find that

‖E[ψ(X·(m))] − κψ‖2 < 0.0192

for all m ≥ 105. From this it follows that S has an eigenvalue λ with λ > κ− 0.0192 >
0.21 as desired.

Next we prove Lemma 2.6 in a completely analogous way. We have that (λ, φ) is an

eigenvalue/eigenvector pair forD if (1/2)(E[φi(Y )]−E[φ(Y ∗
i )]) = λφ(i) for all i, where

Yi and Y ∗
i are, as above, random variables distributed according one step of B and BT

respectively, starting from X0 = i. Again we take n = 105 and use Matlab to get κ and

ψ close to an eigenvalue and eigenvector respectively. It turns out that κ = 0.0793...i, so

|κ| < 0.08 and we get ψ̂ < 5. In terms of variability however, this case turns out to be less

well behaved. We get maxx |ψ′(x)| < 400 and
∥

∥

∥

∥

1

2
(E[ψ(Y·(n))]− E[ψ(Y ∗

· (n))])− κψ(·)
∥

∥

∥

∥

2

< 0.017.

Then the above calculations now give
∥

∥

∥

∥

1

2
(E[ψ(Y·(m))]− E[ψ(Y ∗

· (m))]) − κψ(·)
∥

∥

∥

∥

2

< 0.047 < 0.05.

The desired result follows now follows from Lemma 2.7. ✷

For the remainder of the paper, in the light of Lemma 2.4, we fix λ to be the eigenvalue

of B with the second largest modulus. Let φ be an eigenvector corresponding to λ with

‖φ‖2 = 1. Note that since λ may be complex, so may φ. (However, as remarked before,

Matlab computations up to n = 105 strongly suggest that λ is real.) The next lemma,
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which we extract from (2.8) in the proof of Lemma 2.5, will be useful in order to show that

φ(i) and φ(j) cannot differ much if i and j are close.

Lemma 2.8. Let f : Qn → C and for i ∈ Qn, let Xi be a random variable distributed

according to the law the position of card i after one move according to B. Then for all

i ∈ Qn \ {1},
∣

∣E[f(Xi+1/n)]− E[f(Xi)]
∣

∣ ≤ 22

n
‖f‖∞.

Lemma 2.9. For the eigenvector φ, of B, we have

‖φ‖1 ≥ c1n
4/9,

‖φ‖∞ ≤ c2n
−4/9

and

|φ(i + 1/n)− φ(i)| ≤ c3n
−13/9

for constants c1, c2 and c3 independent of n and i.

Proof : Let, as in Lemma 2.8, Xi be distributed as the position of card i after one move

according to B. By definition of eigenvalue/eigenvector, E[φ(Xi)] = λφ(i). Hence by

Lemmas 2.8 and 2.4,

|φ(i)− φ(i + 1/n)| ≤ 22|λ|−1

n
<

275

n

since ‖φ‖∞ ≤ 1. Write ‖φ‖∞ = 100n−a. Since |φ(i) − φ(i + 1/n)| < 275/n, it follows

that

1 ≥ ‖φ‖22 >
2752

n2

100n1−a

275
∑

1

j2 > n1−3a

which entails that a ≥ 1/3. This however means that ‖φ‖∞ ≤ 100n−1/3 so that the

conclusion from Lemmas 2.8 and 2.4 above can be strengthened to

|φ(i)− φ(i + 1/n)| < 27500

n4/3
.

Now writing ‖φ‖∞ = 100n−b gives that

1 ≥ ‖φ‖22 >
275002

n8/3

100n1−b

27500
∑

j=1

j2 > n4/3−3b

so that b ≥ 4/9. This shows that ‖φ‖∞ ≤ 100n−4/9. Once again bootstrapping the bound

on |φ(i)− φ(i+ 1/n)| gives an upper bound of 2750000n−13/9. Since ‖φ‖∞ ≥ n−1/2, it

follows that

‖φ‖1 = 2750000n−13/9

n17/18

2750000
∑

j=1

j = n4/9/5500000.

�

Let St :=
∑

i:ℜφ(i)>0 φ(X
i
t ) whereX i

t is the position of card i after t rounds of CCRR.

The random variable St is going to be the test statistic used to verify that order log n
rounds are necessary for the deck to mix. Let X∞ be the deck at stationarity (i.e. uniform

on Sn) and let S∞ =
∑

ℜφ(i)>0 φ(X
i
∞). Note that |S0| ≥ C1n

4/9 for a constant C1

independent of n by Lemma 2.9. Since the cards now move according to A and not B, φ
is not quite an eigenvector for the motion of a card. However, letting Y i

t be the position
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of a card after t steps according to B and coupling X i
1 and Y i

1 by using the same uniform

random variable V for updating (for X i
t this is to say that we use n−1⌈nV ⌉), (2.5) gives

that |E[X i
1]− E[Y i

1 ]| ≤ 4/n. Hence by Lemma 2.9,

|E[φ(X i
1)|X i

0 = a]− E[φ(Y i
t )|Y i

0 = a]| ≤ C2n
−13/9

for a constant C2 independent of n. Hence summing over i with ℜφ(X i
0) > 0 and using

the triangle inequality gives

|E[S1|X0]− λS0| < C2n
−4/9.

A straightforward recursion gives, using Lemma 2.9,

E[|St|] ≥ |λ|tS0 −
(

t−1
∑

r=0

|λ|r
)

C2n
−4/9 > C3|λ|tn4/9 − C4n

−4/9 (2.14)

for constants C3 and C4 independent of n.

We also need to bound the variance of St. Let fi(Ui) = E[X i
1|Ui], where Ui is the

position where card i is reinserted in round 1. Then we can write X i
1 = fi(Ui) + ǫi,

where E[ǫ2i ] ≤ C5/n by (2.4). Hence φ(X i
1) = φ(fi(Ui)) + δi, where the variance of δi is

bounded by C6n
−1 · (n−4/9)2 = C6n

−17/9 since by Lemma 2.9, |δi| ≤ c3n
−4/9|ǫi|.

Now observe that fi(Ui) and fj(Uj) are independent and |Cov(δi, δj)| ≤ C6n
−17/9.

(Recall that the covariance of two complex-valued random variables V andW with expec-

tations µ and ν respectively is given by Cov(V,W ) = E[(V − µ)(W − η)].) Also, for all

u and v,

|E[ǫj |Ui = u]− E[ǫj |Ui = v]| ≤ e2

n
. (2.15)

To see this, couple the motion of card j under Ui = u with the motion of j under Ui = v
by using the same Uk for all k 6= i. If i < j, then after card j has been reinserted (at the

same position in the two decks), the number of cards of those that remain to be reinserted

that are below j, will differ by at most one between the two decks. The same goes in the

case i > j after i is reinserted. Now use Lemma 2.1.

We get

|Cov(φ(fi(Ui)), δj)| = |Cov(φ(fi(Ui)),E[δj |Ui])|
≤ Var(φ(fi(Ui)))

1/2
Var(E[δj |Ui])

1/2

≤ C7n
−4/9n−13/9

= C7n
−17/9,

where the second inequality uses (2.15) to bound the second factor. Summing up, we get

Cov(φ(X i
1), φ(X

j
1)) ≤ C8n

−17/9 (2.16)

from which it follows that

Var(S1) ≤ C8n
1/9. (2.17)

From the considerations leading up to (2.14), we can write E[St+1|Xt] = λSt + Z for

a random variable Z , which is a function of St such that |Z| ≤ C2n
−4/9. Hence, since

E[|St|] ≤ C9n
5/9 by Lemma 2.9

Var(E[St+1|Xt]) ≤ |λ|2Var(St) + 2C2|λ|E[|St|]n−4/9 + C2
2n

−8/9

< |λ|2Var(St) + 2C2|λ|n1/9 + C2
2n

−8/9.
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Here, the mid term follows from Cov(St, Z) ≤ E[|St||Z|]. By (2.17),

maxx E[Var(St+1|Xt = x)] ≤ C8n
1/9. Hence, with vt := Var(St) and using that

Var(St+1) = E[Var(St+1|Xt)] + Var(E[St+1|Xt]), we have the recursive inequality,

vt+1 ≤ |λ|2vt + C10n
1/9

with v0 = 0. It follows that

vt ≤ C10n
1/9

t
∑

j=0

|λ|2j < C11n
1/9.

By continuity we also get Var(S∞) ≤ C11n
1/9.

Finally let τ := ⌊logn/9 log |λ|−1⌋. Then by (2.14), E[|Sτ |] ≥ C12n
1/3, so by Cheby-

shev’s inequality (as Var(|St|) ≤ Var(St)),

P(|Sτ | ≤ n2/9) → 0

as n→ ∞, whereas, since E[S∞] = 0,

P(|S∞| ≤ n2/9) → 1.

This proves the main theorem.
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an important issue. Therefore the code has been optimized for computational speed and it

is not quite as straightforward as one would at first believe on knowing B(n). Here is the

code.

function A=rimatris(n)

A=zeros(n,n);

r=zeros(1,n+1);

e=exp(1);

ep=1/n;

a=0;

ea=1;

ema=1;

eema=exp(1);

eep=exp(ep);

emep=1/eep;

for i=1:n,

a=a+ep;

ea=ea*eep;

ema=ema*emep;

eema=eemaˆemep;

u=0;

for j=0:n,

z=j*ep;

s=min(e*ema*u,eemaˆ(1-u)-e*ema*(1-u))-z;

while abs(s)>1e-12,

I=(u <= 1-(1-a)*ea);

u=u-s/(I*e*ema + (1-I)*(e*ema-ema*eemaˆ(1-u)));

s=min(e*ema*u,eemaˆ(1-u)-e*ema*(1-u))-z;

end

r(j+1)=u;

end

A(i,:)=r(2:n+1)-r(1:n);

end

function y=riprod(x);

n=length(x);

y=zeros(1,n);

e=exp(1);

ep=1/n;

z=ep*(0:n);

u=z;

a=0;

ea=1;

ema=1;

eema=exp(1);

eep=exp(ep);

emep=1/eep;

for i=1:n,

a=a+ep;

ea=ea*eep;
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ema=ema*emep;

eema=eemaˆemep;

s=min(e*ema*u,eema.ˆ(1-u)-e*ema*(1-u))-z;

while max(abs(s))>1e-12,

I=(u <= 1-(1-a)*ea);

u=u-s./(I*e*ema + (1-I).*(e*ema-ema*eema.ˆ(1-u)));

s=min(e*ema*u,eema.ˆ(1-u)-e*ema*(1-u))-z;

end

r=u(2:n+1)-u(1:n);

y(i)=y(i)+r*x;

y=y+x(i)*r;

end

y=0.5*y';

function y=riprod2(x);

n=length(x);

y=zeros(1,n);

e=exp(1);

ep=1/n;

z=ep*(0:n);

u=z;

a=0;

ea=1;

ema=1;

eema=exp(1);

eep=exp(ep);

emep=1/eep;

for i=1:n,

a=a+ep;

ea=ea*eep;

ema=ema*emep;

eema=eemaˆemep;

s=min(e*ema*u,eema.ˆ(1-u)-e*ema*(1-u))-z;

while max(abs(s))>1e-12,

I=(u <= 1-(1-a)*ea);

u=u-s./(I*e*ema + (1-I).*(e*ema-ema*eema.ˆ(1-u)));

s=min(e*ema*u,eema.ˆ(1-u)-e*ema*(1-u))-z;

end

r=u(2:n+1)-u(1:n);

y(i)=y(i)+r*x;

y=y-x(i)*r;

end

y=0.5*y';

Given these functions, they have been used with the following set of commands.

A=rimatris(10001);

B=(A+A')/2;

C=(A-A')/2;

[u,l]=eigs(B,2);

u=u(:,2);

u=100*u;
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l=l(2,2);

[w,k]=eigs(C,1);

w=100*w;

for i=2:25, u(26-i)=u(26)-i*(u(26)-u(25)); end

for i=2:75, w(76-i)=w(76)-i*(w(76)-w(75)); end

du=10000*(u(2:10001)-u(1:10000));

dw=10000*(w(2:10001)-w(1:10000));

x=0:10000;

xx=0:0.1:10000;

y=interp1(x,u,xx);

y=y';

z=interp1(x,w,xx);

z=conj(z');

r=riprod(y)-l*y;

s=riprod2(z)-k*z;

sqrt(r'*r/100000);

sqrt(s'*s/100000);

max(abs(du));

max(abs(dw));

Then u and w are first the normalized eigenvectors of B(n) and D(n) respectively for

n = 104. These are then smoothed out, whereupon y and z are the linear interpolations

of the smoothed-out vectors. The commandsmax(abs(du)) andmax(abs(dw)) give φ̂ in

the respective cases.
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