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Abstract. Suppose we have a high-frequency sample from the Lévy process of
the form Xθ

t = βt + γZt + Ut, where Z is a possibly asymmetric locally α-stable
Lévy process, and U is a nuisance Lévy process less active than Z. We prove the
LAN property about the explicit parameter θ = (β, γ) under very mild conditions
without specific form of the Lévy measure of Z, thereby generalizing the LAN result
of Aı̈t-Sahalia and Jacob (2007). In particular, it is clarified that a non-diagonal
norming may be necessary in the truly asymmetric case. Due to the special nature
of the local α-stable property, the asymptotic Fisher information matrix takes a
clean-cut form.

1. Introduction

Ever since Le Cam’s pioneering work Le Cam (1960), local asymptotics of like-
lihood random fields has been playing a crucial role in the theory of asymptotic
inference. Specifically, the celebrated local asymptotic normality property (LAN)
introduced by Le Cam has been a longstanding prominent concept, based on which
we can deduce, among others, asymptotic optimality criteria for estimation and
testing hypothesis. Not only for the classical i.i.d. models, there are many ex-
isting LAN results for several kinds of statistical experiments of dependent data,
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including ergodic times-series models, homoscedastic models, and ergodic stochas-
tic processes, to mention juts a few. One can consult Le Cam and Yang (2000)
and the references therein for a systematic account of the LAN together with many
related topics.

It is a common knowledge that verification of the LAN for a stochastic processes
with no closed-form likelihood is generally a difficult matter. In case of diffusions
under high-frequency, Gobet (2001, 2002) successfully derived the LAN and LAMN
by means of the Malliavin calculus. There the structures of the limit experiments
turned out to be simple enough (normal or mixed normal). One of theoretical mer-
its of high-frequency sampling is that it enables us to take into account a small-time
approximation of the underlying model, based on which we may derive an imple-
mentable and asymptotically efficient estimator. This has been achieved for the
diffusion models, see Kessler (1997) and Genon-Catalot and Jacod (1993). How-
ever, to say nothing of Lévy driven non-linear stochastic differential equations, much
less has been known about the explicit LAN result for Lévy processes observed at
high frequency where the transition probability is hardly available in a closed form.
We refer to Masuda (2015) for several explicit case studies about LAN result and
related statistical-estimation problems concerning Lévy processes observed at high
frequency. Especially when the underlying Lévy process or the most active part
of the process is symmetric α-stable, the explicit LAN result has been proved in
Aı̈t-Sahalia and Jacob (2007) and Masuda (2009). See also Aı̈t-Sahalia and Jacod
(2008) for the precise asymptotic behavior of the Fisher-information matrix for the
same model setting as in Aı̈t-Sahalia and Jacob (2007).

We will consider the Lévy process Xθ described by Xθ
t = βt+γZt+Ut, where Z

is a locally α-stable Lévy process and where U is a Lévy process which is indepen-
dent of Z and less active than Z, the latter being regarded as a nuisance process;
we specify them below. The objective of this paper is to derive the LAN about
the explicit parameter θ = (β, γ) under very mild conditions, when Xθ is observed
at high-frequency. Our model setting is quite broad to cover many specific ex-
amples of infinite-activity pure-jump Lévy processes, and in particular generalizes
the LAN result of Aı̈t-Sahalia and Jacob (2007), for the locally α-stable property
only requires that the Lévy measure behaves like that of the α-stable distribution
only near the origin, hence is much weaker requirement than the genuine α-stable
case. It turns out that the special nature of the locally α-stable character leads
to a clean-cut limit experiments described in terms of the α-stable density. Owing
to high-frequency sampling, the method we propose is highly non-sensitive with
respect to the nuisance process U , and allows us to formulate the LAN property
uniformly with respect to a class of nuisance processes; this explains the term “uni-
form” in the title of the paper.

Our proof of the LAN property is based on two principal ingredients. One of
them is the classical L2-regularity technique, which dates back to Le Cam. Another
important ingredient is the Malliavin calculus-based integral representation for the
derivative of the log-likelihood function, which we use in order to derive the Lp-
bounds for this derivative. This method of proof is mainly based on the ideas
developed in Ivanenko and Kulik (2014, 2015) for the model where Xθ is a solution
to a Lévy-driven SDE observed with a fixed frequency, but in the high-frequency
case we encounter new challenge to design the particular version of the Malliavin
calculus in a way which provide asymptotically precise Lp-bounds. We mention
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an independent recent paper Clément and Gloter (2015), where similar tools are
developed for the same purposes. Our way to obtain the asymptotically precise Lp-
bounds and its relation to that developed in Clément and Gloter (2015) is discussed
in details in Section 4 below.

It is natural to ask for extending our LAN result for stochastic differential equa-
tion driven by a locally α-stable Z. This extension is far-reaching and may involve
the notion of the locally asymptotically mixed normality property (LAMN) in-
troduced by Jeganathan (1982), which covers cases of random asymptotic Fisher
information matrix. This is particularly relevant to heteroscedastic processes ob-
served at n distinct time points over a fixed time domain. In such cases it is typical
that randomness of the covariance structure is not averaged out in the limit exper-
iments. See Dohnal (1987); Genon-Catalot and Jacod (1994); Gobet (2001) for the
case of diffusion processes. The LA(M)N property of a solution to a SDE driven by
a locally α-stable Lévy process under high-frequency sampling is one of currently-
projected topics. To the best of our current knowledge, the papers Clément and
Gloter (2015) and Mai (2014) are the only existing result in this direction. This
will involve more technicalities than the present Lévy-process setting, and will be
investigated in a subsequent paper.

This paper is organized as follows. In Section 2 we describe the model, introduce
the assumptions, and formulate the main results of the paper. Section 3 contains
the main part of the proof, which is based on the Le Cam’s L2-regularity technique
and relies on Lp-bounds for the derivative of the log-likelihood function. These
Lp-bounds are proved in Section 4 by means of a specially designed version of the
Malliavin calculus.

2. Main results

Let Xθ be a Lévy process of the form

Xθ
t = βt+ γZt + Ut, t ≥ 0. (2.1)

Here Z and U are independent Lévy processes defined on a probability space
(Ω,F ,P), and θ = (β, γ)⊤ ∈ R

2 is an unknown parameter subject to a statisti-
cal estimation. We assume Z to be such that in its Lévy-Khintchine representation

EeiλZt = etψ(λ),

the characteristic exponent ψ has the form

ψ(λ) =

∫

R

(

eiλu − 1− iλu1|u|≤1

)

µ(du). (2.2)

That is, Z does not contain the diffusion term, the truncation function equals
u1|u|≤1, and no additional drift term is involved. Throughout this paper, the Lévy
measure µ is assumed to satisfy the following conditions:

H1. µ(du) = m(u)du, and for some α ∈ (0, 2),

m(u) ∼
{

C+|u|−α−1, u→ 0+,
C−|u|−α−1, u→ 0−, C− + C+ > 0.

H2. m ∈ C1(R \ {0}), and there exists a constant u0 > 0 such that the function

τ(u) :=
|um′(u)|
m(u)
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is bounded on the set {|u| ≤ u0} and satisfies
∫

|u|>u0

τ2+δ(u)µ(du) <∞

for some δ > 0.

Recall that for an α-stable process its Lévy measure has the density

mα,C±
(u) :=

{

C+|u|−α−1, u > 0,
C−|u|−α−1, u < 0.

(2.3)

Hence H1 requires that locally near the origin the Lévy measure for Z behaves
similar to that for an α-stable process; that is why we call Z locally α-stable. The
constant (C+−C−)/(C++C−) ∈ [−1, 1] determines the signed degree of skewness,
see Zolotarev (1986) for details.

Note that H2 does not require τ(u) to be bounded for “large” u; this includes
into the class of admissible Z a wide range of “stable-like” Lévy processes with

m(u) = f(u)mα,C±
(u),

where f(u) → 1, |u| → 0.

Example 2.1 (Tempered α-stable process). For either f(u) = e1−
√
1+u2

, f(u) =

e−u
2

, or f(u) = e−|u|, conditions H1, H2 hold true, although τ(u) fails to be
bounded.

Example 2.2 (Smoothly damped α-stable process).
Let m(u) = f(u)|u|−α−11[−u1,u1](u), u1 > 0, where f is continuous in R, f > 0
for u ∈ [−u1, u1] with f(u) → 1 as u → 0, and f smoothly vanishes outside the
interval [−u1, u1] in such a way that u 7→ |u||f ′(u)|/f(u) is locally bounded and
moreover u 7→ {|u||f ′(u)|/f(u)}2+δm(u) is du-integrable over the set {|u| ≥ u0}
for some δ > 0 and u0 > 0. Then conditions H1, H2 hold true; note that τ(u) ≤
|u||f ′(u)|/f(u) + α+ 1. One particular example of such f is of the form

f(u) = Ce−1/(u+u1)−1/(u1−u)1[−u1,u1](u).

We are focused on the following setting:

• the processXθ is discretely observed, i.e. the n-th sample contains its values
at the first n points {tk,n = khn, k = 1, . . . , n} of the uniform partition of
the time axis with the partition interval hn;

• hn → 0 as n→ ∞, i.e. the discrete observations of Xθ have high frequency.

We note that the terminal sampling time nhn may or may not tend to infinity as
n→ ∞.

In what follows an open set Θ ∈ R
2 denotes the set of possible values of the

unknown parameter θ; we assume that Θ ⊂ R× (0,∞), i.e. parameter γ takes only
positive values. Denote P

θ
n the law of the sample

{

Xθ
tk,n

, k = 1, . . . , n
}

in (Rn,B(Rn)), and write

En =
{

R
n, B(Rn), (Pθn, θ ∈ Θ)

}

for a statistical model based on this sample.



Uniform LAN of locally stable Lévy process 839

Under our conditions on the process Z, the law P
θ
n is absolutely continuous

with respect to Lebesgue measure (see Section 3), i.e. the model En possesses the
likelihood function

Ln (θ;x1, . . . , xn) =
P
θ
n(dx1 . . . dxn)

dx1 . . . dxn

Denote by

Zn(θ0, θ;x1, . . . , xn) =
Ln (θ;x1, . . . , xn)

Ln (θ0;x1, . . . , xn)

the likelihood ratio of Pθn with respect to Pθ0n with the convention (anything)/0 = ∞.
Our goal is to establish the LAN property for the sequence of statistical models

En, n ≥ 1, specified above. Recall that the LAN property is said to hold at a point
θ0 ∈ Θ with the matrix rate {r(n) = r(n, θ0), n ≥ 1} and the covariance matrix
Σ(θ0), if for every v the sampled likelihood ratio

Zn(θ0, θ0 + r(n)v) = Zn(θ0, θ0 + r(n)v;Xθ0
t1,n , . . . , X

θ0
tn,n

)

possesses representation under

Zn(θ0, θ0 + r(n)v) = exp

{

v⊤∆n(θ0)−
1

2
v⊤Σ(θ0)v +Ψn(v, θ0)

}

(2.4)

with

∆n(θ0) ⇒ N (0,Σ(θ0)), n→ ∞ (2.5)

and

Ψn(v, θ0)
P−→ 0, n→ ∞ (2.6)

along P
θ0
n .

Put

ct = t

∫

t1/α<|u|≤1

uµ(du), (2.7)

which is identically zero if µ is symmetric and denote by Zα,C± the α-stable process
whose characteristic exponent has the form (2.2) with the Lévy measure (2.3), where
C+, C− are given by the condition H1. Finally, denote by φα,C±

the distribution

density of Z
α,C±

1 (this density exists, see Zolotarev (1986) or Proposition 3.1 below).
Now we are able to formulate our main result.

Theorem 2.1. Let Xθ be given by (2.1) and assume that Z satisfies H1 and H2,
that

t−1/αUt → 0, t → 0, (2.8)

in probability, and that

n−1/2h1/α−1
n → 0

(automatic if α ∈ (0, 1] since we are supposing that hn → 0). Then the LAN
property holds true at every point θ0 ∈ Θ with

r(n) = n−1/2

(

h
1/α−1
n chnh

−1
n

0 1

)

, Σ(θ) =

(

Σ11(θ) 0
0 Σ22(θ)

)

, (2.9)
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where

Σ11(θ0) = γ−2
0

∫

R

(

φ′α,C±
(x)

φα,C±
(x)

)2

φα,C±
(x)dx,

Σ22(θ0) = γ−2
0

∫

R

(

1 +
xφ′α,C±

(x)

φα,C±
(x)

)2

φα,C±
(x)dx.

Remark 2.1. Recall the definition of the Blumenthal-Getoor activity index of a
Lévy process Y with the Lévy measure µY :

αY := inf

{

q ≥ 0 :

∫

|u|≤1

|u|qµY (du) <∞
}

.

Then it is sufficient for the condition (2.8) that αU < α (see, e.g., p.362 of Sato
(1999)); note that αZ = α. In this paper we are assuming that the activity in-
dex α is known. This might seem disappointing, however, as it was clarified in
Aı̈t-Sahalia and Jacod (2008) and Masuda (2009), if one attempts to make joint
maximum-likelihood estimation of α and the scale parameter γ, one may confront
the degeneracy of the asymptotic Fisher information matrix. This degeneracy is
inevitable, and how to cope with it is beyond the scope of this paper.

Remark 2.2. In view of the standard theory Ibragimov and Has′minskĭı (1981) con-
cerning asymptotically efficient estimation of a LAN model, Theorem 2.1 suggests

to seek an estimator θ̂ = (β̂n, γ̂n)
⊤ such that

r(n)−1(θ̂n − θ0) =

( √
nh

1−1/α
n (β̂n − β0)− h

−1/α
n chn · √n(γ̂n − γ0)√

n(γ̂n − γ0)

)

weakly tends to the centered normal distribution with the asymptotic covariance
matrix Σ(θ0). Observe that, when µ is asymmetric, the factor

h−1/α
n chn = h1−1/α

n

∫

h
1/α
n <|u|≤1

uµ(du)

may or may not vanish, or even may diverge, implying that the asymmetry es-
sentially and non-trivially affect estimation of the drift parameter β. As a matter
of fact, the necessity of non-diagonal norming seems to be non-standard in the
literature: typically, it is enough to take

r(n) = diag

{(

E

∣

∣

∣

∣

∂

∂θj
logLn(θ;X

θ0
t1,n , . . . , X

θ0
tn,n

)

∣

∣

∣

∣

2)

j

}

whenever exists; for instance, the monograph Basawa and Scott (1983) is devoted to
the diagonal norming. We refer to Fahrmeir (1988) and Sweeting (1992) for some
technical refinements of asymptotic inference by using a non-diagonal norming.
Nevertheless, we note that since r(n) of (2.9) is invertible, we have no trouble in
construction of an asymptotically confidence region of an asymptotically normally
distributed estimator converging at rate r(n).

Under the condition (2.8) the process U is interpreted as a “nuisance noise”, in
the sense that U is less active than the “principal” part Z, as was mentioned in
Remark 2.1. A natural question is whether or not it is possible to extend Theorem
2.1 so as to make the LAN property valid not only for each single U , but also
uniformly over some “nuisance class” U of U . Our method of proof of Theorem
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2.1 is strong enough to provide the following uniform LAN property in such an
extended setting.

Theorem 2.2. Let U be a class of Lévy processes such that condition (2.8) holds
true uniformly over U ∈ U. If in addition Z and hn satisfy conditions of Theorem
2.1, then for every U ∈ U and θ0 ∈ Θ, the likelihood ratio for the discretely observed
process (2.1) admits a representation (2.4) with r(n),Σ(θ0) specified in (2.9), and
relations (2.5), (2.6) hold true uniformly over U ∈ U.

As it was explained in Aı̈t-Sahalia and Jacob (2007), the uniform negligibility of
U would play an important role for purposes of semiparametric statistical (adaptive)
estimation of θ: in p.358 of Aı̈t-Sahalia and Jacob (2007), the authors introduce
a class of possible nuisance noise distribution L(U1), over which one can precisely
formulate an asymptotically uniformly efficient estimation of θ; this in turn leads to
the notion of asymptotically uniformly efficient estimator of θ. As a matter of fact,
it would be possible to precisely state a uniform-in-U version of the Hajék-Le Cam
convolution theorem, which effectively clarifies the uniform asymptotic lower bound
of an expected loss of any regular estimator with r(n)-rate of convergence; among
others, see Section 2.3 of Basawa and Scott (1983) and Section II.11 of Ibragimov
and Has′minskĭı (1981) for details. How to construct an asymptotically efficient
estimator would be several things, to be reported elsewhere.

3. Proofs of Theorem 2.1 and Theorem 2.2

In this section we prove Theorem 2.1 and outline the proof of Theorem 2.2.
The key ingredient in these proofs would the Lp-bound for the derivative of the
log-likelihood (Proposition 3.2), which we discuss in details and prove separately in
Section 4 below.

3.1. Proof of Theorem 2.1: an outline and preliminaries. Denote by pt(θ;x, y) the
transition probability density for Xθ, considered as a Markov process; in what
follows we will prove that this density exists. Denote also

gt(θ;x, y) =
∇θpt(θ;x, y)

pt(θ;x, y)
= ∇θ log pt(θ;x, y),

qt(θ;x, y) =
∇θpt(θ;x, y)

2
√

pt(θ;x, y)
= ∇θ

√

pt(θ;x, y),

assuming the derivatives to exist for Pt(x, ·)-a.a. y for every fixed x, t. Since Xθ

has independent increments, we can write

pt(θ;x, y) = pt(θ; y − x), gt(θ;x, y) = gt(θ; y − x), qt(θ;x, y) = qt(θ; y − x).

Then the sampled likelihood ratio for the model can be written in the form

Zn(θ0, θ0 + r(n)v) =

n
∏

k=1

phn(θ0 + r(n)v;Xθ0
tk,n

−Xθ0
tk−1,n

)

phn(θ0;X
θ0
tk,n

−Xθ0
tk−1,n

)
.

Denote

ηθk,n = Xθ
tk,n

−Xθ
tk−1,n

, 1 ≤ k ≤ n,
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and observe that phn(θ; ·) is the distribution density for ηθkn. Hence the statistical
model described above, after a re-sampling

(Xθ
tk,n

)nk=1 7→ (ηθk,n)
n
k=1,

actually is reduced to the one with a triangular array of independent observations.
The LAN property for triangular arrays of independent observations is well stud-
ied, e.g. Ibragimov and Has′minskĭı (1981), Theorem II.3.1′, Theorem II.6.1, and
Remark II.6.2. In particular, in order to prove the required LAN property at a
point θ0 ∈ Θ it would be enough for us to prove the following assertions.

A1 For every n, the function

Θ ∋ θ →
√

phn(θ; ·) ∈ L2(R)

is continuously differentiable; that is, the statistical experiment is regular.
A2

lim
n→∞

E

∣

∣

∣

∣

∣

n
∑

k=1

(

r(n)⊤ghn

(

θ0;X
θ0
khn

−Xθ0
(k−1)hn

))⊗2

− Σ(θ0)

∣

∣

∣

∣

∣

= 0.

A3 For some ε > 0,

lim
n→∞

n

∫

R

∣

∣r(n)⊤ghn (θ0; y)
∣

∣

2+ε
phn (θ0; y) dy = 0.

A4 For every N > 0,

lim
n→∞

sup
|v|<N

n

∫

R

∣

∣r(n)⊤ (qhn (θ0 + r(n)v; y) − qhn (θ0; y))
∣

∣

2
dy = 0.

Before provingA1–A4, let us introduce some notation, formulate auxiliary state-
ments, and make preliminary calculation.

Denote r̃(n) = n1/2r(n). Denote also by Θ̃ arbitrary (but fixed) subset of Θ such
that

inf{γ : (β, γ) ∈ Θ̃} > 0.

Consider the random variables

ζα,t = t−1/α(Zt + ct).

The following statement is proved in Appendix.

Proposition 3.1. (1) ζα,t ⇒ Z
α,C±

1 , t→ 0+.

(2) The variables ζα,t, t > 0, an Z
α,C±

1 possess the distribution densities φα,t,
t > 0, and φα,C±

, respectively. These densities are infinitely differentiable,
bounded together with their derivatives, and for every N > 0

sup
|x|≤N

|φα,t(x)−φα,C±
(x)| → 0, sup

|x|≤N
|φ′α,t(x)−φ′α,C±

(x)| → 0, t→ 0+ . (3.1)

Denote

Yt = Xt − Ut = γt1/αζα,t + βt− γct,

then the distribution density for Yt under P
θ equals

pYt (θ;x) = γ−1t−1/αφα,t

(

γ−1t−1/α(x− βt+ γct)
)

, (3.2)
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and consequently

∂βp
Y
t (θ;x) = −γ−2t1−2/αφ′α,t

(

γ−1t−1/α(x− βt+ γct)
)

,

∂γp
Y
t (θ;x) = −γ−2t−1/α

[

φα,t

(

γ−1t−1/α(x− βt+ γct)
)

+
x− βt

γt1/α
φ′α,t

(

γ−1t−1/α(x− βt+ γct)
)

]

= −γ−2t−1/α
[

φα,t(z) + zφ′α,t(z)− ctt
−1/αφ′α,t(z)

]

z=γ−1t−1/α(x−βt+γct)
.

Because Xt = Yt + Ut and Y, U are independent, we have

pt(θ;x) =

∫

R

pYt (θ;x − t1/αy)νt(dy), (3.3)

where νt denotes the law of t−1/αUt.
Taking (3.2) into account, we can re-arrange the above convolution formula for

pt(θ;x) in the following way:

pt(θ;x) = γ−1t−1/αft

(

θ; γ−1t−1/α(x− βt+ γct)
)

, (3.4)

where

ft(θ; z) =

∫

R

φα,t(z − γ−1y)νt(dy).

Note that (2.8) implies νt ⇒ δ0, t→ 0, and γ is separated from 0 when θ = (β, γ) ∈
Θ̃. Then by the first assertion in (3.1), for every N > 0

sup
θ∈Θ̃

sup
|z|≤N

|ft(θ; z)− φα,C±
(z)| → 0, t→ 0 + . (3.5)

It follows from (3.3) that

∂βpt(θ;x) =

∫

R

∂βp
Y
t (θ;x− t1/αy)νt(dy), ∂γpt(θ;x) =

∫

R

∂γp
Y
t (θ;x− t1/αy)νt(dy)

Then, similarly as above, we have

∂βpt(θ;x) = −γ−2t1−2/αf
(1)
t

(

θ; γ−1t−1/α(x− βt+ γct)
)

,

∂γpt(θ;x) =

− γ−2t−1/α
[

ft(θ; z) + f
(2)
t (θ; z)− ctt

−1/αf
(1)
t (θ; z)

]

z=γ−1t−1/α(x−βt+γct)
(3.6)

with

f
(1)
t (θ; z) =

∫

R

φ′α,t(z−γ−1y)νt(dy), f
(2)
t (θ; z) =

∫

R

(z−γ−1y)φ′α,t(z−γ−1y)νt(dy),

and for every N > 0

sup
θ∈Θ̃

sup
|z|≤N

|f (1)
t (θ; z)−φ′α,C±

(z)| → 0, sup
θ∈Θ̃

sup
|z|≤N

|f (2)
t (θ; z)−zφ′α,C±

(z)| → 0, t→ 0+.

(3.7)
Below we use formulae (3.4) – (3.7) to control the “local” behavior of the func-

tions gt, qt involved into A1–A4. To control the “global” behavior, we use the
following moment bound; we evaluate this bound in Section 4 below.
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Proposition 3.2. Under conditions of Theorem 2.1, for every Θ̃ and every δ1 ∈
(0, δ) (where δ comes from H2),

sup
n≥1,θ∈Θ̃

E
∣

∣r̃(n)⊤ghn

(

θ;Xθ
hn

)∣

∣

2+δ1
<∞.

3.2. Proofs of A1–A4.

3.2.1. Proof of A1. For this it is sufficient to show that, for a fixed t = hn, the
mapping

Θ ∋ θ 7→ qt(θ; ·) ∈ L2(R) (3.8)

is continuous, and for any θ1, θ2 such that the segment [θ1, θ2] is contained in Θ,

√

pt(θ1; ·)−
√

pt(θ2; ·) =
(∫ 1

0

qt((1 − s)θ1 + sθ2; ·) ds
)⊤

(θ1 − θ2) (3.9)

with the integral understood in the sense of convergence of the Riemann sums in
L2(R). The argument here is similar and simpler to the one used in the proof of
Theorem 2 in Ivanenko and Kulik (2015), hence we just outline the main steps.
Define

Ψε(z) =











0, z < ε/2,
(z−ε/2)2
2ε3/2

, z ∈ [ε/2, ε],√
z − 7

√
ε

8 , z ≥ ε.

Then, by the construction, for z > 0

Ψε(z) → Ψ0(z) :=
√
z, Ψ′

ε(z) → Ψ′
0(z) =

1

2
√
z
, ε→ 0.

Because Ψε ∈ C1, ε > 0, we have by Proposition 3.1 and (3.4), (3.6) thatΨε(pt(θ;x))
depends smoothly on θ, x and

qt,ε(θ;x) := ∇θ

(

Ψε(pt(θ;x))
)

= Ψ′
ε(pt(θ;x))∇θpt(θ;x).

Then

Ψε

(

pt(θ1; ·)
)

−Ψε

(

pt(θ2; ·)
)

=

(∫ 1

0

qt,ε((1 − s)θ1 + sθ2; ·) ds
)⊤

(θ1 − θ2),

and to prove (3.9) it is sufficient to prove that

Ψε

(

pt(θ; ·)
)

→ Ψ0

(

pt(θ; ·)
)

=
√

pt(θ; ·), ε→ 0

in L2(R) for every θ ∈ Θ, and that

qt,ε(θ; ·) → qt(θ; ·), ε→ 0

in L2(R) uniformly in θ ∈ [θ1, θ2]. The latter would also provide that the function
(3.8) is continuous as a uniform limit of continuous functions. Let us prove the
second convergence, since the proof of the first one is similar and simpler. By the
construction, we have 0 ≤ Ψ′

ε(z) ≤ Ψ′
0(z) = (2

√
z)−1, therefore

qt,ε(θ;x) = Ψ′
ε(pt(θ;x))∇θpt(θ;x) = Υε(pt(θ;x))gt(θ;x),

where

Υε(z) = Ψ′
ε(z)z

{

≤ (1/2)
√
z, z > 0;

= (1/2)
√
z, z ≥ ε.
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Hence
∫

R

(qt,ε(θ;x) − qt(θ;x))
2 dx ≤ 1

4

∫

{x:pt(θ;x)≤ε}

(

gt(θ;x)
)2

pt(θ;x) dx.

Recall that t = hn. Take Θ̃ in Proposition 3.2 equal to the segment [θ1, θ2], then

sup
θ∈Θ̃

∫

R

∣

∣

∣
gt(θ;x)

∣

∣

∣

2+δ1
pt(θ;x) dx = sup

θ∈Θ̃

E

∣

∣

∣
gt(θ;Xt)

∣

∣

∣

2+δ1
<∞.

Hence by the Hölder inequality

∫

R

(qt,ε(θ;x)− qt(θ;x))
2 dx ≤ C

(

∫

{x:pt(θ;x)≤ε}
pt(θ;x) dx

)δ1/(2+δ1)

.

The density pt(θ;x) is given explicitly by (3.4). Using this representation and
changing the variables z = γ−1t−1/α(x− βt+ γct), we get

∫

{x:pt(θ;x)≤ε}
pt(θ;x) dx =

∫

{z: f(θ;z)≤γt1/αε}
f(θ; z) dz.

We have φα,t ∈ L1(R), and therefore the mapping

[θ1, θ2] ∋ θ = (β, γ) 7→ φα,t(· − γ−1y) ∈ L1(R)

is continuous. Hence the mapping

[θ1, θ2] ∋ θ 7→ f(θ; ·) =
∫

R

φα,t(· − γ−1y)νt(dy)

is continuous, as well. This finally implies that
∫

{x: pt(θ;x)≤ε}
pt(θ;x) dx =

∫

{z: f(θ;z)≤γt1/αε}
f(θ; z) dz → 0, ε→ 0

uniformly in θ ∈ [θ1, θ2], which completes the proof of the required convergence and
provides A1.

3.2.2. Proof of A2. Denote

Γθk,n = r̃(n)⊤ghn

(

θ;Xθ
khn

−Xθ
(k−1)hn

)

, k = 1, . . . , n,

then
n
∑

k=1

(

r(n)⊤ghn

(

θ;Xθ
khn

−Xθ
(k−1)hn

))⊗2

=
1

n

n
∑

k=1

(

Γθk,n
)⊗2

.

Since X is a Lévy process, {Γθk,n}1≤k≤n is a triangular array of random vectors,
which are row-wise independent and identically distributed. Let us analyze the
common law of Γθk,n at an n-th row.

Denote

ξθk,n = γ−1h−1/α
n (Xθ

khn
−Xθ

(k−1)hn
− βhn + γchn), k = 1, . . . , n,

which are i.i.d. random variables with

ξθ1,n
d
= ζα,hn + γ−1h−1/α

n Uhn .

By statement (1) of Proposition 3.1 and (2.8), we have then

ξθ1,n ⇒ Z
α,C±

1 . (3.10)
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Next, by (3.4), (3.6) the components of ghn(θ;X
θ
khn

−Xθ
(k−1)hn

) are given by

g1hn

(

θ;Xθ
khn

−Xθ
(k−1)hn

)

= −γ−1h1−1/α
n

f
(1)
hn

(θ; ξθk,n)

fhn(θ; ξ
θ
k,n)

,

g2hn

(

θ;Xθ
khn

−Xθ
(k−1)hn

)

= −γ−1

[

1 +
f
(2)
hn

(θ; ξθk,n)

fhn(θ; ξ
θ
k,n)

]

+ γ−1chnh
−1/α
n

f
(1)
hn

(θ; ξθk,n)

fhn(θ; ξ
θ
k,n)

.

Recall that

r̃(n)⊤ =

(

h
1/α−1
n 0
chnh

−1
n 1

)

,

hence we can write finally

Γθk,n = γ−1Gα,hn(θ; ξ
θ
k,n),

where the vector-valued functions Gα,hn have the components

G1
α,hn

(θ;x) = −
f
(1)
hn

(θ;x)

fhn(θ;x)
, G2

α,hn
(θ;x) = −1−

f
(2)
hn

(θ;x)

fhn(θ;x)
.

Denote by Gα,C±
the vector-valued function with the components

G1
α,C±

(x) = −
φ′α,C±

(x)

φα,C±
(x)

, G2
α,C±

(x) = −1−
xφ′α,C±

(x)

φα,C±
(x)

,

and denote for ε > 0, N > 0

Kε,N = {x : |x| ≤ N,φα,C±
(x) ≥ ε},

which is a compact set in R. It follows from (3.5), (3.7) that, for every fixed
θ ∈ Θ, ε > 0, N > 0,

Gα,t(θ;x) → Gα,C±
(x), t→ 0+

uniformly with respect to x ∈ Kε,N . By (3.10) and continuity of the limit distribu-
tion,

lim sup
n→∞

P(ξθ1,n /∈ Kε,N ) ≤ P(Z
α,C±

1 /∈ Kε,N).

We also have
P(Z

α,C±

1 6∈ Kε,N) → 0, ε→ 0, N → ∞.

Let us summarize: the random vectors Γθk,n are represented as images of the i.i.d.

random variables ξθk,n under the functions Gα,hn(θ; ·), and
• the common law of ξθk,n weakly converge to the law of Z

α,C±

1 ;

• on every compact set Kε,N , the functions Gα,hn(θ; ·) converge uniformly to
the function Gα,C±

which is continuous on this compact;

• by choosing ε > 0 small and N > 0 large, the probability for ξθk,n ∈ Kε,N

can be made arbitrarily close to 1.

Because the weak convergence is preserved by continuous mappings, we deduce from
the above that the common law of Γθk,n, k = 1, . . . , n weakly converge as n→ ∞ to

the law of Γθ = γ−1Gα,C±
(Z

α,C±

1 ). On the other hand Proposition 3.2 yields that

the family {(Γθk,n)⊗2} is uniformly integrable, hence by the Law of Large Numbers
for independent random variables

E

∣

∣

∣

∣

∣

1

n

n
∑

k=1

(Γθk,n)
⊗2 − E(Γθ)⊗2

∣

∣

∣

∣

∣

→ 0, n→ ∞.
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Observe that it is an easy calculation to show that the covariation matrix for Γθ

equals Σ(θ) given by the second identity in (2.9). Taking θ = θ0, we complete the
proof of A2.

3.2.3. Proof of A3. Because

n

∫

R

|r(n)ghn (θ; y)|2+δ1 phn (θ; y) dy = n−δ1/2E
∣

∣r̃(n)ghn

(

θ;Xθ
hn

)∣

∣

2+δ1
,

assertion A3 follows from Proposition 3.2 immediately.

3.2.4. Proof of A4. We have

qt(θ;x) =
1

2
gt(θ;x)

√

pt(θ;x),

hence for any θ1, θ2 ∈ Θ

n

∫

R

∣

∣r(n)⊤ (qhn (θ2;x)− qhn (θ1;x))
∣

∣

2
dx

=
1

4

∫

R

∣

∣

∣

∣

∣

r̃(n)⊤ghn (θ2;x)

√

phn(θ2;x)

phn(θ1;x)
− r̃(n)⊤ghn (θ1;x)

∣

∣

∣

∣

∣

2

phn(θ1;x) dx

=
1

4
E

∣

∣

∣

∣

∣

∣

1

γ2
Gα,hn(θ2, ξ

θ1
1,n)

√

√

√

√

fhn(θ2; ξ
θ1
1,n)

fhn(θ1; ξ
θ1
1,n)

− 1

γ1
Gα,hn(θ1, ξ

θ1
1,n)

∣

∣

∣

∣

∣

∣

2

;

we keep using the notation introduced in the proof of A2. Take θ1 = θ0, and let
θn = (βn, γn) → θ0 be arbitrary sequence. It follows from (3.5), (3.7) that for every
fixed ε > 0, N > 0

sup
x∈Kε,N

∣

∣

∣

∣

∣

1

γn
Gα,hn(θn, x)

√

fhn(θn;x)

fhn(θ0;x)
− 1

γ0
Gα,hn(θ0, x)

∣

∣

∣

∣

∣

→ 0, n→ ∞.

Then, by the Cauchy inequality (a+ b)2 ≤ 2a2 + 2b2,

lim sup
n→∞

n

∫

R

∣

∣r(n)⊤ (qhn (θn;x)− qhn (θ0;x))
∣

∣

2
dx

≤ lim sup
n→∞

(

1

2γ2n
E

∣

∣

∣Gα,hn(θn, ξ
θ0
1,n)
∣

∣

∣

2 fhn(θn; ξ
θ0
1,n)

fhn(θ0; ξ
θ0
1,n)

1
ξ
θ0
1,n 6∈Kε,N

+
1

2γ20
E

∣

∣

∣Gα,hn(θ0, ξ
θ0
1,n)
∣

∣

∣

2

1
ξ
θ0
1,n 6∈Kε,N

)

= lim sup
n→∞

(

1

2γ2n
E

∣

∣

∣Gα,hn(θn, ξ
θn
1,n)
∣

∣

∣

2

1ξθn
1,n 6∈Kε,N

+
1

2γ20
E

∣

∣

∣Gα,hn(θ0, ξ
θ0
1,n)
∣

∣

∣

2

1
ξ
θ0
1,n 6∈Kε,N

)

.

Since

γ−1Gα,hn(θ; ξ
θ
1,n) = Γθ1,n = r̃(n)⊤ghn

(

θ;Xθ
khn

−Xθ
(k−1)hn

)

,
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we deduce using Proposition 3.2 and the Hölder inequality that

lim sup
n→∞

n

∫

R

∣

∣r(n)⊤ (qhn (θn;x)− qhn (θ0;x))
∣

∣

2
dx

≤ C lim sup
n→∞

(

P(ξθn1,n 6∈ Kε,N )δ1/(2+δ1) + P(ξθ01,n 6∈ Kε,N)
δ1/(2+δ1)

)

with some constant C. We have

ξθn1,n ⇒ Z
α,C±

1 , ξθ01,n ⇒ Z
α,C±

1 , n→ ∞,

hence we get

lim sup
n→∞

n

∫

R

|r(n) (qhn (θn;x)− qhn (θ0;x))|2 dx ≤ 2CP(Z
α,C±

1 6∈ Kε,N )δ1/(2+δ1).

Recall that ε > 0, N > 0 here are arbitrary. Taking in the above inequality ε →
0, N → ∞ we get finally

lim sup
n→∞

n

∫

R

|r(n) (qhn (θn;x)− qhn (θ0;x))|2 dx = 0,

which completes the proof of A4. �

3.3. Outline of the proof of Theorem 2.2. To get the required LAN property uni-
formly in U ∈ U, it is enough to fix a sequence Un of Lévy processes, such that

h−1/α
n Unhn

→ 0

in probability, and repeat the above argument for a modified statistical model,
where the process Xθ in the n-th sample is replaced by

Xθ,n
t = βt+ γZt + Unt .

The moment bound in Proposition 3.2 is, to a very high extent, insensitive with
respect to the process U ; in particular, we will show in Section 4 that

sup
n≥1,θ∈Θ̃

E

∣

∣

∣r̃(n)ghn

(

θ;Xθ,n
hn

)∣

∣

∣

2+ε

<∞. (3.11)

The law of the process U is involved in the definition of the functions f, f (1), f (2),
but it is straightforward to see that the relations (3.5), (3.7) in fact hold true
uniformly with respect to U ∈ U. Finally, the random variables

ξθ,nk,n = γ−1h−1/α
n (Xθ,n

khn
−Xθ,n

(k−1)hn
− βhn + γchn)

d
= ζα,hn + γ−1h−1/α

n Unhn

weakly converge to Z
α,C±

1 . Hence repeating, with obvious notational changes, the
calculations from Section 3.2, we get properties A1 – A4 for the modified model,
which proves the required LAN property, uniform in U ∈ U. �

4. Malliavin calculus-based integral representation for the derivative of

the log-likelihood function and related Lp-bounds

Our main aim in this section is to prove Proposition 3.2, which is the cornerstone
of the proof of Theorem 2.1. With this purpose in mind, we give an integral
representation for the derivative of the log-likelihood function by means of a certain
version of the Malliavin calculus. In the diffusive case, such a representation was
developed by Gobet (2001, 2002); see also Corcuera and Kohatsu-Higa (2011). In
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the Lévy setting, the choice of a particular design of such a calculus is a non-trivial
problem, and we discuss it in details below.

4.1. The main statement: formulation, discussion, and an outline of the proof. In
what follows, ν(ds, du) and ν̃(ds, du) = ν(ds, du) − dsµ(du) are, respectively, the
Poisson point measure and the compensated Poisson measure from the Lévy-Itô
representation of Z:

Zt =

∫ t

0

∫

|u|>1

uν(ds, du) +

∫ t

0

∫

|u|≤1

uν̃(ds, du).

We denote

DtX
θ
t = γDtZt = γ

∫ t

0

∫

R

u2ν(ds, du), D2
tX

θ
t = 2γ

∫ t

0

∫

R

u3 ν(ds, du),

the genealogy of the notation will become clear later. To define the stochastic
integrals with respect to ν properly, we decompose them in two integrals (which is
a usual trick). The “small jump” parts, which correspond to values u ∈ [−1, 1], are
well defined because the functions u2, u3 are integrable with respect to µ on [−1, 1];
respective integrals with respect to ν are understood in L1 sense. The “large jump”
parts of the integrals with respect to ν are understood in the path-wise way, i.e. as
sums over finite set of jumps. Next, we denote

χ(u) = −u2m
′(u)

m(u)
− 2u

and put

δt(1) =

∫ t

0

∫

|u|≤u0

χ(u)ν̃(ds, du)+

∫ t

0

∫

|u|>u0

χ(u)ν(ds, du)+tu20

[

m(u0)−m(−u0)
]

,

where u0 comes from the condition H2. By H2, |χ(u)| ≤ C|u| for |u| ≤ u0,
hence the “small jump” integral above is well defined in L2 sense; the “large jump”
integral is understood in the path-wise sense.

We define themodified Malliavin weight (we postpone for a while the explanation

of the terminology) as the vector Ξθt = (Ξβt ,Ξ
γ
t )

⊤ with

Ξβt =
tδt(1)

DtXθ
t

+
tD2

tX
θ
t

(DtXθ
t )

2
, Ξγt =

Ztδt(1)

DtXθ
t

+
ZtD

2
tX

θ
t

(DtXθ
t )

2
− 1

γ
. (4.1)

Denote by E
t,θ
x,y the expectation with respect to the law of the bridge of the process

Xθ conditioned by Xθ
0 = x,Xθ

t = y. Note that because the process Xθ possesses
a continuous transition probability density pt(θ;x, y) = pt(θ; y − x), the law of the
bridge is well defined for any t, x, y such that pt(θ;x, y) > 0 (cf. Chaumont and
Uribe Bravo (2011)).

The main statement in this section is the following.

Theorem 4.1. (1) Let δ be the same as in H2. Then for every δ1 ∈ (0, δ) and

every Θ̃,

sup
θ∈Θ̃

sup
n≥1

E

∣

∣

∣r̃(n)⊤Ξθhn

∣

∣

∣

2+δ1
<∞. (4.2)
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(2) The following intergal representation formula holds true:

gt(θ;x) =

{

E
t,θ
0,xΞ

θ
t , pt(θ;x) > 0,

0, otherwise.
(4.3)

It follows from (4.3) that

r̃(n)⊤gt(θ;X
θ
hn

) = E

[

r̃(n)⊤Ξθhn

∣

∣

∣Xθ
hn

]

.

Note that the explicit formula for the weight Ξθt does not involve the “nuisance
noise” U at all, and the dependence of pt(θ;X

θ
hn

) on U is contained in the operation
of the conditional expectation, only. Then by the Jensen inequality

E

∣

∣

∣r̃(n)⊤gt(θ;X
θ
hn

)
∣

∣

∣

2+δ1
≤ E

∣

∣

∣r̃(n)⊤Ξθhn

∣

∣

∣

2+δ1
,

where U is not involved in the right hand side term. Hence Theorem 4.1 immediately
yields both Proposition 3.2 and the moment bound (3.11).

Let us explain the main idea which Theorem 4.1 is based on. By analogy to
Gobet’s results in the diffusive case (Gobet (2001, 2002)), one can naturally ex-
pect that an integral representation of the form (4.3) could be obtained by means
of a proper version of the Malliavin calculus for jump processes. Two possible
ways to do that were developed in Clément and Gloter (2015) and Ivanenko and
Kulik (2015), being in fact close to each other and, heuristically, being based on
“infinitesimal perturbation of the jump configuration” with an intensity function ρ
which is a “compactly” supported smooth function (see a more detailed exposition
in Section 4.2 below). Using either of these two approaches it is possible to prove
an analogue of (4.3) with Ξθt being replaced by some Ξθt,ρ which, in full analogy
to Gobet’s approach, has the meaning of the Malliavin weight (see formula (4.12)
below). However, we then encounter following two difficulties, both being related
with moment bounds for the corresponding terms.

• In order to provide that Ξγt,ρ is square integrable (which is necessary for

Ξθt,ρ to have representation (4.12) with the Skorokhod integral in the right
hand side), we need an additional moment bound for Z: for some δ′ > 0,

∫

|u|≥1

|u|2+δ′µ(du) <∞. (4.4)

This excludes from the consideration “heavy tailed” Lévy processes, e.g.
the particularly important α-stable process.

• Even if we confine ourselves by the class of “light tailed” Lévy processes
satisfying (4.4), we can not obtain analogue of the moment bound (4.2) for
Ξθt,ρ: namely, respective upper bound for L2+δ1 -norm of Ξθt,ρ would explode
as t→ 0+: see Remark 4.1 below for detail.

Both of these “moment” difficulties are resolved when we put formally

ρ(u) = u2, u ∈ R,

in the formula for Ξθt,ρ; see Section 4.2 below, and especially Remark 4.1 which

explains the heuristics behind the particular choice ρ(u) = u2. This explains both
the name “the modified Malliavin weight” we have used for the term defined by
(4.1), and the background for the notation Dt, δt: we take the explicit formulae for
the Malliavin derivative Dt,ρ and respective Skorokhod integral δt,ρ, and put therein
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ρ(u) = u2. Note that because ρ(u) = u2 is not compactly supported, DtX
θ
t may

fail to be square integrable, which means that now DtX
θ
t can not be interpreted

as a Malliavin derivative. As a consequence, now one can not apply the Malliavin
calculus tools to prove (4.3) directly. Hence we will use the following three step
procedure to prove (4.3):

(1) first, we apply Malliavin calculus tools to prove analogue of (4.3) for Ξθt,ρ
with compactly supported ρ under the additional moment condition (4.4);

(2) second, we approximate ρ(u) = u2 by a sequence of compactly supported
ρ’s;

(3) finally, we approximate general Z by a sequence of “light tailed” Lévy
processes ZL, L ≥ 1, each of them satisfying (4.4).

4.2. Proof of (4.2): Moment bound. First, we give an explicit expression for
r̃(n)⊤Ξθt . Denote

Z̃t = Zt + ct =

∫ t

0

∫

|u|>t1/α
uν(ds, du) +

∫ t

0

∫

|u|≤t1/α
uν̃(ds, du),

then

r̃(n)⊤Ξθt =

(

t1/αδt(1)

DtXθ
t

+
t1/αD2

tX
θ
t

(DtXθ
t )

2
,
Z̃tδt(1)

DtXθ
t

+
Z̃tD

2
tX

θ
t

(DtXθ
t )

2
− 1

γ

)⊤

. (4.5)

We will conclude the required bound (4.2) from a sequence of auxiliary estimates
for the terms involved in the explicit expression (4.5).

Denote

κt =

∫ t

0

∫

|u|≤t1/α
u2ν(ds, du).

Lemma 4.1. For every p ≥ 1 there exists Cp <∞ such that

E(t−2/ακt)
−p ≤ Cp, t ∈ (0, 1].

Proof : For any ε < 1 we have

P(κt < ε2t2/α) ≤ P
(

ν([0, t]× {|u| ∈ [εt1/α, t1/α]}) = 0
)

= exp
{

− tµ(|u| ∈ [εt1/α, t1/α])
}

.

Condition H1 yields that, with some positive constant C,

tµ(|u| ∈ [εt1/α, t1/α]) ≥ Ct

∫ t1/α

εt1/α
α|u|−α−1du = C(ε−α − 1), t ∈ (0, 1].

Hence for the family of random variables t−2/ακt, t ∈ (0, 1] we have the uniform
bound

P(t−2/ακt < ε2) ≤ e−Cε
−α+C , ε < 1, t ≤ 1,

which proves the required statement. �

Because

DXθ
t = γ

∫ t

0

∫

R

u2ν(ds, du) ≥ γκt,
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Lemma 4.1 immediately gives the following: for every p ≥ 1,

sup
θ∈Θ̃,t∈(0,1]

E

(

t1/α
√

DtXθ
t

)p

<∞. (4.6)

Next, observe that both DtX
θ
t and D2

tX
θ
t are represented as sums over the set of

jumps of the process Z. Because
(

∑

i

ai

)3/2

≥
∑

i

a
3/2
i , {ai} ⊂ [0,∞),

we have
∣

∣

∣

∣

D2
tX

θ
t

(DtXθ
t )

3/2

∣

∣

∣

∣

≤ 2√
γ
. (4.7)

Lemma 4.2. For every p ≥ 1,

sup
θ∈Θ̃,t∈(0,1]

E

(

Z̃t
√

DtXθ
t

)p

<∞. (4.8)

Proof : We have

Z̃t =

∫ t

0

∫

|u|≤t1/α
uν̃(ds, du) +

∫ t

0

∫

|u|>t1/α
uν(ds, du) =: ξt + ζt,

DXθ
t = γ

∫ t

0

∫

R

u2 ν(ds, du) = γ (κt + ηt) , ηt =

∫ t

0

∫

|u|>t1/α
u2 ν(ds, du)

(κt is already defined above). Then
∣

∣

∣

∣

∣

Z̃t
√

DXθ
t

∣

∣

∣

∣

∣

≤ 1

γ

( |ξt|√
κt + ηt

+
|ζt|√
κt + ηt

)

≤ 1

γ

( |ξt|√
κt

+
|ζt|√
ηt

)

. (4.9)

By Lemma 4.1, the family
{

t1/α√
κt

}

t∈(0,1]

has bounded Lp-norms for any p ≥ 1. In addition, the family
{

t−1/αξt

}

t∈[0,1]

also has bounded Lp-norms for any p ≥ 1. To see this, observe that ξt is an integral
of a deterministic function over a compensated Poisson point measure, and therefore
its exponential moments can be expressed explicitly:

E exp(cξt) = exp
[

t

∫

|u|≤t1/α
(ecu − 1− cu)µ(du)

]

.

Taking c = ±t−1/α and using H1, we get

E exp
(

± t−1/αξt

)

≤ exp
[

C1t

∫

|u|≤t1/α
(t−1/αu)2µ(du)

]

≤ C2,

which yields the required Lp-bounds. Applying the Cauchy inequality, we get finally
that the family

{ |ξt|√
κt

}

t∈(0,1]
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has bounded Lp-norms.
For the second summand in the right hand side of (4.9), we write the Cauchy

inequality:
|ζt|√
ηt

≤
√

Nt, Nt = ν([0, t]× {|u| > t1/α}).

Observe that Nt has a Poisson law with the intensity

tµ(|u| > t1/α), t ∈ (0, 1],

which is bounded because of H1. Hence the family
{ |ζt|√

ηt

}

t∈[0,1]

also has bounded Lp-norms, which completes the proof of (4.8). �

Lemma 4.3. Let δ be the same as in H2. Then

sup
θ∈Θ̃,t∈(0,1]

E

(

δt(1)
√

DtXθ
t

)2+δ

<∞. (4.10)

Proof : The proof is similar to the previous one, but some additional technicalities
arise because now we have χ(u) instead of u under the integrals in the numerator.
We have

δt(1) =

∫ t

0

∫

|u|≤t1/α
χ(u)ν̃(ds, du) +

∫ t

0

∫

|u|>t1/α
χ(u)ν(ds, du)

+ t1+2/α
[

m(t1/α)−m(−t1/α)
]

=: ξ̂t + ζ̂t +̟t.

Denote t0 = (u0)
α with u0 coming from H2, then the ratio

υ(u) :=
χ(u)

u
= −um

′(u)

m(u)
− 2

is bounded on the set {|u| ≤ t1/α} ⊂ {|u| ≤ u0}. Then the same argument as we
have used before shows that the family

{

|ξ̂t|√
κt

}

t∈(0,t0]

has bounded Lp-norms for every p ≥ 1.
Next, we have by H1 that

̟t ∼ (C+ − C−)t
1/α, t→ 0+,

and thus
|̟t| ≤ Ct1/α, t ∈ (0, 1].

Then by Lemma 4.1 the family
{

̟t√
κt

}

t∈(0,t0]

has bounded Lp-norms for every p ≥ 1.
Finally, for t ≤ t0 by the Cauchy inequality we have

|ζ̂t| ≤
√
ηt
√

Jt,
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where

Jt =

∫ t

0

∫

|u|>t1/α
υ2(u)ν(ds, du)

=

∫ t

0

∫

t1/α<t≤u0

υ2(u)ν(ds, du) +

∫ t

0

∫

|u|>u0

υ2(u)ν(ds, du) =: J1
t + J2

t .

The function υ(u) is bounded on {|u| ≤ u0}, hence
J1
t ≤ CNt, t ∈ (0, t0],

where Nt is the same as in the proof of Lemma 4.2. Hence J1
t , t ≤ t0 have bounded

Lp-norms for every p ≥ 1. The random variable J2
t has a compound Poisson

distribution with the intensity of the Poisson random variable equal tµ(|u| > u0),
and the law of a single jump equal to the image under υ of the measure µ conditioned
to {|u| > u0}. By condition H2, this law have a finite moment of the order 2 + δ,
therefore the variables J2

t , t ≤ t0 have bounded L2+δ-norms. Summarizing all the
above, we get

sup
θ∈Θ̃,t∈(0,t0]

E

(

δt(1)
√

DtXθ
t

)2+δ

<∞.

The same bound for t ∈ [t0, 1] can be proved in a similar and simpler way; in that
case instead of taking the integrals with respect to {|u| ≤ t1/α}, {|u| > t1/α}, one
should consider, both in the numerator and the denominator, the integrals with
respect to {|u| ≤ u0}, {|u| > u0}. �

Now we deduce (4.2) by simply applying the Hölder inequality to (4.5) with the
estimates (4.6)–(4.8) and (4.10).

Remark 4.1. Now we can explain the main idea, which the choice of the intensity
function ρ(u) = u2 is based on. When ρ is compactly supported as was in Ivanenko
and Kulik (2014), the “large jumps” are excluded from the formula for Dt,ρX

θ
t . On

the other hand, “large jumps” are involved e.g. into Z̃t, which will appear in the
numerator in one term in (4.12). We have ρ(u) = 0, |u| > u∗ for some u∗ > 0, and
hence the integrals

∫ t

0

∫

|u|>u∗

uν(ds, du),

∫ t

0

∫

R

ρ(u)ν(ds, du)

are independent. In addition, we know that

E

(

∫ t

0

∫

|u|>u∗

uν(ds, du)

)2

= t

∫

|u|>u∗

u2µ(du) + t2

(

∫

|u|>u∗

u2µ(du)

)2

,

t−2/α

∫ t

0

∫

R

ρ(u)ν(ds, du) ⇒ ζ, t→ 0,

where ζ is a positive (α/2)-stable variable. Using this, it is easy to deduce a lower
bound

E





∫ t

0

∫

|u|>u0

uν(ds, du)
√

Dt,ρXθ
t





2

≥ Ct−2/α+1,

which is unbounded for small t because α < 2. This indicates that, in the present
high-frequency sampling setting, one can hardly expect to get the uniform moment
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bound of the type (4.2) for a Malliavin weight which corresponds to a compactly
supported ρ. Nevertheless, in the modified construction we “extend the support”
of ρ; this brings a “large jumps” part to the denominator, which provides a good
balance to respective parts which appear in the numerator, and this is the reason
why the modified weight satisfies the required uniform moment bounds.

Remark 4.2. Another natural possibility to design the Malliavin weight is to take
into account the local scale for the process Z and to make the function ρ depend
on t in the following way:

ρ(u) = ρt(u) = u2ς(t−1/αu)

with ς ∈ C1 such that ς(u) = 1, |u| ≤ 1 and ς(u) = 0, |u| ≥ 2. Actually, the “scaled”
choice of ρ = ρt with the size of its support ≍ t1/α is essentially the one used in the
Malliavin calculus construction developed in Clément and Gloter (2015). It is easy
to see that, under such a choice, an analogue of (4.10) would hold true; the reason
is that now δt would contain only “small jumps part”, which is well balanced with
√

DXθ
t in completely the same way we have seen in the proof of Lemma 4.2. This

would give the uniform moment bound for the first component of the respective
Malliavin weight, and hence the “scaled” choice of ρ = ρt is appropriate when
the unknown parameter is involved into the drift term, only. However, the model
with the parameter involved into the jump term this choice does not seem to be
appropriate by the reason stated in Remark 4.1: the “large jump part” of Z̃t is not

well balanced by the “small jump part”
√
κt of

√

DXθ
t . In regard to this point,

for the sake of reference let us discuss Clément and Gloter (2015) in a little bit
more detail. Therein the authors proved the drift-parameter LAMN property when
observing a sample (Xj/n)

n
j=0 from the process X of the form

Xt = x0 +

∫ t

0

b(Xs, β)ds+ Zt.

Their technical assumptions are: (i) the boundedness of the Lévy measure of Z,
which is assumed to be locally α-stable in a neighborhood of the origin; (ii) the
smoothness and boundedness of (x, β) 7→ b(x, β); and that (iii) the stable-like index
α ∈ (1, 2), imposed just for ignoring the presence of the drift term in looking at the
“scaled” increment n−1/α(Xj/n−X(j−1)/n), which is to be close to Lj/n−L(j−1)/n.
In particular, the boundedness (ii) seems essential in their proof, as well as the
fact that only the drift parameter is the subject to statistical estimation. We
emphasize that because of absence of the jump-related parameter γ, the result of
Clément and Gloter (2015) is not comparable neither with our current results nor
even with those from the aforementioned paper Aı̈t-Sahalia and Jacob (2007). We
expect that our proof technique based on the modified Malliavin weight combined
with the approximation of the intensity function ρ will be workable for the general
case of state-dependent coefficients including the jump coefficient which contains a
parameter γ; this is a subject of a further research.

4.3. Proof of (4.3): Integral representation. The proof consists of three steps out-
lined at the end of Section 4.1. The first step is based on a version of the Malliavin
calculus on a space of trajectories of a Lévy process, which we outline below and
which is essentially developed in Ivanenko and Kulik (2015). Note that the Malli-
avin calculus for Lévy noises is a classical and well developed tool, which dates back
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to Bichteler et al. (1987) and Bismut (1983). However, we found it difficult to apply
existing technique directly for our purposes: the reason is that unlike in the classical
approach developed in Bichteler et al. (1987) and Bismut (1983), we are interested
not in the distribution density pt(θ;x, y) itself (which is typically treated by means
of the inverse Fourier transform), but in the ratio ∂θpt(θ;x, y)/pt(θ;x, y). To get
the Lp bounds for this ratio, and especially to make approximating procedures out-
lined at the end of Section 4.1, we need to have an integral representation for this
ratio in a most simple possible form. For that purpose mainly, and also to make
the exposition self-consistent, we introduce a specially designed simple version of
the Malliavin calculus. This version of course is neither a substantial novelty nor is
unique possible one; see e.g. the construction in Clément and Gloter (2015) aimed
at similar purposes.

Let the Lévy measure µ of Z satisfy H1, H2 and assume additionally that Z is
“light tailed” in the sense that (4.4) holds true for some δ′ > 0. Fix some function
ρ ∈ C2 such that ρ(u) = u2 in a neighborhood of the point u = 0. Consider a flow
Qc, c ∈ R of transformations of R, which satisfies

d

dc
Qc(u) = ρ(Qc(u)), Q0(u) = u,

and for a fixed t > 0 define respective family Qt
c, c ∈ R of transformations of

the process Zs, s ≥ 0 by the following convention: the process Qt
cZ has jumps

at the same time instants with the initial process Z; if the process has a jump
with the amplitude u then at the time moment s, respective jump of Z has the
amplitude equal either Qc(u) or u if s ≤ t or s > t, respectively. It is proved in
Ivanenko and Kulik (2015), Proposition 1, that under conditions H1, H2 the law
of Qt

cZ in D(0,∞) is absolutely continuous with respect to the law of Z. Hence
every transformationQt

c can be naturally extended to a transformation of the space
L0(Ω, σ(Z),P) of the functionals of the process Z. Denote this transformation by
the same symbol Qt

c, and call a random variable ξ ∈ L2(Ω, σ(Z),P) stochastically
differentiable if there exists the mean square limit

D̂ξ = lim
ε→0

Qt
εξ − ξ

ε
.

The L2(Ω, σ(Z),P)-closure of the operator D̂ is called the stochastic derivative and
is denoted by D. The adjoint operator δ = D∗ is called the divergence operator or
the extended stochastic integral. The operators D, δ are well defined under condi-
tions H1, H2 for every t > 0 and ρ specified above; see Ivanenko and Kulik (2015),
Remark 3.

Clearly, the above construction depends on the choice of t and ρ: to track this
dependence we use the notation Dt,ρ, δt,ρ instead of D, δ. In a slightly larger gen-
erality, literally the same construction can be made on the space L0(Ω, σ(Z,U),P)
of the functionals of the pair of processes Z and U , with the trajectories of U not
being perturbed by QT

c . Then, analogously to the calculations made in Ivanenko
and Kulik (2015), Sections 3.1, 3.2, we have

Dt,ρZt =

∫ t

0

∫

R

̺(u)ν(ds, du), Dt,ρUt = 0,

δt,ρ(1) =

∫ t

0

∫

R

χρ(u)ν̃(ds, du), χρ(u) = −̺(u)m
′(u)

m(u)
− ̺′(u);
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recall that ν and ν̃ are, respectively, the Poisson point measure and the compensated
Poisson measure from the Lévy-Itô representation of Z. Respectively,

Dt,ρX
θ
t = γDt,ρZt = γ

∫ t

0

∫

R

̺(u)ν(ds, du).

Furthermore, the second order stochastic derivative of Xθ
t is well defined:

D2
t,ρX

θ
t = γ

∫ t

0

∫

R

̺(u)̺′(u) ν(ds, du).

By Proposition 3.1 and formula (3.4), the variable Xθ
t has a distribution density

pt(θ;x) which is a C2-function with respect to θ, x. On the other hand, the Malliavin
calculus developed above allows one to derive an integral representation for the ratio

gt(θ;x, y) =
∇θpt(θ;x, y)

pt(θ;x, y)
.

Namely, repeating literally the proof of the assertion III of Theorem 1 in Ivanenko
and Kulik (2015), we obtain the following representation:

gt(θ;x) =

{

E
t,θ
0,xΞ

θ
t,ρ, pt(θ;x) > 0,

0, otherwise,
(4.11)

where

Ξθt,ρ := δt,ρ

( ∇θX
θ
t

Dt,ρXθ
t

)

=
(δt,ρ(1))(∇θX

θ
t )

Dt,ρXθ
t

+
(D2

t,ρX
θ
t )(∇θX

θ
t )

(Dt,ρXθ
t )

2
− Dt,ρ(∇θX

θ
t )

Dt,ρXθ
t

.

(4.12)
Note that, formally, we can not apply Theorem 1 of Ivanenko and Kulik (2015)
directly, because now we have an additional process U which our target process Xθ

depends on. Nevertheless, because U is not perturbed under the transformations
Qt
c which give the rise for the Malliavin calculus construction, it is easy to check

that literally the same argument as the one used in the proof of Theorem 1 Ivanenko
and Kulik (2015) can be applied in the current (slightly extended) setting.

Recall that we already know pt(θ;x, y) exists and is smooth with respect to
θ, x, y. We have
∫

R

f(y)∇θpt(θ;x, y) dy = ∇θE
θ
xf(X

θ
t ) = E

θ
xf

′(Xθ
t )(∇θX

θ
t )

= E
θ
xDt,ρf(X

θ
t )

(

∂θXt

Dt,ρXt

)

= E
θ
xf(X

θ
t )Ξ

1
t,ρ

= E
θ
xf(X

θ
t )g

θ
t (x,X

θ
t ) =

∫

R

f(y)gt(θ;x, y)pt(θ;x, y) dy.

Hence the formula (4.11) is actually equivalent to the following: for every compactly
supported f ∈ C1(R),

∇θEf(X
θ
t ) = Ef(Xθ

t )Ξ
θ
t,ρ, (4.13)

and to prove (4.3) it is sufficient to prove (4.13) with the modified Malliavin weight
Ξθt instead of Ξθt,ρ. To do that, we exploit an approximation procedure, hence we
rewrite (4.13) in an integral form, which is convenient for approximation purposes:

Ef
(

Xθ+v
t

)

− Ef
(

Xθ
t

)

=

∫ 1

0

E
{

f
(

Xθ+sv
t

)

(Ξθ+svt,ρ , v)
}

ds. (4.14)
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Because
∂βX

θ = t, ∂γX
θ = Zt,

we have

Dt,ρ(∂βX
θ) = 0, Dt,ρ(∂γX

θ) = Dt,ρZt =
1

γ
Dt,ρX

θ
t ,

therefore

Ξθt,ρ =

(

tδt,ρ(1)

Dt,ρXθ
t

+
tD2

t,ρX
θ
t

(Dt,ρXθ
t )

2
,
Ztδt,ρ(1)

Dt,ρXθ
t

+
ZtD

2
t,ρX

θ
t

(Dt,ρXθ
t )

2
− 1

γ

)⊤

.

Now we proceed with the first approximation step as follows. Fix some ρ1 ∈
C2(R), ρ1(u) ≥ 0 such that

ρ1(u) =

{

u2, |u| ≤ 1;

0, |u| ≥ 2,

and define
ρN (u) = N2ρ1(u/N).

Observe that, for t fixed and N large enough, ρN (u) = u2 for |u| ≤ t1/α, hence

Dt,ρNX
θ
t ≥ γκt.

Next, there exists a constant C such that

ρN (u) ≤ Cu2, |ρ′N (u)| ≤ C|u|,
and therefore

∣

∣

∣

∣

χρN (u)

u

∣

∣

∣

∣

≤ C(τ(u) + 1).

Then, repeating literally the calculations from Section 4.2, we can obtain a bound
similar to (4.2) for t fixed, but a family of weights Ξθt,ρN , N ≥ 1 is considered
instead:

sup
N≥1,θ∈Θ̃

E

∣

∣

∣Ξθt,ρN

∣

∣

∣

2+δ1
<∞, δ1 < δ ∧ δ′ (4.15)

(here δ comes from H2, and δ′ comes from (4.4)). Hence the family {Ξθt,ρN , N ≥
1, θ ∈ Θ̃} is uniformly integrable. It is straightforward to see that

ΞθNt,ρN → Ξθt , N → ∞
with probability 1 for any sequence θN → θ ∈ Θ. Combined with the above uniform
integrability, this shows that

Ξθt,ρN → Ξθt , N → ∞
in L1(Ω,P) uniformly with respect to θ ∈ Θ̃. Hence we can pass to the limit in (4.14)
as N → ∞ and get the required identity (4.13) with the modified Malliavin weight
Ξθt . This proves the representation (4.3) under the additional moment assumption
(4.4).

The second approximation step is aimed to remove the assumption (4.4), and
is similar to the above one. Consider a family of processes ZL, L ≥ 1 with Lévy
measures

µL(du) = mL(u)du, mL(u) = m(u)e−u
2/L;

the ZL-driven versions of the processes Xθ
t and Ξθt are also specified by the su-

perscript L: Xθ,L, Ξθ,L. Because |u|2+δe−u2/L ≤ C, every µL satisfies (4.4). In
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addition, it is an easy calculation to show that conditions H1, H2 are satisfied for
µL uniformly with respect to L ≥ 1. Hence we have the following:

(a) for every L ≥ 1, (4.14) holds true with Xθ
t and Ξθt replaced by Xθ,L

t and

Ξθ,Lt , respectively;

(b) for every t ∈ (0, 1], the family Ξθ,Lt , θ ∈ Θ̃, L ≥ 1 satisfies an analogue of
(4.15) uniformly with respect to L ≥ 1 (to prove this, one should repeat
literally the calculations from Section 4.2).

Finally, it is straightforward to see that (Xθ,L
t ,Ξθ,Lt ) weakly converge to (Xθ

t ,Ξ
θ
t )

as L → ∞. Since the family {Ξθ,Lt } is uniformly integrable by the above property

(b), we can pass to the limit in the relation (4.14) for Xθ,L
t ,Ξθ,Lt , and get finally

(4.14) for Xθ
t ,Ξ

θ
t . This proves (4.3) and completes the proof of Theorem 4.1. �

Appendix A. Proof of Proposition 3.1

(1) Because U is negligible (see (2.8)), we can restrict our considerations to the
variables

ζα,t = t−1/α(Zt + ct).

Their characteristic functions have the form Eeiλζα,t = eψα,t(λ), where

ψα,t(λ) = t

∫

R

(

eiλt
−1/αu − 1− iλt−1/αu1|u|≤1

)

µ(du) + iλctt
−1/α

= t

∫

R

(

eiλt
−1/αu − 1− iλt−1/αu1|u|≤t1/α

)

µ(du);

in the last identity we have used the formula (2.7) for ct. Changing the variable
v = ut−1/α, we get

ψα,t(λ) =

∫

R

(

eiλv − 1− iλv1|v|≤1

)

µt(dv),

where µt(dv) has the density

mt(v) = t1+1/αm(t1/αv).

By H1, for every ε > 0 there exists uε > 0 such that

(1 − ε)mα,C±
(v) ≤ mt(v) ≤ (1 + ε)mα,C±

(v), |v| ≤ t−1/αuε.

On the other hand, the term
(

eiλv − 1− iλv1|v|≤1

)

is bounded, and

µt

(

{v : |v| > t−1/αuε}
)

= tµ
(

{u : |u| > uε}
)

→ 0, t→ 0.

Using that, one can easily derive

ψα,t(λ) → ψα,C±
(λ) :=

∫

R

(

eiλv − 1− iλv1|v|≤1

)

mα,C±
(v) dv, t → 0.

Because the characteristic function of Z
α,C±

1 equals eψα,C±
(λ), this completes the

proof.

(2) Consider first the case U ≡ 0; now φα,t does not depend on θ, and we omit θ
in the notation. We would like to apply the inverse Fourier transform representation
for φα,t and its derivatives:

φα,t(x) =
1

2π

∫

R

e−iλx+ψα,t(λ) dλ,
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(∂x)
kφα,t(x) =

1

2π

∫

R

(−iλ)ke−iλx+ψα,t(λ) dλ,

To do that, we have to verify that the functions under the integrals are absolutely
integrable. We have

|e−iλx+ψα,t(λ)| ≤ eReψα,t(λ),

Reψα,t(λ) = t

∫

R

(cos(t−1/αλu)− 1)µ(du) ≤ t

∫

t−1/α|λu|<1

(cos(t−1/αλu)− 1)µ(du).

Then by H1 there exist c1, c2 > 0 such that

|e−ixλ+ψα,t(λ)| ≤ c1e
−c2|λ|α , x, λ ∈ R, t ∈ (0, 1].

This proves existence of φα,t(x) and all its derivatives. Moreover, we have

sup
x∈R,t∈(0,1]

|φ′α,t(x)| <∞, sup
x∈R,t∈(0,1]

|φ′′α,t(x)| <∞.

Now we come back to the case of non-zero U . Because the law of ζθα,t is a

convolution of the laws of ζα,t and γ
−1Ut, the above bound can be extended:

sup
θ∈Θ̃

sup
x∈R,t∈(0,1]

|φ′α,t(θ;x)| <∞, sup
θ∈Θ̃

sup
x∈R,t∈(0,1]

|φ′′α,t(θ;x)| <∞. (A.1)

In addition, ζθα,t ⇒ Z
α,C±

1 uniformly in θ ∈ Θ̃, U ∈ U: this follows from the state-

ment (1) and the fact that γ−1t−1/αUt is uniformly negligible. This convergence and
the first (resp. second) bound in (A.1) provide the first (resp. second) convergence
in (3.1). �
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driven SDE’s. Mod. Stoch. Theory Appl. 1 (1), 33–47 (2014). MR3314792.

D.O. Ivanenko and A.M. Kulik. Malliavin calculus approach to statistical inference
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