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Abstract. We introduce a new type of preferential attachment tree that includes
choices in its evolution, like with Achlioptas processes. At each step in the growth of
the graph, a new vertex is introduced. A fixed number d of possible neighbor vertices
are selected independently and with probability proportional to degree. Between
them, the vertex with smallest degree is chosen, and a new edge is created. We
determine with high probability the largest degree of this graph up to some additive
error term.

1. Introduction

In the present work we consider an alteration of the preferential attachment
model, in the spirit of the Achlioptas processes (see Achlioptas et al. (2009); Ri-
ordan and Warnke (2012)). The preferential attachment graph is a time-indexed
sequence of graphs constructed the following way. We start with a single edge, and
at each time step we add a new vertex. We then select an old vertex with proba-
bility proportional to the degree of the vertex, and we add a new edge between the
new vertex and the selected vertex. This model is widely studied and many of its
properties are known, such as the maximum degree, the limiting degree distribu-
tion, and the diameter of the graph (for instance see Barabási and Albert (1999);
Flaxman et al. (2005); Dommers et al. (2010); Móri (2005)). In particular, in Flax-
man et al. (2005) it was shown that at time t, for any function f with f(t) → ∞
as t → ∞, t1/2

f(t) ≤ ∆(t) ≤ t1/2f(t) with high probability, where ∆(t) is the highest
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degree of the preferential attachment graph at time t. In Móri (2005), this was
strengthened to say that over the course of all time, ∆(t)t−1/2 converges almost
surely to a non-degenerate positive random variable. We say that some event En
occurs with high probability as n → ∞ if P(En) → 1 as n → ∞. When it is clear
which parameter is turning to infinity we omit it.

We will consider an alteration of this model that allows limited choice into its
evolution. Fix an integer d > 0 and define a sequence of trees {Pm} given by the
following rule. Let P1 be the one-edge tree. Given Pm, define Pm+1 by first adding
one new vertex vm+1. Let X1

m, X2
m, . . . Xd

m be i.i.d. vertices from V (Pm) (here
V (P ) is the set of vertices of P ) chosen with probability

P
[
X1 = w

]
=

degw

2m
.

Note that as the graph has m edges,
∑

w degw = 2m. Finally, create a new edge

between vm+1 and Ym, where Ym is whichever of
{
X1

m, X2
m, . . . Xd

m

}
has smallest

degree. In the case of a tie, choose amongst these smallest degree vertices with
equal probability. We call this the min-choice preferential attachment tree.

In D’Souza et al. (2007), similar models of randomly evolving networks were
introduced. Among others, they study a model in which they sample{
X1

m, X2
m, . . . , Xd

m

}
uniformly at random, and then they draw an edge to the min-

imal degree vertex.
This is in turn strongly related to the original model of Azar et al. (1999), in

which this type of choice was introduced to study load balancing. In its simplest
form, this amounts to studying balls thrown randomly into bins. Suppose we have
n bins and n balls, and at each step we put a new ball into one of the bins, choosing
the bin randomly and uniformly. In this model the number of balls in the most
loaded bin is about log n/ log log n, as n → ∞. Adding d choices to this model
significantly reduces this number. More precisely, we alter the model so that at
each step we independently select d bins and put the ball in the bin that contains
fewer balls. In the case that multiple bins hold a minimal number of balls, break
the tie uniformly at random. As a result the number of balls in the most loaded
bin is log log n/ log d+Θ(1).

There are a few differences between our model and the bin and ball model with
d choices. First, the d-choice preferential attachment model tends to select higher
degree vertices because of the size biasing. Second, the ball and bin model tends
to select empty bins frequently at the beginning of the process, while adding a new
vertex to the d-choice preferential attachment model always increases the degree of
an existing vertex (this is also true in the model of D’Souza et al. (2007), but it
alone does not greatly increase the maximum degree). Both influences tend to create
higher degree vertices and more loaded bins. Note that the combined influences of
these effects have a large impact in the models without two choices. The degree
distribution in the preferential attachment model follows a power law Barabási and
Albert (1999), while the load distribution in the bin and ball model is asymptotically
Poisson.

Our main theorem shows that these differences are in some sense less powerful
than the power of d choices.

Theorem 1.1. With high probability, the maximum degree of Pm is log logm
log d +Θ(1).
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(a) The preferential attachment tree af-
ter 1000 vertices have been added.

(b) The min-choice preferential attach-
ment tree with d = 2 after 1000 vertices
have been added.

Before going deep into the proof, we will outline the approach. Define Fm(k) to
be the weight under the size bias distribution given to vertices of the graph Pm of
degree greater than k, i.e.

Fm(k) =

m∑
i=1

(deg vi)1 {deg vi ≥ k} .

Note that Fm(1) =
∑m

i=1 deg vi = 2m, as there are always m edges in the graph.
If it holds that Fm(k) > 0 for some k > 0, there is a vertex of Pm with degree at
least k, while if Fm(k) < k then all vertices of Pm have degrees less than k.

Now Fm(k) as a function of k is a Markov chain in m which evolves according
to the following rule, valid for k > 1,

Fm+1(k)− Fm(k) =


1, P =

(
Fm(k)
2m

)d

k, P =
(

Fm(k−1)
2m

)d

−
(

Fm(k)
2m

)d

0, otherwise,

(1.1)

where P is the probability to connect the new vertex to a vertex whose degree ex-
ceeds or equals k, conditional on the process up to time m. We begin by showing
that for fixed k, as m → ∞, we have that Fm(k)/(2m) converges to some determin-
istic constant αk,d (Lemma 3.1). This sequence {αk,d}k∈N is defined inductively by
the rules that α1,d = 1, 0 < αi+1,d ≤ αi,d and

2αk,d + (k − 1)αd
k,d = kαd

k−1,d. (1.2)

This equation has unique solution on (0, 1) since the left hand side is monotone on
it.

These αk,d decay doubly exponentially, but only after a long enough, d-dependent
burn-in time. For these initial steps, very careful analysis is required to ensure that
they even decrease. For d = 2, we solve equation (1.2) directly. Applying the
quadratic formula, the following rational upper bounds can be verified inductively
using (1.2) and monotonicity. After these first steps, we may use an approximate
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Exact Value α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

Bound 1 3
4

9
16

2
5

3
10

1
5

1
8

1
16

1
60

1
600

Figure 1.1. Rational upper bounds for αk,2, 1 ≤ k ≤ 10.

recurrence relation to estimate the decay for larger k (see Lemma 3.2). To obtain the
initial estimates for αk,d, d > 2 we will use a comparison with αk,2. By multiplying

equation (1.2) by αd−2
k,d we get

2αd−1
k,d + (k − 1)α2d−2

k,d = kαd
k−1,dα

d−2
k,d ≤ kα2d−2

k−1,d.

Therefore if we put uk,d = αd−1
k,d we have that

2uk,d + (k − 1)u2
k,d < ku2

k−1,d

and hence αk,d ≤ α
1

d−1

k,2 . Note that as a by-product of showing the convergence of

Fj(k)/(2j) and of the decay of αk,d, we will have shown the in-probability conver-
gence of the empirical degree distribution.

We then proceed by a bootstrapping method known as layered induction, whereby
good control on (Fj(k))

m
j=1 can be used to get better control on (Fj(k+1))mj=1. How-

ever, there are some complications in this procedure that make this more technical
than textbook layered induction.

First, due to having some initial control on Fj(k)/(2j), which is afforded by
the convergence to αk,d, we can find a decaying solution f(k) to the recurrence
f(k) = kf(k− 1)d where f(k0) > αk0,d for some fixed k0. For slowly growing j0(m)
we have with high probability that Fj(k0)/(2j) < f(k0) for all j ≥ j0(m).

Then for k > k0, we can nearly dominate (Fj(k))
2m
j=j0

by a random walk with
increments distributed as kBernoulli(f(k − 1)). Hence, as k grows, the increments
of the random walk become progressively more heavy tailed. For this reason, to
get control with high probability, we require the random walk to evolve for some
amount of time, depending on k, before we can expect to get control on the ratio
Fj(k)/(2j). Hence, in Lemma 3.3, we define

φ(m, k) = d(log logm)1/3eCdk+1

for some sufficiently large C and show that with high probability Fj(k) ≤ 2jf(k)
for all (j, k) with φ(m, k) ≤ j ≤ m and k0 ≤ k ≤ k∗(m), where k∗(m) =
log logm/ log d+Θ(1).

As a result of this procedure, for k > k∗(m) have strong control on Fj(k)/(2j)
for j ≥ φ(m, k) but relatively weak control (which just follows from monotonicity
in k) for small j < φ(m, k). Hence, we have effectively shown a bound of the form
Fj(k)/(2j) < j−β0 that holds for all j ≥ j0(m). We then show that this bound
can be bootstrapped finitely many times to produce polynomial decay of order
Fj(k)/(2j) < j−β where β > 1

d (Lemma 3.5). At this point, the probability of
Fj(k) increasing for any j > j1(m), where j1(m) is some slowly growing function,
tends to 0, and we conclude the proof.

To summarize, we go through 4 steps.

(1) We get starting estimates for k less than some fixed k0 > 0 and ω(m) ≤
j ≤ m, ω(m) → ∞ as m → ∞ (see Lemma 3.1).
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(2) We get improved estimates for k0 ≤ k ≤ k∗(m) that decrease doubly expo-
nentially in k but are only valid for φ(m, k) ≤ j ≤ m (see Lemma 3.3).

(3) We then get estimates of the form Fj(k) ≤ 2j1−β for some 0 < β < 1 that
hold for k > k∗(m) and (log logm)M ≤ j ≤ m. By increasing k finitely
many times, we can make β very close to 1 (see Lemma 3.5).

(4) Once β is sufficiently large for some k = k∗(m) + r, we show that in fact
Fj(k + 1) must be 0 (see Lemma 3.6).

2. Discussion

Theorem 1.1 answers a question about the degree sequence of the tree, which
uses no topological features of the graph. In the case of the standard preferential
attachment model, the diameter is known to be logarithmic Pittel (1994); Dommers
et al. (2010). It would be interesting to know if this remains the case in the min-
choice preferential attachment tree or if the diameter is larger. In Rudas et al.
(2007), the authors derive the limiting law of the preferential attachment tree viewed
from a random vertex; a deeper, narrower tree should be expected in the case of
the min-choice tree.

The max-choice preferential attachment model also presents an interesting
model. This corresponds to choosing the vertex of larger degree instead of smaller
degree. There one sees largest degree which is linear or nearly linear in m (see
Malyshkin and Paquette (2014)).

The preferential attachment model fits naturally inside a larger class of processes
where the new vertex chooses a neighbor in the old graph with probability propor-
tional to some power α of the degree, which was first studied in Krapivsky et al.
(2000). In the case that α > 1, the tree has a single dominant vertex Oliveira and
Spencer (2005). This “persistent hub” (using terminology of Dereich and Mörters
(2009)) has degree of order m, while all other vertices have bounded degree. The
min-choice adaptation can be made to these models as well, first sampling d vertices
with probability proportional to the power α of the degree and then choosing the
vertex with minimal degree. Simulations suggest that for α large enough (around
1.8) a single vertex dominates the others, while for α up to 1.5 the tree remains
more diffuse. This leaves open the possibility of a sharp transition in behavior for
some critical value of α.

3. Proofs

For the first step we prove the following.

Lemma 3.1. For any ε > 0, any ω(m) → ∞, ω < m and any k ≥ 1 fixed, we have
that

P [∃j, m ≥ j ≥ ω(m) : |Fj(k)− 2αk,dj| > εj] → 0.

Proof : We prove this lemma using induction over k. The base case, k = 1, is
immediate as Fj(1) = 2j for all j. Define the event A by

A(ω0(m), k − 1, δ) = { ∀ j, ω0(m) ≤ j < m, |Fj(k − 1)− 2jαk−1,d| < δj}.

From the induction hypothesis, we have that A holds with high probability for any
δ > 0 fixed and any ω0(m) → ∞. Therefore, it suffices to show that there is a δ > 0
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and a ω0(m) → ∞ so that

P [A(ω(m), k, ε)c ∩ A(ω0(m), k − 1, δ)] → 0.

We will only prove the upper bound, i.e. that Fj(k) − 2αk,dj ≤ εj with high
probability. The lower bound follows from an identical argument.

Let ω0(m) → ∞ and δ > 0 be considered fixed, with appropriate values to be
determined later. For j such that ω0(m) ≤ j ≤ m,

Fj(k) = Fω0(m)(k) +

j∑
i=ω0

χi ≤ 2ω0(m) +

j∑
i=ω0

χi,

almost surely, where

χi = Fi(k)− Fi−1(k) =


1, P =

(
Fi−1(k)
2(i−1)

)d

k, P =
(

Fi−1(k−1)
2(i−1)

)d

−
(

Fi−1(k)
2(i−1)

)d

0, otherwise.

Note that Fi−1(k−1)
2(i−1) ≤ αk−1,d+δ/2. We may construct variables ηi whose law given

σ(Fi−1(k)) is

ηi =


1, P =

(
Fi−1(k)
2(i−1)

)d

k, P = (αk−1,d + δ/2)
d −

(
Fi−1(k)
2(i−1)

)d

0, otherwise

so that on the event A(ω0(m), k − 1, δ), we have χi ≤ ηi.
Then it follows that

Fj(k) ≤ 2ω0(m) +

j∑
i=ω0

ηi.

Let π be the first j ≥ ω0(m) so that Fj(k) ≤ 2(αk,d + ε/2)j. We will estimate
the probability that π ≤ ω(m). Set gi = Fi(k)/(2i)− αk,d. If ω0(m) ≤ i < π, then
gi > ε/2.

We can expand the law of ηi as

ηi =


1, P = (αk,d + gi−1)

d

k, P = αd
k−1,d − δ/2(

∑d−1
l=0 αl

k−1,d(δ/2)
d−1−l) + (αk,d + gi−1)

d

0, otherwise.

Choose δ such that δ/2(
∑d−1

l=0 αl
k−1,d(δ/2)

d−1−l) = ε/(4k). We may construct i.i.d.
variables

η
′

i =


1, P = αd

k,d

k, P = αd
k−1,d − αd

k,d + ε/(4k)

0, otherwise

so that ηi ≤ η′i on A(ω0(m), k − 1, δ) for i > ω0(m) such that Fi(k)/(2i) ≥ αk,d.
Set ρ to be the first time after π that Fi(k)/(2i) ≤ αk,d.
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Note that from the definition of αk,d, it follows that Eη
′

i = 2αk,d + ε/4. Now we
obtain the estimate

P(π > ω(m)) ≤ P(
ω(m)∑
i=ω0

ηi + 2ω0(m) > 2αk,dω(m) + εω(m)/2)

≤ P(
ω(m)∑
i=ω0

η
′

i > 2αk,d(ω(m)− ω0(m)) + εω(m)/2− ω0(m)(2− 2αk,d)).

Choose ω0(m) = ε
6(2−2αk,d−ε/3)ω(m), so that εω(m)/2−ω0(m)(2−2αk,d) = (ω(m)−

ω0(m))ε/3. Then we have

P(π > ω(m)) ≤ P(
ω(m)∑
i=ω0

η
′

i > (2αk,d + ε/3)(ω(m)− ω0(m))) ≤ C1e
−C2ω(m),

where C1, C2 are some positive constants (which still depend on k and ε).
Now we estimate the probability that Fj(k) reaches the line 2αk,dj + εj when

started from time π > ω0. From monotonicity, we may assume that Fπ(k) =
b2αk,dπ + επ/2c. Let Ma(j) denote the random walk with increments distributed
as η′1, started from level a and stopped when the process crosses the line 2αk,dj.

Define the following function

p(m, r1, r2) = sup
t≥ω0(m)

P
[
∃ j ≥ t : Mb2αk,dt+r1tc(j − t) ≥ b(2αk,d + r2)jc

]
.

We claim that for all fixed ε/4 < r1 < r2, we have p(m, r1, r2) → 0. This follows
from a simple tail bound estimate, and we will delay the proof until the end.

Let ρ1 be the first time after π that the process drops below the line 2αk,dj
and returns to level greater than b2αk,dj + εj/2c − k without crossing 2αk,dj + εj.
Likewise, let ρi ≥ ρi−1 be the ith time that this happens. Given that ρi < ∞, for
ρi to occur, it must be that the process crosses from level b2αk,dj + εj/3c to level
b2αk,dj + 3εj/8c, provided m is sufficiently large, and hence

P [ρi < ∞ | ρi−1 < ∞] ≤ p(m, ε/3, 3ε/8).

We now decompose the probability of Fj(k) exceeding 2αk,dj+ εj according to the
renewal times ρj .

P [∃ j ≥ π : Fj(k) > 2αk,dj + εj]

≤
∞∑
i=0

P [∃ j, ρi+1 ≥ j ≥ ρi : Fj(k) > 2αk,dj + εj | ρi < ∞]P [ρi < ∞]

≤
∞∑
i=0

p(m, ε/2, ε)p(m, ε/3, 3ε/8)i = o(1).

It remains to show that for all fixed ε/4 < r1 < r2, we have p(m, r1, r2) → 0.
Set Sj = Ma(j)− EMa(j). The event that

E = {∃ j ≥ t : Mb2αk,dt+r1tc(j − t) ≥ b(2αk,d + r2)jc}

has

E ⊆ {∃ n ≥ 0 : Sn ≥ (r2 − ε/4)n+ (r2 − r1)t− 1}.
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From Hoeffding’s inequality, we have that for fixed n, there is a constant c =
c(k, ε) > 0 so that

P [Sn ≥ t] ≤ exp(−ct2/n).

Summing over all n, we get that

P [∃ n ≥ 0 : Sn ≥ (r2 − ε/4)n+ (r2 − r1)t− 1]

≤
∞∑

n=0

exp(−c((r2 − ε/4)n+ (r2 − r1)t)
2/n)

≤ exp(−2c(r2 − ε/4)(r2 − r1)t)
∞∑

n=1

exp(−c(r2 − ε/4)n)

≤ exp(−2c(r2 − ε/4)(r2 − r1)t)

1− exp(−c(r2 − ε/4))
.

This goes to 0 uniformly in t ≥ w0(m), and hence the proof is complete.
�

Lemma 3.2. Let 0 < f(k0) <
1

e2k0
and inductively define f(k + 1) = f(k)d(k + 1)

for k ≥ k0. Then there are constants c1 > 0 and c2 > 0 so that for all j ≥ 0,

exp(−c1d
j) ≤ f(k0 + j) ≤ exp(−c2d

j).

Proof : It is easily verified by induction that f(k) can be expressed using the fol-
lowing rule for k > k0,

log f(k) = dk−k0

k−k0∑
i=1

d−i log(k0 + i) + dk−k0 log f(k0). (3.1)

Thus, from the positivity of the log(k0 + i) term, it follows immediately that

log f(k) > dk−k0 log f(k0),

so that the lower bound holds with c1 = − log f(k0). For the upper bound, we note
that log(k0 + i) ≤ log(k0) + i and hence

k−k0∑
i=1

d−i log(k0 + i) ≤
∞∑
i=1

d−i(log(k0) + i) = log(k0) + d/(d− 1)2 ≤ log(k0) + 2.

Thus from (3.1), we have that

log f(k) ≤ dk−k0 (log(k0) + 2 + log(f(k0))) ,

As we have e2k0f(k0) < 1, we may take c2 = − log(e2k0f(k0)) to complete the
proof.

�

Now set ρ(m) = d(log logm)1/3e and define φ(m, k) to be ρ(m)Cdk+1

where C is
an integer sufficiently large that

logC > c1 ∨ (log 4 + c1d
−k0). (3.2)

Let k∗ = k∗(m) be the smallest integer so that

Cdk∗+1

≥ m1/2.

Note that this makes k∗ = log logm
log d +Θ(1).
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Lemma 3.3. If αk0,d < 1
e2k0

, then with high probability, for all k0 ≤ k ≤ k∗ and

for all j with m ≥ j ≥ φ(m, k),

Fj(k)

2j
≤ f(k),

where f(k) defined as in Lemma 3.2 with f(k0) = (αk0,d +
1

e2k0
)/2.

Remark 3.4. By using this and Lemma 3.1 for d = 2 along with the estimate

αk,d ≤ α
1

d−1

k,2 we obtain that there is a k0 = k0(d) such that αk0,d < 1
e2k0(d)

.

Proof : The case k = k0 follows from Lemma 3.1 with ω(m) = φ(m, k0). We now
show how the proof follows by layered induction. Let Gk be the event

Gk = {Fj(k) ≤ 2jf(k) , ∀ j : m ≥ j ≥ φ(m, k)}.
For any j ≥ φ(m, k + 1),

Fj(k + 1)

2j
=

Fφ(m,k)(k + 1)

2j
+

1

2j

j∑
i=φ(m,k)

ξi(k + 1),

where ξi(k + 1) = Fi+1(k + 1) − Fi(k + 1) follows the rule in (1.1). Let Xj,k be
distributed as

Xj,k ∼ (k + 1)Binom(j − φ(m, k), f(k)d).

On Gk, the sum
∑j

i=φ(m,k) ξi(k + 1) is stochastically dominated by Xj,k.

Consider the event

E(k + 1) = {∃j ≥ φ(m, k + 1) :

j∑
i=φ(m,k)

ξi(k + 1) > 3/2EXj,k}.

On complement of E(k + 1) we obtain, setting l = j − φ(m, k + 1),

Fj(k + 1)

2j
=

Fφ(m,k)(k + 1)

2φ(m, k + 1) + l
+

1

2(φ(m, k + 1) + l)

φ(m,k+1)+l∑
i=φ(m,k)

ξi(k + 1)

≤ φ(m, k)

φ(m, k + 1) + l
+

3(k + 1)(φ(m, k + 1) + l − φ(m, k))fd(k)

4(φ(m, k + 1) + l)

≤ φ(m, k)

φ(m, k + 1)
+

3

4
(k + 1)fd(k)

≤ Cdk+1−dk+2

+
3

4
f(k + 1)

≤ 1

4
e−c1d

k+1−k0
+

3

4
f(k + 1)

≤ f(k + 1),

where we have applied (3.2) in the fifth line. Hence we obtain that E(k+1)c ⊆ Gk+1,
and thus we may bound

P [ ∃ k , k∗ ≥ k > k0 : Gk fails] ≤
k∗−1∑
k=k0

P
[
Gc
k+1 ∩ Gk

]
≤

k∗−1∑
k=k0

P [Ek+1 ∩ Gk] .
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We estimate the probability of this event using standard Chernoff bounds. In the
following c > 0 is an absolute constant.

P [E(k + 1) ∩ Gk] ≤ P
[
∃ j ≥ φ(m, k + 1) : Xj,k > 3

2EXj,k

]
≤

m∑
l=0

e−c(φ(m,k+1)−φ(m,k))fd(k)−clfd(k)

= e−c(φ(m,k+1)−φ(m,k))fd(k)
m∑
l=0

e−clfd(k)

≤ 1

1− e−cfd(k)
e−c(φ(m,k+1)−φ(m,k))fd(k)

Here we use that f(k) ≤ f(k0) and hence there is an absolute constant C ′ so that

C ′(1− e−cfd(k)) ≥ fd(k). Applying Lemma 3.2,

P [E(k + 1) ∩ Gk] ≤ C ′ e
−ρ(m)(Cdk+2

−Cdk+1
) exp(−c1d

k−k0 )

exp(−c1dk−k0)

≤ C ′ exp(−ρ(m)(Ce−c1)d
k

+ c1d
k−k0).

Therefore we may conclude that

P [ ∃ k , k∗ ≥ k > k0 : G(k) fails] ≤
k∗∑

k=k0

C ′ exp(−ρ(m)(Ce−c1)d
k

+ c1d
k−k0).

It can be checked that for m sufficiently large, this bound is monotone decreasing
in k, and hence we have that

P [ ∃ k , k∗ ≥ k > k0 : G(k) fails] ≤ k∗ exp(−Aρ(m))

for some absolute constant A. As k∗ = O(log logm), this tends to 0 with m, which
completes the proof of Lemma 3.3.

�

As a consequence, we have that for m ≥ j ≥ φ(m, k), and all k0 ≤ k ≤ k∗

Fj(k∗) ≤ Fj(k) ≤ 2jf(k) ≤ 2j exp(−c2d
k−k0)

with high probability. We can therefore find some constant β > 0 so that

Fj(k∗)

2j
≤

(
ρ(m)

φ(m, k + 1)

)β

for m ≥ j ≥ φ(m, k), and all k0 ≤ k ≤ k∗. For each log logm ≤ j ≤ m we could
find k such that φ(m, k + 1) ≥ j ≥ φ(m, k), which implies that there is a β0 > 0
constant so that with high probability

Fj(k∗)

2j
≤ 1

jβ0
(3.3)

for all log logm/ log d ≤ j ≤ m.
A large enough value of β0 would complete the proof. If β0 > 1

d , then Fj(k∗+1)
would be identically 0 for all j with high probability. Regardless of the value of β0,
it is possible to supercharge this result by letting the recurrence run a little longer.
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Lemma 3.5. If there is an absolute constant M1 > 0 so that with high probability
for some k ≤ log logm,

Fj(k) ≤ 2(j)1−β , ∀ j : m ≥ j ≥ (2 log logm)M1 ,

for some β < 1
d , then there is an absolute constant M2 > 0 so that with high

probability

Fj(k + 1) ≤ 2(j)1−(d−0.5)β , ∀ j : m ≥ j ≥ (2 log logm)M2 .

Proof : We let C be the event used as the hypothesis of the lemma. Set j0 =
(2 log logm)M1 . Then for j ≥ j0, we have that

∆j = Fj(k + 1)− Fj0(k + 1)

is dominated on C by (k + 1) times a sum of independent Bernoulli variables with

means at most j−dβ
0 . Thus, we may find an absolute constant c > 0 so that ∆j/(k+

1) is stochastically dominated by a Poisson variable Xj with mean

EXj = c

j∑
i=j0

i−2β ≤ c

1− 2β
j1−2β ,

with the inequality following by comparison with a Riemann sum. From standard
tail bounds for Poisson variables, we may find a constant C ′ so that

P [∃ j ≥ j0 : ∆j ≥ C ′EXj ] ≤ C ′
∞∑

j=j0

exp(−j1−dβ/C ′),

which is o(1) using the hypothesis that 1− dβ > 0. Thus it follows that with high
probability

Fj(k + 1) ≤ Fj0(k + 1) + (k + 1)C ′j1−dβ .

As k ≤ log logm, we have that (k + 1) ≤ 2 log logm for large enough m. Choose
M2 sufficiently large that both of j0(2 log logm) ≤ (2 log logm)M2(1−(d−0.5)β) and
C ′(2 log logm) ≤ (2 log logm)0.5M2β for all m sufficiently large. Then we conclude
for all j ≥ (2 log logm)M2 ,

Fj(k + 1) ≤ j1−(d−0.5)β + j0.5βj1−dβ = 2(j)1−(d−0.5)β ,

as desired.
�

Lemma 3.6. There is a M = M(β0) > 0 and an integer r = r(β0) > 0 so that
setting j0 = (2 log logm)M , then with high probability

Fj(k∗ + r) = Fj0(k∗ + r)

for all m ≥ j ≥ j0.

Proof : We may apply Lemma 3.5 some r′(β0) many times to conclude that there
is an M = M(β0) so that with high probability Fj(k∗ + r′) ≤ 2j1−β for all j ≥ j0
and for some β > 1

d .
Let C be the event

C = {Fj(k∗ + r′) ≤ 2j1−β , ∀ j ≥ j0}.
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It now follows from the usual recurrence argument that

P [∃ j; j0 ≤ j ≤ m : Fj(k∗ + r′ + 1) > Fj0(k∗ + r′ + 1)| C] = O

( m∑
i=j0

i−2β

)
= o(1),

as i−2β is summable. Thus taking r = r′ +1, we have shown the desired claim. �

We now prove the final theorem.

Proof of Theorem 1.1: From Lemma 3.6, it follows that with high probability,

Fm(k∗ + r) = Fj0(k∗ + r).

As Fj0(k∗+r) is almost surely at most O((log logm)M+1), it follows that the maxi-
mum degree of the Pm graph after m steps is (log logm)M+1 with high probability.

Note that k∗ + r = Θ(j
1/M1

0 ), and hence with high probability, Pj0 has no vertices
of degree k∗ + r. Thus in fact, it follows that with high probability Fj0(k∗ + r) = 0,
so that with high probability Fm(k∗+r) = 0 and the maximum degree of the graph
is at most k∗ + r = log logm/ log d+Θ(1).

We will now prove the lower bound. To do so we provide a coupling between
the bin and ball model with d choices and our model. We will use Theorem 6
of Mitzenmacher et al. (2001) for the lower bound estimate on the maximum degree.
Let us recall the ball and bin model. Suppose that n balls are sequentially placed
into n bins (denote them by v1,...,vn). Each ball is placed in the least full bin at
the time of the placement, among d bins, chosen independently and uniformly at
random. Theorem 6 of Mitzenmacher et al. (2001) provides that in this case after all
the balls are placed the number of balls in the fullest bin is at least log logn/ log d−
Θ(1) with high probability. With a slight change in the proof of this theorem it
could be extended to n bins and εn balls with the same statement, where 0 < ε < 1
is some constant. From here we consider the model with 2m bins and m balls and
we will use extension of Theorem 6 of Mitzenmacher et al. (2001) for n = 2m and
ε = 1/2.

Let N0
j (k) be the number of bins that contain at least k balls at time j. We will

need the following lemma.

Lemma 3.7. There is a coupling such that for all k ≥ 1 and 1 ≤ j ≤ m

N0
j (k) ≤ Fj(k).

Note that with this lemma, the proof is now complete, as there is a k′(m) =
log logm/ log d − Θ(1) so that with high probability N0

m(k′) > 0. And so we turn
to proving the lemma by induction over j.

When j = 1, the lemma is trivial, as

N0
1 (k) = 1{k = 1} ≤ 21{k = 1} = F1(k), k ≥ 2.

Suppose the statement is true for j ≤ j0. We will show the construction can be
extended to j0 + 1 ≤ m. The difference N0

j0+1(k) − N0
j0
(k) takes value 1 with

probability

Nj0(k − 1)d −Nj0(k)
d

nd
≤ Nj0(k − 1)d

nd
≤ Fj0(k − 1)d

nd
.
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If j0 ≤ n/2 = m this probability does not exceed
Fj0

(k−1)d

(2j)d
, and hence the difference

N0
j0+1(k)−N0

j0
(k) is stochastically dominated by Fj0+1(k)−Fj0(k). Therefore there

is a coupling such that N0
j0+1(k) ≤ Fj0+1(k).

�
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