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Abstract. It is shown how tools from the area of Model Theory, specifically from
the Theory of o-minimality, can be used to prove that a class of functions is VC-
subgraph (in the sense of Dudley (1987)), and therefore satisfies a uniform poly-
nomial metric entropy bound. We give examples where the use of these methods
significantly improves the existing metric entropy bounds. The methods proposed
here can be applied to finite dimensional parametric families of functions without
the need for the parameters to live in a compact set, as is sometimes required in the-
orems that produce similar entropy bounds (for instance Theorem 19.7 of van der
Vaart (1998)).

1. Introduction

VC-dimension and metric entropy are fundamental concepts in modern asymp-
totic statistics and the theory of statistical learning, due to their applicability in
establishing uniform convergence results, such as Uniform Laws of Large Numbers
and Uniform Central Limit Theorems (see Dudley (1987); Pollard (1984); van der
Vaart (1998); van der Vaart and Wellner (1996)). The metric entropy of a class
of functions is a measure of the size of the class, and, for classes of functions, it
plays a roll, with regards to asymptotics, very similar to the one played by VC-
density (or VC-dimension) for collections of sets. Finding a tight upper bound for
the VC-density (or VC-dimension) of a class of sets or for the metric entropy of a
class of functions (when this is small enough) will be useful in establishing speed
of convergence in the Uniform Law of Large Numbers, as shown in Section 2.6
of Pollard (1984) or in the Central Limit Theorem for certain functionals of the
empirical process, as explained in Section 3.4 of van der Vaart and Wellner (1996).
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In the present article, we will show how working with the VC-density of an
associated class of sets and taking advantage of recent results from the theory of
o-minimality, allows for significantly improving bounds on the metric entropy of
certain classes of functions and for finding tight entropy bounds for certain classes
for which other methods would not work.

Even though most of the concepts we have mentioned are by now classical, we
briefly review, in the following subsection, their definitions and their use in theorems
of asymptotic statistics. This will be useful for setting our notation and establishing
a context for the calculations in the following section.

1.1. VC theory in asymptotic statistics.

Definition 1.1. Given a collection of measurable sets in d-dimensional Euclidean
space, A, and a finite set F ⊂ Rd, let

F ∩ A = {F ∩A : A ∈ A} and ∆A(n) = sup
{F :|F |=n}

|F ∩ A|,

where | · | denotes cardinality of a (usually finite) set.1 When ∆A(n) is bounded by
a polynomial in n, the class A is said to be a Vapnik-Cervonenkis class or, shortly,
a VC-class. The VC-density of A, densVC(A), is the infimum of the set of positive
reals, r, such that a constant C > 0 exists (possibly depending on r) such that
∆A(n) ≤ C nr for all n ∈ N. The VC-dimension of A, dimVC(A), is the largest
positive integer m such that ∆A(m) = 2m. If no such m exists, dimVC(A) = ∞.

Under measurability conditions, VC-classes satisfy a non-parametric Uniform
Law of Large Numbers, in the sense that if A is a VC-class, for i.i.d. data
X1, . . . , Xn, sampled from a probability distribution P on Rd and with

Pn(A) =
|{i : 1 ≤ i ≤ n, Xi ∈ A}|

n
, (1.1)

for a set A, then

sup
A∈A

|Pn(A)− P (A)| → 0, a.s., as n → ∞.

Examining the proof of this Uniform Strong Law reveals that the value of the VC-
density is what is actually involved in the arguments leading to this result. Still,
most often, asymptotic statisticians have resorted to bounds on the VC-dimension
to establish this type of strong laws. This is probably due, at least in part, to the
following facts:
(i) Finiteness of the VC-dimension is equivalent to finiteness of the VC-density and
(ii) During the 1980’s, several methods were developed for bounding the VC-
dimension of a class of sets.

A notion related to VC-dimension and density, that will be used below, is the
dual dimension of Assouad, Assouad (1983), defined as follows.

Definition 1.2. For a class of sets in d-dimensional Euclidean space, A, and a
finite sub-collection, H ⊂ A, let At(H) denote the set of atoms of the finite algebra

1In other places | · | will denote absolute value, as usual, but (we hope) this will cause no

confusion since the meaning should be clear from the context in each case.
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generated by H. For n ∈ N+, let ∆∗
A(n) = sup {|At(H)| : H ⊂ A, |H| = n}.

Assouad’s dual dimension is

dim∗(A) = sup {m ∈ N+ : there exists H ⊂ A, with |H| = m, |At(H)| = 2m}.
(1.2)

The dual density of A, dens∗(A) is the infimum of the positive reals, r, such that
for some constant C > 0, ∆∗

A(m) ≤ Cmr for every m ∈ N+.

When it comes to asymptotic results over classes of functions, the concept of
metric entropy plays a role similar to that of VC-density for classes of sets.

Definition 1.3. Let F ⊂ Lp(Q) for p = 1 or 2, and a probability measure Q
on Rd. For ε > 0, the ε-covering number of F with respect to Q, Np(ε,F , Q),
is the minimum natural m such that there exist functions g1, g2, . . . , gm ∈ Lp(Q)
satisfying that, for every f ∈ F , there is a j ∈ {1, . . . ,m} such that ‖f − gj‖p,Q < ε
where ‖ · ‖p,Q is the norm of Lp(Q). Hp(ε,F , Q) = logNp(ε,F , Q) is called the
metric entropy of F .

In order to state a law of large numbers over F , let again X1, . . . , Xn denote
an i.i.d. sample from a probability distribution P on Rd, and, for each integrable
function f , let Pn f = (1/n)

∑
i≤n f(Xi), be the empirical integral of f , while

Pf =
∫
f(x)dP (x). The class F is said to have an envelope function F ∈ Lp(Q)

whenever |f(x)| ≤ F (x) for all f ∈ F and every x ∈ Rd. A Uniform Law of Large
Numbers holds over F with respect to P , when

sup
f∈F

|Pn(f)− Pf | → 0, a.s. as n → ∞. (1.3)

Different results exist in the literature connecting bounds on the metric entropy of
a class to Uniform Laws as (1.3).

Suppose that the Lp covering number, p = 1, 2, of the class F with envelope
function F is small enough as to satisfy a polynomial bound such as

sup
Q

Np(ε‖F‖p,Q,F , Q) ≤ A

(
1

ε

)B

(1.4)

where A and B are positive constants and the bound is uniform over all choices of
the probability measure Q. In this case we will say that the class F has polynomial
Lp covering number (with exponent B). When a class of functions has polynomial
covering number, more things can be said regarding asymptotics. When the L1

covering number is polynomial and the envelope function F is bounded, then the
uniform strong law (1.3) can be improved with a uniform speed of convergence:

sup
f∈F

|Pn(f)− Pf | � logn√
n

, a.s. as n → ∞, (1.5)

where an � bn means that an/bn → 0, as can be deduced from Theorem 37 in
Pollard (1984). Similarly, for classes with polynomial L2 covering number, results
on the speed of convergence in the Central Limit Theorem for the Empirical Process
over a class of functions can be obtained, as explained in Section 3.4 of van der
Vaart and Wellner (1996). Thus, establishing the polynomial Lp covering number
property for a class of functions is quite relevant from the asymptotic viewpoint.

In the current literature, there exist two ways of proving that a class of functions
F has polynomial Lp covering number. One is through the notion of VC-subgraph
classes, to be discussed in a moment. The other is through the total boundedness
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of the finite dimensional set of parameters that index the functions in F . This
second method appears as Example 19.7 in van der Vaart (1998) and we will refer
to it in the sequel as the bounded parameter space method. The first method
has the advantage of not needing the parameter space to be totally bounded and
other technical (smoothness) conditions required in the bounded parameter space
method. The purpose of the main result in the present article is to significantly
simplify the verification that a parametric class of functions is VC-subgraph, thus
obtaining that the class has polynomial Lp covering numbers, for p = 1 and 2. In
examples we will show several classes that appear in concrete applications to be
VC-subgraph.

First, let us recall the definition of VC-subgraph classes introduced in Pollard
(1982), although this name comes from Dudley (1987).

Definition 1.4. For a class of functions on Rd, F , and f ∈ F , the subgraph of f
is the set

subgraph(f) = {(x, t) ∈ Rd+1 : 0 ≤ t ≤ f(x) or 0 > t > f(x)}. (1.6)

The class of all subgraphs of functions in F , subgraph(F), is a collection of sets in
Rd+1. When subgraph(F) is a VC-class, F is called a VC-subgraph class.

Careful reading of the proof of Lemma 25 in Chapter 2 of Pollard (1984) gives
the following:

Theorem 1.5. If F is a VC-subgraph class with envelope F ∈ Lp(Q) and
r = densVC(subgraph(F)), then, for any η > 0

Np(ε‖F‖p,Q,F , Q) ≤ A

(
1

ε

)r+η

(1.7)

where the constant A depends only on r and η (not on Q). That is, F has polynomial
Lp covering number with exponent r + η, for every positive η.

The next subsection includes some facts found recently in the context of Model
Theory to be used later.

1.2. Some definitions and results from o-minimality. O-minimality and results we
will be using are a subarea of model theory, in the sense of mathematical logic. We
will need some definitions, although we will try to give enough examples so that
the un-familiarized reader can get an idea of the concepts we will need.

1.2.1. First order logic. In order to work in model theory, one fixes a language
L (say, the language of rings with unity L := {+, ·, 0, 1}) and a structure which
interprets each symbol that appears in L (for example the real field and the complex
fields are both structures in the language of rings with unity) which will be called
an L-structure.

In this paper we will always work with a language L which includes the language
of ordered rings Lo.ring := {+, ·, 0, 1, <}, and with structures whose universe is
the real numbers as an ordered field, fixing an interpretation of the symbols in L,
which will usually be the standard interpretation. For example, the structure with
universe R, associated with the language L := {+, ·, 0, 1, <, ex}, will be the real
numbers, with the natural interpretation of, respectively, the addition, multiplica-
tion, additive identity, multiplicative identity, order, and exponential function.
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Definition 1.6. Let L be a fixed language which includes Lo.ring, and let
(R,+, ·, 0, 1, <, . . . ) be an L-structure (here the dots stand for whichever rela-
tions or function symbols we want to add to the language). An L-definable sub-
set of R is the set of realizations in our structure (R,+, ·, 0, 1, <, . . . ) of a for-
mula which uses only symbols from Lo.ring, besides the logic symbols =,∨,∧,⇒
,⇔,¬(the symbol for “it is not true that”), ∀ and ∃.

Given an L-structure M, an L-formula φ(x̄, ȳ) and M-tuples ā and b̄, we will
say that

M |= φ(ā, b̄)

if the formula φ(ā, b̄) is true in M.

Example 1.7. Let φ(x, y) be the formula ∃z z2 = (y − x), and let Q and R be the
rational and the real fields, respectively. Then

R |= φ(1, 3)

but

Q 6|= φ(1, 3).

Of course, if a formula φ has no free variables (so that all variables appearing in
φ are quantified by either ∃ or ∀) we don’t need to replace any variables to know
the truth or falsehood of φ in any structure of the language. Such formulas are
called sentences. So for example, φ := ∀x∃y y · y = x is a sentence true in the
complex field, false in the real field, but true in the structure (R≥0,+, ·, 0, 1).

Example 1.8.

• The unit disk in R2 is definable in the structure (R,+, ·, 0, 1, <) by the
formula x2 + y2 < 1.

• The set of integers are a definable subset of R in the structure (R,+, ·, 0, 1, <
, sin(x)), since it is the set or realizations of the formula ∃y, sin(y) =
0 ∧ x · π = y.

• By Fact 1.10 below, the integers are not definable in the structure
(R,+, ·, 0, 1, <).

• The derivative of a function f(x) is definable in the structure (R,+, ·, 0, 1, <
, f(x)) by replacing f ′(x) = y by the formula

φ(x, y) := ∀ε∃δ∀h (−δ < h < δ) ⇒ (|f (x+ h)− f (x)− hy| < |hε|) .

(Here the absolute value can be defined in the standard way or, since by

|x| :=
√
x2 we can define |x| = y by the formula θ(x, y) :=

(
y2 = x2

)
∧

(y ≥ 0).)

1.2.2. o-minimality. The main logic definition of this paper is the following.

Definition 1.9. Let L be a fixed language which includes Lo.ring, and let
(R,+, ·, 0, 1, <, . . . ) be an L-structure. We will say that (R,+, ·, 0, 1, <, . . . ) is o-
minimal if and only if every L-definable subset of R is a finite union of open intervals
and points.

The following is a well known theorem of Tarski (see Tarski (1951)) (not stated
originally in this precise manner, since the concept of o-minimality came later).
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Fact 1.10. (R,+, ·, 0, 1, <) is o-minimal.

Notice that the subset Z of R is not a finite union of intervals and points, so
in particular o-minimality implies it is not definable in the real field (or in any
o-minimal expansion of the real field).

The study of o-minimal theories started without any other examples of o-minimal
expansions of the real field. But it really started becoming a main area of model
theory with the following theorem due to Wilkie (1996).

Fact 1.11. Rexp := (R,+, ·, 0, 1, <, ex) is o-minimal.

This was later generalized by van den Dries et al. (1994) to the following state-
ment:

Fact 1.12. Let Rexp,an be the real field expanded by the exponential functions and
a function symbol for every analytic function with domain [−1, 1]m for some m.
Then, Rexp,an is o-minimal.

For example, even though (R,+, ·, 0, 1, <, sin(x)) is not o-minimal, the structure(
R,+, ·, 0, 1, <, sin (x) |[−1,1]

)
,

where sin(x)|[−1,1] is the restriction of the sine function to the closed interval [−1, 1],
is o-minimal.

This, together with a result of Speissegger, will cover most of the examples we
will consider in this paper. But in order to state Speissegger’s result we need the
following definition.

Definition 1.13. Let (R,+, ·, 0, 1, <, . . . ) be any expansion of the real field. We
will say that a differential equation is Pfaffian over (R,+, ·, 0, 1, <, . . . ) if it is given
by a system of equations of the form

∂fi
∂xj

= Pi,j (x̄, f1 (x̄) , . . . , fi (x̄))

where fi (x̄) and Pi,j(ȳ) are definable functions in (R,+, ·, 0, 1, <, . . . ), j varies
through the number of variables and 1 ≤ i ≤ N for some positive integer N .

The following is due to Speissegger (1999):

Fact 1.14. Let (R,+, ·, 0, 1, <, . . . ) be any o-minimal expansion of the real field, and
let f(x̄) be the solution of a Pfaffian differential equation in (R,+, ·, 0, 1, <, . . . ).
Then the structure (R,+, ·, 0, 1, <, . . . , f) is o-minimal.

Notice that since ex is a solution of ∂f
∂x = f , Wilkie’s result follows from the

o-minimality of the real field (R,+, ·, 0, 1, <) and Speissegger’s result.
It follows that the Pfaffian closure of Rexp,an (which we will denote Ran,Pfaff )

is o-minimal2.

2Here we use closure in a manner analogous to “algebraic closure”: a structure M is Pfaffian
closed if given any function f , if f is Pfaffian over M, then f is definable in M. The Pfaffian

closure of R is the smallest structure containing R which is Pfaffian closed
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1.2.3. Uniform definable families of sets. We will begin with a definition. By a
Uniform definable family of definable sets in M we mean a family of definable
subsets, all of which are given by changing the parameters in a fixed formula in the
language L. Formally,

Definition 1.15. Let L be any language and let M := (M, . . . ) be an L-structure.
We will say that F is a uniform definable family of definable subsets of Mn if there
is an L-formula φ(x̄; ȳ) such that

F := {Xb̄}b̄∈Md

where
Xb̄ :=

{
ā ∈ Mn : φ(ā; b̄) is true in M

}
.

The tuples b̄ vary in Md (where d is the dimension of the variable ȳ in the formula
φ(x̄; ȳ)) and will be called the “parameters” of the subset Xb̄.

Example 1.16.

• Since the semi-spaces of Rn are all definable by a formula

b1 · x1 + b2 · x2 + · · ·+ bn · xn + bn+1 < 0,

they are a uniform definable family in (R,+, ·, 0, 1, <).
• The family A := {Xλ}λ∈R where

Xλ :=

{
x : x ≥ 0, 0 ≤ xλ − 1

λ

}
is uniformly definable in the structure (R,+, ·, 0, 1, <, ex). (Technically, we
would need to replace xλ − 1 = z with the formula ∃y

(
eλ·y − 1 = z

)
∧

(ey = x), but this is all definable by a first order formula.)

1.2.4. The main theorem. The main theorem relating o-minimality to VC-density,
was explicitly stated and proved in Aschenbrenner et al. (2011), although the result
is already contained in the paper Karpinski and Macintyre (1997). Here we state
the result, followed by an immediate implication in terms of the VC-density of the
subgraphs of a class of functions.

Theorem 1.17. Let R := (R,+, ·, 0, 1, <, . . . ) be an o-minimal expansion of the
real field, and let F := {Xb̄}b̄∈Rd be a uniform definable family of sets defined by
the formula φ(x̄; ȳ) with x̄ an m-tuple of variables and ȳ a d-tuple of variables.

F := {Xb̄}b̄∈Rd :=
{{

ā ∈ Rm : R |= φ
(
ā, b̄

)}
: b̄ ∈ Rd

}
.

Then the VC-density of F is at most d.

It follows for instance that, since the family A := {Xλ}λ∈R in Example 1.16
is a one parameter family uniformly defined in the o-minimal structure Rexp, the
VC-density of A is at most 1. Recall that by definition this means there is some
real constant C > 0 such that ∆A(n) < C · n for all n.

The proof of Theorem 1.17 in Aschenbrenner et al. (2011) is done by induction
on the length of the parameter set, and the proof for the 1-case will actually give
us a bound for C in this particular example (which we will work out in Subsection
2).

More generally, because the subgraph of the function f(x̄) is the set

{(x̄, y) : 0 ≤ y ≤ f(x̄)} ∪ {(x̄, y) : 0 ≥ y ≥ f(x̄)}
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we can state the following general result about the VC-density of subgraphs of
uniformly definable functions:

Corollary 1.18. Let R := (R,+, ·, 0, 1, <, . . . ) be an o-minimal expansion of the
real field, and let F := {fb̄(x̄)}b̄∈Rd be a uniform definable family of functions
defined by the formula φ(y, x̄; z̄) with x̄ an m-tuple of variables and z̄ a d-tuple of
variables. Explicitly, F := {fb̄(x̄)}b̄∈Rd is defined so that for any x̄ and y, we have
fb̄(x̄) = y if and only if φ(y, x̄; b̄) holds.

Then the VC-density of subgraph(F) is at most d.

The following is a direct consequence of Theorems 1.5 and 1.17 and it is the tool
proposed here for statistical applications.

Corollary 1.19. Let

F := {Xb̄}b̄∈Rd :=
{{

ā ∈ Rm : R |= φ
(
ā, b̄

)}
: b̄ ∈ Rd

}
.

be a (parametric) family of functions on Rm (uniformly) definable in an o-minimal
structure with d parameters, and assume also that F has bounded envelope function
F . Then, F has polynomial Lp covering number with exponent d+η, for any η > 0
and p = 1, 2.

2. Bounding the metric entropy of certain classes of functions

Next, we consider certain classes of functions that have appeared in the statistical
literature and show how to improve the bounds that have been reported on their
metric entropy.

2.1. Transformations to elliptical symmetry. Our first example appeared in Quiroz
et al. (1996) in connection to the estimation of transformations of multivariate data
to elliptical symmetry. In order to establish the efficiency of the method proposed
there, part of the problem reduces to the consideration of the class of functions on
R+, T , defined by

Tλ(x) =
xλ − 1

λ
, for x ∈ R+ and T = {Tλ : λ ∈ Λ},

where Λ is a bounded interval. In order to study the class subgraph(T ), its dual
class, subgraph(T )∗, formed by the sets

T dual(x, t) = {λ ∈ Λ : 0 ≤ t ≤ xλ − 1

λ
or

xλ − 1

λ
≤ t < 0}

for (x, t) ∈ (R+×R), was considered. Since (as we shall see in the proof of Lemma 1)
each T dual(x, t) is the union of at most two intervals, it was argued in Quiroz et al.
(1996) that the VC-dimension of subgraph(T )∗ is bounded by 4.3 Then, by Propo-
sition 2.13 in Assouad (1983), it follows that the VC-dimension of subgraph(T ) is
bounded by 24 = 16 and, therefore, densVC(subgraph(T )) will be bounded by 16.

Since the subgraphs of Tλ are a uniformly definable family in the o-minimal
structure Rexp, by Theorem 1.17 we know that the VC-density of the subgraphs
of the functions Tλ is bounded by the size of the parameter set, so it is bounded
by a linear function. Now, a closer analysis of the methods in the one dimensional
case of the proof of Theorem 1.17 in Aschenbrenner et al. (2011), will give a precise

3Taking points 1,2,3,4 and 5, one can not, with two intervals, pick the set {1,3,5}.
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bound for this family which might be useful for getting precise bounds in any one
dimensional set.

Lemma 2.1. For any fixed λ ∈ R, consider the subgraph

Sλ =

{
(x, t) ∈ R≥0 × R : 0 ≤ t ≤ xλ − 1

λ
∨ 0 ≥ t ≥ xλ − 1

λ

}
and let A := {Sλ}λ∈R. Then ∆A(n) ≤ n+ 1.

Proof: We will again work with the dual subsets but in a different manner. Let

Xn := {(x1, t1) , (x2, t2) , . . . , (xn, tn)}

be any n points in R2, and we want to bound the number of sets in Xn ∩A. Now,
for each pair (xi, ti) let

T dual(xi, ti) := {λ : (xi, ti) ∈ Sλ}.

The next observation is trivial, but it is the central piece of our argument.

Claim 2.2. If Sλ1 and Sλ2 define different subsets of Xn, then for some (xi, ti) we
have that

λ1 ∈ T dual(xi, ti) 6⇔ λ2 ∈ T dual(xi, ti)

so that λ1 is in the set T dual(xi, ti) and λ2 isn’t, or viceversa.

Notice that if

λ ∈
∩
i∈I

T dual (xi, ti) ∩
∩
j 6∈I

(
R \ T dual (xj , tj)

)
,

then

Sλ ∩Xn = {(xi, ti)}i∈I .

It follows from the claim and the above observation (by an easy and insightful
argument left to the reader) that the number of sets Xn∩A is equal to the number
of non empty intersections of the sets Xn ∩ A and their complements, so that

|Xn ∩ A| =

∣∣∣∣∣∣
I ⊂ {1, . . . n} :

∩
i∈I

T dual (xi, ti) ∩
∩
j 6∈I

(
R \ T dual (xj , tj)

)
6= ∅


∣∣∣∣∣∣ .

For notation purposes, for any I ⊂ {1, . . . n}, let

BI :=
∩
i∈I

T dual (xi, ti) ∩
∩
j 6∈I

(
R \ T dual (xj , tj)

)
.

So we need to count the subsets I which give consistent (non-empty) boolean
combinations.

For any (xi, ti) let ci := inf(T dual(xi, ti)) if it exists (−∞ otherwise) and let
di := sup(T dual(xi, ti)) if it exists (∞ otherwise). The derivative of

h(λ) =
xλ − 1

λ

as a function of λ, is always positive, as one can easily verify4. Furthermore, for
x > 1, h(λ) is always positive with infimum 0, while for x < 1, h(λ) is always

4In fact, the minimum of h′(λ) is always 0, at λ = 0.
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negative with supremum 0. It follows that

T dual(xi, ti) := [ci,∞) if xi > 1, ti ≥ ln(xi),
T dual(xi, ti) := [ci, 0) ∪ (0,∞) if xi > 1, 0 < ti < ln(xi),
T dual(xi, ti) := R \ {0} if xi > 1, ti = 0,
T dual(xi, ti) := ∅ if xi > 1, ti < 0,
T dual(xi, ti) := ∅ if xi < 1, ti > 0,
T dual(xi, ti) := R \ {0} if xi < 1, ti = 0,
T dual(xi, ti) := (−∞, 0) ∪ (0, di] if xi < 1, 0 > ti > ln(xi),
T dual(xi, ti) := (−∞, di] if xi < 1, 0 > ln(xi) ≥ ti,

where all values of ci and di are finite. Let I ⊂ {1, 2, . . . , n} be any subset for which
BI 6= ∅.

Working on the set R \ {0} (disregarding the zero element) and ignoring trivial
values of the set T dual(xi, ti), we can assume that all our T dual(xi, ti) are of the
form [ci,∞) or (−∞, di]. Assume, without loss of generality, that the ci are listed
in increasing order and so are the dl: For i < i′, ci < ci′ and for l < l′, dl < dl′ .
Write Ti for T

dual(xi, ti).
If BI is non empty, i ∈ I and Ti is of the form [ci,∞), then for i′ < i and

Ti′ = [ci′ ,∞), we must have i′ ∈ I (otherwise BI would be empty). Similarly, if
l ∈ I and Tl is of the form (−∞, dl], then for l′ > l and Tl′ = (−∞, dl′ ], we must
have l′ ∈ I.

In order to define a non empty BI , we first choose i1 as the largest i such
that Ti = [ci,∞) and i ∈ I. Let i2 be the next i such that Ti = [ci,∞). Then
BI must be contained in [ci1 , ci2). If i2 does not exist, BI must be contained in
[ci1 ,∞). Let L(i1) denote the set of indices l such that Tl is of the form (−∞, dl]
and dl ∈ [ci1 , ci2). Then, BI is completely determined by choosing l1, the smallest
index l in L(i1) such that l ∈ I (certainly, a possible choice is to include no element
of L(i1) in I). For instance, if L(i1) is non-empty and l1 is chosen as the smallest
element of L(i1), then BI = [ci1 , dl1 ], while if l1 is not the smallest element of L(i1),
BI will be of the form (dl2 , dl1 ] for l2 the largest element in L(i1) smaller than l1.

Let m denote the cardinality of the set of indices such that T dual(xi, ti) is of the
form [ci,∞) and let r be the cardinality of the set of indices such that T dual(xi, ti)
is of the form (−∞, di]. From the reasoning above, it follows that the number of
choices for BI is ∑

choices of i1

(|L(i1)|+ 1).

Using that the sets L(i1) are disjoint and that the choices for i1 are m + 1 (if we
count the option that all i such that T dual(xi, ti) is of the form [ci,∞) are in Ic),
the sum above is bounded by m+ 1 + r, which is bounded by n+ 1, finishing the
proof. �

2.2. Goodness of fit to multivariate normality. In the context of testing for multi-
variate normality, Quiroz and Dudley (1991), in order to establish the asymptotic
distribution of their proposed procedure, considered the following class of functions
on Rd: Let Hm denote the (finite collection of) polynomials in an orthogonal basis
of spherical harmonics of degree up to m on the unit sphere in Rd. For h ∈ Hm,
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c ∈ Rd and A ∈ GL(d,R) let

gA,c,h =

{
h(A(x− c)/‖A(x− c)‖), for x 6= c

−C, for x = c,

with C a constant greater than supη |h(η)| (where the supremum runs over η in the

unit sphere of Rd). Let G = {gA,c,h : h ∈ Hm, c ∈ Rd, A ∈ GL(d,R)}. In Quiroz
and Dudley (1991) the metric entropy of the class G is estimated via an argument
involving VC-hull classes (a concept introduced in Dudley (1987)). The uniform
covering number bound obtained through this method, is the following:

For s = 2
(
m+d
d

)
+

(
2m+d

d

)
, and any v > 2s/(s+ 1),

supQ N2(ε,G, Q) ≤ K1 exp (K2/ε
v) . (2.1)

In particular, it was not possible to show that G was a VC-subgraph class. Now,
every polynomial is definable in the real field (R,+, ·, 0, 1), and so is the unitary
sphere, so each of the finite polynomials in Hm will be definable in the real field.
Since multiplication, subtraction, squaring and taking square roots are definable
functions, the family of the subgraphs of gA,c,h will be a uniformly definable family
in the real field, so by Theorem 1.17 it will have VC-density bounded by the number
of free parameters in the family, and in particular this proves that G is a VC-
subgraph class.

And we can do better in computing the VC-density. Adding constants to the
language does not affect o-minimality, so we can take all the parameters involved in
the polynomials in Hm, add them as constants to the real field, and apply Theorem
1.17 to this new structure. The bound we get for the VC-density of the family of
subgraphs of gA,c,h will be equal to the number of free parameters used in getting A
and c, so densVC(subgraph(G)) ≤ d2 + d, and by Corollary 1.19, G has polynomial
Lp covering number with exponent d2 + d+ η, for any positive η.

The large variability of the functions in G when ‖A(x − c)‖ approaches zero,
makes it difficult to apply the method of bounded parameter space in this case. In
Manzotti et al. (2002) the class G was modified, in order to avoid small values of
‖A(x − c)‖, at the cost of sacrificing a fraction of the sample data, and only then
a variation of the bounded parameter space method was applicable. The bound
given here shows that the original G is a VC-subgraph class, without need for data
truncation and may help in understanding the fast convergence reported in Quiroz
and Dudley (1991) and Manzotti et al. (2002) of the finite sample distribution of
the statistics proposed there to their limit distributions.

2.3. Complexity penalties in model selection. In Vapnik’s paradigm of Structural
Risk Minimization (see Vapnik (1998) and Devroye et al. (1996)) in order to choose
between regression models, a complexity penalty is applied to each model depend-
ing on estimates of the metric entropy of the family of functions associated. On
the other hand, van de Geer (2001), in a fairly general context, establishes the
relationship between the metric entropy of classes of functions and the speed of
convergence of penalized least squares estimators, in connection with model choice.
Both paradigms highlight the need for sharp estimates of metric entropy for the
classes of functions defining alternative models in regression.

For example, models of the form

Yi = η(Xt
i β) + εi, 1 ≤ i ≤ n, (2.2)
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appear in the context of generalized linear models McCullagh and Nelder (1989),
where Yi is the univariate response variable, Xi is a d-dimensional vector of covari-
ates, β is a d-dimensional parameter and εi is the random error of the model. The
function η, called the link function, is sometimes assumed to be a monotonically
increasing function within a small finite set of candidates. But in a non-parametric
setting (which we assume for now), η is only required to be a continuous non-
decreasing function with values in [0,1]. Thus, in the non-parametric setting, the
goal is to estimate a function in H, the collection of real functions on Rd of the
form η(xt β), for β ∈ Rd and η continuous and non-decreasing from R to [0, 1].

It is known that, if M denotes the collection of continuous non-decreasing func-
tions from R to [0, 1], then

C1,p

ε
≤ log sup

Q
Np(ε,M, Q) ≤ C2,p

ε

for p = 1, 2 and positive constants C1,p and C2,p (see the discussion in Gao and
Wellner (2007)). Since, clearly, covering numbers for H are larger than those for
M, we expect a relatively large metric entropy for H, and in particular, this proves
that the family of functions of the form η(xt β), for β ∈ Rd and η continuous and
non-decreasing from R to [0, 1], is not a VC-subgraph class, so one cannot expect
to have any such class definable in an o-minimal structure. In fact, if one composes
the increasing function x− sin(x) with any of the standard maps from R into [0, 1],
one can easily exhibit a function which is not definable in any o-minimal expansion
of the real field.

Still, in order to estimate η (and β) non-parametrically, one could consider a
sequence of nested models, as follows: Let H(k), k ≥ 2, denote the collection of
functions on Rd of the form ηk(x

t β), where ηk(·) is continuous and non-decreasing
from R onto [0,1] and there exist numbers a1 < a2 < · · · < ak and 0 < b1 < b2 <
· · · < bk < 1, such that, for every i ≤ k, ηk(ai) = bi, ηk is linear between (ai, bi)
and (ai+1, bi+1), for 1 ≤ i < k, while for x ≤ a1 and x ≥ ak we let

ηk(x) = B1e
c1(x−a1), for x ≤ a1 and ηk(x) = 1−Bke

−ck(x−ak), for x ≥ ak,

for positive constants B1, Bk, c1 and ck, chosen to make ηk and its derivative con-
tinuous on the set (−∞, a1] ∪ [ak,∞). It seems reasonable to believe that, for
moderate values of k, the classes H(k) will provide a good approximation to an
unknown function in H, specially when the unknown η is differentiable. And for
the H(k) the metric entropy is significantly smaller than for H, as we see next. This
implies (see van de Geer (2001)) a much faster speed of convergence to the best
approximation within each H(k).

Notice first that piecewise functions in an ordered set are very easy to define
if each of the components is definable. For instance, given ā, b̄, c1, ck, B1, Bk as
above, we can define the corresponding ηk by ηk(x) = y if and only if(

y = B1e
c1(x−a1) ∧ x ≤ a1

)
∨

k−1∨
i=1

(y = θ(x, bi, bi+1, ai, ai+1) ∧ x ∈ (ai, ai+1))

∨
(
y = 1−Bke

ck(x−ak) ∧ x ≥ ak

)
,

where θ(x, bi, bi+1, ai, ai+1) :=
(
bi + (bi+1 − bi) · x−ai

ai+1−ai

)
.
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We are using 2k + 2 parameters in defining each function ηk, which means we
will need 2k + d+ 2 parameters to define the function Yi = ηk(X

t β) (with X and
β in Rd). Thus, the functions ηk(X

t β) are uniformly definable in the o-minimal
model Rexp, and, therefore, the VC-density of the family{

subgraph
(
ηk

(
xt β

))
: a1 < a2 < · · · < ak, 0 < b1 < b2 < · · · < bk < 1,

with c1, ck, B1, Bk as defined above and β ∈ Rd

}
is bounded by the number of parameters allowed in the definition, that is 2k+2+d.
This implies, by our Corollary 1, that each H(k) has polynomial covering number,
with exponent 2k + 2 + d+ δ, for any δ > 0.

Notice also that one can change the linear functions θ, in the argument just
given, for slightly more complex functions in order to guarantee any level of differ-
entiability at the intersections (ai, bi) without raising the VC-density (and therefore
the complexity) too much. For example, using quadratic functions instead of linear,
on each interval [aj , aj+1], would raise the VC-density to 3k + d + 2, and would

allow us to make all the functions in H(k) differentiable.
In the example we have just described and the following one it would have been

somewhat unnatural to impose the assumption of total boundedness on the set of
parameters defining the functions in H(k).

2.4. Parametric estimation in Generalized Linear Models. In the same context of
generalized linear models of equation (2.2), let us move to a parametric setting
by letting η vary over all the Gaussian cummulative distribution functions, with
the mean and variance, µ and σ (as well as β), as free parameters to be esti-
mated. We can use Corollary 1.19, to estimate the complexity of this model,
as follows: If f is definable in an o-minimal expansion of R, then its antideriv-
ative (indefinite integral) belongs to the Pfaffian closure of such expansion and is
therefore definable in an o-minimal structure (recall Fact 1.14). On the other
hand, exp(−x2) is a definable function in Rexp. It follows that the Gaussian
density and its cumulative distribution function (c.d.f.) are both definable in
Ran,pfaff for any choice of the parameters µ and σ, and the family of functions
H = {η(xt β) : η is a Gaussian c.d.f., β ∈ Rd} is uniformly definable in Ran,pfaff .
Since the number of parameters involved is d + 2, using again Corollary 1.19, we
have that the class H has polynomial Lp covering number with exponent d+2+ η,
for every η > 0, uniformly on all probability laws P over the pair (X,Y ) in (2.2).

The analysis we have just outlined would hold in exactly the same manner if,
in the definition of the link function of the generalized linear model, the family of
Gaussian c.d.f. is replaced by a different parametric family of distributions whose
densities are uniformly definable, such as the Gamma family of distributions and
others.

In future work we intend to study in more detail, the use of o-minimality methods
in the context of complexity penalties for model selection.

Appendix A. VC-dimension vs VC-density

In this appendix we show that, contrary to common belief (at least within the
Asymptotic Statistics community), VC-density and VC-dimension can differ signif-
icantly over certain classes of sets.
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If we restrict ourselves to finite families, it is quite easy to get any possible
difference between VC-dimension and VC-density. For example, if we fix any k
points in our universe and define F to be the family of all subsets of these fixed k
points, then it is easy to verify that the VC-dimension is k, whereas the VC-density
is 0 (the function ∆A(n) is bounded by 2k for all n).

A.1. Finite unions of families of subsets. The finite case is of course a very artificial
way to force a difference between VC-dimension and VC-density. A more common
occurrence happens when A is the union of two families. Even at the level of the
family F of semi-planes in R2, it is easy to verify that the VC-dimension of the
upper semiplanes F+ is 2, as is the VC-dimension of the lower semiplanes F−,
whereas the VC-dimension of the union F is 3. This implies by the Sauer-Shelah
Lemma5 that

∆F+(n) ≤ (1/2)(n2 − n) + n+ 1

and

∆F−(n) ≤ (1/2)(n2 − n) + n+ 1,

so by definition of ∆,

∆F (n) ≤ ∆F+(n) + ∆F−(n) ≤ n2 + n+ 2.

When taking finite unions of families, the VC-density is the maximum of the
VC-densities of the individuals in the union whereas the VC-dimension might be
increased.

This example shows a behavior that, although it happens often in the literature,
it usually never brings the difference between VC-dimension and VC-density too
far apart:

Let F1,F2, . . . ,Fk each of VC-density N and suppose that F :=
∪
Fi has VC-

density N + l, so that for some set X of size N + l we have |X ∩ F| = 2N+l. Now,
trivially,

|X ∩ F| = |X ∩
∪

Fi| ≤
∑
i

|X ∩ Fi| ≤ k
N∑
j=0

(
N + 1

j

)
,

so that k would need to be of the order of 2l. This means that if we work with
unions of k families of sets, the VC-dimension might be increased by not more than
a factor of log(k).

A.2. A bigger difference. The final example in this section, is inspired in the finite
case, but we provide a one parameter uniformly definable family of subsets of R,
with VC-dimension N , for any N .

Fix a set of N points A := {a1, . . . , aN} in the interval (0, 1), and for each
Xi ⊂ A, let Ii be a union of subintervals of (0, 1) such that Ii ∩ A = Xi (so in
particular, we have such Ii for 1 ≤ i ≤ 2N ). Now, let Ji := i+ Ii be the shift of the
set Ii by a number of units equal to its index (so that Ji ∩ Jj = ∅ for i 6= j), let

J :=
2N∪
j=1

Ji

5A reference to the Sauer-Shelah Lemma can be found in Sauer (1972). An interesting discus-

sion about the name is available in Bottou (2011)
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and finally let

A := {x+ J}x∈R.

Then A has VC-density one (by Theorem 1.17, since it is a one parameter uni-
formly definable family in the real field) but since for any subset Xk ⊂ A by
definition Xk = (−k)+J, we have that |A∩A| = 2N , so that the VC-dimension of
A is at least N , witnessed by A.

References

M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson and S. Starchenko.
Vapnik-chervonenkis density in some theories without the independence prop-
erty, i. ArXiv Mathematics e-prints (2011). arXiv: 1109.5438.
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