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Abstract. In this work we are considering the behaviour of the limit shape of
Young diagrams associated to random permutations on the set {1, . . . , n} under a
particular class of multiplicative measures with polynomial growing cycle weights.
Our method is based on generating functions and complex analysis (saddle point
method). We show that fluctuations near a point behave like a normal random
variable and that the joint fluctuations at different points of the limiting shape
have an unexpected dependence structure. We will also compare our approach
with the so-called randomization of the cycle counts of permutations and we will
study the convergence of the limit shape to a continuous stochastic process.

1. Introduction and main results

The aim of this paper is to study the limit shape of a random permutation under
the generalised Ewens measure with polynomially growing cycle weights and the
fluctuations at each point of the limit shape. The study of such objects has a long
history, which started with the papers of Temperley (1952) and Vershik (1996).
Later on Young diagrams have been approached under a different direction, as in
the independent works of Veršik and Kerov (1977) and Logan and Shepp (1977),
which first derived the limit shape when the underpinned measure on partitions
is the so-called Plancherel measure. We will not handle this approach here, even
though it presents remarkable connections with random matrix theory and random
polymers, among others (see for example Deift (2000)).
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We first specify what we define as the limit shape of a permutation. We denote
by Sn the set of permutations on n elements and write each permutation σ ∈ Sn

as σ = σ1 · · ·σ` with σj disjoint cycles of length λj . Disjoint cycles commute and
we thus can assume λ1 ≥ λ2 ≥ · · · ≥ λ`. This assigns to each permutation σ ∈ Sn

in a unique way a partition of n and this partition λ = (λ1, λ2, . . . , λ`) is called
the cycle type of σ. We will indicate that λ is such a partition with the notation
λ ` n. We define the size |λ| :=

∑
i λi (so obviously if λ ` n then |λ| = n). λ

features a nice geometric visualisation by its Young diagram Υλ. This is a left- and
bottom-justified diagram of ` rows with the j−th row consisting of λj squares, see
Figure 1.1(a). It is clear that the area of Υλ is n if λ ` n. After introducing a

(a) The Young diagram (b) The shape function wn(·)

Figure 1.1. Illustration of the Young diagram and the shape of
σ = (3578)(129)(4)(6) ∈ S9

coordinate system as in Figure 1.1(b), we see that the upper boundary of a Young
diagram Υλ is a piecewise constant and right continuous function wn : R+ → N
with

wn(x) :=
n∑

j=1

1{λj≥x} (1.1)

The cycle type of a permutation becomes a random partition if we endow the space
Sn with a probability measure Pn. What we are then interested in studying is
the now random shape wn(·) as n → +∞, and more specifically to determine its
limit shape. The limit shape with respect to a sequence of probability measures Pn

on Sn (and sequences of positive real numbers An and Bn with An · Bn = n) is
understood as a function w∞ : R+ → R+ such that for each ε, δ > 0

lim
n→+∞

Pn

[{
σ ∈ Sn : sup

x≥δ
|A−1

n wn(Bnx)− w∞(x)| ≤ ε

}]
= 1. (1.2)

The assumption An·Bn = n ensures that the area under the rescaled Young diagram
is 1. One of the most frequent choices is An = Bn = n1/2, but we will see that it’s
useful to adjust the choice of An and Bn to the measures Pn. Equation (1.2) can be
viewed as a law of large numbers for the process wn(·). The next natural question



Limit shape of random permutations 973

is then whether fluctuations satisfy a central limit theorem, namely whether

Anwn(Bnx)− w∞(x)

converges (after centering and normalization) in distribution to a Gaussian process
on the space of càdlàg functions, for example. Of course the role of the probability
distribution with which we equip the set of partitions will be crucial to this end.

In this paper, we work with the following measure on Sn:

Pn [σ] =
1

hnn!

∏̀
j=1

ϑλj . (1.3)

where (λ1, . . . , λ`) is the cycle type of σ, (ϑm)m≥1 is a sequence of non-negative
weights and hn is a normalization constant (h0 is defined to be 1). From time to
time we will also use ϑ0 := 0 introduced as convention.

This measure has recently appeared in mathematical physics for a model of the
quantum gas in statistical mechanics and has a possible connection with the Bose-
Einstein condensation (see e.g. Betz et al. (2011) and Ercolani and Ueltschi (2011)).
Classical cases of this measure are the uniform measure (ϑm ≡ 1) and the Ewens
measure (ϑm ≡ ϑ). The uniform measure is well studied and has a long history (see
e.g. the first chapter of Arratia et al. (2003) for a detailed account with references).
The Ewens measure originally appeared in population genetics, see Ewens (1972),
but has also various applications through its connection with Kingman’s coalescent
process, see Hoppe (1987). The measure in (1.3) also has some similarities to
multiplicative measure for partitions, see for instance Bogachev (2015). It is clear
that we have to make some assumptions on the sequence (ϑm)m≥1 to be able to
study the behaviour as n → +∞. We use in this paper the weights ϑm

ϑm = (logm)j
mα

Γ(α+ 1)
+O

(
mβ
)
, j ∈ N (1.4)

with some α > 0 and 0 ≤ β < α/2. We would like to point out that the require-
ment 0 ≤ β < α/2 and the normalisation constant Γ(α + 1) are not essential and
it only simplifies the notation and the computations. In fact we can study without
further mathematical problems the case ϑm ∼ const.(logm)jmα, see Remark 4.12.
We get

Theorem 1.1. We define

n∗ := (1 + α)−j

(
n

(log n)
j

) 1
α+1

and n =
n

n∗ = (1 + α)jn

(
n

(log n)
j

)− 1
α+1

.

(1.5)

We then have

(1) The limit shape exists for the process wn(x) as n → ∞ with respect to Pn

and the weights in (1.4) with the scaling An = n and Bn = n∗. The limit
shape is given by

ws
∞(x) :=

Γ(α, x)

Γ(α+ 1)
,

where Γ(α, x) denotes the upper incomplete Gamma function.
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(2) The fluctuations at a point x of the limit shape behave like

w̃s
n(x) :=

wn(xn
∗)− n (ws

∞(x) + zsn(x))

(n)1/2
L−→ N

(
0, σ2

∞(x)
)

with

σ2
∞(x) :=

Γ(α, x)

Γ(α+ 1)
− Γ(α+ 1, x)2

2Γ(α+ 1)Γ(α+ 2)

and zsn(x) = o (1).

Remark 1.2. The expectation of ws
∞ can be expanded asymptotically also to terms

of lower order with the same argument, in particular we will see it is possible to
give a more explicit expression for zsn. This will actually be important in the proof
of Thm. 3.7. We will see that our computation gives zsn = O(1/ log n) for j ≥ 1
(and thus zsn can not be dropped from the statement of the Theorem). As we do
not need zsn explicitly for our argumentation and the expression for zsn is rather
complicated, we decided to omit it.

Theorem 1.1 was already obtained in the special case j = 0, i.e. ϑm ∼ mα,
by Erlihson and Granovsky (2008) in the context of Gibbs distributions on integer
partitions and as we were writing the present paper, we were made aware of their

work. To be precise, one can push forward the measure Pn to a measure P̃n on the
set of partitions of n with

P̃n[λ] =
1

h̃nn!

n∏
k=1

1

Ck!

(
ϑk

k

)Ck

, (1.6)

where λ is a partition of n and Ck is the number of parts of length k (see Section 2.1).
These Gibbs distributions have been treated extensively in the literature (Betz et al.
(2011), Ercolani and Ueltschi (2011) for example). One thus can work with Pn or

with P̃n. We prefer here to use Pn.
The argumentation of Erlihson and Granovsky (2008) is stochastic and is based

on randomisation: this technique has been successfully introduced by Fristedt
(1993) and used also in particular by Bogachev (2015) as a tool to investigate
combinatorial structures, and later applied in many contexts. However, the ap-
proach in this paper is slightly different and based on complex analysis and uses
the saddle-point method as described in Section 4. This method was used in Er-
colani and Ueltschi (2011) and Maples et al. (2012) and an introduction can be
found for instance in Flajolet and Sedgewick (2009, Section VIII). Therefore two
limit shapes will appear in this paper, denoted by the superscript r and s respec-
tively for randomization and saddle point method, to indicate by means of which
method they were obtained. We will see in the end that they coincide. Our Ansatz
enables us to reprove Theorem 1.1, but with two big advantages. First, our compu-
tations are much simpler than the one in Erlihson and Granovsky (2008). Second,
we get almost for free large deviations estimates. More precisely

Proposition 1.3. We have for all a = O (n) and δ = O
(
(n)−1/2

)
P [|w̃s

n(x)− a| < ε] =
(
1− ε−2(1 + δ)

)
exp

(
−a2/2 +O (δ + εa)

)
.

The error terms are absolute.
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We prove this by studying the cumulant generating function

Λ̃(s) := logEn

[
exp
(
sw̃s

n(x)
)]

. (1.7)

This is an important difference to Erlihson and Granovsky (2008). Erlihson and

Granovsky directly consider the distribution of w̃s
n(x) and studying Λ̃(s) with their

method is computationally harder. In fact, we can compute the behaviour of all
cumulants.

Theorem 1.4. Let s∗ = s(n)−
1
2 and

Λ(s) := En

[
exp
(
−s∗wn(xn

∗)
)]

=
∑
m≥1

qm
sm

m!
. (1.8)

We then have for m ≥ 2

qm = κm(1 + o(1)) (1.9)

with

κm = (n)1−
m
2 [sm]

[(
1− s

Γ(α+ 1, x)

Γ(α+ 2)

)−α

+ (e−s − 1)

∞∑
k=0

sk

k!

Γ(α+ k, x)

Γ(α+ 1)

(
−Γ(α+ 1, x)

Γ(α+ 2)

)k
]
. (1.10)

We give the proofs of Theorem 1.1, Theorem 1.4 and Proposition 1.3 in Sec-
tion 4.2. Furthermore, we introduce in Section 3 the so called grand canonical
ensemble (Ωt,Pt) with Ωt =

.
∪n≥1 Sn and Pt a measure such that Pt[ · |Sn] = Pn[ · ]

(see (3.2)). One might expect that the behaviour on grand canonical ensembles
agrees with the behaviour on the canonical ensembles, but we will see here that
this is only the case for macroscopic properties. More precisely, we will see in The-
orem 3.8 that wn(x) has a limit shape for the grand canonical ensemble Ωt and
this agrees with the one for the canonical ensemble in Theorem 1.1. However, we
will see also in Theorem 3.8 that the fluctuations at the points of the limit shape
follow a different central limit theorem than in Theorem 1.1. Notice that we will
not deduce Theorem 1.1 (nor any other of our results) from the grand canonical
ensemble (Ωt,Pt).

2. Preliminaries

We introduce in this section the notation for the cycle counts and the notation
for generating functions.

2.1. Cycle counts. The notation λ = (λ1, λ2, . . . , λ`) is very useful for the illustra-
tion of λ via its Young diagram, but in the computations it is better to work with
the cycle counts Ck. These are defined as

Ck(σ) = Ck := # {j ≥ 1;λj = k} (2.1)

for k ≥ 1 and λ = (λ1, λ2, . . . , λ`) the cycle type of σ ∈ Sn. Conventionally C0 := 0.
We obviously have for k ≥ 1

Ck ≥ 0 and
n∑

k=1

kCk = n. (2.2)
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It is also clear that the cycle type of permutation (or a partition) is uniquely
determined by the vector (C1, C2, . . . ). The function wn(x) and the measure Pn [ · ]
in (1.1) and (1.3) can now be written as

wn(x) =
∑
k≥x

Ck and Pn [σ] =
1

hnn!

n∏
k=1

ϑCk

k . (2.3)

Our aim is to study the behaviour of wn(x) as n → ∞. It is thus natural to consider
the asymptotic behaviour of Ck with respect to the measure Pn [ · ].

Lemma 2.1 (Ercolani and Ueltschi (2011), Corollary 2.3). Under the condition
hn−1/hn → 1 the random variables Ck converge for each k ∈ N in distribution to

a Poisson distributed random variable Yk with E [Yk] =
ϑk

k . More generally for all
b ∈ N the following limit in distribution holds:

lim
n→+∞

(C1, C2 . . . , Cb) = (Y1, Y2 . . . , Yb)

with Yk independent Poisson random variables with mean E [Yk] =
ϑk

k .

One might expect at this point that wn(x) is close to
∑n

k=x Yk. Unfortunately we
will see in Section 4 that the asymptotic behaviour of wn(x) is more complicated.

2.2. Generating functions. The (ordinary) generating function of a sequence(gk)k≥0

of complex numbers is defined as the formal power series

g(z) :=
∞∑
j=0

gkz
k. (2.4)

As usual, we define the extraction symbol [zk] g(z) := gk, that is, as the coefficient
of zk in the power series expansion (2.4) of g(z).

A generating function that plays an important role in this paper is

gΘ(t) :=
∑
m≥1

ϑm

m
tm. (2.5)

As mentioned in the introduction, we will use ϑm = mα(logm)j

Γ(α+1) + O
(
mβ
)
, j ∈ N.

We stress that generating functions of the type (1− t)−α fall also in this category,
and for them we will recover the limiting shape as previously done in Erlihson and
Granovsky (2008). We will see in particular this case in Section 4.
The reason why generating functions are useful is that it is often possible to write
down a generating function without knowing gn explicitly. In this case one can
try to use tools from analysis to extract information about gn, for large n, from
the generating function. It should be noted that there are several variants in the
definition of generating functions. However, we will use only the ordinary generating
function and thus call it ‘just’ generating function without risk of confusion.

The following well-known identity is a special case of the general Pólya’s Enu-
meration Theorem Pólya (1937, p. 17) and is the main tool in this paper to obtain
generating functions.
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Lemma 2.2. Let (am)m∈N be a sequence of complex numbers. We then have as
formal power series in t∑

n∈N

tn

n!

∑
σ∈Sn

n∏
j=1

a
Cj

j =
∑
n∈N

tn
∑
λ`n

1

zλ

∞∏
k=1

aCk

k = exp

∑
m≥1

am
m

tm


where zλ :=

∏n
k=1 k

CkCk!. If one series converges absolutely, so do the others.

We omit the proof of this lemma, but details can be found for instance in Mac-
donald (1995, p. 5).

2.3. Approximation of sums. We require for our argumentation the asymptotic be-
haviour of the generating function gΘ(t) as t tends to the radius of convergence,
which is 1 in our case.

Lemma 2.3. Let (vn)n∈N a sequence of positive numbers with vn ↓ 0 as n → +∞.
We have for all δ ∈ R \ {−1, −2, −3, . . . }

∞∑
k=1

kδe−kvn = Γ(δ + 1)v−δ−1
n + ζ(−δ) +O(vn). (2.6)

ζ(·) indicates the Riemann Zeta function. Furthermore, we have for j ∈ N
∞∑
k=1

(log k)jkδe−kvn = v−δ−1
n

(
∂

∂δ
− log vn

)j

Γ(δ + 1) +O(1). (2.7)

We indicate
(

∂
∂δ − log vn

)j
f(δ) = ∂j

∂δj f(δ)− j log vn
∂j−1

∂δj−1 f(δ) +
((

j
2

))
(log vn)

2

∂j−2

∂δj−2 f(δ) + . . .+ (− log vn)
j
f(δ).

This lemma can be proven with Euler Maclaurin summation formula or with the
Mellin transformation. The computations with Euler Maclaurin summation are
straightforward and the details of the proof with the Mellin transformation can be
found for instance in Flajolet and Sedgewick (2009, Chapter VI.8). We thus omit
it.

We require also the behaviour of partial sum
∑∞

k=x
θm
m tm as x → ∞ and as

t → 1. We have

Lemma 2.4 (Approximation of sums). Let j ∈ N and vn, zn be given with zn →
+∞ and znvn = x(1 + q̃n) for x > 0 and q̃n → 0. We then have for all δ ∈ R and
all ` ∈ N

∞∑
k=bznc

(log k)jkδe−kvn =
(zn
x

)δ+1
(∑̀

k=0

(
∂

∂δ
+ log

zn
x

)j
Γ(δ + k + 1, x)

k!
(−q̃n)

k

)

+O

((
log
(zn
x

))j
q̃`+1
n +

(zn
x

)δ (
log
(zn
x

))j)
with Γ(a, x) :=

∫ +∞
x

sa−1e−sds the incomplete Gamma function.

Remark 2.5. One can obtain more error terms by using the Euler Maclaurin sum-
mation formula with more derivatives. We have given in Appendix A a formulation
of the Euler Maclaurin summation formula with non-integer boundaries, which is
more suitable for this computation than the usual one. Our primary interest is in
the leading coefficient, hence we state the result only up to order zδn. However, the
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lower order terms can not be completely ignored. In particular they play an impor-
tant role for the expectation of En [w

s
∞(x)] in Theorem 1.1 since there are, beside

the leading term nws
∞(x), also other terms in the asymptotic expansion which are

not o
(
(n)1/2

)
.

Proof : B1(x) := x− 1
2 stands in the proof for the first Bernoulli polynomial. The

proof of this lemma is based on the Euler Maclaurin summation formula, see Apostol
(1999) or Apostol (1976, Theorem 3.1). We use here the following version: let
f : R+ → R have a continuous derivative and suppose that f and f ′ are integrable.
Then

∑
k≥bcc

f(k) =

∫ +∞

c

f(s) ds−B1(c− bcc)f(c) +
∫ +∞

c

B1(s− bsc)f ′(s) ds. (2.8)

We substitute f(s) := (log s)jsδe−svn , c := zn and notice that f and all its deriva-
tives tend to zero exponentially fast as s → +∞. We begin with the first integral.
Now by the change of variables s := zn

x y∫ +∞

zn

(log s)jsδe−vnsds =
(zn
x

)δ+1
∫ +∞

x

(
log y + log

zn
x

)j
yδe−ye−q̃nydy =

=
(zn
x

)δ+1
(

∂

∂δ
+ log

zn
x

)j ∫ +∞

x

yδe−ye−q̃nydy =

=
(zn
x

)δ+1
((

∂

∂δ
+ log

zn
x

)j ∑̀
k=0

Γ(δ + k + 1, x)

k!
(−q̃n)

k
+O

(
q̃`+1
n

))
(2.9)

where we have swapped integral and series expansion of the exponential by Fu-
bini’s theorem. This gives the behaviour of the leading term in (2.8) with f(s) :=
(log s)jsδe−svn . The remaining terms can be estimated with a similar computations
and using that B1(s− bsc) is bounded.

�

3. Randomization

We introduce in this section a probability measure Pt [ · ] on
.
∪n≥1 Sn, where

.
∪

denotes the disjoint union, dependent on a parameter t > 0 with Pt [ · |Sn] = Pn [ · ]
and consider the asymptotic behaviour of wn(x) with respect to Pt [ · ] as t → 1.

3.1. Grand canonical ensemble. Computations on Sn can turn out to be difficult
and many formulas can not be used to study the behaviour as n → ∞. A possi-
ble solution to this problem is to adopt a suitable randomization. This has been
successfully introduced by Fristedt (1993) and used also by Bogachev (2015) as a
tool to investigate combinatorial structures, and later applied in many contexts.
The main idea of randomization is to define a one-parameter family of probability
measures on

.
∪n≥1 Sn for which cycle counts turn out to be independent. Then one

is able to study their behaviour more easily, and ultimately the parameter is tuned
in such a way that randomized functionals are distributed as in the non-randomized
context. Let us see how to apply this in our work. We define

GΘ(t) = exp
(
gΘ(t)

)
(3.1)
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with gΘ(t) as in (2.5). If GΘ(t) is finite for some t > 0, then for each σ ∈ Sn let us
define the probability measure

Pt [σ] :=
1

GΘ(t)

tn

n!

n∏
k=1

ϑCk

k . (3.2)

Lemma 2.2 shows that Pt is indeed a probability measure on
.
∪n≥1 Sn. The induced

distribution on cycle counts Ck can easily be determined.

Lemma 3.1. Under Pt [ · ] the Ck’s are independent and Poisson distributed with

Et [Ck] =
ϑk

k
tk.

Proof : From Pólya’s enumeration theorem (Lemma 2.2) we obtain

Et

[
e−sCk

]
=

∑
n≥0

∑
σ∈Sn

e−sCkPt [σ] =
1

GΘ(t)

∑
n≥0

∑
σ∈Sn

tn

n!
(ϑke

−s)Ck

∏
j≤(nk)6=k

(ϑj)
Cj

=
1

GΘ(t)
exp

+∞∑
j=0

ϑj

j
tj

 exp

((
e−s − 1

) ϑk

k
tk
)

= exp

((
e−s − 1

) ϑk

k
tk
)
.

Analogously one proves the pairwise independence of cycle counts. �

Obviously the following conditioning relation holds:

Pt [ · |Sn] = Pn [ · ] .

A proof of this fact is easy and can be found for instance in Hansen (1990, Equation
(1)). We note that wn(x) is Pt-a.s. finite, since Et [wn(x)] < +∞. Now since the
conditioning relation holds for all t with GΘ(t) < +∞, one can try to look for t
satisfying “Pn [ · ] ≈ Pt [ · ]”, which heuristically means that we choose a parameter
for which permutations on Sn weigh as most of the mass of the measure Pt. We
have on Sn

n =
∑̀
j=1

λj =
n∑

k=1

kCk.

A natural choice for t is thus the solution of

n = Et

[ ∞∑
k=1

kCk

]
=

∞∑
k=1

ϑkt
k. (3.3)

which is guaranteed to exist if the series on the right-hand side is divergent at
the radius of convergence (we will see this holds true for our particular choice
of weights). We write t = e−vn and use Lemma 2.3 (in our case setting ϑk =
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(log k)
j kα+O(kβ)

Γ(α+1) ) to obtain

n
!
=

v−α−1
n

Γ(α+ 1)

(
∂

∂α
− log vn

)j

Γ(α+ 1) +O (1)

=
v−α−1
n

Γ(α+ 1)

(
∂

∂α
− log vn

)j

Γ(α+ 1) +O (1)

=⇒ vn =

(
(log n)

j

n

)1/(α+1)

+ o

(
n

(log n)
j

)
. (3.4)

We will fix this choice for the rest of the section.

3.2. Limit shape and mod-convergence. In order to derive our main results from
the measure Pt we will use a tool developed by Kowalski and Nikeghbali (2010),
the mod-Poisson convergence.

Definition 3.2. A sequence of random variables (Zn)n∈N converges in the mod-
Poisson sense with parameters (µn)n∈N if the following limit

lim
n→+∞

exp(µn(1− eiu))E
[
eiuZn

]
= Φ(u)

exists for every u ∈ R, and the convergence is locally uniform. The limiting function
Φ is then continuous and Φ(0) = 1.

This type of convergence gives stronger results than a central limit theorem,
indeed it implies a CLT (and other properties we will see below). For the rest of
the Section let us fix n∗ and n as in (1.5). We obtain

Proposition 3.3. Let x ≥ 0 be arbitrary and x∗ := xn∗. Furthermore, let t = e−vn

with vn as in (3.4). Then the random variables (wn(x
∗))n∈N converge in the mod-

Poisson sense with parameters

µn = nwr
∞(x) + o

(
(n)1/2

)
,

where

wr
∞(x) :=

Γ(α, x)

Γ(α+ 1)
. (3.5)

Γ(α, x) is the upper incomplete Gamma function.

Proof : We have

Et

[
eıswn(x

∗)
]
= Et

[
eıs

∑∞
`=bx∗c C`

]
= exp

(eıs − 1)
∞∑

`=bx∗c

ϑ`

`
t`

 . (3.6)

This is the characteristic function of Poisson distribution. We thus obviously have
mod-Poisson convergence with limiting function Φ(t) ≡ 1. It remains to compute
the parameter µn. Applying Lemma 2.3 for x = 0 and Lemma 2.4 for x > 0
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together with (3.4) gives

+∞∑
`=bx∗c

((log `)
j
)`α−1 +O

(
`β−1

)
Γ(α+ 1)

t`

=
1

Γ(α+ 1)
(n∗)

α

(
∂

∂α
− log n∗

)j

(Γ(α, x) + o (1))

=
1

Γ(α+ 1)
(n∗)

α
(log n∗)

j
(
Γ(α, x) + o

(
(n∗)α (log n∗)

j
))

=
Γ(α, x)

Γ(α+ 1)
n+O (n̄) . (3.7)

We deduce that µn := nwr
∞(x) + o (n). This completes the proof. �

This yields a number of interesting consequences. In first place we can prove a
CLT and detect the limit shape accordingly.

Corollary 3.4 (CLT and limit shape for randomization). With the notation as
above, we have as n → ∞ with respect to Pt

w̃r
n(x) :=

wn(x
∗)− nwr

∞(x)√
n̄

L→ N (0, wr
∞(x)). (3.8)

Furthermore the limit shape of wn(x) is given by wr
∞(x) (with scaling An = n and

Bn = n∗, see (1.2)). In particular, we can choose δ = 0 in (1.2).

Proof : The CLT follows immediately from Kowalski and Nikeghbali (2010, Prop.
2.4), but also can be deduced easily from (3.6) by replacing s by s(n̄)−1/2. It is also
straightforward to show that wr

∞(x) is the limit shape. For a given ε > 0, we choose
0 = x0 < x1 < · · · < x` such that wr

∞(xj+1)− wr
∞(xj) < ε/2 for 1 ≤ j ≤ `− 1 and

wr
∞(x`) < ε/2. It is now easy to see that for each x ∈ R+

|(n)−1wn(x
∗)− wr

∞(x)| > ε =⇒ ∃j with |(n)−1wn(x
∗
j )− wr

∞(xj)| > ε/2.

Thus

Pt

[
sup
x≥0

|nwn(x
∗)− wr

∞(x)| ≥ ε

]
≤
∑̀
j=1

Pt

[
|nwn(x

∗
j )− wr

∞(xj)| ≥ ε/2
]
. (3.9)

It now follows from (3.8) that each summand in (3.9) tends to 0 as n → ∞. This
completes the proof. �

Another by-product of mod-Poisson convergence of a sequence (Zn)n∈N is that
one can approximate Zn with a Poisson random variable with parameter µn, see
Kowalski and Nikeghbali (2010, Prop. 2.5). However in our situation this is trivial
since wn(x

∗) is already Poisson distributed.
As we are going to do in the next section, we are also interested in the (joint)

behaviour of increments.

Proposition 3.5. For all x, y ∈ R, y > x, set

wn(x, y) := wn(x)− wn(y) and wr
∞(x, y) :=

Γ(α, x)− Γ(α, y)

Γ(α+ 1)
.
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Then

w̃r
n(x, y) :=

wn(x
∗, y∗)− n̄wr

∞(x, y)

(n̄)
1/2
√
wr

∞(x, y)

L→ N (0, 1) (3.10)

as n → ∞ with x∗ := xn∗ and with y∗ := yn∗.
Furthermore, w̃r

n(x) and w̃r
n(x, y) are asymptotically independent.

Remark 3.6. As we will see, the proof of independence relies on the independence
of cycles coming from Lemma 3.1. Therefore it is easy to generalize the above result
to more than two points.

Proof : The proof of (3.10) is almost the same as the proof of (3.8) and we thus
omit it. Since

wn(x, y) =

y∗−1∑
k=x∗

Ck and wn(y) =
∞∑

k=y∗

Ck

and all Ck are independent, we have that w̃r
n(x) and w̃r

n(x, y) are independent for
each n ∈ N. Thus w̃r

n(x) and w̃r
n(x, y) are also independent in the limit. �

3.3. Functional CLT. The topic of this section is to prove a functional CLT for the
profile wn(x) of the Young diagram. Similar results were obtained in a different
framework by Hansen (1990); DeLaurentis and Pittel (1985) on the number of cycle
counts not exceeding nbxc, and by Beltoft et al. (2012) for Young diagrams confined
in a rectangular box. We show

Theorem 3.7. The process w̃r
n : R+ → R (see (3.8)) converges weakly with respect

to Pt as n → ∞ to a continuous process w̃r
∞ : R+ → R with w̃r

∞(x) ∼ N (0, σr
∞(x))

and independent increments.

The technique we will exploit is quite standardized (see Hansen (1990)). We
remark that, unlike in this paper where the Ewens measure is considered, we do
not obtain here a Brownian process, as the variance of w̃r

∞(t)− w̃r
∞(s) for r ≥ s is

more complicated than in the case of the Wiener measure.
We know from Proposition 3.5 the finite dimensional marginals of the process.

More specifically we have for x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0 that

(n)−α/2
(
wn(x

∗
` ), wn(x

∗
`−1)− wn(x

∗
` ), . . . , wn(x

∗
1)− wn(x

∗
2)
)
∼ N (0,Σ′) (3.11)

where Σ′ is a diagonal matrix with

Σ′
11 = wr

∞(x`) and Σ′
jj = wr

∞(x`−j+1, x`−j+2) for j ≥ 2.

Now all we need to show to complete the proof of Theorem 3.7 is the tightness
of the process w̃r

n. In order to do so, we will proceed similarly to Hansen (1990),
namely we will show that

Lemma 3.8. We have for 0 ≤ x1 < x ≤ x2 < K with K arbitrary

Et

[
(w̃r

n(x
∗)− w̃r

n(x
∗
1))

2(w̃r
n(x

∗
2)− w̃r

n(x
∗))2

]
= O

(
(x2 − x1)

2
)

(3.12)

with x∗ := xn∗, x∗
1 := x1n

∗ and x∗
2 := x2n

∗.

Lemma 3.8 together with Billingsley (1999, Theorem 15.6) implies that the pro-
cess w̃r

n is tight. This and the marginals in (3.11) prove Theorem 3.7.
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Proof of Lemma 3.8: We define

E∗ := Et

[
(w̃r

n(x
∗)− w̃r

n(x
∗
1))

2(w̃r
n(x

∗
2)− w̃r

n(x
∗))2

]
. (3.13)

The independence of the cycle counts leads us to

E∗ =

x∗−1∑
k=x∗

1

(n̄)−1 θk
k
tk

 ·

x∗
2−1∑

k=x∗

(n̄)−1 θk
k
tk


Lem. 2.4∼

(
(n̄)−1

Γ(α+ 1)

∫ x∗

x∗
1

(log t)jtα−1e−tdt

)
(

(n̄)−1

Γ(α+ 1)

∫ x∗
2

x∗
(log t)jtα−1e−tdt

)

=

(
(n̄)

−1 ( n̄
n

)−α (− log
(
n̄
n

))j
(Γ(α, x1)− Γ(α, x))

Γ(α+ 1)

)
(
(n̄)

−1 ( n̄
n

)−α (− log
(
n̄
n

))j
(Γ(α, x)− Γ(α, x2))

Γ(α+ 1)

)
+ o (1)

= O ((x− x1)(x2 − x)) = O
(
(x2 − x1)

2
)
.

Here we have used the fact that Γ(α, ·) is a Lipschitz function and the assumption

that x1 < x ≤ x2 < K. Also note that (n̄)
−1 ( n̄

n

)−α
(− log

(
n̄
n

)
)j = O (1) . �

4. Saddle point method

The aim of this section is to study the asymptotic behaviour of wn(x) with
respect to Pn [·] as n → ∞ and to compare the results with the results in Section 3.

There are at least two approaches with which to tackle this problem: one is more
probabilistic and was employed by Erlihson and Granovsky (2008) in their paper.
The second one was first developed in Maples et al. (2012) from the standard saddle
point method.
The first method to study the asymptotic statistics of wn(x) with respect to Pn [·]
as n → ∞ is the so called Khintchine method. We illustrate this method briefly
with the normalisation constant hn (see (1.3)). The first step is to write down a
Khintchine’s type representation for the desired quantity. For hn this is given by

hn = t−nexp

(
n∑

k=1

ϑk

k
tk

)
Pt

[
n∑

k=1

kCk = n

]
(4.1)

with t > 0 and Pt [ · ] as in Section 3. The second step is to choose the free parameter
t in such a way that Pt [

∑n
k=1 kCk = n] gets large. Here one can choose t to be the

solution of the equation
∑n

k=1 ϑkt
k = n.

This argumentation is very close to the argumentation relying on complex anal-
ysis and generating functions. Indeed, it is easy to see that (4.1) is equivalent
to

hn = [tn] [exp (gΘ(t))] (4.2)
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with gΘ(t) as in (2.5). Furthermore, the choice of t is (almost) the solution of the
saddle point equation tg′Θ(t) = n. We have of course to justify (4.2) (or (4.1)). But
this follows immediately from the definition of hn and Lemma 2.2.

We prefer at this point to work with the second approach. We begin by writing
down the generating functions of the quantities we would like to study.

Lemma 4.1. We have for x ≥ 0 and s ∈ R

En

[
exp
(
−swn(x)

)]
=

1

hn
[tn]

exp
gΘ(t) + (e−s − 1)

∞∑
k=bxc

ϑk

k
tk

 . (4.3)

Remark 4.2. Although the expressions in Lemmas 4.1 and 4.3 hold in broader gen-
erality, starting from Subsection 4.1 we will calculate moment generating functions
on the positive half-line, namely we can assume all parameters s1, . . . , s` etc to be
non-negative, according to Chareka (2007, Theorem 2.2).

Proof : It follows from the definitions of Pn [ · ] and wn(x) (see (2.3)) that

hnEn

[
exp
(
−swn(x)

)]
=

1

n!

∑
σ∈Sn

exp

−s

n∑
k=bxc

Ck

 n∏
k=1

ϑCk

k (4.4)

=
1

n!

∑
σ∈Sn

bxc−1∏
k=1

ϑCk

k

∞∏
m=bxc

(ϑke
−s)Ck .

Applying now Lemma 2.2, we obtain

∞∑
n=0

tn

n!
hnEn

[
exp
(
−swn(x)

)]
= exp

bxc−1∑
k=1

ϑk

k
tk + e−s

∞∑
k=bxc

ϑk

k
tk

 (4.5)

= exp

gΘ(t) + (e−s − 1)
∞∑

k=bxc

ϑk

k
tk

 . (4.6)

Equation (4.3) now follows by taking [tn] on both sides. �

We are also interested in the joint behaviour at different points of the limit
shape. The results in Section 3 suggest that the increments of wn(xj+1)− wn(xj)
are independent for x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0. It is thus natural to consider

wn(x) =
(
wn(x`), wn(x`−1)− wn(x`), . . . , wn(x1)− wn(x2)

)
. (4.7)

We obtain

Lemma 4.3. We have for x = (x1, . . . , x`) ∈ R` with x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0
and s = (s1, . . . , s`) ∈ R`

En

[
exp
(
−〈s,wn(x)〉

)]
=

1

hn
[tn]

exp
gΘ(t) +

∑̀
j=1

(e−sj − 1)

bxj+1−1c∑
k=bxjc

ϑk

k
tk


(4.8)

with the convention x`+1 := +∞. The proof of this lemma is almost the same
as for Lemma 4.1 and we thus omit it.
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4.1. Log-n-admissibility. The approach with which we first addressed the study of
the limit shape is derived from the saddle point method for approximating integrals
in the complex plane. We want to introduce the definition of log-n-admissible
function, generalizing the analogous concept introduced in Maples et al. (2012). We
stress that here, in comparison to the definition of log- (or equivalently Hayman)
admissibility used there, we consider a family of functions parametrized by n for
which log-admissibility holds simultaneously. The definition is therefore a natural
extension.

Definition 4.4. Let
(
gn(t)

)
n∈N with gn(t) =

∑∞
k=0 gk,nt

k be given with radius of

convergence ρ > 0 and gk,n ≥ 0. We say that
(
gn(t)

)
n∈N is log-n-admissible if there

exist functions an, bn : [0, ρ) → R+, Rn : [0, ρ)× (−π/2, π/2) → R+ and a sequence
(δn)n∈N s. t.

Saddle-point: For each n there exists rn ∈ [0, ρ) with

an(rn) = n (4.9)

Approximation: For all |ϕ| ≤ δn we have the expansion

gn(rne
ıϕ) = gn(rn) + ıϕan(rn)−

ϕ2

2
bn(rn) +Rn(rn, ϕ) (4.10)

where Rn(rn, ϕ) = o(ϕ3δ−3
n ).

Divergence: bn(rn) → ∞ and δn → 0 as n → ∞.
Width of convergence: We have δ2nbn(rn)− log bn(rn) → +∞ as n → +∞.
Monotonicity: For all |ϕ| > δn, we have

Re (gn(rne
ıϕ)) ≤ Re

(
g(rne

±ıδn)
)
. (4.11)

The approximation condition allows us to compute the functions an and bn
exactly. We have

an(r) = rg′n(r), (4.12)

bn(r) = rg′n(r) + r2g′′n(r). (4.13)

Clearly an and bn are strictly increasing real analytic functions in [0, ρ). The error
in the approximation can similarly be bounded, so that

Rn(r, ϕ) = ϕ3O
(
rg′n(r) + 3r2g′′n(r) + r3g′′′n (r)

)
.

Having proved Lemma 4.1 we are now able to write down in a more explicit way
generating functions. What we are left with is trying to extract the coefficients of
the expansion given therein. This is the content of

Theorem 4.5. Let
(
gn(t)

)
n∈N be log-n-admissible with associated functions an, bn

and constants rn. Call
Gn := [tn]egn(t).

Then Gn has the asymptotic expansion

Gn =
1√
2π

(rn)
−nbn(rn)

−1/2egn(rn)(1 + o(1)). (4.14)

Remark 4.6. As it is explained in Flajolet and Sedgewick (2009, Chapter VIII) it
is possible to take into account more error terms in the expansion of gn. We could
also extract here the behaviour of the coefficients hn. However in the computations
we will not need it explicitly, since these terms will always cancel out.
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Proof of Theorem 4.5: The proof is exactly the same as in Maples et al. (2012,
Prop. 2.2) and we thus give only a quick sketch of it, referring the reader to this
paper for more details. As in the well-known saddle point method, we want to
evaluate the integral

1

2πı

∮
γ

exp (gn(z))
dz

zn+1
.

We choose as contour the circle γ := rne
ıϕ with ϕ ∈ [−π, π]. On ϕ ∈ [−δn, δn]

after changing to polar coordinates we can expand the function gn as

1

2πırnn

∫ δn

−δn

exp

(
gn(rn) + ıϕan(rn)−

ϕ2

2
bn(rn) + o(ϕ3δ−3

n )− ınϕ

)
dϕ

We now choose rn such that a(rn) = rng
′
n(rn) = n in order to cancel the linear terms

in n. This allows us to approximate the integral on the minor arc with a Gaussian.
One shows that away from the saddle point (so for |ϕ| > δn) the contribution is
exponentially smaller than on the minor arc and thus it can be neglected. �

We would like to emphasize also that it will be not always possible to solve the
saddle point equation (4.9) exactly. However it is enough to find an rn such that

an(rn)− n = o
(√

bn(rn)
)

(4.15)

holds.

4.2. Calculation of the limit shape. In this section we will derive the limit shape for
Young diagrams for the class of measures given by the weights. We will not go into
all the details to prove the log-n-admissibility for the most general case, but will
try to give a precise overview of the main steps nonetheless. One important remark
we have to make is that our parameter s will not be fixed, but will be scaled and
hence dependent on n. This comes from the fact that for a fixed s (4.9) becomes
a fixed point equation whose solution cannot be given constructively, but has only
an implicit form. We were not able to use this information for our purposes, and
hence preferred to exploit a less general, but more explicit parameter to calculate
asymptotics.

4.2.1. Limit shape. The main goal of this subsection is to prove that the weights
(1.4) induce a sequence of log-n-admissible functions of which we can recover the
asymptotics of gn(rn). This will give us the limit shape of the Young diagram
according to Theorem 4.5. Hence we pass to showing Theorem 1.1, that is the limit
shape is

ws
∞(x) =

Γ(α, x)

Γ(α+ 1)
,

and the fluctuations at a point x behave like

w̃s
n(x) =

wn(x
∗)− n (ws

∞(x) + zsn)

(n)1/2
L−→ N

(
0, σ2

∞(x)
)

with x∗ = xn∗ and σ2
∞(x) as in Theorem 1.1.

Remark 4.7. We note that the limit shape matches the one obtained in Erlihson
and Granovsky (2008, Thm. 4.8) and also the one obtained in the present paper in
the randomized case (cf. the definition of wr

∞(x) of Prop. 3.3).
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As indicated in the introduction, we prove Theorem 1.1 by computing the Laplace
transform. We now have

Proposition 4.8. We have for s = O(1) and with respect to Pn as n → ∞

En

[
exp
(
−sw̃s

n(x)
)]

= σ2
∞(x)

s2

2
+O

(
(n)−

1
2 s3
)
.

Obviously, Proposition 4.8 immediately implies Theorem 1.1. Moreover, knowing
the behaviour of the Laplace transform enables us to compute the asymptotics of the
Young diagram in the limit. More precisely, we now can prove the large deviation
estimates in Prop. 1.3.

Proof of Prop. 1.3: The strategy we adopt was first exploited in Maples et al. (2012,
Theorem 4.1). Specifically, let σn be the limit variance as in Thm. 1.1. Define
the normalized log-moment generating function as (1.8). One bounds then the
probability P (|w̃s

n(x
∗)− a| ≤ ε) by a random variable Y of mean a and using the

second moment method. We omit the details since the computations are almost
the same as in Maples et al. (2012). �

We can also determine the behaviour of the increments of the function wn(·).

Theorem 4.9. For ` ≥ 2 and x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0, let

w̃s
n(x) =

(
w̃s

n(x`), w̃
s
n(x`−1)− w̃s

n(x`), . . . , w̃
s
n(x1)− w̃s

n(x2)
)
.

Set x`+1 = +∞. For 1 ≤ j < i < ` we have that

w̃s
∞(xi, xj) := lim

n→+∞
Cov (w̃s

n(xj)− w̃s
n(xj+1), w̃

s
n(xi)− w̃s

n(xi+1)) (4.16)

=
(Γ(α+ 1, xi)− Γ(α+ 1, xi+1)) (Γ(α+ 1, xj)− Γ(α+ 1, xj+1))

Γ(α+ 1)Γ(α+ 2)
.

Remark 4.10. Let us comment briefly on Thm. 4.9. What we obtained in this result
is most unexpected: cycle counts are asymptotically independent under very mild
assumptions (see Lemma 2.1). The assumption of the lemma holds in our case as the
growth of the parameters ϑn is algebraic. The fact that the increments depend on
disjoint sets of cycles would have suggested the asymptotic independence of wn(y

∗)
from wn(x

∗)−wn(y
∗). We are aware of the work of Babu et al. (2007) handling this

issue in the case of the Ewens sampling formula, in particular showing that partial
sums of cycle counts need not converge to processes with independent increments.
Our result extends this idea in the sense that it shows the explicit covariance matrix
for a whole category of generating functions. It would be interesting to provide a
heuristic explanation for this theorem.

4.2.2. Log-n-admissibility. In order to determine the limit shape we would like to
prove the log-n-admissibility of the function explicited in (4.3). To be more precise,
what we have to prove is

Lemma 4.11. Let ϑk be as in (1.4), s, x ≥ 0 and x∗ = xn∗, s∗ = s(n)1/2 with
n∗, n as in (1.5). Then

gΘ(t) + (e−s∗ − 1)
∞∑

k=bx∗c

θk
k
tk
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is log-n-admissible for all x, s ≥ 0 with

rn := e−vn , vn = pn(1− sqn) (4.17)

for some

pn ∼ (n∗)−1 and qn ∼ (n∗)−1/2Γ(α+ 1, x)

Γ(α+ 2)
. (4.18)

Let us consider pn and qn in the case ϑk = (log k)jkα

Γ(α+1) more explicitly. In this

situation, pn is the solution of the equation

∞∑
k=1

(log k)jkα

Γ(α+ 1)
e−kpn = n. (4.19)

Using Lemma 2.3, one can easily show that pn ∼ (n∗)−1. Furthermore, we have

qn =
(npn)

−1/2
(

∂
∂α − log pn

)j
Γ(α+ 1, x)

(α+ 1)
(

∂
∂α − log pn

)j
Γ(α+ 1) + j

(
∂
∂α − log pn

)j−1
Γ(α+ 1)

. (4.20)

The lower order terms of pn and qn in (4.19) and (4.20) are important for the saddle
point solution in the sense that the condition an(rn) = n+ o

(√
bn
)
is fulfilled (see

(4.15)). However, for the computation of the limit shape, the fluctuations and the
cumulants, we require only the leading term of pn and qn.

We require in the proof of Lemma 4.11 the observation

pn ∼ (n∗)−1 and p−α
n (− log pn)

j ∼ n, (4.21)

which follows with a straightforward computation.

Proof of Lemma 4.11: We now verify the conditions in Definition 4.4.

Saddle-point and approximation: We begin with the case β = 0 and com-
pute first the size of b(rn). We get with Lemma 2.3, (4.13) and (4.21)

bn(rn) =

+∞∑
k=1

(log k)jkα+1

Γ(α+ 1)
e−kvn + (e−s∗ − 1)

+∞∑
k=bx∗c

(log k)jkα+1

Γ(α+ 1)
e−kvn

= O

(
+∞∑
k=1

(log k)jkα+1e−kvn

)
= O

(
v−α−2
n (log vn)

j
)
. (4.22)

We thus have to show that an(rn) = n+ o

((
v−α−2
n (log vn)

j
)1/2)

to get a

suitable saddle point solution, see (4.15). Using the asymptotic behaviour

of vn, we have to show an(rn) = n + o
(
n

α+2
2(α+1) (log n)

j
)
. We use (4.12)

and obtain

an(rn) =
+∞∑
k=1

(log k)jkα

Γ(α+ 1)
e−kvn + (e−s∗ − 1)

+∞∑
k=bx∗c

(log k)jkα

Γ(α+ 1)
e−kvn . (4.23)
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We begin with the first sum. We use Lemma 2.3 and get

+∞∑
k=1

(log k)jkα

Γ(α+ 1)
e−kvn =

v−α−1
n

Γ(α+ 1)

(
∂

∂α
− log vn

)j

Γ(α+ 1) +O (1) (4.24)

=
(pn)

−α−1

Γ(α+ 1)(1− qn)α+1
·
(

∂

∂α
− log pn + log(1− qn)

)j

Γ(α+ 1) +O(1).

We choose at this point pn to be the solution of

n =
(pn)

−α−1

Γ(α+ 1)(1− qn)α+1
·
(

∂

∂α
− log pn

)j

Γ(α+ 1). (4.25)

A straightforward computation gives pn ∼ (n∗)−1. We now expand (1 −
qn)

−α−1 and log(1− qn). This then gives

p−α−1
n

Γ(α+ 1)

(
∂

∂α
− log pn

)j

Γ(α+ 1)

+
(α+ 1)qn (pn)

−α−1

Γ(α+ 1)

(
∂

∂α
− log (pn)

)j

Γ(α+ 1)

+
qnp

−α−1
n

Γ(α+ 1)
j

(
∂

∂α
− log pn

)j−1

Γ(α+ 1) +O
(
(log pn)

jp−α−1
n q2n

)
= n+

(α+ 1)qn (pn)
−α−1

Γ(α+ 1)

(
∂

∂α
− log pn

)j

Γ(α+ 1) (4.26)

+
qn (pn)

−α−1

Γ(α+ 1)
j

(
∂

∂α
− log (pn)

)j−1

Γ(α+ 1) +O
(
n

1
1+α (log n)−

j
1+α

)
.

Since 1
1+α < 2+α

2(1+α) , we can ignore the big-O term. We now come to the

second sum. We use Lemma 2.4 with zn = xn∗ and a similar estimate as
in (4.22) to obtain

(e−s∗ − 1)
+∞∑

k=bx∗c

(log k)jkα

Γ(α+ 1)
e−kvn

=− s∗
+∞∑

k=bx∗c

(log k)jkα

Γ(α+ 1)
e−kvn +O

(
(s∗)2v−α−1

n (log vn)
j
)

=− s∗
(pn)

−α−1

Γ(α+ 1)

(
∂

∂α
− log (pn)

)j

Γ(α+ 1, x) +O
(
n

1
1+α (log n)

−j
1+α

)
. (4.27)

We can ignore here also the big-O term. We thus have to check that
the remaining terms in (4.26) and (4.27) combined give an(rn) = n +

o
(√

bn(rn)
)
. This follows from the definition of qn, see (4.20).
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We now come to the case β < α/2. We have

+∞∑
k=1

(log k)jkβ

Γ(α+ 1)
e−kvn + (e−s∗ − 1)

+∞∑
k=bx∗c

(log k)jkβ

Γ(α+ 1)
e−kvn

=O

(
+∞∑
k=1

(log k)jkβ

Γ(α+ 1)
e−kvn

)
= O

(
n

β+1
α+1 (log n)

1
α+1

)
. (4.28)

Since β < α/2, we obtain again an(rn) = n+o
(√

bn(rn)
)
. This completes

the proof of this point. For completeness, we give in Remark 4.12 some
hints how to adjust this proof to the case ϑm ∼ (logm)jmα.

Divergence: By the above calculations we set δn := (n∗)−ξ with α+3
3 < ξ <

α+2
2 . This position holds also in the case β > 0.

Monotonicity: In the region |ϕ| > δn we wish to show (4.11). We distinguish
between the cases ϕ = o (vn), ϕ 6= o (vn) and |ϕ| = o (1), and finally |ϕ| >
C. First remember that gn

(
rne

±ıδn
)
= O

(
(log n∗)

j
(n∗)α

)
by Lemma 2.3.

Thus here we have:
(1) if ϕ = o (vn), then by a change of variable t (vn − ıϕ)t∑

k≥bx∗c

(log k)jkα−1

Γ(α+ 1)
e−k(vn−ıϕ)

∼ (vn − ıϕ)−α

Γ(α+ 1)

∫ +∞

x

(log t)jtα−1e−tdt

∼
(

∂

∂α
+ log n∗

)j
Γ(α, x)

Γ(α+ 1)
(vn − ıϕ)−α.

Considering the factor e−s∗ − 1 we obtain that the summand is negli-
gible with respect to Re

(
g(rne

±ıδn)
)
.

(2) If ϕ 6= o (vn) but |ϕ| = o (1), then∑
k≥bx∗c

(log k)jkα−1

Γ(α+ 1)
e−k(vn−ıϕ)

∼ (vn − ıϕ)−α

Γ(α+ 1)

∫ +∞

x−ıxϕn∗+o(1)

(log k)jtα−1e−tdt

∼
(

∂

∂α
+ log n∗

)j
Γ(α, x− ıxϕn∗)

Γ(α+ 1)
(vn − ıϕ)−α (4.29)

and afterwards use the fact that Γ(α, x+ ıy) = O
(
yα−1

)
for |y| large.

Hence the RHS of (4.29) becomes

O
(
(n∗)α−1

)
(vn − ıϕ)−α = O

(
(n∗)α−1ϕ−1

)
.

As ϕ 6= o (vn), we obtain that O
(
(n∗)α−1ϕ−1

)
= O ((n∗)α) o (1) which

is enough to show (4.11) in this region.
(3) To conclude we consider the case |ϕ| > C: the function gn (rne

ıϕ)
is bounded there by a constant uniform in n, and then by bounding
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gn (rne
ıϕ) through its modulus we have

Re (gn(rne
ıϕ)) ≤ Re

(
g(rne

±ıδn)
) (

1 +O
(
(n∗)−α/2

))
. (4.30)

�

Remark 4.12. One can use a similar argumentation as in the proof of Lemma 4.11
for the more general weights ϑm ∼ (logm)jmα. For this has to replace pn to be
the solution of

n =

∞∑
k=1

θke
−kpn . (4.31)

In other words, e−pn is the saddle point solution for the function gθ(t). Furthermore
it is straightforward to see that the computations in (4.26) and (4.27) are similar
and that one has to choose qn to be the solution of the equation

qn (pn)
−α−1

((
∂

∂α
− log pn

)j

+ j

(
∂

∂α
− log (pn)

)j−1
)
Γ(α+ 1)

=− s∗
+∞∑

k=bx∗c

θke
−kpn(1−sqn).

In order to show Thms. 1.1, 1.4 and 4.9 we need to prove first an auxiliary
proposition.

Proposition 4.13. Let vn, n, n
∗, x∗ and s∗ be as in Lemma 4.11. We then have

as n → +∞

(e−s∗ − 1)
∑

k≥bx∗c

(log k)jkα−1

Γ(α+ 1)
e−kvn (4.32)

=

(
−s(n)

1
2
Γ(α, x)

Γ(α+ 1)
(1 + o (1)) +

s2

2

Γ(α, x)

Γ(α+ 1)
− Γ(α+ 1, x)2

Γ(α+ 1)Γ(α+ 2)
s2
)
+ o (1) .

Furthermore, we have

[sm]

(e−s∗ − 1)
∑

k≥bx∗c

(log k)jkα−1

Γ(α+ 1)
e−kvn

 (4.33)

∼ (n)1−
m
2 [sm]

[
(e−s − 1)

∞∑
k=0

sk

k!

Γ(α+ k, x)

Γ(α+ 1)

(
−Γ(α+ 1, x)

Γ(α+ 2)

)k
]
.

Proof : We apply Lemma 2.4 with zn = x∗ = xn∗, vn =
(
n
n

)
(1 − sqn), δ = α − 1

and q̃n = sqn. We then have for any ` > m

∞∑
k=bx∗c

(log k)jkα−1

Γ(α+ 1)
e−kvn =

(
n
n

)−α

Γ(α+ 1)

(∑̀
k=0

(
∂

∂δ
− log

(
n

n

))j
Γ(α+ k, x)

k!
(−sqn)

k

)

+O

((
log

(
n

n

))j

(sqn)
`+1 +

(
n

n

)δ (
log

(
n

n

))j
)
.

(4.34)
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We now use (4.21) and (4.17)

[sm]

[ (
n
n

)−α

Γ(α+ 1)

(∑̀
k=0

(
∂

∂δ
− log

(
n

n

))j
Γ(α+ k, x)

k!
(−sqn)

k

)]

=(−qn)
m

(
n
n

)−α

Γ(α+ 1)

(
∂

∂δ
− log

(
n

n

))j
Γ(α+m,x)

m!

∼ (−qn)
m

(
n
n

)−α

Γ(α+ 1)

(
− log

(
n

n

))j
Γ(α+m,x)

m!
∼ (−qn)

m n

Γ(α+ 1)

Γ(α+m,x)

m!

∼ (n)1−
m
2

m!

Γ(α+m,x)

Γ(α+ 1)

(
−Γ(α+ 1, x)

Γ(α+ 2)

)m

.

It is now easy to see the O(.) in (4.34) is uniform in s for s bounded. Applying
Cauchy’s integral formula thus gives

[sm]

 ∞∑
k=bx∗c

(log k)jkα−1

Γ(α+ 1)
e−kvn

 ∼ (n)1−
m
2

m!

Γ(α+m,x)

Γ(α+ 1)

(
−Γ(α+ 1, x)

Γ(α+ 2)

)m

.

(4.35)

One the other hand we have [sm]
[
es

∗ − 1
]
= (n)

m
2 [sm] [es − 1]. Combining this

observation with (4.35) then proves (4.33). Equation (4.32) then follows from (4.33)
with a direct computation. �

Remark 4.14. (4.34) and (4.35) yield the behavior of zsn plugging in m = 1 (cf.
Remark 1.2).

Proof of Proposition 4.8 and Theorem 1.4: To determine the behaviour of Gn we
would like to use Lemma 4.1. By (4.3)

En

[
exp
(
−s∗wn(x

∗)
)]

=
1

hn
[tn]

exp
gΘ(t) + (e−s∗ − 1)

+∞∑
k=bx∗c

ϑk

k
tk

 .

We have shown that gn(t) = gΘ(t) + (e−s∗ − 1)
∑+∞

k=bx∗c
ϑk

k tk is log-n-admissible.

Therefore Thm. 4.5 tells us how Gn behaves, and we have more precisely to recover
three terms. In first place we collect the terms for the asymptotic of egn(rn): We
use Lemma 2.3 and get

gΘ(rn) =
v−α
n

Γ(α+ 1)

(
∂

∂α
− log

(
n

n

))j

Γ(α) +O(1). (4.36)

Computing the coefficient of sm gives

[sm] [gΘ(rn)] ∼
(
n
n

)−α

Γ(α+ 1)

(
− log

(
n

n

))j

Γ(α)[sm]
[
(1− sqn)

−α
]

=
n

α
[sm]

[(
1− s

(n)1/2
Γ(α+ 1, x)

Γ(α+ 2)

)−α
]

=
(n)1−

m
2

α
[sm]

[(
1− s

Γ(α+ 1, x)

Γ(α+ 2)

)−α
]
.
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We thus obtain

gΘ(rn) =
(n)

α

(
1 + o(1)

)
+ s(n)1/2

Γ(α+ 1, x)

Γ(α+ 2)

(
1 + o(1)

)
+
s2

2

Γ(α+ 1, x)2

Γ(α+ 2)Γ(α+ 1)

(
1 + o(1)

)
+O

(
s3(n)−

1
2

)
,

where
(
1 + o(1)

)
is independent of s. Furthermore, we get with Proposition 4.13

(e−s∗ − 1)
∑

k≥bx∗c

ϑm

m
e−kvn =− s(n)

1
2
Γ(α, x)

Γ(α+ 1)

(
1 + o(1)

)
+ s2

(
1

2

Γ(α, x)

Γ(α+ 1)
− Γ(α+ 1, x)2

Γ(α+ 1)Γ(α+ 2)

)(
1 + o(1)

)
+O

(
s3(n)−

1
2

)
.

Thirdly, we obviously have

−n log(rn) = n
(
1 + o(1)

)
− s(n)1/2

Γ(α+ 1, x)

Γ(α+ 2)

(
1 + o(1)

)
.

Finally we can use a similar computation as in Proposition 4.13 to see that

log(b(rn)) = C1 log(n) + C2

∑
k≥0

sk(n)−
k
2 .

We thus see that the contribution of bn to the coefficients of sm is of lower order.
We combine everything and obtain

En

[
exp
(
−s∗wn(x

∗)
)]

= exp

(
−s(n)

1
2
Γ(α, x)

Γ(α+ 1)

(
1 + o(1)

)
+

s2

2

(
Γ(α, x)

Γ(α+ 1)
− Γ(α+ 1, x)2

Γ(α+ 1)Γ(α+ 2)

)(
1 + o(1)

)
+O

(
s3(n)−

1
2

))
. (4.37)

Notice that we do not require the asymptotic behaviour of the coefficient of s0 since
En

[
exp
(
−s∗wn(x

∗)
)]

= 1 at s = 0. This completes the proof of Proposition 4.8
(and Theorem 1.1). The proof of Theorem 1.4 follows the same line and we thus
omit it. �

Proof of Thm. 4.9: For multiple increments, we can repeat the proof of Theo-
rem 1.4 to compute the behaviour of the vector wn(x

∗) with wn(x
∗) as in (4.7)

with length ` ≥ 2. Applying Lemma 4.3 to wn(x
∗) shows that we have to consider

the function

gΘ(t) +
∑̀
j=1

(e−s∗j − 1)

bx∗
j+1−1c∑

k=bx∗
j c

ϑk

k
tk. (4.38)
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A computation as in Lemma 4.11 shows that this function is also log-n-admissible
for rn = e−vn with

vn := pn

(
1− qn

Γ(α+ 2)
(s`Γ(α+ 1, x`)

+

`−1∑
k=1

s`−k (Γ(α+ 1, x`−1−k)− Γ(α+ 1, x`−k))

))
.

for some pn and qn with pn ∼ (n∗)−1 and qn ∼ (n∗)−1/2. We deduce from this as
in (4.37) that

gΘ(rn) ∼
n

α
(1 + o (1))− (n)1/2

Γ(α+ 2)(
s`Γ(α+ 1, x`) +

`−1∑
k=1

(s`−k−1(Γ(α+ 1, x`−k−1)− Γ(α+ 1, x`−k))

)
(1 + o (1))

+
1

2Γ(α+ 2)Γ(α+ 1)
(s`Γ(α+ 1, x`)

+
`−1∑
k=1

(s`−k−1(Γ(α+ 1, x`−k−1)− Γ(α+ 1, x`−k))

)2

(1 + o (1))

+o (1) . (4.39)

Since the coefficients of the form
(
e−s∗j − 1

)∑x∗
j+1−1

k=x∗
j

ϑk

k rkn do not give a contribu-

tion to covariances, the mixed terms will stem from the expansion of the square in
(4.39). In particular we see that the coefficient of sisj , for 1 ≤ j < i < `, is

(Γ(α+ 1, xi)− Γ(α+ 1, xi+1)) (Γ(α+ 1, xj)− Γ(α+ 1, xj+1))

2Γ(α+ 1)Γ(α+ 2)
.

�

4.3. Functional CLT for wn(·). As in the randomized setting, a functional CLT
can be obtained here too. Unlike the previous case though we do not have the
independence of cycle counts, hence we will have to show the tightness of the
fluctuations as in Sec. 3.3 in two steps (cf. Hansen (1990)). The result we aim at
is, precisely as before,

Theorem 4.15. The process w̃s
n : R+ → R (see Thm. 1.1) converges weakly with

respect to Pn as n → ∞ to a continuous process w̃s
∞ : R+ → R with w̃s

∞(x) ∼
N (0, (σs

∞(x))
2
) and whose increments are not independent. The covariance struc-

ture is given in Thm. 4.9.

We will proceed as in the proof of Thm. 3.7. Having shown already the behaviour
of the increments in Thm. 4.9 what we have to tackle now is their tightness. The
proof’s goal is analogous to Lemma 3.8. However the evaluation of the corre-
sponding expectation on the LHS of (4.43) is more difficult this time; one possible
approach is present in DeLaurentis and Pittel (1985) and is based on Pólya’s enu-
meration lemma and the calculation of factorial moments of cycle counts. However
it is easier to use the argumentation by Hansen in Hansen (1990) to obtain an
expression for the corresponding generating function. We get
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Lemma 4.16. For 0 ≤ x1 < x ≤ x2 arbitrary and x∗ := xn∗, x∗
1 := x1n

∗ and
x∗
2 := x2n

∗

(n)2 · hnEn

[
(w̃s

n(x
∗)− w̃s

n(x
∗
1))

2(w̃s
n(x

∗
2)− w̃s

n(x
∗))2

]
(4.40)

= [tn]
[(

(gx
∗

x∗
1
(t)− Ex

x1
)2 + gx

∗

x∗
1
(t)
)(

(g
x∗
2

x∗ (t)− Ex2
x )2 + g

x∗
2

x∗ (t)
)
exp(gΘ(t))

]
with gba(z) :=

∑
a≤j<b

ϑj

j zj and Eb
a = En [w̃

s
n(bn

∗)− w̃s
n(an

∗)] for a < b.

Proof : We define for 0 < t < 1 the measure Pt on S := ∪nSn as in Section 3. By
repeating the proof of Hansen (1990, Lemma 2.1) we see that

Pt

[∑
kCk = n

]
= tnhne

gΘ(t).

Let now Ψ : S → C with Et [|Ψ|] < ∞ and Ψ only depending one the cycles counts,
i.e. Ψ = Ψ(C1, C2, . . . ). Mimicking Hansen’s strategy, one can prove for such a Ψ
that

Et [Ψ] egΘ(t) =
∑
n≥1

tnhnEn [Ψn] + Ψ(0, 0, 0, . . .), (4.41)

where Ψn : Sn → C is defined by Ψn = Ψ(C1, . . . , Cn, 0, 0, . . .). The proof of
(4.41) is almost the same as in Hansen (1990) and we thus omit it. We now use

Ψ(C1, C2, . . .) :=
(
w̃s

n(x
∗)− w̃s

n(x
∗
1)
)2(

w̃s
n(x

∗
2)− w̃s

n(x
∗)
)2
.

We use the definition of ws
n in Theorem 1.1 and that the Ck are independent with

respect to Pt and get

(n)Et

[(
w̃s

n(x
∗)− w̃s

n(x
∗
1)
)2]

= Et


 x∗

1∑
k=x∗

1

Ck − Ex
x1

2


=Et


x∗∑

k=x∗
1

C2
k +

∑
x∗
1≤k,k′<x∗

k 6=k′

CkCk′ − 2Ex
x1

x∗∑
k=x∗

1

Ck +
(
Ex

x1

)2


=Et


x∗∑

k=x∗
1

Ck(Ck − 1) +
∑

x∗
1≤k,k′<x∗

k 6=k′

CkCk′ − 2Ex
x1

x∗∑
k=x∗

1

Ck +
(
Ex

x1

)2
+

x∗∑
k=x∗

1

Ck


=

x∗∑
k=x∗

1

(
ϑk

k
tk
)2

+
∑

x∗
1≤k,k′<x∗

k 6=k′

ϑk

k
tk
ϑk′

k′
tk

′
− 2Ex

x1

x∗∑
k=x∗

1

ϑk

k
tk +

(
Ex

x1

)2
+

x∗∑
k=x∗

1

ϑk

k
tk

=

 x∗∑
k=x∗

1

ϑk

k
tk − Ex

x1

2

+

x∗∑
k=x∗

1

ϑk

k
tk. (4.42)

This completes the proof since the cycle counts in both factors are independent. �

We can now prove the tightness of the process w̃s
n(x

∗). We have
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Lemma 4.17. We have for 0 ≤ x1 < x ≤ x2 < K with K arbitrary

En

[
(w̃s

n(x
∗)− w̃s

n(x
∗
1))

2(w̃s
n(x

∗
2)− w̃s

n(x
∗))2

]
= O

(
(x2 − x1)

2
)
. (4.43)

Proof : We want to apply the saddle-point method to the sequence of functions

gn(t) := e
gΘ(t)+log

(
(gx∗

x∗
1
(t)−Ex

x1
)2+gx∗

x∗
1
(t)

)
+

(
(g

x∗
2

x∗ (t)−Ex
x1

)2+g
x∗
2

x∗ (t)

)

to extract coefficients. Our first target is to show the log-n-admissibility for rn =
e−pn with pn as in of Lemma 4.11. Note that the order of magnitude of

log
(
gx

∗

x∗
1
(rn)− Ex

x1
)2 + gx

∗

x∗
1
(rn)

)
(and similarly for x2) is O (log pn), which is lower than that of gΘ as of (4.36). This
tells us that the proof of log-n-admissibility goes through without major modifica-
tions. Hence we can safely use (4.40). It tells us that

En

[
(w̃s

n(x
∗)− w̃s

n(x
∗
1))

2(w̃s
n(x

∗
2)− w̃s

n(x
∗))2

]
=

1

hn

(
1

n

)2

[tn]
[(

(gx
∗

x∗
1
(t)− Ex

x1
)2 + gx

∗

x∗
1
(t)
)
·

·
(
(g

x∗
2

x∗ (t)− Ex2
x )2 + g

x∗
2

x∗ (t)
)
e(gΘ(t))

]
. (4.44)

Differentiating (4.8) with respect to s1 and substituting s1 = 0 shows that

Ex
x1

= En [w̃
s
n(x

∗)− w̃s
n(x

∗
1)] =

1

hn
[tn]

[
g
x∗
2

x∗ (t)exp(gΘ(t))
]
. (4.45)

This function is again log-n-admissibility with the same rn. It is thus straightfor-
ward to show that gx

∗

x∗
1
(rn)− Ex

x1
= o (x− x1). Therefore(

(gx
∗

x∗
1
(rn)− Ex

x1
)2 + gx

∗

x∗
1
(rn)

)
(n)−1 = O

(
gx

∗

x∗
1
(rn)(n)

−1
)
.

As it was shown in the proof of Lemma 3.8 we have that

gx
∗

x∗
1
(rn)(n)

−1 = O ((x− x1)) .

Similar considerations apply for x2. Hence we can say that the RHS of (4.44) yields

h−1
n [tn] [exp(gΘ(t))]O

(
(x2 − x1)

2
)
= O

(
(x2 − x1)

2
)
.
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Appendix A. Euler Maclaurin formula with non integer boundaries

We prove in this section a slight extension of Euler Maclaurin formula, which
allows to deal also with non-integer summation limits.
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Theorem A.1. Let f : R → R be a smooth function, Bk(x) be the Bernoulli
polynomials and c < d with c, d ∈ R. We then have for p ∈ N∑

bcc≤k<d

f(k) =

∫ d

c

f(x) dx−B1(d− bdc)f(d)−B1(c− bcc)f(c) (A.1)

+

p∑
k=1

(−1)k+1Bk+1(d− bdc)f (k)(d)−Bk+1(c− bcc)f (k)(c)

k!

+
(−1)p+1

(p+ 1)!

∫ d

c

Bp+1(x− bxc)f (p+1)(x) dx.

Proof : The proof of this theorem follows the same lines as the proof of the Eu-
lerMaclaurin summation formula with integer summation limits, see for instance
Apostol (1976, Theorem 3.1). We give it here though for completeness. Our proof
considers only the case d /∈ Z. The argumentation for d ∈ Z is completely similar.
One possible definition of the Bernoulli polynomials is by induction:

B0(y) ≡ 1, (A.2)

B′
k(y) = kBk−1(y) and

∫ 1

0

Bk(y) dy = 1 for k ≥ 1. (A.3)

In particular, we have B1(y) = y − 1
2 . We now have for m ∈ Z∫ m+1

m

f(y) dy =

∫ m+1

m

B0(y −m)f(y) dy

= [B1(y −m)f(y)]|m+1
y=m −

∫ m+1

m

B1(y −m)f ′(y) dy

=
1

2
f(m) +

1

2
f(m+ 1)−

∫ m+1

m

B1(y − byc)f ′(y) dy.

since B1(0) = −1
2 and B1(1) =

1
2 . We obtain

bdc∑
k=bcc

f(k) =

∫ bdc

bcc
f(x) dx+

1

2
f(bcc) + 1

2
f(bdc) +

∫ bdc

bcc
B1(y − byc)f ′(y) dy.

Furthermore, we use∫ d

bdc
f(y) dy =

1

2
f(bdc) +B1(d− bdc)f(d)−

∫ d

bdc
B1(y − byc)f ′(y) dy

and get

bdc∑
k=bcc

f(k) =

∫ d

bcc
f(x) dx+

1

2
f(bcc)−B1(d− bdc)f(d) +

∫ d

bcc
B1(y − byc)f ′(y) dy.

The argumentation for replacing bcc by c is similar. One gets∑
bcc≤k<d

f(k) =

∫ d

c

f(x) dx−B1(c− bcc)f(c)−B1(d− bdc)f(d)

+

∫ d

c

B1(y − byc)f ′(y) dy.
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The theorem now follows by successive partial integrations of
∫ d

c
B1(y−byc)f ′(y) dy.

�
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