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Abstract. We prove that Xr follows a free regular distribution, i.e. the law of a
nonnegative free Lévy process if: (1) X follows a free Poisson distribution without
an atom at 0 and r ∈ (−∞, 0] ∪ [1,∞); (2) X follows a free Poisson distribution
with an atom at 0 and r ≥ 1; (3) X follows a mixture of some HCM distribu-
tions and |r| ≥ 1; (4) X follows some beta distributions and r is taken from some
interval. In particular, if S is a standard semicircular element then |S|r is freely
infinitely divisible for r ∈ (−∞, 0]∪ [2,∞). Also we consider the symmetrization of
the above probability measures, and in particular show that |S|r sign(S) is freely
infinitely divisible for r ≥ 2. Therefore Sn is freely infinitely divisible for every
n ∈ N. The results on free Poisson and semicircular random variables have a good
correspondence with classical ID properties of powers of gamma and normal random
variables.

1. Introduction

In classical probability, people have tried to understand if infinite divisibility
(ID) can be preserved by powers, products or quotients of (independent) random
variables (rvs). Usually the Lévy–Khintchine representation is not useful for this
purpose and alternative new ideas are required. One class that behaves well with
respect to powers and products is mixtures of exponential distributions (ME), i.e.
rvs of the form EX where E,X are independent, E follows an exponential dis-
tribution and X ≥ 0. The Goldie–Steutel theorem says that the class ME is a
subset of the class ID (see Goldie, 1967 and Steutel, 1967). In this class we have
the implication

X ∼ ME ⇒ Xr ∼ ME for any r ≥ 1, (1.1)

and also ME is closed under the product of independent rvs.
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Quite a successful class in the theory of ID distributions is HCM (hyperboli-
cally completely monotone) distributions, see Bondesson (1992). It is known that
HCM ⊂ ID and

X ∼ HCM ⇒ Xr ∼ HCM for any |r| ≥ 1, (1.2)

see Bondesson (1992, p. 69). The class HCM moreover satisfies that if X,Y ∼ HCM
and are independent then XY,X/Y ∼ HCM, see Bondesson (1992, Theorem 5.1.1).
Prior to the appearance of HCM, Thorin (1977b,a) introduced a class GGC (gener-
alized gamma convolutions) which contains HCM (see Bondesson, 1992, Theorem
5.1.2). Bondesson (2015) recently proved that if X,Y ∼ GGC and X,Y are in-
dependent then XY ∼ GGC. He also conjectured that X ∼ GGC implies that
Xr ∼ GGC for any r ≥ 1, which is still open. The class GGC is closed with re-
spect to the addition of independent rvs, while ME and HCM are not. It is worth
mentioning that Shanbhag et al. (1977) proved a related negative result that the
product of two independent positive ID rvs is not always ID.

In free probability, the class of the free regular (FR) distributions, i.e. the laws

of nonnegative free Lévy processes, is closed with respect to the product
√
XY

√
Y

where X,Y are free, see Arizmendi et al. (2013, Theorem 1). However, little is
known on powers of rvs except that Arizmendi et al. (2013) showed that if X ∼ FID
is even (i.e. having a symmetric distribution) then X2 ∼ FR. The main purpose
of this paper is to consider the free infinite divisibility (FID) or more strongly free
regularity of powers of rvs.

In this paper we will focus on several examples including free Poisson and semi-
circular rvs and prove that: (1) If X follows a free Poisson distribution without an
atom at 0, then Xr ∼ FR for any r ∈ (−∞, 0]∪ [1,∞); (2) If X follows a free Pois-
son distribution with an atom at 0, then Xr ∼ FR for any r ≥ 1; (3) If X follows
some mixtures of (classical) HCM distributions then Xr ∼ FR for any |r| ≥ 1; (4) If
X follows some beta distributions then Xr ∼ FR for r in some interval. Our result
has a consequence that |S|r ∼ FR when S is the standard semicircular element and
r ∈ (−∞, 0] ∪ [2,∞). We will also consider the symmetrization of powers of beta
rvs and mixtures of HCM rvs, and in particular, show that |S|r sign(S) ∼ FID for
r ≥ 2. These results imply that Sn are FID for all n ∈ N. Our result on HCM
distributions generalizes Arizmendi and Hasebe (2016, Proposition 4.21(1)) where
mixtures of positive Boolean stable laws are shown to be FID and part of Hasebe
(2014, Theorem 1.2(3)) where beta distributions of the 2nd kind are shown to be
FID.

The proofs depend on the complex-analytic method which has been developed
recently. Until around 2010, one could prove the FID property of a given probability
measure only when the R-transform Voiculescu (1986) or Voiculescu transform
(Bercovici and Voiculescu, 1993) is explicit. There had been no way to prove
the FID property if the R-transform is not explicit. Actually many probability
distributions used in classical probability theory do not have explicit R-transforms,
e.g. normal distributions, gamma distributions and beta distributions. By contrast,
there are lots of methods in classical probability to show that a probability measure
is ID, even if its characteristic function is not explicit.

In 2011, Belinschi et al. changed this situation and they gave the first non-
trivial FID probability measure: the normal distribution is FID (Belinschi et al.,
2011). The proof is based on the complex analysis of the Cauchy transform (but
there is combinatorial background). Since then, several other people developed the
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complex-analytic method. Now many nontrivial distributions are known to be FID:
Anshelevich et al. showed that the q-normal distribution is FID for q ∈ [0, 1] An-
shelevich et al. (2010) and the author proved that beta distributions of the 1st kind
and 2nd kind, gamma, inverse gamma and Student distributions are FID for many
parameters Hasebe (2014). Other results can be found in Arizmendi and Belinschi
(2013); Arizmendi and Hasebe (2013, 2014, 2016); Arizmendi et al. (2013); Bożejko
and Hasebe (2013). These examples suggest that the intersection of ID and FID
is rich. Almost all of these FID distributions belong to a further subclass UI that
was introduced in Arizmendi and Hasebe (2013). With this class UI we are able to
show the FID property of a given probability measure without knowing the explicit
R-transform or free Lévy–Khintchine representation. This class plays an important
role in the present paper too.

This paper contains two sections besides this section. In Section 2 we will in-
troduce basic notations and concepts including the classes ID, ME, GGC, HCM,
FID, FR, UI and probability measures to be treated. In Section 3 we will state the
main results rigorously and then prove them. Section 4 explains similarity between
our results on free Poisson and semicircle distributions and the classical results on
gamma and normal distributions. Some conjectures are proposed based on this
similarity.

2. Preliminaries

Some general notations in this paper are summarized below.

(1) P+ is the set of (Borel) probability measures on [0,∞).
(2) For a classical or noncommutative rv X and a probability measure µ on R, the

notation X ∼ µ means that the rv X follows the law µ. A similar notation is
used for a subclass of probability measures: for example X ∼ P+ means that
X ∼ µ for some µ ∈ P+.

(3) The function zp is the principal value defined on C \ (−∞, 0].
(4) The function arg(z) is the argument of z defined in C \ (−∞, 0], taking values

in (−π, π). We also use another argument argI(z) taking values in an interval
I.

2.1. ID distributions and subclasses. Infinitely divisible distributions and subclasses
are summarized here. The reader is referred to Steutel and van Harn (2004); Bon-
desson (1992) for more information on this section.

A probability measure on R is said to be infinitely divisible (ID) if it has an nth

convolution root for any n ∈ N. The class of ID distributions is denoted by ID (and
this kind of notations will be adapted to other classes of probability measures too).

Let γ(p, θ) be the gamma distribution

1

θpΓ(p)
xp−1e−x/θ 1(0,∞)(x) dx, p, θ > 0, (2.1)

where θ corresponds to the scaling. A probability measure µ ∈ P+ is called a
mixture of exponential distributions (ME) if there exists ν ∈ P+ such that µ =
γ(1, 1)⊛ν, where ⊛ is classical multiplicative convolution. An equivalent definition
is that µ is of the form wδ0 + f(x)dx, where w ∈ [0, 1] and f is a C∞ function on
(0,∞) which is completely monotone, i.e. (−1)nf (n) ≥ 0 for any n ∈ N ∪ {0}. It is
known that ME ⊂ ID, called the Goldie–Steutel theorem.
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A probability measure on [0,∞) is called a generalized gamma convolution (GGC)
if it is in the weak closure of the set

{γ(p1, θ1) ∗ · · · ∗ γ(pn, θn) | pk, θk > 0, k = 1, . . . , n, n ∈ N}, (2.2)

that is, the class of GGCs is the smallest subclass of ID that contains all the gamma
distributions and that is closed under convolution and weak limits.

A pdf (probability density function) f : (0,∞) → [0,∞) is said to be hyperboli-
cally completely monotone (HCM) if for each u > 0 the map w 7→ f(uv)f(u/v) is
completely monotone as a function of w = v + 1/v. A probability distribution on
(0,∞) is called an HCM distribution if it has an HCM pdf. It turns out that any
HCM pdf is the pointwise limit of pdfs of the form

C · xp−1
n∏

k=1

(tk + x)−γk , C, p, tk, γk > 0, p <

n∑

k=1

γk, n ∈ N. (2.3)

This limiting procedure gives us the representation of an HCM pdf

f(x) = C · xα−1 exp

(
− b1x− b2

x
+

∫

(1,∞)

log

(
t+ 1

t+ x

)
Γ1(dt)

+

∫

[1,∞)

log

(
t+ 1

t+ 1/x

)
Γ2(dt)

) (2.4)

where α ∈ R, b1, b2 ≥ 0 and Γ1,Γ2 are measures on (1,∞) and [1,∞), respectively,
such that

∫
(1 + t)−1Γk(dt) < ∞. However these conditions on the parameters are

not sufficient to ensure the integrability of f . The author does not know how to
write down necessary and sufficient conditions for

∫
(0,∞) f(x) dx < ∞ in terms of

the parameters α, b1, b2,Γ1,Γ2. An important fact in the theory of ID distributions
is that HCM ⊂ GGC.

2.2. FID distributions and subclasses. A probability measure on R is said to be
freely infinitely divisible (FID) if it has an nth free convolution root for each n ∈ N.
Let FID be the set of FID distributions on R. Basic results on the class FID were
established in Bercovici and Voiculescu (1993). Connections between the class FID
and free Lévy processes were investigated in Biane (1998); Barndorff-Nielsen and
Thorbjørnsen (2002, 2005); Barndorff-Nielsen et al. (2006); Arizmendi et al. (2013).
Bercovici and Pata (1999) clarified how the FID distributions appear as the limit
of the sum of free i.i.d. rvs.

We say that µ ∈ P+ is free regular (FR) if µ is FID and µ⊞t ∈ P+ for all
t > 0. This notion was introduced in Pérez-Abreu and Sakuma (2012) in terms of
the Bercovici–Pata bijection and then further developed in Arizmendi et al. (2013)
in terms nonnegative free Lévy processes. The set of free regular distributions is
denoted by FR. The class FR is closed with respect to the weak convergence, see
Arizmendi et al. (2013, Proposition 25). A probability measure in FID ∩ P+ may
not be free regular, but we have a criterion.

Lemma 2.1 (Theorem 13 in Arizmendi et al., 2013). Suppose µ ∈ FID∩P+ and µ
satisfies either (i) µ({0}) > 0, or (ii) µ({0}) = 0 and

∫
(0,1)

x−1 µ(dx) = ∞. Then

µ ∈ FR.

There is a useful subclass of FID, called UI. The idea already appeared implicitly
in Belinschi et al. (2011) and the explicit definition was given in Arizmendi and
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Hasebe (2013). The following form of definition is in Bożejko and Hasebe (2013).
To define the class UI, let Gµ (or GX if X ∼ µ) denote the Cauchy transform

Gµ(z) =

∫

R

1

z − x
µ(dx), z ∈ C

+, (2.5)

where C± denote the complex upper and lower half-planes respectively. Bercovici
and Voiculescu (1993) proved that for any a > 0, there exist λ,M, b > 0 such that
Gµ is univalent in the truncated cone

Γλ,M = {z ∈ C
+ | λ|Re(z)| < Im(z), Im(z) > M} (2.6)

and Gµ(Γλ,M ) contains the triangular domain

∆a,b = {w ∈ C
− | a|Re(w)| < −Im(w), Im(w) > −b}. (2.7)

So we may define a right compositional inverse G−1
µ in ∆a,b.

Definition 2.2 (Definition 5.1 in Arizmendi et al., 2013). A probability measure
µ on R is said to be in class UI (standing for univalent inverse Cauchy transform)
if the right inverse map G−1

µ , originally defined in a triangular domain ∆a,b ⊂ C−,
has univalent analytic continuation to C−.

The importance of this class is based on the following lemma proved in Arizmendi
and Hasebe (2013, Proposition 5.2 and p. 2763).

Lemma 2.3. UI ⊂ FID. Moreover, UI is w-closed (i.e. closed with respect to weak
convergence).

To consider symmetric distributions, a symmetric version of UI is useful. The
following definition is equivalent to Hasebe (2014, Definition 2.5(2)).

Definition 2.4. A symmetric probability measure µ is said to be in class UIs if
(a) the right inverse map G−1

µ , defined in a domain ∆a,b, has univalent analytic

continuation to a neighborhood of i(−∞, 0), and (b) the right inverse G−1
µ , defined

in the domain ∆a,b, has univalent analytic continuation to C− ∩ iC− such that
G−1

µ (C− ∩ iC−) ⊂ C− ∪ iC−.

Condition (a) cannot be dropped from the definition: G−1
1
2
(δ−1+δ1)

(z) = 1+
√
1+4z2

2z

satisfies condition (b) but not condition (a).
If a symmetric probability measure µ belongs to UI then µ ∈ UIs by definition,

but the converse is not true. In fact a probability measure µ ∈ UIs belongs to UI
iff G−1

µ (C− ∩ iC−) ⊂ iC−.
The analogue of Lemma 2.3 holds true.

Lemma 2.5. UIs ⊂ FID. Moreover UIs is w-closed.

Proof : The first claim was proved in Hasebe (2014, Lemma 2.7), but the second
claim is new. Suppose that µn ∈ UIs and µn → µ (which implies that µ ∈ FID). By
Barndorff-Nielsen and Thorbjørnsen (2002, Theorem 3.8) the Voiculescu transform
ϕµn converges to ϕµ uniformly on each compact subset of C+ and therefore so does
G−1

µn
(z) = ϕµn(z

−1) + z−1 to G−1
µ (z) = ϕµ(z

−1) + z−1 on each compact subset of

C−. Since G−1
µ is not a constant, it is univalent in C−∩ iC− by Hurwitz’s theorem.

Taking the limit we have G−1
µ (C− ∩ iC−) ⊂ C− ∪ iC−, but since G−1

µ is analytic

and not a constant, G−1
µ (C− ∩ iC−) is an open set by the open mapping theorem,

so in fact G−1
µ (C− ∩ iC−) is contained in C− ∪ iC−.
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Hurwitz’s theorem is not useful for proving the univalence around i(−∞, 0) since
the neighborhoods of i(−∞, 0) may shrink as n → ∞, and so an alternative idea is
needed. Our assumptions imply that G−1

µn
are locally univalent, i.e. (G−1

µn
)′(z) 6= 0

for all z ∈ C− (note that G−1
µn

has symmetry with respect to the y-axis). Since a
zero of an analytic function changes continuously with respect to the local uniform
topology of analytic functions, (G−1

µ )′ does not have a zero in C−; otherwise (G−1
µn

)′

would have a zero for large n. In particular (G−1
µ )′(z) 6= 0 in i(−∞, 0). Since µ is

symmetric, G−1
µ (i(−∞, 0)) ⊂ iR and hence (G−1

µ )′(i(−∞, 0)) ⊂ R. Since the deriv-

ative (G−1
µ )′(z) does not have a zero, the sign does not change (in fact we can show

that (G−1
µ )′(z) > 0 in i(−∞, 0)). Therefore G−1

µ is univalent in a neighborhood
of i(−∞, 0) by applying Noshiro–Warschawski’s theorem (see Noshiro, 1934, The-
orem 12 and Warschawski, 1935, Lemma 1) to a neighborhood of i(−∞, 0) where
Re((G−1

µ )′(z)) > 0. �

2.3. Probability measures to be treated. We introduce several (classes of) probability
measures to be treated in this paper.

(1) The semicircle distribution S(m,σ2) is the probability measure with pdf

1

2πσ2

√
4σ2 − (x−m)2 1(m−2σ,m+2σ)(x), m ∈ R, σ > 0. (2.8)

By using the R-transform one can compute the inverse Cauchy transform

G−1
S(m,σ2)(z) = m+ σ2z +

1

z
. (2.9)

One can prove that G−1
S(m,σ2) is a bijection from C− onto C+∪(m−2σ,m+2σ)∪C−,

so that S(m,σ2) ∈ UI and in particular S(0, σ2) ∈ UIs.
(2) The free Poisson distribution (or Marchenko-Pastur distribution) fp(p, θ) is

max{1− p, 0}δ0 +
√
(θ(1 +

√
p)2 − x)(x− θ(1 −√

p)2)

2πθx
1(θ(1−√

p)2,θ(1+
√
p)2)(x) dx,

(2.10)

where p, θ > 0. The parameter θ stands for the scale parameter. Since fp(p, θ)⊞t =
fp(pt, θ) ∈ P+ for any t > 0, fp(p, θ) is free regular. The inverse Cauchy transform
is given by

G−1
fp(p,θ)(z) =

1

z
+

pθ

1− θz
. (2.11)

One can show that G−1
fp(p,θ) is a bijection from C− onto C+ ∪ (θ(

√
p− 1)2, θ(

√
p+

1)2) ∪ C− and so fp(p, θ) ∈ UI.
(3) The beta distribution β(p, q) is the probability measure with pdf

1

B(p, q)
· xp−1(1− x)q−1 1(0,1)(x), p, q > 0. (2.12)

The beta distribution belongs to the class UI if (i) p, q ≥ 3
2 , (ii) 0 < p ≤ 1

2 , p+q ≥ 2

or (iii) 0 < q ≤ 1
2 , p+ q ≥ 2 (see Hasebe, 2014).

(4) The positive Boolean (strictly) stable distribution bα, introduced by Speicher
and Woroudi (1997), is the distribution with pdf

sin(απ)

π
· xα−1

x2α + 2(cosπα)xα + 1
1(0,∞)(x), α ∈ (0, 1). (2.13)
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We then consider the classical mixtures of positive Boolean stable distributions

Bα = {µ⊛ bα | µ ∈ P+}, α ∈ (0, 1), (2.14)

where ⊛ is classical multiplicative convolution, i.e. XY ∼ µ⊛ν when X ∼ µ, Y ∼ ν
andX,Y are independent. This class was introduced and investigated in Arizmendi
and Hasebe (2016). It is known that Bα ⊂ Bβ when 0 < α ≤ β < 1 and B1/2 ⊂
UI ∩ FR ∩ ME. The property B1/2 ⊂ FR is not explicitly stated in Arizmendi
and Hasebe (2016), but it is a consequence of the fact B1/2 ⊂ FID ∩ P+ proved
in Arizmendi and Hasebe (2016, Proposition 4.21), the fact that any measure in
B1/2 \ {δ0} has a pdf which diverges to infinity at 0, and Lemma 2.1 above.

(5) We consider a further subclass of HCM distributions with pdf

f(x) = C · xp−1 exp

(∫

(0,∞)

log

(
1

t+ x

)
Γ(dt)

)
, (2.15)

where Γ is a finite measure on (0,∞), 0 < p < Γ((0,∞)) and
∫
(0,∞)

| log t|Γ(dt) < ∞
(these conditions ensure the integrability of f and hence we can take the normalizing
constant C > 0). This subclass is a natural generalization of pdfs of the form (2.3),
but does not cover all HCM pdfs. This pdf is of the form of Markov-Krein transform
Kerov (1998).

3. Main results

3.1. Statements. Now we are ready to state the main theorems. Independence of
random variables means classical independence below.

Theorem 3.1. Suppose X ∼ HCM whose pdf is of the form (2.15) and satisfies

0 < p ≤ 1

2
, 0 < −p+ Γ((0,∞)) ≤ 1

2
. (3.1)

If W ≥ 0 is a rv independent of X and |r| ≥ 1, then WXr ∼ FR ∩ UI. The case
r ≤ −1 can be considered only when W > 0 almost surely. Moreover, X−1 also has
a pdf of the form (2.15) that satisfies condition (3.1).

Remark 3.2. If one uses Bondesson (1992, Theorems 4.1.1, 4.1.4) and the factor-
ization of a gamma rv as a product of a beta rv and a gamma rv on p. 14 of Bondes-
son (1992), one can show that WXr ∼ ME and thus we get WXr ∼ FR∩UI∩ME.

Since the Boolean stable law b1/2 has the pdf π−1x−1/2(x+1)−1 which satisfies
the assumptions of Theorem 3.1, we have

Corollary 3.3. If X ∼ B1/2 and |r| ≥ 1 then Xr ∼ FR ∩ UI (r ≤ −1 can be
considered only when the mixing measure does not have an atom at 0).

Theorem 3.4. Suppose that X ∼ β(p, q). If r ≥ 1, q ∈ [ 32 ,
5
2 ], 0 < 2p ≤ r and

(q − 3
2 )r ≤ p+ q − 1 ≤ r, then Xr ∼ FR ∩ UI.

Since β(12 ,
3
2 ) = fp(1, 1

4 ), we conclude that if X ∼ fp(1, 1) then Xr ∼ FR ∩ UI
for r ≥ 1. However we will prove a stronger result.

Theorem 3.5. (1) If X ∼ fp(p, 1), p ≥ 1 and r ∈ (−∞, 0] ∪ [1,∞), then Xr ∼
FR ∩ UI.

(2) If X ∼ fp(p, 1), 0 < p < 1 and r ≥ 1, then Xr ∼ FR ∩ UI.
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We avoided the negative powers for 0 < p < 1 since fp(p, 1) has an atom at 0.
Since S ∼ S(0, 1) implies S2 ∼ fp(1, 1), the following result is immediate.

Corollary 3.6. If S ∼ S(0, 1) and r ∈ (−∞, 0] ∪ [2,∞) then |S|r ∼ FR ∩ UI.

Remark 3.7. The result for r = 4 was proved in Arizmendi et al. (2013). Recently
Chistyakov and Lehner showed the r = 6 case (in private communication). A related
but negative result is that (S + a)2 6∼ FID for all a 6= 0, see Eisenbaum (2012).

We consider the symmetrized versions.

Theorem 3.8. (1) Suppose X ∼ HCM satisfying condition (3.1) in Theorem 3.1.
If W is independent of X and has a symmetric distribution, then WXr ∼ UIs
for |r| ≥ 1.

(2) Suppose that B,X are independent and B ∼ 1
2 (δ−1 + δ1), X ∼ β(p, q). Under

the assumptions on p, q, r in Theorem 3.4, we have BXr ∼ UIs.
(3) Suppose that B,X are independent and B ∼ 1

2 (δ−1+ δ1), X ∼ β(p, q). If either
(i) p > r > 0 or (ii) r ≤ 0 then we have BXr 6∼ FID.

The case (p, q) = (1/2, 3/2) in (2) and (3) gives us

Corollary 3.9. (1) If S ∼ S(0, 1) and r ≥ 2 then |S|r sign(S) ∼ UIs.
(2) If S ∼ S(0, 1) and r < 1 then |S|r sign(S) 6∼ FID.

Remark 3.10. Corollary 3.6 and Corollary 3.9 imply that Sn are FID for all n ∈ N.
In the special case n = 2, the distribution of |S|2 sign(S) is the symmetrized beta
distribution with parameters 1/2, 3/2 and Arizmendi et al. (2010, Proposition 11)
already proved that it is FID.

Discussions and further remarks on main theorems. (1) In Theorem 3.8
only the symmetric Bernoulli rv B is considered for the mixing of beta rvs, while a
general W with a symmetric distribution appears in the HCM case. This Bernoulli
distribution cannot be generalized to arbitrary symmetric distributions. Actually
if W has a symmetric discrete distribution µW whose support has cardinality ≥ 4,
then WX is not FID for any beta rv X . The proof is as follows. The pdf of WX
is positive at c := min{x ∈ supp(µW ) | x > 0} but is not real analytic at c. This
shows that the distribution of WX is not FID by Belinschi and Bercovici (2005,
Proposition 5.1). For a similar reason, one cannot take a (positive) scale mixing of
beta or free Poisson rvs in Theorem 3.4 or in Theorem 3.5.

(2) Related to Theorem 3.8, a natural question is the symmetrization of powers
of free Poisson rvs, i.e. the law of BXr where B,X are independent, B ∼ 1

2 (δ−1+δ1)
and X ∼ fp(p, 1).

• If p = 1 and r ≥ 1 then BXr ∼ UIs from Corollary 3.9(1).
• If p > 1 and r ∈ R then BXr is not FID from Lemma 3.16 that we will
show later.

• If p < 1 and r ≥ 1 then it is not known whether BXr is FID or not.
Actually one can check condition (b) in Definition 2.4 similarly to the proof
of Theorem 3.8, but it is not clear how to show condition (a).

(3) In Theorems 3.1, 3.4, 3.8, the assumptions on the parameters of beta and
HCM distributions may seem too restrictive. Weakening these assumptions is left
to future research.
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3.2. Proofs. The integral form of the Cauchy transform gives us an analytic function

defined outside the support of µ, and we denote it by G̃µ(z):

G̃µ(z) =

∫

R

1

z − x
µ(dx), z ∈ C \ supp(µ). (3.2)

In the study of FID distributions, more important is the analytic continuation of
the Cauchy transform Gµ from C+ into C− passing through the support of µ.
This analytic continuation is possible when the pdf is real analytic and the explicit

formula can be given in terms of G̃µ(z) and the pdf. We state the result in a slightly
general form where complex measures are allowed, but the proof is similar to that

of Hasebe (2014, Proposition 4.1). Note that Gσ, G̃σ can be defined for complex
measures σ by linearity.

Lemma 3.11. Let I ⊂ R be an open interval. Suppose that f is analytic in a
neighborhood of I ∪ C− and that f is integrable on I with respect to the Lebesgue
measure. We define the complex measure σ(dx) := f(x)1I(x)dx. Then the Cauchy
transform Gσ defined on C+ has analytic continuation to C+ ∪ I ∪ C−, which we
denote by the same symbol Gσ, and

Gσ(z) = G̃σ(z)− 2πif(z), z ∈ C
−. (3.3)

The following lemma gives a crucial idea for showing the main theorems. The
idea of the proof is to take the curve γ in Bożejko and Hasebe (2013, Proposition
2.1) to be the one that starts from −∞ + i0, then goes to 0, turns 180◦ around 0
and then goes to −∞ − i0. This curve is useful since we can easily compute the
boundary value of Gµ on (−∞, 0)− i0 thanks to formula (3.3), so that we can check
condition (B) in Bożejko and Hasebe (2013, Proposition 2.1).

Lemma 3.12. Let µ be a probability measure on [0,∞) which has a pdf of the form

f(x) = xp−1g(x), x > 0, (3.4)

where

(A1) 0 < p ≤ 1
2 ;

(A2) g is the restriction of an analytic function (also denoted by g) defined in
{z ∈ C\ {0} | arg(z) ∈ (−π, θ0)} for some θ0 ∈ (0, π) and the restriction g|C−

extends to a continuous function on C− ∪ (−∞, 0);
(A3) limz→0,arg(z)∈(−π,θ0) g(z) > 0;
(A4) lim|z|→∞,arg(z)∈(−π,0) z

γf(z) = 0 for some γ > 0;
(A5) Re(f(x − i0)) ≤ 0 for x < 0.

Then ρ⊛ µ ∈ FR ∩UI for all ρ ∈ P+.

Proof : We first assume that ρ = δ1 and 0 < p < 1/2 and later drop these assump-
tions. Lemma 3.11 implies that the Cauchy transform Gµ has analytic continuation
(denoted by Gµ too) to C \ (−∞, 0] and Gµ(z) is given by formula (3.3) in C−.

In the following η > 0 is supposed to be large and δ > 0 is supposed to be small.
We consider curves:

• c1 is the real line segment from −η + i0 to −δ + i0;
• c2 is the clockwise circle δeiθ where θ starts from π and ends with −π;
• c3 is the line segment from −δ − i0 to −η − i0;
• c4 is the counterclockwise circle centered at 0, starting from −η − i0 and
stopping at −η + i0.
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Note that the line segments c1 and c3 are meant to be different by considering a
Riemannian surface. The left of Fig. 3.1 shows the directed closed curve consisting
of ck, k = 1, 2, 3, 4. Let gk be the image curve Gµ(ck) for k = 1, 2, 3, 4. More
precisely, the curves g1, g3 are defined by Gµ(c1 + i0), Gµ(c3 − i0) respectively, and
hence g1 lies on the negative real line.
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Figure 3.1. The curves ck and gk

Let ε > 0 be supposed to be small. We claim the existence of η > 0 large enough
so that |Gµ(z)| < ε for |z| ≥ η, z ∈ C\ (−∞, 0]. This can be proved by dividing the
region into the two parts arg(z) ∈ (−b, π) and arg(z) ∈ (−π,−b] where b ∈ (0, π/2)
is arbitrary. First, thanks to assumption (A4) we may change the contour of the
integral and obtain

Gµ(z) =

∫

e−2ib(0,∞)

1

z − w
f(w) dw, arg(z) ∈ (−b, π). (3.5)

Using assumption (A4), we can show that supθ∈(−b,π) |Gµ(re
iθ)| → 0 as r →

∞. For arg(z) ∈ (−π,−b], we use (3.3) and assumption (A4) to obtain that
supθ∈(−π,−b] |Gµ(re

iθ)| → 0 as r → ∞. This is what we claimed. Therefore,
the curve g4 is contained in the ball centered at 0 with radius ε.

From assumption (A5) it holds that

Im(Gµ(z)) = Im(G̃µ(z))− 2π Im(if(z)) ≥ 0, z ∈ [−η,−δ]− i0 (3.6)

since Im(G̃µ(z)) = 0 in (−∞, 0) − i0. Therefore the curve g3 is contained in {w |
Im(w) ≥ 0}.

Assumptions (A2),(A3) allow us to use Hasebe (2014, (5.6)). The assumptions
of Hasebe (2014, Theorem 5.1) are a little different from the present case, but the
proof is applicable to our case without a change, to conclude that there exists a > 0
such that

Gµ(z) = −a(−z)p−1 + o(|z|p−1), as z → 0,−π < arg(z) < π. (3.7)

By asymptotics (3.7), we can take δ ∈ (0, (aε/2)
1

1−p ) small enough so that

|Gµ(δe
iθ) + a(−δeiθ)p−1| < aδp−1

2
(3.8)

uniformly on θ ∈ (−π, π). Therefore |Gµ(δe
iθ)| > 1

2aδ
p−1 > ε−1, and so the

distance between the curve g2 and 0 is larger than ε−1. Since we have (3.7), if
δ, ε > 0 are small enough then the final point of g2 has an argument approximately
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equal to arg(−(−(−δ−i0))p−1) = arg(−(δe−2πi)p−1) = (1−2p)π, which is contained
in (0, π) because we assumed p < 1/2.

From the above arguments, every point of Dε := {w ∈ C− | ε < |w| < ε−1} is
surrounded by the closed curve g1 ∪ g2 ∪ g3 ∪ g4 exactly once. Hence we can define
a univalent inverse function G−1

µ in Dε. By analytic continuation, we can define

a univalent inverse function G−1
µ in C− by letting ε ↓ 0. When ε > 0 is small,

the bounded domain surrounded by c1 ∪ c2 ∪ c3 ∪ c4 has nonempty intersection
with a truncated cone Γλ,M where Gµ is univalent, and Gµ(Γλ,M ) has intersection
with Dε, and hence our G−1

µ coincides with the original inverse on their common

domain. Thus our G−1
µ gives the desired analytic continuation, to conclude that

µ ∈ UI. The case p = 1/2 follows by approximation.
Next we take a discrete measure ρ =

∑n
k=1 λkδtk , λk, tk > 0,

∑
k λk = 1. The

multiplicative convolution ρ⊛ µ has the pdf

fρ(x) :=
n∑

k=1

λkt
−1
k f(x/tk) =

n∑

k=1

λkt
−1
k (x/tk)

p−1g(x/tk)

= xp−1gρ(x),

(3.9)

where gρ(x) :=
∑n

k=1 λkt
−p
k g(x/tk). The pdf fρ satisfies all the conditions (A1)–

(A5) which follow from the conditions for f . Hence what we proved for f applies
to fρ without a change, and hence ρ⊛ µ ∈ UI. Since limx↓0 gρ(x) > 0 by (A3), the
pdf fρ satisfies limx↓0 fρ(x) = ∞, so that ρ ⊛ µ satisfies condition (ii) in Lemma
2.1, and so ρ ⊛ µ ∈ FR. Finally, by using the w-closedness of UI and FR we can
approximate a general ρ by discrete measures to get the full result. �

Remark 3.13. The curve g1 is a Jordan curve (i.e. a curve with no self-intersection)
since Gµ(x + i0) is decreasing on (−∞, 0). Moreover, if η > 0 is large and δ > 0
is small then we can show that g2, g4 are also Jordan curves (with e.g. Rouche’s
theorem). However these properties are not needed to prove the theorem. Also,
we do not know if g3 has a self-intersection or not, but it does not matter for the
proof. What we need is only that g3 is contained in C+ ∪R.

The result on powers of HCM rvs is a consequence of the above lemma.

Proof of Theorem 3.1: We further assume that X has a pdf of the form (2.3) and
also r > 1. Then we define s := 1/r. The pdf of Xr is now given by

f(x) = sC · xps−1
n∏

k=1

(tk + xs)−γk , (3.10)

where

0 < p ≤ 1

2
, 0 < −p+

n∑

k=1

γk ≤ 1

2
. (3.11)

Then f can be written in the form xps−1g(x) where

g(x) = sC

n∏

k=1

(tk + xs)−γk . (3.12)

The pdf f is of the form (3.4) in Lemma 3.12 with p now replaced by ps ∈ (0, 1/2),
satisfying assumptions (A1)–(A4). Indeed, assumption (A2) holds since we can
extend the function (3.12) analytically by extending xs to the analytic function zs
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defined in a domain {reiθ : r > 0, θ ∈ (−π − δ, δ)} for some small δ > 0 so that
zs never be a negative real in the domain. Such a δ > 0 exists by our assumption
s ∈ (0, 1). Then (A3) follows immediately, and (A4) can be proved by taking γ > 0
such that γ < 1− ps+

∑n
k=1 γks. In order to check (A5) we compute

f(x− i0) = −sC|x|ps−1e−iπps
n∏

k=1

(tk + |x|se−iπs)−γk , x < 0. (3.13)

Since arg(tk+ |x|se−iπs) ∈ (−πs, 0), we have that arg(tk+ |x|se−iπs)−γk ∈ (0, πγks)
and hence arg(−f(x − i0)) ∈ (−πps,−πps +

∑n
k=1 πγks). Then (3.11) implies

that arg(−f(x − i0)) ∈ (−π
2 ,

π
2 ) and hence assumption (A5) holds true. Thus

Xr ∼ FR ∩ UI, and we can take the limit s ↑ 1 to get the result for s ∈ (0, 1].
The law of X−1 has the pdf

C · x−p−1
n∏

k=1

(tk + x−1)−γk = C′ · xp′−1
n∏

k=1

(t−1
k + x)−γk , (3.14)

where C′ = C
∏

k t
−γk

k , p′ = −p +
∑

k γk. Our assumption (3.11) guarantees that

p′ ∈ (0, 1
2 ] and −p′ +

∑
k γk = p ∈ (0, 1

2 ]. Therefore X−1 also satisfies (3.11) with
p replaced by p′ and so X−r ∼ FR ∩UI for r ≥ 1.

Finally we can approximate a pdf of the form (2.15) by pdfs of the form (2.3)
in the sense of pointwise convergence. By Scheffé’s lemma, we have the weak
convergence of probability measures, and hence the full result follows. �

We then go to the proof of Theorem 3.4 on powers of beta rvs. The idea is
similar to the case of HCM rvs, but we need more elaboration since now we have
to study the boundary behavior of the Cauchy transform on (1,∞)− i0 in addition
to (−∞, 0)− i0.

Proof of Theorem 3.4: We may further assume that r > 1, p + q − 1 < r, q ∈
[ 32 , 2)∪ (2, 52 ], 2p < r since the general case can be recovered by approximation. We
define s := 1/r ∈ (0, 1). The pdf of Xr is now given by

f(x) =
s

B(p, q)
· xps−1(1− xs)q−1 = xps−1g(x), (3.15)

where g(x) = s
B(p,q) (1− xs)q−1.

Step 1: Analysis of GXr around (−∞, 0). We take the same curves c1, c2, c3
depending on η, δ > 0 as in Lemma 3.12 and the image curves gk = GXr (ck), k =
1, 2, 3. The pdf f is of the form (3.4) with p replaced by ps ∈ (0, 1/2) and satisfies
assumptions (A1),(A3),(A4) in Lemma 3.12. Notice that (A4) holds thanks to
(p+ q − 1)s < 1. We change (A2) to the condition that f analytically continues to
C− ∪ (0, 1)∪C+ and f |C− extends to a continuous function on C− ∪ (−∞, 0). The
analytic continuation is given by just replacing x with z in (3.15).

In order to show (A5) in Lemma 3.12, we compute

f(x− i0) = − s

B(p, q)
· |x|ps−1e−iπps(1− |x|se−iπs)q−1, x < 0. (3.16)

Since arg(1− |x|se−iπs) ∈ (0, π− πs), we have that arg(−f(x− i0)) ∈ (−πps, π(1−
p− q)s+ π(q − 1)). Our assumptions 0 < ps < 1

2 , q − 3
2 ≤ s(p+ q − 1) imply that

arg(−f(x− i0)) ∈ (−π
2 ,

π
2 ) and hence assumption (A5) holds true. So the curve g3

lies on C+ ∪ R.
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The asymptotics (3.7) holds in the present case too (the constant a may change
and p is replaced by ps), and hence for each ε > 0 there exists δ > 0 small enough
so that the distance between g2 and 0 is larger than ε−1. The maximal argument
of the curve g2 is in (0, π) as discussed in the proof of Lemma 3.12.

The above arguments and the proof of Lemma 3.12 show that the curves gk, k =
1, 2, 3 typically behave as in Fig. 3.2.
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Figure 3.2. The curves ck and gk

Step 2: Analysis of GXr around [1,∞) and around ∞. We show the following
properties:

(i) The restriction f |C− extends to a continuous function on C− ∪ R \ {0};
(ii) The analytic function G := GXr (defined in C+∪ (0, 1)∪C− via Lemma 3.11)

extends to a continuous function on C+∪(0, 1)∪C−∪([1,∞)+i0)∪([1,∞)−i0);
(iii) Re(f(x− i0)) ≤ 0 for x > 1.

Note that in (ii) we understand that [1,∞) + i0, [1,∞)− i0 are different half-lines
by cutting the plane along [1,∞) and going to the Riemannian surface. This
property implies that the map (r, θ) 7→ G(reiθ) defined in (0, 1)× (0, 2π) extends to
a continuous map on [0, 1)× [0, 2π], and in particular that G(1 + i0) = G(1− i0).

Property (i) is easy to show.
Property (ii) follows from the second asymptotics in Hasebe (2014, (5.6)): there

exists b ∈ R such that

G(z) = b+ o(1), z → 1, z ∈ C \ [1,∞). (3.17)

The number b is positive since it equals limx↓1 G(x + i0) > 0. Note that the proof
of this asymptotics required 1 < q < 2 (in Hasebe (2014) q is denoted by α),
but we can give a proof for 2 < q < 3 too only by using the identity wα−2 =
(w−z)wα−3+zwα−3 in Hasebe (2014, (5.13)). For q = 2 a logarithm term appears
and so we avoid such a case for simplicity. The continuity on (1,∞) − i0 follows
from formula (3.3) and property (i).

Property (iii) follows from the computation

f(x− i0) =
s

B(p, q)
· xps−1(xs − 1)q−1eiπ(q−1), x > 1 (3.18)

and our assumption q ∈ [ 32 ,
5
2 ].
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We moreover define c4, . . . , c7 and the corresponding images gk = G(ck) for
k = 4, . . . , 7:

• c4 is a counterclockwise curve which lies on {z ∈ C− | |z| ≥ η}, starting
from −η − i0 (the final point of c3) and ends at 1 + η − i0;

• c5 is the line segment from 1 + η − i0 to 1− i0;
• c6 is the line segment from 1 + i0 to 1 + η + i0;
• c7 is a counterclockwise curve which lies on {z ∈ C+ | |z| ≥ η}, starting
from 1 + η + i0 and ending at −η + i0.

Thanks to property (ii), g5 ∪ g6 is a continuous curve, so one need not take a small
circle to avoid the point 1.

We can take a large η > 0 similarly to Lemma 3.12 so that the curves g4, g7 lie on
the ball {z ∈ C | |z| < ε} as shown in the right figure. This is easy to prove for g7
since the measure is compactly supported and so G(z) = O(1/z) (z → ∞, z ∈ C

+).
For g4 we need Lemma 3.11 and our assumption s(p + q − 1) < 1. Thanks to
property (iii), we have that

Im(G(z)) = Im(G̃(z))− 2π Im(if(z)) ≥ 0 (3.19)

on c5, so the curve g5 is on C+ ∪ R.
From the above arguments, every point of Dε = {w ∈ C− | ε < |w| < ε−1}

is surrounded by the closed curve g1 ∪ · · · ∪ g7 exactly once. So we can define a
univalent inverseG−1 in C− as discussed in Lemma 3.12, to conclude that Xr ∼ UI.
Approximation shows that the result is true for r = 1 and q = 2 and for the case
p+ q − 1 = r too. From Lemma 2.1 the law of Xr is free regular. �

Remark 3.14. The curves g1 and g6 are Jordan curves. If η > 0 is large and δ > 0
is small then we can moreover show that g2, g4, g7 are also Jordan curves (with e.g.
Rouche’s theorem). However these properties are not needed to prove the theorem.

We will prove the results for powers of free Poisson rvs. The idea is again similar
to the previous proofs. A new phenomenon is that the Cauchy transform has a
singularity when we take the limit z → 0, z ∈ C−, and we will see how the previous
methods are modified.

Proof of Theorem 3.5: Since approximation is allowed, we only consider parameters
(p, r) from an open dense subset of the full set.

Case (a): p > 1, r > 1.
(a-UI) We will first show that Xr ∼ UI when X ∼ fp(p, 1). For simplicity we

define G(z) = GXr (z), s = 1/r, a = |√p−1|2/s > 0 and b = (
√
p+1)2/s > a. Then

the pdf of Xr is equal to

f(x) =
s

2π
·
√
(bs − xs)(xs − as)

x
1(a,b)(x). (3.20)

This density extends to an analytic function in C+ ∪ (a, b) ∪ C− by replacing x in
(3.20) with a complex variable z. The function zs is the principal value. One can
take the square root also as the principal value, but it may not be obvious. To
justify this claim, we use the identity

(bs − zs)(zs − as) = −
(
zs − as + bs

2

)2

+

(
bs − as

2

)2

. (3.21)
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If z ∈ C± then zs− as+bs

2 ∈ C±, and hence −(zs− as+bs

2 )2 ∈ C\(−∞, 0], and hence

by adding the positive real number ( b
s−as

2 )2, we conclude that (bs − zs)(zs − as) ∈
C \ (−∞, 0]. So the principal value is relevant for defining the square root.

The Cauchy transform G extends to C+ ∪ (a, b) ∪ C− analytically via Lemma
3.11. The function f |C− extends to a continuous function on C− ∪ R \ {0} since
(bs−zs)(zs−as) continuously extends to C−∪R without taking the value 0 except
at a, b.

Curves ck, gk = G(ck) that we use in the proof are shown in Fig. 3.3.
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Figure 3.3. The curves ck and gk (p > 1, r > 1)

We compute the boundary value f(x − i0) for x < a, x > b, which is the most
crucial part of the proof. For 0 < x < a, since (x − iδ)s − as approaches the point
−(as − xs) < 0 from C− as δ ↓ 0, we should understand that (x − i0)s − as =
(as − xs)e−iπ+i0. Hence

f(x− i0) =
s

2π
· e

− iπ
2

√
(bs − xs)(as − xs)

x
, 0 < x < a, (3.22)

and hence Re(f(x− i0)) = 0. So the curve g2 is on the (negative) real line.
For x > b, since bs − (x − iδ)s approaches a point in (−∞, 0) from C+, we have

to understand that bs − (x− i0)s = (xs − bs)eiπ−i0. Hence

f(x− i0) =
s

2π
· e

iπ
2

√
(xs − bs)(xs − as)

x
, x > b, (3.23)

and hence Re(f(x− i0)) = 0. So the curve g6 is on the (positive) real line.

As we saw in (3.21), arg((bs−zs)(zs−as)) ∈ (−π, π), and hence
√
(bs−zs)(zs−as)

∈ {w | Re(w) > 0}. Dividing it by z and taking the limit z → x− i0 = |x|e−iπ, we
have

Re(f(x − i0)) ≤ 0, x < 0 (3.24)

and so g4 lies on C+∪R. The remaining proof is similar to Theorems 3.1, 3.4, so we
only mention important remarks. The proof of Hasebe (2014, Theorem 5.1(5.6))
for α = 3

2 , x0 = a and x0 = b (with reflection) enables us to show that the Cauchy
transform G has a continuous extension to

C
+ ∪ [a, b]∪C

− ∪ ((−∞, a]∪ [b,∞)+ i0)∪ ((−∞, a]∪ [b,∞)− i0) \ {0− i0}, (3.25)
similarly to property (ii) in the proof of Theorem 3.4. This implies that g1 ∪ g2
is a continuous curve and so is g6 ∪ g7. The Cauchy transform has a singularity
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at 0 when approaching from C−. This singularity is a contribution of x−1 of (the
analytic continuation of) the pdf f . So we avoid 0 via the curve c3. When one
draws the picture of g3, one should take it into account that G(z) = −2πif(z) +

o(|z|−1) = − s(p−1)
z (1 + o(1)), z → 0, z ∈ C− since G̃(z) is analytic around 0 and

f(z) = s
2π · −i

√
asbs

z (1 + o(1)). So the curve g3 is as shown in Fig. 3.3. Thus one
can show that Xr ∼ UI.

(a-FR) Since we cannot apply Lemma 2.1, we will directly prove that Xr ∼ FR.
Let us take the curves c1 = (t + i0)t∈(−∞,a] and c2 = (a − t − i0)t∈[0,a]. We can

see that for any t ∈ (−∞, a) there exists δ1 > 0 such that G(t + iy) ∈ C− for
all y ∈ (0, δ1) (since G maps C+ to C−) and also for any t ∈ (0, a) there exists
δ2 > 0 such that G(a− t− iy) ∈ C− for y ∈ (0, δ2) thanks to (3.22). Note also that

G(c1+ i0) = [−α, 0) and G(c2 − i0) = (−∞,−α] for α := G̃(a− 0) > 0. These facts
imply that our inverse G−1 in C− satisfies that

G−1((−∞,−α]− i0) = c2, G−1([−α, 0)− i0) = c1. (3.26)

It also holds that G−1(−∞− i0) = 0 since G(z) tends to ∞ as z → 0, z ∈ C−. Let
ϕ(z) := G−1(z−1)− z, z ∈ C+ be the Voiculescu transform. Since Im(ϕ(x + i0)) =
0, x < 0 by (3.26), the free Lévy measure of Xr has no mass on (−∞, 0) by Stieltjes
inversion. Since ϕ(−0) = G−1(−∞) = 0, Arizmendi et al. (2013, Proposition 11)
implies that Xr ∼ FR.

Case (b): p < 1, r > 1. We follow the notations in case (a). Since now the
distribution ofXr has an atom at 0 and hence we can apply Lemma 2.1, it suffices to
show Xr ∼ UI. The probability distribution of Xr is of the form (1−p)δ0+f(x) dx,
where f is given by the same formula (3.20). The functions f and G have analytic
continuation as discussed in case (a).

We will take curves ck as shown in Fig. 3.4. Now the difference from case (a) is
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Figure 3.4. The curves ck and gk (p < 1, r > 1)

that G̃ has a pole at 0, and so we avoid 0±i0 via the curves c2, c5. Note that G(z) =
1−p
z (1 + o(1)) as z → 0, z ∈ C+ and G(z) = G̃(z)− 2πif(z) = (1−p)(1−s)

z (1 + o(1))
as z → 0, z ∈ C−, so the curves g2, g5 look like large semicircles. Thus we can prove
the claim Xr ∼ UI.

Case (c): p > 1, r < −1. For simplicity we use the same notationG(z) = GXr (z),
but now we define t = −1/r ∈ (0, 1), A = (

√
p+1)−2/t > 0 and B = (

√
p−1)−2/t >
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A. Then the pdf of Xr is equal to

h(x) =
t(p− 1)

2π
·
√
(Bt − xt)(xt −At)

xt+1
1(A,B)(x). (3.27)

The functions h,G continue analytically to C+ ∪ (A,B) ∪C− and h|C− extends to
a continuous function on C− ∪ R \ {0} as we discussed in case (a).

We will take the same curves ck as in case (a) except that the points a, b are
replaced by A,B respectively (see Fig. 3.5).
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Figure 3.5. The curves ck and gk (p > 1, r < −1)

In the present case, the difficulty is to show the inequality corresponding to
(3.24), i.e. Re(h(x− i0)) ≤ 0 for x < 0. The inequality Re(h(x− i0)) ≤ 0 (actually
equality holds) for 0 < x < a and x > b is easy because only the new factor
(p− 1)x−t > 0 is different from (3.22),(3.23).

We show that Re(h(x− i0)) ≤ 0 for x < 0 by considering two further sub cases.
Case (ci): 0 < t ≤ 1

2 . We will use the identity (3.21) with (a, b) replaced by

(A,B). First we can easily show that arg(−2π,0)(((x − i0)t − (At + Bt)/2)2) ∈
(−2π,−2πt) for x < 0. Then we multiply it by −1 and shift it by ((Bt − At)/2)2

and so arg((Bt − (x − i0)t)((x − i0)t − At)) ∈ (−π, (1 − 2t)π). Then we take the

square root to get arg(
√
(Bt − (x − i0)t)((x − i0)t −At)) ∈ (−π

2 , (
1
2−t)π). Further

we divide it by (x− i0)t+1 = |x|t+1e−iπ(t+1), to get Re(h(x− i0)) ≤ 0 for x < 0.
Case (cii): 1

2 < t < 1. We can show that the curve γ : ((x − i0)t − (At +

Bt)/2)2, x < 0 is on the right side of the half-line L : ((At +Bt)/2)
2
+ rei(2π−2πt),

r > 0, and then arg((Bt − (x− i0)t)((x− i0)t −At)) ∈ (−π, (1− 2t)π) (see Remark
3.15 for more details). The remaining arguments are the same as case (ci).

Thus we have now Re(h(x − i0)) ≤ 0 for x < 0 and hence g4 lies on C+ ∪ R.
The remaining proof is almost the same as in case (a), but there are two remarks.

One is that as z → 0, z ∈ C−, the Cauchy transform G(z) = G̃(z) − 2πih(z) has
asymptotics G(z) = − t

zt+1 (1 + o(1)) which is different from case (a) by the factor
z−t and a constant. Therefore the arguments of g3 change from around −π to tπ
as in Fig. 3.5. The other remark is that as z → ∞, z ∈ C−, the asymptotics of the

Cauchy transform is G(z) = G̃(z)− 2πih(z) = (1− t(p− 1)) · z−1(1+ o(1)), so g5 is
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near 0. Thus we are able to show that Xr ∼ UI. The proof of Xr ∼ FR is similar
to case (a).

Case (d): p > 1, r ∈ (−1, 0). The pdf is the same as (3.27). We follow the
notations in case (c), and so now we have t > 1. The function h now analytically
continues to {z ∈ C \ {0} | arg(z) ∈ (−π/t, 0)∪ (0, π/t)} ∪ (A,B) and so G extends
to C+ ∪ (A,B) ∪ {z ∈ C \ {0} | arg(z) ∈ (−π/t, 0)}. Moreover h extends to a
continuous function on {z ∈ C \ {0} | arg(z) ∈ [−π/t, 0]}. The curve c4 in case
(c) is not useful now, and instead we take c4 to be a long line segment with angle
−π/t. So we take curves as shown in Fig. 3.6.
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Figure 3.6. The curves ck and gk (p > 1,−1 < r < 0)

We compute the boundary value on c4:

lim
δ↓0

h(re−iπ/t + δ) =
t(p− 1)

2π
· e

−iπ/2
√
(Bt + rt)(At + rt)

rt+1e−iπ(t+1)/t

=
t(p− 1)

√
(Bt + rt)(At + rt)

2πrt+1
· ieiπ/t, r > 0,

(3.28)

and hence Re(h(re−iπ/t + 0)) < 0 as desired. This implies that g4 lies on C+ ∪ R.
The remaining proof is similar to case (c) and the typical behavior of the curves gk
is also similar to case (c). Thus we can show that Xr ∼ UI. The proof of Xr ∼ FR
is similar to case (a). �

Remark 3.15 (More details on case (cii)). For simplicity let d denote (At+Bt)/2.
We first show that the curve γ(r) = l(r)2 = (re−itπ−d)2, r > 0 is on the right side of
the half line L(r) = d2+rei(2π−2πt), r > 0 (see Figs 3.7,3.8). Our claim is equivalent
to arg(γ(r)− d2) ∈ (0, 2π − 2tπ), r > 0. From Fig. 3.7 and the current assumption
1/2 < t < 1, we can see that arg(γ(r) − d2) ∈ (0, π). A simple computation shows
that γ(r)−d2 = (re−itπ−d)2−d2 = r2 cos(2tπ)−2dr cos(tπ)−2ir sin(tπ)(r cos(tπ)−
d). After some more computations, one has

Im((γ(r) − d2)e−i(2π−2tπ)) = −2dr sin(tπ) < 0. (3.29)

Therefore arg(γ(r)− d2) < 2π − 2tπ.
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Next, since d2 = (A
t+Bt

2 )2 > (B
t−At

2 )2, the arguments of the curve γ− (B
t−At

2 )2

still lie in (0, 2π − 2tπ). Hence the arguments of the curve −γ + (B
t−At

2 )2 lie in
(−π, (1− 2t)π).

0
A + Bt

2

t

πt

l

Figure 3.7.

l : (x−i0)t−At+Bt

2 ,
x < 0

0
A + Bt

2

t

( )
2

2 πt

L
γ

Figure 3.8.

γ : ((x−i0)t−At+Bt

2 )2,
x < 0

Finally we prove Theorem 3.8, i.e. the FID properties of symmetric distributions.
The negative result in Theorem 3.8(3) on the symmetrized powers of beta rvs entails
the following fact.

Lemma 3.16. Suppose that a probability measure µ on R is symmetric and µ|(−ε,ε)

= p(x)1(−ε,ε)(x) dx for some ε > 0 and some continuous function p on (−ε, ε). If
p(0) = 0, then µ /∈ FID.

Proof : Suppose that µ ∈ FID. The Cauchy transform of µ vanishes at 0 since
Re(Gµ(iy)) = 0 and limy↓0 Gµ(iy) = −iπp(0) = 0. This contradicts the fact that
the reciprocal Cauchy transform 1/Gµ(z) extends to a continuous function onC+∪R
into itself (see Belinschi, 2005, Proposition 2.8). �

Proof of Theorem 3.8: The negative result (3) holds since if p > r > 0 or r ≤ 0
then the law of BXr satisfies the assumptions of Lemma 3.16.

We will prove the case (2) and later give some comments on how to prove the
HCM case (1). The idea is similar to the proof of Theorem 3.4, so we only mention
significant changes of the proof. We follow the notations in the proof of Theorem
3.4. First we will check condition (b) in Definition 2.4. The pdf of BXr is given by

w(x) =
s

2B(p, q)
· |x|ps−1(1 − |x|s)q−1 1(−1,1)\{0}(x). (3.30)

The restriction w|(0,1) has the analytic continuation w(z) = 1
2f(z) in C+∪(0, 1)∪C−

where f(x) is the pdf of Xr. Note then that w(x+i0) 6= w(x) for x ∈ (−1, 0). Also
GBXr(z) = 1

2 (GXr (z) − GXr (−z)) has analytic continuation to C+ ∪ (0, 1) ∪ C−

and

GBXr (z) =
1

2

(
G̃Xr (z)− 2πiw(z)

)
− 1

2
G̃Xr (−z)

= G̃BXr (z)− 1

2
πif(z), z ∈ C

−.
(3.31)

We take curves ck in Fig. 3.9 and consider the image curves gk = GBXr (ck).
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Figure 3.9. The curves ck, gk

We have proved Re(f(x− i0)) ≤ 0 for x < 0 and x > 1 in the proof of Theorem
3.4, so the curves g3, g5 are contained in C

+ ∪ R.
The function GBXr extends continuously to

C
+ ∪ (0, 1) ∪C

− ∪ ([1,∞) + i0) ∪ ([1,∞)− i0) (3.32)

as we proved in Theorem 3.4, so g5 ∪ g6 is a continuous curve.
We may use the asymptotics (3.7) (we use the same notation a for the constant)

and obtain

GBXr (z) =
1

2
(GXr (z)−GXr(−z))

=
a

2
(−(−z)ps−1 + zps−1) + o(|z|ps−1)

= a cos
(πps

2

)
e−iπps

2 zps−1 + o(|z|ps−1)

(3.33)

as z → 0, arg(z) ∈ (−π, π). So when z goes along a small circle centered at 0 from
arg(z) = π/2 to arg(z) = −π, the Cauchy transform GBXr (z) goes along a large
circle-like curve from the angle −π/2 to (1− 3

2ps)π (> 0 since ps ≤ 1/2) with small
errors. This suggests that the curve g2 seems as in Fig. 3.9.

The asymptotics (3.33) also implies that 1
iGBXr (iy) → −∞ as y ↓ 0. It is

elementary to show that GBXr (z) → 0 as |z| → ∞, z ∈ C+. Therefore the curves
g1, g7 are as shown in Fig. 3.9.

Thus each point of C−∩ iC− is surrounded by g1∪· · ·∪g7 exactly once when the
curve c1∪· · ·∪c7 is sufficiently close to the boundary of C−∪iC−\ [1,∞). Therefore
G−1

BXr has univalent analytic continuation to C−∩iC− such that G−1
BXr (C−∩iC−) ⊂

C− ∪ iC−. This is condition (b) in Definition 2.4.
We will check condition (a) in Definition 2.4. By calculus we can show that

w′(x) < 0 for x ∈ (0, 1) and hence the distribution of BXr is unimodal. The map
GBXr is univalent in C+ thanks to Kaplan (1952, Theorem 3) (see Avkhadiev and
Aksent’ev, 1975, Theorem 39, for a different proof). Recall that 1

iGBXr (iy) → −∞
as y ↓ 0 and that GBXr (iy) → 0 as y → ∞. Therefore, GBXr maps a neighborhood
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of i(0,∞) onto a neighborhood of i(−∞, 0) bijectively. Thus we have condition (a)
and therefore BXr ∼ UIs.

For the HCM case, we may assume that W takes only finitely many values. Then
the pdf of X is of the form (2.3) and r ≥ 1. By calculus we can show that the pdf
of WXr is unimodal. Then the proof is similar to the case of beta rvs. �

According to Mathematica, the Cauchy transform of Xr has an expression in
terms of generalized hypergeometric functions when X ∼ β(p, q) and at least r =
3/2, 4. Figs 3.2–3.2 show the numerical computation of the domainG−1

BXr (C−∩iC−)
which equals a connected component of {z ∈ C− ∪ iC− \ [1,∞) | GBXr(z) ∈ C−}.
These figures suggest that the law of BXr belongs to UI since the domain seems
to be contained in the right half-plane, but there is no rigorous proof.
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Figure 3.10. The domain G−1
BX3/2(C

− ∩ iC−) when X ∼ β(1/2, 1.501)

-0.5 0.0 0.5 1.0 1.5

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 3.11. The domain G−1
BX3/2(C

− ∩ iC−) when X ∼ β(1/2, 2)
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Figure 3.12. The domain G−1
BX4(C− ∩ iC−) when X ∼ β(1/3, 1.8)
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Figure 3.13. The domain G−1
BX4(C− ∩ iC−) when X ∼ β(1/3, 2.4)

4. Analogy between classical and free probabilities

The free analogue of the normal distribution is the semicircle distribution, and
nothing else has been proposed so far. However, three different kinds of “free gamma
distributions” have been proposed in the literature: Anshelevich (2003, p. 238) de-
fined a free gamma distribution in terms of orthogonal polynomials; Pérez-Abreu
and Sakuma (2008) defined a free gamma distribution in terms of the Bercovici-Pata
bijection, whose property was investigated in details by Haagerup and Thorbjørnsen
(2014). The third definition of a free gamma distribution is just the free Poisson
distribution. This comes from an analogy between a characterization of gamma
distributions by Lukacs and that of free Poisson distributions by Szpojankowski.
Lukacs (1955) proved that non-degenerate and independent rvs X,Y > 0 have
gamma distributions with the same scale parameter if and only if X

X+Y , X + Y are
independent. The free probabilistic analogue gives us free Poisson distributions.
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Namely, in Szpojankowski (2015b, Theorem 4.2) and Szpojankowski (2015a, The-
orem 3.1) it was proved that bounded non-degenerate free rvs X,Y ≥ 0 such that
X ≥ εI for some ε > 0 have free Poisson distributions with the same scale pa-
rameter if and only if (X + Y )−1/2X(X + Y )−1/2, X + Y are free. Note that the
assumption X ≥ εI implies that p > 1 when X ∼ fp(p, θ).

From the point of view of the third definition of a free gamma distribution as
the free Poisson distribution, our Theorem 3.5 on powers of free Poisson rvs has a
good correspondence with the classical case:

Theorem 4.1. Suppose that Y follows a gamma distribution. Then Y r ∼ GGC
for r ∈ (−∞, 0] ∪ [1,∞). If r ∈ (0, 1) then Y r /∈ ID.

The result for |r| ≥ 1 was first proved by Thorin (1978). It also follows from
some facts on the class HCM: all gamma distributions are contained in HCM;
HCM ⊂ GGC; X ∼ HCM implies Xr ∼ HCM for |r| ≥ 1 Bondesson (1992). The
result for r ∈ (−1, 0) was recently proved by Bosch and Simon (2015). If r ∈ (0, 1)
then Y r is not ID since the tail decreases in a more rapid way than what is allowed
for non-normal ID distributions (see Ruegg, 1970 or Steutel and van Harn, 2004,
Chap. 4., Theorem 9.8 for the rigorous statement).

Therefore we have a complete correspondence between the ID property of powers
of gamma rvs and the FID property of free Poisson rvs, except r ∈ (0, 1). We pose
a conjecture on this missing interval.

Conjecture 4.2. If X ∼ fp(p, 1), r ∈ (0, 1) and p > 0 then Xr 6∼ FID.

A partial result can be obtained from Hasebe (2014, Theorem 5.1): Xr 6∼ FID if
X ∼ fp(1, 1) and r ∈ (12 − 1

4n+2 ,
1
2 − 1

4n+4 )∪(12 +
1
4n ,

1
2 +

1
4n−2 ), n ∈ N. Another way

to check the free infinite divisibility is the Hankel determinants of free cumulants.
Haagerup and Möller computed the Mellin transform of X ∼ fp(1, 1) in Haagerup
and Möller (2013, Theorem 3) and the moments of Xr are given by

∫ 4

0

xrn fp(1, 1)(dx) =
Γ(1 + 2rn)

Γ(1 + rn)Γ(2 + rn)
, n ∈ N ∪ {0}, (4.1)

so we can compute free cumulants from these moments. According to Mathematica,
the 2nd Hankel determinant K4K2−K2

3 of the free cumulants {Kn}n≥2 is negative
for 0.35 . r < 1 and K6 is negative for 0.335 . r . 0.42 (see Figs. 4.14, 4.15). So
it seems that Xr 6∼ FID for 0.335 . r < 1, but this is not a mathematical proof.

Our Corollary 3.6 and Corollary 3.9 on powers of semicircular elements also have
a good correspondence with the classical case:

Theorem 4.3. Suppose Z ∼ N(0, 1).

(1) If r ∈ (−∞, 0] ∪ [2,∞) then |Z|r ∼ GGC.
(2) If r ∈ (0, 2) then |Z|r 6∼ ID.
(3) If r ≥ 2 then |Z|r sign(Z) ∼ ID.
(4) If 1 6= r < 2 then |Z|r sign(Z) /∈ ID.

Proof : (1),(2) are a special case of Theorem 4.1 since Z ∼ N(0, 1) implies that Z2

follows the gamma distribution (2πx)−1/2e−x/21(0,∞)(x) dx.
(3) follows from Shanbhag and Sreehari (1977, Theorem 5).
(4) When r < 1, r 6= 0 then the pdf of |Z|r sign(Z) is symmetric and vanishes at

0. Such a distribution is not ID by Rohatgi et al. (1990, p. 58). When r = 0 the
distribution is a symmetric Bernoulli and so not ID.
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Figure 4.14. K4K2 −K2
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Figure 4.17. det((K ′
2i+2j−2)

4
i,j=1) as a function of r.

When 1 < r < 2, one may use Ruegg (1970, Theorem 2) or Steutel and van Harn
(2004, Chap. 4, Theorem 9.8). �

The following problems remain to be solved in order to get the complete analogy
between classical and free cases.

Conjecture 4.4. Suppose that S ∼ S(0, 1).
(1) |S|r 6∼ FID for r ∈ (0, 2).
(2) |S|r sign(S) 6∼ FID for r ∈ (1, 2).

Note that (1) is a special case of Conjecture 4.2. The odd moments of |S|r sign(S)
are 0 and the even moments are the same as those of |S|r. So we can compute free
cumulants {K ′

n}n≥1 of |S|r sign(S) from (4.1), and computation in Mathematica
suggests that K ′

2K
′
6 − (K ′

4)
2 < 0 for 1 . r . 1.8 and det((K ′

2i+2j−2)
4
i,j=1) < 0 for

1.68 . r . 1.94 (in Figs. 4.16, 4.17). So the conjecture (2) is likely to hold.

Acknowledgements

This work is supported by JSPS Grant-in-Aid for Young Scientists (B) 15K17549.
The author thanks Octavio Arizmendi and Noriyoshi Sakuma for the past collab-
orations and discussions which motivated this paper. The author thanks Franz
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