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Abstract. Harris family of distributions models lifetime of a series system when
the number of components is a positive random variable. In this paper, we reveal
several stochastic comparisons in the Harris family with different tilt parameters
and different baseline distributions with respect to the usual stochastic, shifted sto-
chastic, proportional stochastic and shifted proportional stochastic orderings. Such
comparisons are particularly useful in lifetime optimization of reliability systems.
We shall also present two bounds for a Harris family survival function conditioned
on its tilt parameter which are useful when aging properties are considered. Our
results generalize several previous findings in this connection.

1. Introduction

To cover a wide range of data such as those with a high degree of skewness and
kurtosis, Marshall and Olkin (1997) and Aly and Benkherouf (2011) introduced two
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special families of distributions. In their approaches, they considered a baseline
distribution and extended it to a new and more flexible distribution. The resulting
classes are called Marshall-Olkin and Harris family of distributions, respectively.

The methods of generating Marshall-Olkin and Harris distributions are basically
the same. They proceed as follows: Let Y1, Y2, . . . be a sequence of independent
and identical (iid) random variables (rv) with a common distribution function (df)
F and survival function (sf) F̄ = 1 − F . Let X = min{Y1, Y2, ..., YN}, where N
is a positive integer valued rv independent of the Yi’s with probability generating
function (pgf)

PN (t) = E(tN ) =

∞∑
n=0

tnP (N = n), t ∈ [0, 1].

Then, X can be considered as the lifetime of a series system with iid component
lifetimes Y1, Y2, ..., YN and a random number N of components. The sf H̄ of X has
the representation

H̄(x) =

∞∑
n=0

[F̄ (x)]nP (N = n),

so that
H̄(x) = PN (F̄ (x)). (1.1)

Assuming N to be a geometric rv, Marshall and Olkin (1997) introduced the so-
called Marshall-Olkin distribution. Aly and Benkherouf (2011) used the Harris
pgf

PN (s; θ, k) =
{ θsk

1− θ̄sk
}1/k

, k > 0, 0 < θ < 1, θ̄ = 1− θ, (1.2)

introduced by Harris (1948), and generated the Harris family of survival functions
H̄ as

H̄(x; θ, k) =
( θF̄ k(x)

1− θ̄F̄ k(x)

)1/k

, k > 0, 0 < θ <∞ θ̄ = 1− θ. (1.3)

The df F in (1.3) is called the baseline df and θ is called the tilt parameter. It is
easy to see that hazard rates corresponding to F and H(·; θ, k), namely, rF = f/F̄
and rH(.; θ, k) = h(.; θ, k)/H̄(.; θ, k), are related by

rH(x; θ, k) =
rF (x)

1− θ̄F̄ k(x)
; −∞ < x <∞, 0 < θ <∞ k > 0. (1.4)

Clearly, rH(x; θ, k) exceeds rF (x) when 0 < θ ≤ 1 and it is smaller than rF (x)
when θ ≥ 1. They coincide when θ = 1. Clearly, for k = 1, pgf (1.2) reduces to the
positive geometric pgf which leads to the Marshall-Olkin distribution.

Recently Batsidis and Lemonte (2015) discussed several results in connection
with behavior of the failure rate function for Harris family and discussed certain
related stochastic orderings. Al-Jarallah et al. (2014) presented a proportional haz-
ard version of Marshall-Olkin family of distribution as [H̄(.; θ, 1)]γ and investigated
likelihood ratio ordering in this model.

Recall that in many applied situations and, in particular, in lifetime systems we
need to compare two or more rv’s with each other. Comparing only the means
(expectation ordering), variances (dispersion ordering) when the means are equal
or any other quantitative measures are not adequate. Indeed, in some cases these
measures do not exist at all. Therefore, various more useful types of stochastic
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orderings are employed in terms of their survival functions, hazard rate functions,
mean residual functions, and other suitable functions of probability distributions.
These methods are much more informative than those based on only few numerical
characteristics of the underlying distributions. Comparisons of distributions based
on such functions usually establish partial orders among rv’s. They are called
stochastic orderings which play a great role in statistical inference and applied
probability. Frequently, they are applied in contexts of Risk Theory, Reliability,
Survival Analysis, Economic and Insurance. For example, recently Eryilmaz and
Tutuncu (2015) investigated relative behavior of a coherent system with respect to
another coherent system using stochastic orderings and Torrado (2015) investigated
stochastic properties of the smallest order statistics from Weibull distributions. In
Economics, Zhou et al. (2013) developed a new algorithm using stochastic orderings
to reduce the search space of maintenance strategies and to enhance the efficiency of
optimization algorithms. Nanda and Das (2012) investigated stochastic orderings
in Marshal-Olkin family of distributions. Gui (2013) compared Marshall-Olkin
power log-normal distributions using stochastic orderings. Ghitany and Kotz (2007)
investigated reliability properties of extended linear failure rate distributions using
stochastic orderings. Stochastic comparison of different distributions with their
mixtures were the concern of Alamatsaz and Abbasi (2008), Jazi and Alamatsaz
(2010) and Jazi et al. (2011). Huang and Da (2012) used stochastic orderings to
compare members of Marshall-Olkin family.

Recently, Batsidis and Lemonte (2015) were concerned with the behavior of
the failure rate function and some stochastic order relations in the Harris family;
namely,they compared H(·; θ, k) with H(·; 1, k) = F . In the present paper, these
results are extended to the case when the tilt parameters may also be different,
i.e., we compare HF1(·;α, k) and HF2(·;β, k) with respect to various stochastic or-
derings. In particular, we address the usual stochastic orders, various (reversed)
hazard rate orderings as well as likelihood ratio orderings (see, e.g., Shaked and
Shanthikumar, 2007) to study the stochastic orderings of the Harris family. On one
hand, a Harris family distribution can be used as the distribution of the lifetime of
a series system and, on the other hand, it is a function of a tilt parameter. Thus, a
proper choice of the tilt parameter can play an important role in optimizing the cor-
responding system’s lifetime. In particular, to choose a better model, here, we shall
study whether or not certain stochastic orders between the component lifetimes are
preserved by the corresponding systems and, more interestingly, vice versa; which is
useful in application when the components are not observable. Our results enfold all
findings on stochastic orderings of Huang and Da (2012) as special cases who used
stochastic orderings to compare members of the Marshall-Olkin family. Recently,
Abbasi and Alamatsaz (2015+) investigated preservation properties of stochastic
orderings by transformation to Harris family with the same tilt parameters. In
Section 2, we introduce various types of stochastic orderings used in the sequel. In
Section 3,we discuss the preservation of certain stochastic orderings of the baseline
distribution after a transformation to the Harris family under certain conditions on
the tilt parameters. In Section 4, using certain aging concepts, we discuss existence
of moments of a Harris family distribution and obtain two simple bounds. Notice
that Harris family contains all distributions obtained by Marshall-Olkin’s method.
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2. Stochastic Orderings

Throughout the manuscript, we assume that X and Y are rv’s with df’s F and
G, sf’s F̄ and Ḡ, probability density functions (pdf) f and g, hazard rate functions
rF and rG, reversed hazard rate functions r̃F and r̃G, and supports SX and SY ,
respectively. Further, we denote the left and right endpoints of the supports of
a r.v. X by lX and uX , respectively. We use the terms increasing in place of
non-decreasing and decreasing in place of non-increasing. First, we recall some
stochastic orderings and present their relations in Table 2.1. For details, we refer
to Nakai (1995), Brown and Shanthikumar (1998), Lillo et al. (2001), Shaked and
Shanthikumar (2007), and Jarrahiferiz et al. (2013).

Definition 2.1. Stochastic orderings:
(i) X is smaller than Y in the usual stochastic ordering, denoted by X ≤st Y , if

F̄ (x) ≤ Ḡ(x), ∀x ∈ (−∞,∞).
(ii) X is smaller than Y in the likelihood ratio ordering, denoted by X ≤lr Y , if

g(x)
f(x) increases in x in SX

⋃
SY .

(iii) X is smaller than Y in the hazard rate ordering, denoted by X ≤hr Y , if
rF (x) ≥ rG(x), ∀x ∈ (−∞,∞).

(iv) X is smaller than Y in the reversed hazard rate ordering, denoted by X ≤rh
Y , if r̃F (x) 6 r̃G(x), ∀x ∈ (−∞,∞).

Definition 2.2. Shifted stochastic orderings:
(i) X is smaller than Y in the up likelihood ratio ordering , denoted by X ≤lr↑ Y ,

if [X − t | X > t] ≤lr Y , for all t ≥ 0, or, equivalently, if g(x)
f(t+x) increases in

x ∈ [lY , uX − t].
(ii) X is smaller than Y in the down likelihood ratio ordering, denoted by X ≤lr↓

Y , if X ≤lr [Y − t | Y > t], for all t ≥ 0, or, equivalently, if g(t+x)
f(x) increases in

x ∈ [lX , uY − t].
(iii) X is smaller than Y in the up hazard rate ordering (up reversed hazard rate

ordering), denoted by X ≤hr↑ (≤rh↑)Y , if for all t ≥ 0, [X − t | X > t] ≤hr (≤rh)Y

or, equivalently, if Ḡ(x)
F̄ (t+x)

( G(x)
F (t+x) ) increases in x ∈ (−∞, uY ), for all t ≥ 0.

(iv) X is smaller than Y in the down hazard rate ordering (down reversed hazard
rate ordering), denoted by X ≤hr↓ (≤rh↓)Y , if for all t ≥ 0, X ≤hr (≤rh)[Y − t |
Y > t] or, equivalently, if Ḡ(t+x)

F̄ (x)
(G(t+x)
F (x) ) increases in x ≥ 0, for all t ≥ 0.

Definition 2.3. Proportional stochastic orderings:
Let X and Y be continuous and non-negative rv’s. Then, X is smaller than Y in

the proportional likelihood ratio ordering (plr) (proportional hazard rate ordering
(phr), proportional reversed hazard rate ordering (prh)), denoted by X ≤plr (≤phr
,≤prh)Y , if for all 0 < λ ≤ 1, λX ≤lr (≤hr,≤rh)Y or, equivalently, if g(λx)

f(x)

( Ḡ(λx)
F̄ (x)

, G(λx)
F (x) ) increases in x for all 0 < λ ≤ 1 (for details, see Ramos Romero and

Sordo Dı́az, 2001 and Belzunce et al., 2002).

Jarrahiferiz et al. (2013) have introduced shifted proportional likelihood ratio or-
dering (shifted proportional hazard rate ordering) for continuous and non-negative
rv’s as follows:
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Definition 2.4. Shifted proportional stochastic orderings:
(i) X is smaller than Y in the up proportional likelihood ratio ordering, denoted

by X ≤plr↑ Y , if [X − t | X > t] ≤plr Y or, equivalently, g(λx)
f(t+x) is increasing in

x ∈ (lX − t, uX − t) ∪ ( lYλ ,
uY
λ ), for all t ≥ 0 and 0 < λ ≤ 1.

(ii) X is smaller than Y in the down proportional likelihood ratio ordering,

denoted by X ≤plr↓ Y , if X ≤plr [Y − t | Y > t] or, equivalently, if g(λx+t)
f(x) is

increasing in x ≥ 0 for all t ≥ 0 and 0 < λ ≤ 1.
(iii) X is smaller than Y in the up proportional hazard rate (up proportional

reversed hazard rate) ordering, denoted by X ≤phr↑ (≤prh↑)Y , if [X − t | X >

t] ≤phr (≤prh)Y or, equivalently, if Ḡ(λx)
F̄ (t+x)

( G(λx)
F (x+t) ) is increasing in x ∈ (0, uYλ ), for

all t ≥ 0 and 0 < λ ≤ 1.
(iv)X is smaller than Y in the down proportional hazard rate (down proportional

reversed hazard rate)ordering, denoted by X ≤phr↓ (≤prh↓)Y , if X ≤phr (≤prh
)[Y − t | Y > t], or, equivalently, if Ḡ(λx+t)

F̄ (x)
(G(λx+t)

F (x) ) is increasing in x ≥ 0 for all

t ≥ 0 and 0 < λ ≤ 1.

≤lr ⇒ ≤hr ⇒ ≤st ≤hr↑ ⇒ ≤hr ⇒ ≤st
⇑ ⇑
≤
plr↑ ⇒ ≤prh↑ ⇒ ≤rh↑ ⇐ ≤lr↑ ⇐ ≤plr↑ ⇒ ≤phr↑ ⇒ ≤hr↑
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
≤plr ⇒ ≤prh ⇒ ≤rh ⇐ ≤lr ⇐ ≤plr ⇒ ≤phr ⇒ ≤hr
⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
≤plr↓ ⇒ ≤prh↓ ⇒ ≤rh↓ ⇐ ≤lr↓ ⇐ ≤plr↓ ⇒ ≤phr↓ ⇒ ≤hr↓

⇓ ⇓
≤st ⇐ ≤rh ≤hr↓

Table 2.1. Some useful relations among various types of stochas-
tic orderings

3. Preservation of stochastic orderings in the Harris family

Suppose that Y1 and Y2 are two Harris rv’s with df’s H1 and H2 with tilt pa-
rameters α and β, hazard rates rH1

and rH2
and baseline rv’s X1 and X2 with df’s

F1 and F2, respectively. Then, for any x, α > 0, β > 0 and k > 0, pdf’s, df’s and
hazard rate functions associated with H̄(x; ., k) in (1.3) are given by

h1(x;α, k) =
α

1
k f1(x)

(1− ᾱF̄1
k
(x))1+ 1

k

, h2(x;β, k) =
β

1
k f2(x)

(1− β̄F̄2
k
(x))1+ 1

k

, (3.1)

H1(x;α, k) = 1−
[ αF̄1

k
(x)

1− ᾱF̄1
k
(x)

] 1
k

, H2(x;β, k) = 1−
[

βF̄2
k(x)

1−β̄F̄2
k(x)

] 1
k

, (3.2)

and

rH1
(x;α, k) =

rF1
(x)

1− ᾱF̄1
k
(x)

, rH2
(x;β, k) =

rF2
(x)

1− β̄F̄2
k
(x)

, (3.3)

respectively.
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In this section, we study preservation properties of several stochastic orderings
of the baseline distribution by its corresponding Harris family distribution. Huang
and Da (2012) showed that usual stochastic, hazard rate, reversed hazard rate and
likelihood ratio orderings are preserved by a transformation to the Marshall-Olkin
family, i.e., for k = 1 in (1.3). In what follows, their results are generalized to the
case k > 0.

3.1. Stochastic ordering.

Theorem 3.1. i) Let α ≤ β. If X1 ≤st X2, then Y1 ≤st Y2.
ii) Let β ≤ α. If Y1 ≤st Y2, then X1 ≤st X2.

Proof : i) For any x and k > 0, we should show that, given F̄1(x) ≤ F̄2(x) we have
H̄1(x;α, k) ≤ H̄2(x;β, k) or, equivalently,( αF̄ k1 (x)

1− ᾱF̄ k1 (x)

) 1
k ≤

( βF̄ k2 (x)

1− β̄F̄ k2 (x)

) 1
k ⇐⇒ αF̄ k1 (x)

1− ᾱF̄ k1 (x)

/ βF̄ k2 (x)

1− β̄F̄ k2 (x)
≤ 1.

Now, we can write the ratio as

αF̄k1 (x)

1−ᾱF̄k1 (x)

βF̄k2 (x)

1−β̄F̄k2 (x)

=
αF̄ k1 (x)(1− β̄F̄ k2 (x))

βF̄ k2 (x)(1− ᾱF̄ k1 (x))

=
αF̄ k1 (x)− αF̄ k1 (x)F̄ k2 (x) + αβF̄ k1 (x)F̄ k2 (x)

βF̄ k2 (x)− βF̄ k1 (x)F̄ k2 (x) + αβF̄ k1 (x)F̄ k2 (x)

=
αF̄ k1 (x)(1− F̄ k2 (x)) + αβF̄ k1 (x)F̄ k2 (x)

βF̄ k2 (x)(1− F̄ k1 (x)) + αβF̄ k1 (x)F̄ k2 (x)
. (3.4)

But,

(3.4) ≤ 1 ⇐⇒ αF̄ k1 (x)(1− F̄ k2 (x)) + αβF̄ k1 (x)F̄ k2 (x)

≤ βF̄ k2 (x)(1− F̄ k1 (x)) + αβF̄ k1 (x)F̄ k2 (x)

⇐⇒ αF̄ k1 (x)(1− F̄ k2 (x)) ≤ βF̄ k2 (x)(1− F̄ k1 (x))

⇐⇒ α(F̄ k1 (x)− F̄ k2 (x)) ≤ (β − α)F̄ k2 (x)(1− F̄ k1 (x)). (3.5)

Clearly, since X1 ≤st X2 means that, for any k > 0, F̄ k1 (x) ≤ F̄ k2 (x), the left hand
side of Eq (3.5) is non-positive. Now, if α ≤ β, the right hand side is non-negative.
Consequently, we have Y1 ≤st Y2.
ii) Now, consider (3.5) with β < α. Then, it follows that, Y1 ≤st Y2 implies
X1 ≤st X2. �

The following counterexample shows that the usual stochastic ordering is not
preserved by a transformation to the Harris family when α > β.

Counterexample 3.1. Let X1 and X2 be two Lomax rv’s with sf’s F̄1(x) =
(1 + 0.3x)−4 and F̄2(x) = (1 + 0.4x)−2, x ≥ 0, respectively, so that X1 ≤st X2.
Figure 3.1 illustrates that, e.g., for α = 4, β = 1.2, k = 2, and some values of x,
H̄1(x;α, k) > H̄2(x;β, k), i.e., Y1 �st Y2.
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Figure 3.1. Illustrating H̄1(x; 4, 2) ≮ H̄2(x; 1.2, 2) for the Lomax
base distributions.

3.2. Hazard rate orderings.

Theorem 3.2. i) Let β ≥ max{α, 1}. If X1 ≤phr↑ (≤phr,≤hr↑,≤hr)X2, then
Y1 ≤phr↑ (≤phr,≤hr↑,≤hr)Y2.

ii) Let α ≥ 1 and 0 < β ≤ 1. If Y1 ≤phr↑ (≤phr,≤hr↑,≤hr)Y2, then X1 ≤phr↑
(≤phr,≤hr↑,≤hr)X2.

Proof : First note that the usual stochastic order is implied by all the above hazard
rate orderings (see Table 2.1) discussed in the theorem. Thus, we have F̄ k1 (x) ≤
F̄ k2 (x) for any k > 0.

i) By Definition 2.4 (iii), X1 ≤phr↑ X2 implies that rF1
(x+ t) ≥ λrF2

(λx) ≥ 0 for
any x, all t ≥ 0 and all 0 < λ ≤ 1. Since F̄ is decreasing, we have F̄ k1 (x+t) ≤ F̄ k1 (x)
and F̄ k2 (x) ≤ F̄ k2 (λx). For α ≥ 1 and β ≥ α, we get 1− ᾱF̄ k1 (x+ t) ≤ 1− β̄F̄ k2 (λx)
or, 1

1−ᾱF̄k1 (x+t)
≥ 1

1−β̄F̄k2 (λx)
. Hence, by Eq. (3.3) and Definition 2.4 (iii), we have

that Y1 ≤phr↑ Y2.
For 0 < α ≤ 1 and β ≥ 1, we have ᾱ ≥ 0 and β̄ ≤ 0 so that ᾱF̄ k1 (x+t) ≥ β̄F̄ k2 (λx)

or, 1 − ᾱF̄ k1 (x + t) ≤ 1 − β̄F̄ k2 (λx) which yields 1
1−ᾱF̄k1 (x+t)

≥ 1
1−β̄F̄k2 (λx)

≥ 0.

Therefore, by Eq. (3.3) and Definition 2.4 (iii), we conclude that Y1 ≤phr↑ Y2.
ii) By Definition 2.4 (iii), Y1 ≤phr↑ Y2 implies that rH1

(x + t) ≥ λrH2
(λx) ≥ 0

for any x, all t ≥ 0 and all 0 < λ ≤ 1. Thus, by Eq. (3.3),

rF1
(x+ t)

λrF2
(λx)

≥ 1− ᾱF̄ k1 (x+ t)

1− β̄F̄ k2 (λx)
. (3.6)

Since α ≥ 1 and 0 < β ≤ 1, we have ᾱF̄ k1 (x + t) ≤ β̄F̄ k2 (λx) or, 1 − ᾱF̄ k1 (x + t) ≥
1 − β̄F̄ k2 (λx) which yields that the right side of Inequality (3.6) is greater than or
equal to 1. Thus, by Inequality (3.6), rF1(x+1) ≥ λrF2(λx) and thus, X1 ≤phr↑ X2.
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With proper choices of t(= 0) or λ = 1 or both, proofs of the other parts are
immediate. �

The following counterexample shows that up proportional hazard rate ordering
is not preserved by transformation to the Harris family when β � max{α, 1}.

Counterexample 3.2. Let X1 and X2 be two Erlangian distributed rv’s with
sf’s F̄1(x) = (1 + 2x)e−2x and F̄2(x) = (x + 1)e−x and hazard rate functions
rF1

(x) = 4x
1+2x and rF2

(x) = x
x+1 , for x > 0, respectively. For any 0 < λ ≤ 1, t ≥ 0

and x we have rF1
(x + t) ≥ λrF2

(λx). Thus, by Definition 2.4 (iii), X1 ≤phr↑
X2. Figure 3.2 shows that in four different situations where β � max{α, 1},
H̄2(λx;β, k)/H̄1(x+ t;α, k) is not increasing in x or, equivalently, for some values
of x, rH1(x+ t;α, k) ≯ λrH2(λx;β, k), i.e., up proportional hazard rate ordering is
not preserved by transformation to Harris family when β � max{α, 1}.

Figure 3.2. Showing that H̄2(λx;β, 2)/H̄1(x + t;α, 2) is not increasing

in x when β ≤ max{α, 1}.

Theorem 3.3. i) Let 0 < α ≤ 1 and β ≥ 1. If X1 ≤phr↓ (≤hr↓)X2, then Y1 ≤phr↓
(≤hr↓)Y2,

ii) Let 0 < β ≤ 1 and α ≥ 1. If Y1 ≤phr↓ (≤hr↓)Y2, then X1 ≤phr↓ (≤hr↓)X2.

Proof : i) By Definition 2.4 (iv), X1 ≤phr↓ X2 is equivalent to rF1(x) ≥ λrF2(λx+t)
for any x, 0 < λ ≤ 1 and t ≥ 0. Furthermore, for 0 < α ≤ 1 and β ≥ 1, and any
k > 0, we have ᾱF̄ k1 (x) ≥ β̄F̄ k2 (λx+ t), or 0 ≤ 1− ᾱF̄ k1 (x) ≤ 1− β̄F̄ k2 (x+ t) which
yields 1

1−ᾱF̄k1 (x)
≥ 1

1−β̄F̄k2 (λx+t)
≥ 0. Thus, by Eq. (3.3) and Definition 2.4 (iv) we

conclude that Y1 ≤phr↓ Y2.
ii) By Definition 2.4 (iv), Y1 ≤phr↓ Y2 is equivalent to rH1

(x) ≥ λrH2
(λx+ t) for

any x, 0 < λ ≤ 1 and t ≥ 0. Thus by Eq. (3.3),

rF1(x)

λrF2(λx+ t)
≥ 1− ᾱF̄ k1 (x)

1− β̄F̄ k2 (λx+ t)
. (3.7)

Since α ≥ 1 and 0 < β ≤ 1 for any k > 0, we have ᾱF̄ k1 (x) ≤ β̄F̄ k2 (λx + t), or
0 ≤ 1 − ᾱF̄ k1 (x) ≥ 1 − β̄F̄ k2 (x + t) which implies that the right side of Inequality
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(3.7) is greater than or equal to 1 and consequently rF1
(x) ≥ λrF2

(λx + t). As
required.

With the choice of λ = 1, proofs of down hazard rate orderings are immediate.
�

The following counterexample shows that down proportional hazard rate order-
ing is not preserved by transformation to the Harris family when α and β do not
satisfy the conditions of Theorem 3.3.

Counterexample 3.3. Let X1 and X2 be two exponential rv’s with hazard rates
3 and 2, respectively. For any x, 0 < λ ≤ 1 and t ≥ 0 we have rF1(x) ≥ rF2(λx+ t).
Thus, by Definition 2.4 (iv), we conclude that X1 ≤phr↓ X2. We see that for
some values of 0 < λ ≤ 1, α, β and t ≥ 0, such that α and β do not satisfy
the conditions of Theorem 3.3 (for example: take α = 8, λ = 0.9, t = 0.1 and

0 < β < 1), H̄2(λx+t;β,k)
H̄1(x;α,k)

is not increasing in x or, equivalently, for some values of

x, rH1(x;α, k) � λrH2(λx+ t;β, k), i.e., down proportional hazard rate ordering is
not preserved by transformation to the Harris family.

3.3. Likelihood ratio orderings.

Theorem 3.4. i) Let 0 < α ≤ 1 and β ≥ 1. If X1 ≤plr↑ (≤plr,≤lr↑,≤lr)X2, then
Y1 ≤plr↑ (≤plr,≤lr↑,≤lr)Y2.

ii) Let 0 < β ≤ 1 and α ≥ 1. If Y1 ≤plr↑ (≤plr,≤lr↑,≤lr)Y2, then X1 ≤plr↑ (≤plr
,≤lr↑,≤lr)X2.

Proof : i) By Definition 2.4 (i), we have to show that, for all 0 < λ ≤ 1, t ≥ 0 and

k > 0, h1(x+t;α,k)
h2(λx;β,k) is decreasing in x. But, by Eq. (3.1),

h1(x+ t;α, k)

h2(λx;β, k)
=
(α
β

) 1
k · f1(x+ t)

f2(λx)
·
( 1− β̄F̄ k2 (λx)

1− ᾱF̄ k1 (x+ t)

) 1
k+1

,

and X1 ≤plr↑ X2 implies that, for all 0 < λ ≤ 1 and t ≥ 0, f1(x+t)
f2(λx) is decreasing in

x. Further, we have

d

dx

( 1− β̄F̄ k2 (λx)

1− ᾱF̄ k1 (x+ t)

)
=
kᾱβ̄F̄ k−1

1 (x+ t)F̄ k−1
2 (λx)[f1(x+ t)F̄2(λx)− λf2(λx)F̄1(x+ t)]

(1− ᾱF̄ k1 (x))2

+
k[β̄λf2(λx)F̄ k−1

2 (λx)− ᾱf1(x+ t)F̄ k−1
1 (x+ t)]

(1− ᾱF̄ k1 (x))2
. (3.8)

Using that up proportional hazard rate ordering is implied by up proportional
likelihood ratio ordering (see Table 2.1), the first term in Eq. (3.8) is non-positive.
Moreover, for 0 ≤ α ≤ 1 and β ≥ 1, the second term is also non-positive. Thus,
since both terms of Eq. (3.8) are non-negative, we have the result.

ii) By Definition 2.4 (i), for all 0 < λ ≤ 1, t ≥ 0 and k > 0, h1(x+t;α,k)
h2(λx;β,k) is decreas-

ing in x, i.e., for any x ≤ y, h1(y + t;α, k)h2(λx;β, k) ≤ h1(x+ t;α, k)h2(λy;β, k).
So, by Eq. (3.1), we have[1− ᾱF̄ k1 (x+ t)

1− ᾱF̄ k1 (y + t)

] k+1
k
[1− β̄F̄ k2 (λy)

1− β̄F̄ k2 (λx)

] k+1
k ≤ f1(x+ t)

f2(λx)

f2(λy)

f1(y + t)
. (3.9)
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By decreasing property of sf’s, we have F̄ k1 (y + t) ≤ F̄ k1 (x + t). If α > 1, then
ᾱF̄ k1 (y + t) ≥ ᾱF̄ k1 (x + t) and 1 − ᾱF̄ k1 (y + t) ≥ 1 − ᾱF̄ k1 (x + t). Thus, the first
factor in the left side of Inequality (3.9) is greater than or equal to 1. Moreover, if
0 < β ≤ 1, since sf is decreasing, we have also 1− β̄F̄ k2 (λx) ≤ 1− β̄F̄ k2 (λy). Thus,
the second factor in the left side of Inequality (3.9) is greater than or equal to 1.
So, we conclude that the right side of Inequality (3.9) is greater than or equal to 1
and by Definition 2.4 (i) we have the result.

With proper choices of t(= 0) and λ = 1 or both, proofs of the other parts are
immediate. �

Theorem 3.5. i) Let 0 < α ≤ 1 and β ≥ 1. If X1 ≤plr↓ (≤lr↓)X2, then Y1 ≤plr↓
(≤lr↓)Y2.

ii) Let 0 < β ≤ 1 and α ≥ 1. If Y1 ≤plr↓ (≤lr↓)Y2, then X1 ≤plr↓ (≤lr↓)X2.

Proof : i) By Definition 2.4 (ii), we have to show that for all t ≥ 0, 0 < λ ≤ 1 and

k > 0, h1(x;α,k)
h2(λx+t;β,k) is decreasing in x. By Eq. (3.1), we have

h1(x;α, k)

h2(λx+ t;β, k)
=
(α
β

) 1
k · f1(x)

f2(λx+ t)
·
(1− β̄F̄ k2 (λx+ t)

1− ᾱF̄ k1 (x)

) 1
k+1

. (3.10)

Thus, since X1 ≤plr↓ X2 implies that, for all t ≥ 0 and 0 < λ ≤ 1, f1(x)
f2(λx+t) is

decreasing in x and both factors of Eq. (3.10) are non-negative, it is sufficient to

show that (
1−β̄F̄k2 (λx+t)

1−ᾱF̄k1 (x)
)

1
k+1, or

1−β̄F̄k2 (λx+t)

1−ᾱF̄k1 (x)
, is decreasing in x. But, we have

d

dx
(
1− β̄F̄ k2 (λx+ t)

1− ᾱF̄ k1 (x)
)

=
kᾱβ̄F̄ k−1

1 (x)F̄ k−1
2 (λx+ t)[f1(x)F̄2(x+ t)− λf2(λx+ t)F̄1(x)]

(1− ᾱF̄ k1 (x))2

+
k[β̄λf2(λx+ t)F̄ k−1

2 (λx+ t)− ᾱf1(x)F̄ k−1
1 (x)]

(1− ᾱF̄ k1 (x))2
. (3.11)

The first term in Eq. (3.11) is non-positive because down proportional hazard
rate ordering is implied by down proportional likelihood ratio ordering (see Table
2.1). Moreover, for 0 ≤ α ≤ 1 and β ≥ 1, the second term in Eq. (3.11) is also
non-positive. Thus, we have proved the result.

ii) By Definition 2.4 (ii), for all 0 < λ ≤ 1, t ≥ 0 and k > 0, h1(x;α,k)
h2(λx+t;β,k) is

decreasing in x, i.e., for all x ≤ y, h1(y;α, k)h2(λx + t;β, k) ≤ h1(x;α, k)h2(λy +
t;β, k). So, by Eq. (3.1), we have[1− ᾱF̄ k1 (x)

1− ᾱF̄ k1 (y)

] k+1
k
[1− β̄F̄ k2 (λy + t)

1− β̄F̄ k2 (λx+ t)

] k+1
k ≤ f1(x)

f2(λx+ t)

f2(λy + t)

f1(y)
(3.12)

By the decreasing property of sf, we have F̄ k1 (y) ≤ F̄ k1 (x) . If α > 1, we have
1− ᾱF̄ k1 (y) ≥ 1− ᾱF̄ k1 (x). Thus, the first factor in the left side of Inequality (3.12)
is greater than or equal to 1. Moreover, if 0 < β ≤ 1, since sf is decreasing, we
have 1− β̄F̄ k2 (λx+ t) ≤ 1− β̄F̄ k2 (λy+ t). Thus, the second factor in the left side of
Inequality (3.12) is greater than or equal to 1. Hence, the right side of Inequality
(3.12) is greater than or equal to 1 and by Definition 2.4 (ii) we have the result.

By choosing λ = 1, proofs of the other parts are immediate. �
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The following counterexample shows that up proportional likelihood ratio or-
dering is not preserved by transformation to Harris family when the conditions of
Theorem 3.4 on α and β are not satisfied.

Counterexample 3.4. Let X1 and X2 be two Rayleigh rv’s with pdf’s f1(x) =
x

0.01 exp(−x
2

0.02 ) and f2(x) = x
0.04 exp(−x

2

0.08 ), respectively. For all 0 < λ ≤ 1 and t ≥ 0,
f1(x+t)
f2(λx) is decreasing in x, thus by Definition 2.4 (i), X1 ≤plr↑ X2. We can show

that for some values of α, β, 0 < λ ≤ 1 and t ≥ 0 not satisfying the condition in

Theorem 3.4 (for example, take α = 5, t = 0.01, λ = 0.9 and 0 < β < 1), h1(x+t;α,k)
h2(λx;β,k)

is not decreasing in x, i.e., up proportional likelihood ratio ordering is not preserved
by transformation to the Harris family in this situation.

The following counterexample shows that down proportional likelihood ratio
ordering is not preserved by transformation to the Harris family when α and β do
not satisfy the conditions of Theorem 3.5.

Counterexample 3.5. Let X1 and X2 be two rv’s with pdf’s f1(x) = 1
2 exp(x2 )

and f2(x) = x
9 exp(−x3 ), respectively. For all 0 < λ ≤ 1 and t ≥ 0, f1(x)

f2(λx+t) is

decreasing in x, thus by Definition 2.4 (ii), X1 ≤plr↓ X2. Again we see that for
some values of 0 < λ ≤ 1, α, β and t ≥ 0 which do not satisfy the condition in

Theorem 3.5 (for example, take α = 5, t = 5, λ = 0.9 and β > 1), h1(x;α,k)
h2(λx+t;β,k) is not

decreasing in x, i.e., down proportional likelihood ratio ordering is not preserved
by transformation to the Harris family.

3.4. Reversed hazard rate orderings. Huang and Da (2012) have investigated the
preservation of hazard rate ordering by transformation to Marshall-Olkin family
but have remained silent in the reversed hazard rate orderings. In what follows, we
complete their study by considering preservation properties of up reversed hazard
rate, proportional reversed hazard rate and up proportional reversed hazard rate
orderings in Marshall-Olkin family. For the general case of k > 0, i.e., Harris family,
the result remains as a conjecture to be proved.

Theorem 3.6. Let α < min{β, 1} and k = 1. If X1 ≤prh↑ (≤prh,≤rh↑)X2, then
Y1 ≤prh↑ (≤prh,≤rh↑)Y2.

Proof : For any 0 < λ ≤ 1, t ≥ 0 we have

H1(x+ t;α, 1)

H2(λx;β, 1)
=

1− αF̄1(x+t)
(1−ᾱF̄1(x+t))

1− βF̄2(λx)

(1−β̄F̄2(λx))

=

β
F2(λx) + β̄
α

F1(x+t) + ᾱ
.

By Definition 2.4 (iii), we have to show that, for any 0 < λ < 1, t ≥ 0, H1(x+t;α,1)
H2(λx;β,1)

is decreasing in x. Now,

d

dx

(H1(x+ t;α, 1)

H2(λx;β, 1)

)
=

αβ
F2(λx)F1(x+t)

[ f1(x+t)
F1(x+t) −

λf2(λx)
F2(λx)

]
+
[αβ̄f1(x+t)
F 2

1 (x+t)
− ᾱβλf2(λx)

F 2
2 (λx)

]
( α
F1(x+t) + ᾱ)2

.

(3.13)

Thus, since X1 ≤prh↑ X2 is equivalent to F1(x+t)
F2(λx) being decreasing in x for any

0 < λ ≤ 1 and t ≥ 0, the first term in the numerator of Eq. (3.13) is non-positive.
Moreover, the stochastic order is implied by up proportional reversed hazard rate
ordering (see Table 2.1), so F2(x) ≤ F1(x) and, by the monotonicity of dfs̀, it follows
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that F2(λx) ≤ F1(x+ t), for any 0 < λ ≤ 1 and t ≥ 0. Thus, if α < min{β, 1}, the
second term in the numerator of Eq. (3.13) is also non-positive. This completes
the proof.

With proper choices of t(= 0) or λ(= 1) or both, proofs of the other parts are
immediate. �

Counterexample 3.6. Let X1 and X2 be two exponentially distributed rv’s with
sf’s F̄1(x) = e−8x and F̄2(x) = e−4x for x > 0, respectively. In this case, for any

0 < λ ≤ 1, t ≥ 0, f1(x+t)
f2(λx) is decreasing in x. Thus, by Definition 2.4 (i), X1 ≤plr↑ X2.

Since up proportional reversed hazard rate ordering is implied by up proportional
likelihood ratio, we conclude that X1 ≤prh↑ X2. It can be observed that for some
values of α, β, 0 < λ ≤ 1 and t ≥ 0 not satisfying the condition in Theorem 3.6 (for
example, take α = 9, t = 0.3, λ = 0.8 and 0 < β < 1), H2(λx;β, 1)/H1(x+ t;α, 1)
is not increasing in x, i.e., up proportional reversed hazard rate ordering is not
preserved by transformation to Harris family when α ≮ min{β, 1}.

4. Aging properties

We should point out that in many practical problems, when using a sample data
set, we are able to obtain some life information such as the mean and variance
of the life distribution. But the exact value of the reliability function can not be
easily obtained. However, it is still helpful to derive some bounds for a reliability
function based on the known information. These bounds can tell us the scope of
the reliability of products and provide a basis for further improvements. In this
section, we obtain two bounds for survival functions conditioned on the tilt random
parameter, which are useful in distinguishing the failure probability of a component
after a time t.

Proportional failure rate was defined by Singh and Maddala (1976) and was
called generalized failure rate by Lariviere and Porteus (2001). The generalized
failure rate is defined as gF (x) = xrF (x). A rv X has increasing generalized failure
rate (IGFR) property if gF (x) is increasing in x such that F (x) < 1. IGFR is
useful and frequently used in recent pricing, revenue and supply chain management
literature. Now using the concept IGFR, we discuss existence of moments of a
Harris family distribution.

Theorem 4.1. Let X and Y be two non-negative rv’s corresponding to F (.) and
H(.; θ, k) in Eq. (1.3) with θ ≥ 1, respectively. Suppose that X has the IGFR
property and limx→∞ gF (x) = l, where l is possibly infinite. Then, E(Y n), n > 0,
is finite if, and only if, l > n.

Proof : If θ ≥ 1, then 1 − θ̄F̄ k(x) is decreasing in x. Thus, by the IGFR property

of X, we have gH(x) = xrH(x) = xrF (x)

1−θ̄F̄k(x)
is increasing in x, i.e., Y has IGFR

property. Moreover,

lim
x→∞

gH(x) = lim
x→∞

xrF (x)

1− θ̄F̄ k(x)
= lim
x→∞

xrF (x) = l.

Thus, by IGFR property of Y , it follows that E(Y n) is finite if, and only if, l > n
(see Theorem 2 in Lariviere, 2006). �

In the following, we provide certain bounds for sf of a Harris family distribution
using concepts of increasing (decreasing) failure rate (IFR) (DFR) and increasing
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(decreasing) average failure rate (IFRA) (DFRA) properties. In reliability, these
aging properties are applied to examine how a component or a system improves or
deteriorates with age. A non-negative rv X with hazard rate rF (.) has IFR (DFR)
property, if rF (x) is increasing (decreasing) in x and has IFRA (DFRA) property
if (−1/x) log F̄ (x) is increasing (decreasing) in x.

Theorem 4.2. Let X and Y be two non-negative rv’s corresponding to F (.) and
H(.; θ, k) in Eq. (1.3), respectively. Suppose that X has IFR property, µs =

∫∞
0
tsdF (t)

and λs = µs/Γ(s+ 1), s ≥ 1. Then, we have

H̄(x; θ, k) ≥


(

θ
exp( xk

λ
1/s
s

)−θ̄

) 1
k

, x < µ
1/s
s ,

0, x ≥ µ1/s
s ,

Proof : By Eq. (1.3), H̄(x; θ, k) = ( θ
F̄−k(x)−θ̄ )

1
k . Since X has IFR property, by

Corollary 6.3 in Barlow and Proschan (1975), we have F̄−k(x) ≤ exp( xk

λ
1/s
s

), for all

x < µ
1/s
s . Thus, the assertion follows. �

Theorem 4.3. Let X and Y be two non-negative rv’s corresponding to F (.) and
H(.; θ, k) in Eq. (1.3), respectively. Suppose that X has IFRA (DFRA) property
with p-th quantile ξp. If θ ≥ 1 (0 < θ ≤ 1), then,

H̄(x; θ, k)

{
≥ (≤) exp(−αx), x ≤ ξp,
≤ (≥) exp(−αx), x ≥ ξp,

where α = − 1
ξpk

log( θqk

1−θ̄qk ), q = 1− p.

Proof : If X has IFRA (DFRA) property with p-th quantile ξp, then by Theorem
6.1 in Barlow and Proschan (1975)

F̄ (x)

{
≥ (≤) exp(−αx), x ≤ ξp,
≤ (≥) exp(−αx), x ≥ ξp,

where α = log(F̄ (ξp))
−1/ξp , q = 1 − p. Since, if θ ≥ 1 (0 < θ ≤ 1) and X has

IFRA (DFRA) property, then Y also has IFRA (DFRA) property (cf. Theorem 8

in Abbasi and Alamatsaz, 2015+) and since H̄(ξp; θ, k) = ( θqk

1−θ̄qk )
1
k , we have the

results. �
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