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Abstract. We introduce a family of branch merging operations on continuum trees
and show that Ford CRTs are distributionally invariant. This operation is new
even in the special case of the Brownian CRT, which we explore in more detail.
The operations are based on spinal decompositions and a regenerativity preserving
merging procedure of (α, θ)-strings of beads, that is, random intervals [0, Lα,θ]
equipped with a random discrete measure dL−1 arising in the limit of ordered
(α, θ)-Chinese restaurant processes as introduced by Pitman and Winkel. Indeed,
we iterate the branch merging operation recursively and give a new approach to the
leaf embedding problem on Ford CRTs related to (α, 2− α)-tree growth processes.

1. Introduction

Tree-valued Markov processes and operations on continuum random trees (CRTs)
such as pruning have recently attracted particular interest in probability theory.
Evans and Winter, for instance, consider regrafting in combination with subtree
pruning and show in Evans and Winter (2006) that Aldous’ Brownian CRT arises
as the stationary distribution of a certain reversible R-tree valued Markov process.
Evans et al. (2006) present a similar study involving root growth with regrafting.
Aldous (1999, 2000) and Pal (2011, 2013) consider a Markov chain operating on
the space of binary rooted R-trees randomly removing and reinserting leaves, re-
lated to a diffusion limit on the space of continuum trees. See also Abraham et al.
(2012a,b); Abraham and Delmas (2012); Addario-Berry et al. (2014); Haas et al.
(2009); Bertoin and Miermont (2013); Broutin and Wang (2014a,b) for related work.
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We study branch merging as a new operation on (continuum) trees, which leaves
Ford CRTs, and in particular the Brownian CRT, distributionally invariant. Our
branch merging operation is based on a leaf sampling procedure, and on the study
of the resulting reduced subtrees equipped with projected subtree masses. The
notion of a string of beads naturally captures this projected mass on a branch.

Following Pitman and Winkel (2009), we consider (α, θ)-strings of beads for
α ∈ (0, 1) and θ > 0. An (α, θ)-string of beads is a random interval [0, Lα,θ]
equipped with a random discrete measure dL−1, arising in the framework of the
two-parameter family of (α, θ)-Chinese restaurant processes (CRP) when equipped
with a regenerative table order. An (α, θ)-Chinese restaurant process as introduced
by Dubins and Pitman (see e.g. Pitman, 2002) is a sequence of exchangeable random
partitions (Πn, n ≥ 1) of [n] := {1, . . . , n} defined by customers labelled by [n]
sitting at a random number of tables. Customer 1 sits at the first table, and, at
step n+ 1, conditionally given k tables in the restaurant with n1, . . . , nk customers
at each table, customer n+ 1

• sits at the i-th occupied table with probability (ni − α)/(n+ θ), i ∈ [k];
• opens a new table with probability (kα+ θ)/(n+ θ).

The joint distribution of the asymptotic relative table sizes arranged in de-
creasing order is known to be Poisson-Dirichlet with parameters (α, θ), for short
PD(α, θ). PD(α, θ) vectors have been widely studied in the literature: see e.g. Pit-
man and Yor (1997) and Feng (2010) for constructions and properties, Dong et al.
(2006) and Section 10.3 in Pitman (2002) for coagulation-fragmentation-dualities,
and Pitman and Winkel (2009) for Poisson-Dirichlet compositions arising in the
framework of continuum random trees.

Pitman and Winkel (2009) equipped the (α, θ)-CRP with a table order which
is independent of the actual seating process. These structures arise naturally in
the study of the (α, θ)-tree growth process (Tα,θn , n ≥ 1), that is, a rooted binary
regenerative tree growth process with n leaves at step n labelled by [n] such that
the partition structure induced by the subtrees (tables) encountered on the unique
path from the root to the first leaf defines an ordered (α, θ)-CRP, see Section 4.1.2.

It was shown that the table sizes in the ordered (α, θ)-CRP induce a regenerative
composition structure of [n] in the sense of Gnedin and Pitman (2005), and yield
a so-called (α, θ)-regenerative interval partition of [0, 1] in the scaling limit. The
lengths of the components of this interval partition are the limiting proportions
of table sizes in the CRP arranged in regenerative order, and correspond to the
masses of atoms of the discrete measure dL−1 associated with an (α, θ)-string of
beads. (α, θ)-strings of beads in this sense align the limiting table proportions of an
(α, θ)-CRP along an interval of length Lα,θ in regenerative order where Lα,θ is the
almost-sure limit as n → ∞ of the number of tables in the CRP at step n scaled
by n−α (see Section 2.1).

In this article, we study a merging operation for (α, θi)-strings of beads, i ∈ [k]
for some k ∈ N fixed, subject to a Dirichlet(θ1, . . . , θk) mass split with α ∈ (0, 1),
θ1, . . . , θk > 0. This situation arises naturally in the framework of ordered CRPs.
Consider k ordered CRPs with parameters (α, θi), i ∈ [k]. At each step, let one of
these restaurants be selected proportionally to the total weight in each CRP with
initial weights θi, i ∈ [k]. Conditionally given that the j-th restaurant is selected
with mj(n) customers present, the (n+ 1)st costumer is customer mj(n) + 1 in the
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(α, θj)-CRP, and chooses a table according to the (α, θj)-selection rule, indepen-
dent of the restaurant selection process. Then, by a simple urn model, we obtain
a Dirichlet(θ1, . . . , θk) mass split between these restaurants in the limit, and each
CRP is associated with an (α, θi)-string of beads, when we rescale distances and
masses by appropriate scaling factors depending on the Dirichlet vector. Remark-
ably, the identified (α, θi)-strings of beads are independent of each other and of the
Dirichlet(θ1, . . . , θk) mass split. We ask the following questions.

• (How) can we merge these ordered (α, θi)-CRPs, i ∈ [k], by completing the
partial table orders to obtain the seating rule of an ordered (α, θ)-Chinese
restaurant process for some θ > 0?
• How does the parameter θ depend on α and θi, i ∈ [k]?

Our merging algorithm allows to merge (α, θi)-strings of beads preserving the
regenerative property. It becomes particularly simple when α = θi = 1/2 for all
i ∈ [k], which is the case relevant for branch merging on the Brownian CRT (see
Figure 1.1 for an example with k = 3).

Algorithm/Theorem 1.1 (Merging (1/2, 1/2)-strings of beads). Let Ei = (ρi, ρ
′
i),

i ∈ [k], be k disjoint intervals and µ a mass measure on E :=
⋃k
i=1Ei such

that (µ(E1), . . . , µ(Ek)) ∼ Dirichlet(1/2, . . . , 1/2). Suppose that the rescaled pairs
(µ(Ei)

−1/2Ei, µ(Ei)
−1µ �Ei) are (1/2, 1/2)-strings of beads, i ∈ [k], independent of

each other and of the Dirichlet mass split (µ(E1), . . . , µ(Ek)).
Define the metric space (E⊎, d⊎) in the following way.

• Set E(1) := E, E
(1)
i := Ei, ρ

(1)
i := ρi, i ∈ [k]. For n ≥ 1, do the following.

(i) Select an atom Xn from µ �E(n) with probability proportional to mass.

(ii) Let an := ρ
(n)
In

and bn := Xn where In := i if Xn ∈ Ei, i ∈ [k].

(iii) Update ρ
(n+1)
In

:= Xn, ρ
(n+1)
j := ρ

(n)
j for any j ∈ [k] \ {In}, E(n+1)

i :=

(ρ
(n+1)
i , ρ′i) for any i ∈ [k] and E(n+1) :=

⋃k
i=1E

(n+1)
i .

• Align the interval components (an, bn], n ≥ 1, in respective order by identi-
fying bn−1 with an for n ≥ 2, and obtain the set E⊎ equipped with a metric
d⊎ induced by this operation.

Then the pair (E⊎, µ) equipped with the metric d⊎ is an (1/2, k/2)-string of beads.

X1

X3 X2

X1

X4
X2

X3

X5

X5

X4

Figure 1.1. Example of merging of strings of beads for k = 3.
First five cut points X1, . . . , X5 are displayed.

This algorithm is made mathematically precise and presented for general (α, θi)-
strings of beads, α ∈ (0, 1) and θi > 0, i ∈ [k], in Section 3, see Algorithm 3.3 and

Theorem 3.4. In general, our merging procedure yields an (α, θ :=
∑k
i=1 θi)-string

of beads. As a corollary of our result, we recover the following property of PD(α, θ)
vectors, disregarding the regenerative order incorporated by (α, θ)-strings of beads.
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Corollary 1.2. Let α ∈ (0, 1) and θi > 0, i ∈ [k]. Let Xi, i ∈ [k], be a sequence
of independent random vectors such that Xi = (Xi,1, Xi,2, . . .) ∼ PD(α, θi), i ∈ [k],
and let Y := (Y1, . . . , Yk) be an independent k-dimensional vector Y such that
Y ∼ Dirichlet(θ1, . . . , θk). Then

X := (Y1X1,1, Y2X2,1, . . . , YkXk,1, Y1X1,2, . . . , YkXk,2, Y1X1,3, . . .)
↓ ∼ PD(α, θ)

where θ :=
∑k
i=1 θi and ↓ denotes the decreasing rearrangement of components.

The proof of our main result, Theorem 3.4, goes back to decomposition results for
(α, θ)-strings of beads (Pitman and Winkel, 2009) and a stick-breaking construction
for (α, θ)-regenerative interval partitions (Gnedin and Pitman, 2005).

The (α, θ)-tree growth process (Pitman and Winkel, 2009) related to ordered
(α, θ)-CRPs generalises Ford’s model (i.e. θ = 1 − α) (Ford, 2006) whose asymp-
totics were studied earlier by Haas et al. (2008). See also Chen et al. (2009) for
a multifurcating tree growth process related to Ford’s model, and Pitman et al.
(2014) for structural results on regenerative tree growth.

It was proved in Haas and Miermont (2012) that, for 0 < α < 1 and θ ≥ 0,
the delabelled trees in the (α, θ)-model have a binary fragmentation continuum
random tree (CRT) T α,θ as distributional scaling limit, where a two-stage limit
was provided earlier in Pitman and Winkel (2009).

The problem of appropriately embedding leaf labels of (Tα,θn , n ≥ 1) and the

reduced trees with edge lengths Rα,θk , arising as scaling limit of the growth process

(Tα,θn , n ≥ 1) reduced to the first k leaves, into T α,θ was solved in Pitman and
Winkel (2009) by introducing the so-called (α, θ)-coin tossing construction.

Based on our merging operation for strings of beads, Algorithm 3.3, we develop
a branch merging operation (Algorithm 4.22) on Ford CRTs, the class of CRTs
T α,1−α arising for θ = 1− α, α ∈ (0, 1). We can couple T α,1−α and T α,2−α in the

sense that we can embed Rα,2−αk into T α,2−α given an embedding of Rα,1−αk into
T α,1−α, k ≥ 1. In particular, we construct T α,2−α with leaves embedded from the
limiting tree T α,1−α of Ford’s model.

In the case when α = 1/2, and θ = 1/2 or θ = 3/2, Aldous’ Brownian Continuum
Random Tree (Aldous, 1991a,b, 1993) arises as distributional scaling limit of the
delabelled (α, θ)-tree growth process. Leaf labelling is exchangeable in the case
when α = θ = 1/2, and uniform sampling from the natural mass measure on the
Brownian CRT allows to embed leaf labels in this case, using a simplified version of
the branch merging algorithm. For the case when α = 1/2 and θ = 3/2 we obtain
embedded leaves applying our branch merging operation, yielding a much simpler
approach than the coin tossing construction from Pitman and Winkel (2009).

As a by-product of these developments, we obtain the distributional invariance
under branch merging of Ford CRTs T α,1−α, α ∈ (0, 1), and in particular of the
Brownian CRT. Detached from the aim of leaf identification in CRTs, we define
the Branch Merging Markov Chain (BMMC) using a simplified branch merging
operation as the transition rule. The BMMC operates on the space of continuum
trees. We prove that, for any n ∈ N, a discrete analogue of the BMMC on the space
Ton of rooted unlabelled trees with n leaves and no degree-two vertices (except the
root) has a unique stationary distribution supported on the space Tb,on of binary
rooted unlabelled trees with n leaves (and no degree-two vertices), to which it
converges as time goes to infinity. The Brownian CRT is a stationary distribution
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of the BMMC, and we conjecture that, for any continuum tree as initial state, the
BMMC converges in distribution to the Brownian CRT.

This article is organized as follows. In Section 2 we recall some background on
regenerative composition structures, and give a proper definition of ordered Chinese
restaurant processes and (α, θ)-strings of beads. In Section 3, we introduce the
merging algorithm for strings of beads and state our main result, which is proved
in Section 3.3. Branch merging is explained in Section 4, where we also recap
some background on R-trees and explain the (α, θ)-tree growth process including its
convergence properties. We use a simplified version of the branch merging algorithm
to define the Branch Merging Markov Chain including a discrete analogue, which
is shown to have a unique stationary distribution. As an application of general
branch merging, we describe leaf embedding for (α, 2 − α)-tree growth processes
in general, and the (1/2, 3/2)-tree growth process related to the Brownian CRT in
particular.

2. Preliminaries

2.1. (α, θ)-Chinese restaurant processes and (α, θ)-strings of beads. We present
some properties of the two-parameter Chinese restaurant process, and refer to Pit-
man (2002) for further details. Recall the definition of an (α, θ)-Chinese restaurant
process (CRP) (Πn, n ≥ 1) for α ∈ (0, 1) and θ > 0 from the introduction. The
state of the system after n customers have been seated is a random partition Πn

of [n]. It is easy to see that, for each particular partition π of [n] into k classes of
sizes n1, . . . , nk, we have

P(Πn = π) =

∏k−1
i=1 (θ + αi)

[1 + θ]n−1

k∏
i=1

[1− α]ni−1, (2.1)

where, for x ∈ R and m ∈ N, we define [x]m := x(x+1)(x+2) · · · (x+m). It follows
immediately from the fact that the distribution of Πn, given by (2.1), only depends
on block sizes, that the partitions Πn are exchangeable. They are consistent as n
varies, and hence induce a random partition Π∞ of N whose restriction to [n] is Πn.

We equip the CRP (Πn, n ≥ 1) with a random total order < on the tables, which
we call table order, see Pitman and Winkel (2009). Independently of the process of
seating of customers at tables, we order the tables from left to right according to
the following scheme. The second table is put to the right of the first table with
probability θ/(α + θ), and to the left with probability α/(α + θ). Conditionally
given any of the k! possible orderings of the first k tables, k ≥ 1, the (k+ 1)st table
is put

• to the left of the first table, or between any two tables with probability
α/(kα+ θ) each;
• to the right of the last table with probability θ/(kα+ θ).

We refer to the CRP with tables ordered according to < as ordered CRP, and

write (Π̃n, n ≥ 1) for the process of random partitions of [n] with blocks ordered
according to <, where we use the convention that (Πn, n ≥ 1) orders the blocks
according to least labels (birth order). For n ∈ N, we write

Πn := (Πn,1, . . . ,Πn,Kn) , Π̃n :=
(

Π̃n,1, . . . , Π̃n,Kn

)
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for the blocks of the two partitions Πn, Π̃n of [n], where Kn denotes the number
of tables at step n. The sizes of these blocks at step n form two compositions of n,

n ≥ 1, that is, sequences of positive integers (n1, . . . , nk) with sum n =
∑k
j=1 nj .

The theory of CRPs gives us an almost-sure limit for the number of tables Kn, i.e.

Lα,θ = lim
n→∞

Kn

nα
, Lα,θ > 0 a.s.,

as well as limiting proportions (P1, P2, . . .) of costumers at each table in birth order,
represented as

(P1, P2, P3, . . .) =
(
M1,M1M2,M1M2M3, . . .

)
,

where the random variables (Mi, i ≥ 1) are independent, Mi ∼ Beta(1−α, θ+ iα),
and M i := 1−Mi. The distribution of ranked limiting proportions is PD(α, θ). The

table sizes in the ordered (α, θ)-CRP (Π̃n, n ≥ 1) induce a regenerative composition
structure in the sense of Gnedin and Pitman (2005), see also Section 2.2 here.

Definition 2.1 ((Regenerative) composition structure). A composition structure
(Cn, n ≥ 1) is a Markovian sequence of random compositions of n, n = 1, 2, . . .,
where the transition probabilities satisfy the property of sampling consistency, de-
fined via the following description. Let n identical balls be distributed into an
ordered series of boxes according to Cn, n ≥ 1, pick a ball uniformly at random and
remove it (and delete an empty box if one is created). Then the composition of the
remaining n− 1 balls has the same distribution as Cn−1.

We call a composition structure (Cn, n ≥ 1) regenerative if for all n > n1 > 1,
given that the first part of Cn is n1, the remaining composition of n − n1 has the
same distribution as Cn−n1

.

Lemma 2.2 (Pitman and Winkel, 2009, Proposition 6). Let 0 < α < 1 and θ > 0,

and consider an ordered CRP (Π̃n = (Π̃n,1, . . . , Π̃n,Kn), n ≥ 1). For j ∈ [n], define

Sn,j :=
∑j
i=1|Π̃n,i|, i.e. Sn,j is the number of customers seated at the first j tables

from the left. Then,{
Sn,j
n

, j ≥ 0

}
→ Zα,θ :=

{
1− e−ξt , t ≥ 0

}cl
a.s. as n→∞,

with respect to the Hausdorff metric on closed subsets of [0, 1], where cl denotes the
closure in [0, 1], and (ξt, t ≥ 0) is a subordinator with Laplace exponent

Φα,θ(s) =
sΓ(s+ θ)Γ(1− α)

Γ(s+ θ + 1− α)
.

Furthermore, define Ln(u) := #{j ∈ [Kn] : Sn,j/n ≤ u} for u ∈ [0, 1], where for
any set S, #S denotes the number of elements in S. Then

lim
n→∞

sup
u∈[0,1]

|n−αLn(u)− L(u)| = 0 a.s.,

where L := (L(u), u ∈ [0, 1]) is a continuous local time process for Zα,θ which means
that the random set of points of increase of L is Zα,θ a.s..

We refer to the collection of open intervals in [0, 1]\Zα,θ as the (α, θ)-regenerative
interval partition associated with (Cn, n ≥ 1) and the local time process L, where
L(1) = Lα,θ a.s.. Note that the joint law of ranked lengths of components of this
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interval partition is PD(α, θ). The local time process (L(u), 0 ≤ u ≤ 1) can be
characterised via ξ, i.e. we have

L
(
1− e−ξt

)
= Γ(1− α)

t∫
0

e−αξsds, t ≥ 0.

We consider the inverse local time L−1 given by

L−1 : [0, Lα,θ]→ [0, 1], L−1(x) := inf{u ∈ [0, 1] : L(u) > x}. (2.2)

Note that L−1 is increasing and right-continuous, and hence we can equip the
random interval [0, Lα,θ] with the Stieltjes measure dL−1. We refer to the pair
([0, Lα,θ], dL

−1) as an (α, θ)-string of beads in the following sense.

Definition 2.3 (String of beads). A string of beads (I, µ) is an interval I equipped
with a discrete mass measure µ. An (α, θ)-string of beads is the weighted random
interval ([0, Lα,θ], dL

−1) associated with an (α, θ)-regenerative interval partition.

We equip the space of strings of beads with the Borel σ-algebra associated with
the topology of weak convergence of probability measures on [0,∞), where the
length of a string of beads (I, µ) is determined by the supremum of the support of
the measure µ.

We also use the term (α, θ)-string of beads for measure-preserving isometric
copies of the weighted interval ([0, Lα,θ], dL

−1). Since the lengths of the interval
components of an (α, θ)-regenerative interval partition are the masses of the atoms
of the associated (α, θ)-string of beads, we know that the joint law of ranked masses
of the atoms of an (α, θ)-string of beads is PD(α, θ).

2.2. Regenerative composition structures. We recap some well-known results for
regenerative composition structures from Gnedin and Pitman (2005), some of which
are based on Maisonneuve (1983). For a (random) closed subset M of [0,∞] let

G(M, t) := supM∩ [0, t], D(M, t) := infM∩ (t,∞].

A random closed subsetM⊂ [0,∞] is regenerative if for each t ∈ [0,∞), condition-
ally given {D(M, t) < ∞}, the random set (M−D(M, t)) ∩ [0,∞] has the same
distribution as M and is independent of [0, D(M, t)] ∩M.

Theorem 2.4 (Gnedin and Pitman, 2005, Theorem 5.1). The closed range {St, t ≥
0}cl of a subordinator (St, t ≥ 0) is a regenerative random subset of [0,∞]. Further-
more, for every regenerative random subset M of [0,∞] there exists a subordinator

(St, t ≥ 0) such that M d
= {St, t ≥ 0}cl.

We call a process (S̃t, t ≥ 0) a multiplicative subordinator if for t′ > t, the ratio

(1 − S̃t′)/(1 − S̃t) has the same distribution as (1 − S̃t′−t) and is independent of

(S̃u, 0 ≤ u ≤ t). Furthermore, let M̃ denote the closed range of a multiplicative

subordinator (S̃t, t ≥ 0), i.e. M̃ := {S̃t, t ≥ 0}cl. A multiplicative subordinator

(S̃t, t ≥ 0) can be obtained from a subordinator (St, t ≥ 0) via the the mapping

from [0,∞] onto [0, 1] defined by z 7→ 1− exp(−z), i.e. S̃t := 1− exp(−St).
For any closed subset M of [0, 1] and any z ∈ [0, 1] such that M ∩ (z, 1) 6= ∅, we

define M(z) as the part of M strictly right to D(M, z), scaled back to [0, 1], i.e.

M(z) :=

{
y −D(M, z)

1−D(M, z)
: y ∈M ∩ [D(M, z), 1]

}
.
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A random closed subset M̃ ⊂ [0, 1] is called multiplicatively regenerative if, for each

z ∈ [0, 1), conditionally given {D(M̃, z) < 1} the random set M̃(z) has the same

distribution as M̃ and is independent of [0, D(M̃, z)] ∩ M̃.

Proposition 2.5 (Gnedin and Pitman, 2005, Proposition 6.2). For two random

closed subsets M̃ ⊂ [0, 1] and M ⊂ [0,∞] related by M̃ = 1 − exp{−M}, the

random set M is regenerative if and only if M̃ is multiplicatively regenerative.

We associate with each composition (n1, . . . , nk) of n the finite closed set whose
points are partial sums of the parts n1, . . . , nk divided by n, i.e.

(n1, . . . , nk) 7→ {0, n1/n, (n1 + n2)/n, . . . , (n− nk)/n, 1} =: M̃n. (2.3)

Every regenerative composition structure (Cn, n ≥ 1) is hence associated with a

sequence of random sets (M̃n, n ≥ 1). Note that each M̃n defines an interval

partition of [0, 1], namely [0, 1] \ M̃n, n ≥ 1.

Lemma 2.6 (Gnedin and Pitman, 2005, Lemma 6.3). Let (Cn, n ≥ 1) be a compo-

sition structure and let (M̃n, n ≥ 1) be the associated sequence of random sets as

in (2.3). Then M̃n → M̃ a.s. as n→∞ in the Hausdorff metric for some random

closed subset M̃.

Lemma 2.7 (Gnedin and Pitman, 2005, Corollary 6.4). In the setting of Lemma

2.6, a composition structure (Cn, n ≥ 1) is regenerative if and only if M̃ is multi-
plicatively regenerative.

For α ∈ (0, 1), we can construct an (α, 0)-regenerative interval partition, arising
in the limit of the regenerative composition structure induced by an ordered (α, 0)-
CRP, as the restriction to [0, 1] of the range of a stable subordinator of index α.

Definition 2.8 (Stable subordinator). A subordinator (St, t ≥ 0) is called stable
with index α ∈ (0, 1) if it has the self-similarity property, that is, for all t > 0,

St/t
1/α d

=S1.

Proposition 2.9 (Gnedin and Pitman, 2005, Section 8.3). Let 0 < α < 1, and
let Mα be the range of a stable subordinator of index α > 0. Then, the interval
partition of [0, 1] generated byMα∩[0, 1] is an (α, 0)-regenerative interval partition.

3. Merging strings of beads

3.1. The merging algorithm. We first explain the basic structure of our merging
operation for strings of beads, given a sequence of cut points (xn)n≥1, that is, a
sequence of atoms on the strings of beads. We use R equipped with the usual
distance function as the underlying metric space, and refer to isometric copies of
the related intervals when we present applications to continuum trees in Section 4.

Let k ∈ N, and consider k disjoint strings of beads (Ei, µi), i ∈ [k], given by

Ei := (ρi, ρ
′
i), i ∈ [k],

where Ei ∩ Ej = ∅ for all i, j ∈ [k], i 6= j. Furthermore, suppose that, for every
i ∈ [k], we have a sequence (ρi,j)j≥1 such that

Ei =

∞⋃
j=0

(ρi,j , ρi,j+1] and d(ρi, ρi,j) < d(ρi, ρi,j+1) for all j ≥ 1, (3.1)
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where ρi,0 := ρi, i ∈ [k]. We refer to the sequences (ρi,j)j≥1, i ∈ [k], as cut points
for the string of beads (Ei, µi), i ∈ [k]. Define the set of cut points Υ by

Υ := {ρi,j , j ≥ 1, i ∈ [k]}, (3.2)

and assume that σΥ : Υ → N gives a total order on Υ (i.e. σΥ is bijective) which
is consistent with the natural order given by N when restricted to {ρi,j , j ≥ 1},
i ∈ [k], in the sense that σΥ(ρi,j) < σΥ(ρi,j+1) for all j ≥ 1. For n ∈ N, we write

xn := σ−1
Υ (n), i.e. Υ = {xn, n ≥ 1}.

We define the merged string of beads (E⊎, µ) equipped with the metric d⊎ by

E⊎ :=

k⊎
i=1

Ei =

k⊎
i=1

(ρi, ρ
′
i) (3.3)

where the operator
⊎

on the intervals Ei, i ∈ [k], the metric d⊎ : E⊎ × E⊎ → R+
0

and the mass measure µ on E⊎ are defined in the following way.

• For any n ≥ 1, let (an, bn] be defined by

(an, bn] := (ρi,j−1, ρi,j ] (3.4)

where ρi,j denotes the unique element of Υ with σΥ(ρi,j) = n, i.e. xn = ρi,j .
• Define the set E⊎ by

E⊎ :=

∞⋃
n=1

(an, bn] =

k⋃
i=1

Ei, (3.5)

and equip it with the metric d⊎ carried forward via these operations, i.e.

d⊎(x, y) :=

d(x, bn) +
m−1∑
k=n+1

d(ak, bk) + d(am, y), x ∈ (an, bn], y ∈ (am, bm]

|d(x, bn)− d(y, bn)|, x, y ∈ (an, bn], n ≥ 1,

(3.6)
where n < m in the first case. We use the subscript

⊎
to underline that

the set E⊎ =
⋃k
i=1Ei is equipped with the metric d⊎.

• Considering the natural mass measure µ on the Borel sets B(E⊎) given by

µ(A) =

k∑
i=1

µi(A ∩ Ei), A ∈ B(E⊎), (3.7)

yields a metric space (E⊎, d⊎) endowed with a mass measure µ.

Note that (E⊎, d⊎) is isometric to an open interval. Considering its completion,
we can write E⊎ = (ρ, ρ′) where ρ := a0 and ρ′ is the unique element in the comple-
tion of E⊎ such that d⊎(bn, ρ

′)→ 0 as n→∞. Hence, (E⊎, µ) is a string of beads

equipped with the metric d⊎. Furthermore, note that d⊎(ρ, ρ′) =
∑k
i=1 d(ρi, ρ

′
i).

Remark 3.1. Note that we do not necessarily need open intervals (ρi, ρ
′
i), i ∈ [k], in

the merging algorithm. In the case when El = [ρl, ρ
′
l) for some l ∈ [k], we interpret

our algorithm in the following sense. Consider the first cut point ρl,1 in El, i.e.
ρl,1 = xn such that xn ∈ El and xm /∈ El for all 1 ≤ m ≤ n− 1.

• If ρl,1 6= x1, then there is n ∈ N, such that bn = ρl,1 and bn−1 = ρi,j for
some j ≥ 1 and i ∈ [k]\{l}. In this case, we consider the interval component
(an, bn] = (ρl, ρl,1] in our algorithm, and set µ(bn−1) := µi(ρi,j) + µl(ρl).
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• If ρl,1 = x1, then [a1, b1] = [ρl, x1] and we obtain an interval [ρ = ρl, ρ
′) as

a result of the merging procedure with µ(a1) := µl(ρl).

If El = (ρl, ρ
′
l], we might have that xn = ρ′l for some n ∈ N. Then the interval El

is split into only finitely many components. If El = [ρl, ρ
′
l] is a closed interval, we

naturally combine the described conventions.

3.2. Cut point sampling and main result. We now assume that our strings of beads
are rescaled (α, θi)-string of beads for α ∈ (0, 1) and θi > 0, i ∈ [k]. More precisely,

let Ei = (ρi, ρ
′
i), i ∈ [k], and let µ be a mass measure on E =

⋃k
i=1Ei such that

(µ(E1), . . . , µ(Ek)) ∼ Dirichlet(θ1, . . . , θk). (3.8)

Furthermore, suppose that(
µ(Ei)

−αEi, µ(Ei)
−1µ �Ei

)
, i ∈ [k],

are (α, θi)-strings of beads, respectively, independent of each other and of (3.8).

We construct an (α, θ =
∑k
i=1 θi)-string of beads from (Ei, µ �Ei), i ∈ [k], using

the merging algorithm presented in Section 3.1. The procedure is based on sam-
pling an atom of an (α, θ)-string of beads such that the induced mass split has a
Dirichlet(α, 1 − α, θ) distribution. Pitman and Winkel (2009) describe a sampling
procedure for such an atom, and show that the atom splits the (α, θ)-string of
beads into a rescaled independent (α, α)- and a rescaled independent (α, θ)-string
of beads.

Proposition 3.2 (Pitman and Winkel, 2009, Proposition 10/14(b), Corollary 15).
Consider an (α, θ)-string of beads (I, µ) := ([0, Lα,θ], dL

−1) for some α ∈ (0, 1)
and θ > 0 with associated (α, θ)-regenerative interval partition [0, 1] \ Zα,θ, where
Zα,θ = {1 − exp(−ξt), t ≥ 0}cl, cf. Lemma 2.2. Define a switching probability
function by

p : [0, 1]→ [0, 1], u 7→ (1− u)θ

(1− u)θ + uα
.

For t ≥ 0, select a block (1−e−ξt− , 1−e−ξt) of [0, 1]\Zα,θ with ∆ξt := ξt− ξt− > 0
with probability

p
(
e−∆ξt

)
·
∏
s<t

(
1− e−∆ξs

)
and consider the local time X := L(1−e−ξt) at the selected block (1−e−ξt− , 1−e−ξt),
which we call switching time. Then the following random variables are independent.

• The mass split

(µ([0, X)), µ(X), µ((X,Lα,θ])) ∼ Dirichlet (α, 1− α, θ) ; (3.9)

• the (α, α)-string of beads(
µ ([0, X))

−α
[0, X), µ ([0, X))

−1
µ �[0,X)

)
; (3.10)

• the (α, θ)-string of beads(
µ ((X,Lα,θ])

−α
(X,Lα,θ], µ ((X,Lα,θ])

−1
µ �(X,Lα,θ]

)
. (3.11)
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We refer to the sampling procedure described in Proposition 3.2 as (α, θ)-coin
tossing sampling in the string of beads ([0, Lα,θ], dL

−1). Informally speaking,
we can visualise this by a walker starting in 0, walking up the string of beads
([0, Lα,θ], dL

−1), tossing a coin for each of the (infinite number of atom) masses
where the probability for heads is given by p(exp(−∆ξt)), and hence depends on
the relative remaining mass after an atom; let the walker stop the first time the
tossed coin shows heads and select the related atom.

Algorithm 3.3 (Construction of an (α, θ)-string of beads). Let α ∈ (0, 1) and
θ1, . . . , θk > 0.

• Input. A mass measure µ on E :=
⋃k
i=1Ei, Ei = (ρi, ρ

′
i), i ∈ [k], such that

(µ(E1), . . . , µ(Ek)) ∼ Dirichlet(θ1, . . . , θk) (3.12)

where the pairs (µ(Ei)
−αEi, µ(Ei)

−1µ �Ei), i ∈ [k], are (α, θi)-strings of
beads, respectively, independent of each other and of the mass split (3.12).
• Output. A sequence of cut points (Xn)n≥1 and a sequence of interval com-

ponents {(an, bn]}n≥1 of Ei, i ∈ [k].

Initialisation. n = 1, E
(1)
i := Ei, i ∈ [k], and E(1) :=

⋃
i∈[k]Ei, ρ

(0)
i := ρi, i ∈ [k].

For n ≥ 1, given (E,µ) and the previous steps of the algorithm, do the following.

(i) Select one of the intervals E
(n)
i , i ∈ [k], proportionally to mass, i.e. let

In be a random variable taking values in {1, . . . , k} such that, for i ∈ [k],

In = i with probability µ(E
(n)
i )/µ(E(n)).

Conditionally given In, pick an atom Xn of the interval E
(n)
In

according
to (α, θIn)-coin tossing sampling in the string of beads(

µ
(
E

(n)
In

)−α
E

(n)
In
, µ
(
E

(n)
In

)−1

µ �
E

(n)
In

)
.

(ii) Define the interval (an, bn] by

(an, bn] := (ρ
(n−1)
In

, Xn]. (3.13)

(iii) Update ρ
(n)
In

:= Xn and ρ
(n)
i := ρ

(n−1)
i for i ∈ [k] \ {In}, i.e.

E
(n+1)
In

:= (Xn, ρ
′
In), E

(n+1)
i := E

(n)
i for i ∈ [k] \ {In}, (3.14)

and set E(n) =
⋃k
i=1E

(n)
i .

We define E⊎ by aligning the intervals (an, bn] in respective order. More pre-
cisely, we consider Υ := {Xn, n ≥ 1}, σΥ : Υ→ N, σ(Xn) := n, and define

E⊎ :=
⊎
n≥1

(an, bn],

equipped with the metric d⊎, where the operator
⊎

was defined in (3.3)-(3.6). We
can write E⊎ = (ρ, ρ′). Informally, Algorithm 3.3 selects one of the strings of beads
proportionally to mass, and then chooses an atom on the selected string according
to (α, θ)-coin tossing sampling. In this string of beads, the part before the selected
atom is cut off and the algorithm proceeds with the remainder of this string of
beads and all the other strings of beads which stay unchanged. A new string of
beads is then obtained by concatenating the parts in the order in which they are
cut off in the algorithm.
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Our main result here is the following.

Theorem 3.4 (Merging of (α, θ)-strings of beads). Let α ∈ (0, 1) and θ1, . . . , θk >
0, k ∈ N. Let E1, . . . , Ek be k disjoint intervals and µ a mass measure on E :=⋃k
i=1Ei such that

(µ(E1), . . . , µ(Ek)) ∼ Dirichlet (θ1, . . . , θk) .

Furthermore, suppose that the rescaled pairs(
µ(Ei)

−αEi, µ(Ei)
−1µ �Ei

)
are (α, θi)-string of beads, i ∈ [k], respectively, independent of each other and of

the Dirichlet mass split (µ(E1), . . . , µ(Ek)). Let E⊎ :=
⊎k
i=1Ei be constructed as

in Algorithm 3.3 with associated distance d⊎ and mass measure µ. Then the pair

(E⊎, µ) is an (α, θ)-string of beads with θ :=
∑k
i=1 θi.

3.3. Proof of the main result. We first recall and establish some preliminary results,
including decomposition and construction rules for (α, θ)-regenerative interval par-
titions and (α, θ)-strings of beads.

3.3.1. Some preliminary results. (α, θ)-regenerative interval partition can be con-
structed as follows.

Proposition 3.5 (Pitman and Winkel, 2009, Corollary 8). Let 0 < α < 1 and
θ ≥ 0, and consider a random vector (G,D − G, 1 − D) ∼ Dirichlet(α, 1 − α, θ).
Conditionally given (G,D), construct an interval partition of [0, 1] as follows. Let
(G,D) be one component, and construct the interval components in [0, G] and
in [D, 1] by linear scaling of an independent (α, α)- and an independent (α, θ)-
regenerative interval partition, respectively. The interval partition obtained in this
way is an (α, θ)-regenerative interval partition.

Remark 3.6 (The special case θ = 0). The case θ = 0 is considered in Pitman
(1997), Proposition 15. In this case, G ∼ Beta(α, 1 − α) and (G, 1) is the last
interval component of [0, 1] \Zα,0, and the restriction of Zα,0 to [0, G] is a rescaled
copy of Zα,α, where Zα,θ, α ∈ (0, 1), θ ≥ 0, was defined in Lemma 2.2.

We can formulate an analogous version of Proposition 3.5 for (α, θ)-strings of
beads, 0 < α < 1 and θ ≥ 0, which is based upon Pitman and Winkel (2009),
Proposition 14(b).

Proposition 3.7 (Pitman and Winkel, 2009, Proposition 14(b)). Let 0 < α < 1
and θ ≥ 0, and consider a random vector (G,D−G, 1−D) ∼ Dirichlet(α, 1−α, θ).
Conditionally given (G,D), let (I1 = [0, Lα,α], µ1) be an independent (α, α)-string
of beads and (I2 = [0, Lα,θ], µ2) an independent (α, θ)-string of beads. Define

L′α,θ := GαLα,α + (1−D)αLα,θ,

the interval I := [0, L′α,θ] and the mass measure µ on I by

µ(y) =


G · µ1(G−αy) if y ∈ [0, GαLα,α),

D −G if y = GαLα,α,

(1−D) · µ2((1−D)−α(y −GαLα,α)) if y ∈ (GαLα,α, L
′
α,θ].

Then (I, µ) is an (α, θ)-string of beads.
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The following theorem shows how an (α, θ)-regenerative interval partition, α ∈
(0, 1) and θ > 0, can be constructed via a stick-breaking scheme, and a sequence of
i.i.d. stable subordinators of index α.

Proposition 3.8 (Gnedin and Pitman, 2005, Theorem 8.3). Let (Yi)i≥1 be i.i.d.
with B1 ∼ Beta(1, θ) for some θ > 0, and define the sequence (Vn)n≥1 by

Vn := 1−
n∏
i=1

(1− Yi), n = 1, 2, . . . . (3.15)

For α ∈ (0, 1), letMα(n), n ≥ 1, be independent copies of the rangeMα of a stable

subordinator of index α, and define a random closed subset M̃(α, θ) ⊂ [0, 1] by

M̃(α, θ) := {1} ∪
∞⋃
n=1

([Vn−1, Vn] ∩ (Vn−1 +Mα(n))) (3.16)

where V0 := 0. Then, M̃(α, θ) is a multiplicatively regenerative random subset of

[0, 1] which can be represented as M̃(α, θ) = 1− exp(−M(α, θ)), where M(α, θ) is
the range of a subordinator with Laplace exponent

Φα,θ(s) =
sΓ(s+ θ)Γ(1− α)

Γ(s+ θ + 1− α)
.

Remark 3.9 (Sliced splitting). Note that [0, 1] \ M̃(α, θ) is an (α, θ)-regenerative
interval partition. Gnedin (2010) refers to the method presented in Proposition
3.8 as sliced splitting : first split the interval [0, 1] according to the stick-breaking
scheme with Beta(1, θ) variables, θ > 0, to obtain the stick-breaking points (Vn)n≥1.
Then, for each n ≥ 1, use an independent copy of a regenerative set derived from
a stable subordinator with index α ∈ (0, 1) to split the interval (Vn−1, Vn), n ≥ 1,
V0 := 0. In other words, we first split the interval [0, 1] according to a (0, θ)-
regenerative interval partition with θ > 0, and then shatter each part according to
an (α, 0)-regenerative interval partition, α ∈ (0, 1).

As a consequence of Proposition 3.8, an (α, θ)-regenerative interval partition can
be constructed via independent (α, 0)-regenerative interval partitions.

Corollary 3.10. Let (Yi)i≥1 be i.i.d. with Y1 ∼ Beta(1, θ) for some θ > 0, and let
(Vn)n≥1 be defined as in (3.15). For α ∈ (0, 1), let M∗α(n), n ≥ 1, be independent
copies of the random closed subsetM∗α of [0, 1] associated with an (α, 0)-regenerative

interval partition of [0, 1] given by [0, 1] \M∗α. Define the random set M̃∗(α, θ) by

M̃∗(α, θ) := {1} ∪
∞⋃
n=1

(Vn−1 + (Vn − Vn−1)M∗α(n)) . (3.17)

Then M̃∗(α, θ) is a multiplicatively regenerative random subset of [0, 1], and hence

defines an (α, θ)-regenerative interval partition of [0, 1] via [0, 1] \ M̃∗(α, θ).

Proof : We apply Proposition 3.8, i.e., we show that the sets Vn−1 + (Vn −
Vn−1)M∗α(i) are of the form [Vn−1, Vn]∩(Vn−1 +Mα(n)) as in (3.16). Consider the
closure Mα of the range of a stable subordinator Sα of index α ∈ (0, 1) as defined
in Proposition 3.8, i.e. Mα := {Sα(t), t ≥ 0}cl. Since Sα is stable, we obtain, for
any c > 0,

{Sα(t), t ≥ 0}cl = {Sα(tc), t ≥ 0}cl d= {c1/αSα(t), t ≥ 0}cl = c1/α{Sα(t), t ≥ 0}cl.
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Therefore, for any r > 0, rMα
d
=Mα, and hence, for any r > 0, we have

[0, r] ∩Mα
d
= r · ([0, 1] ∩Mα) .

Furthermore, by stationary and independent increments of subordinators, and the
independence of (Vn)n≥1 and Mα(n), n ≥ 1, in Proposition 3.8, we obtain

[Vn−1, Vn] ∩ (Vn−1 +Mα(n))
d
=Vn−1 + [0, Vn − Vn−1] ∩Mα(n).

Hence, by Proposition 2.9, the sets [0, Vn−Vn−1]∩Mα(n), n ∈ N, define indepen-
dent (α, 0)-regenerative interval partitions of [0, 1] rescaled by the factor (Vn−Vn−1).
More precisely, we use that if V is a random interval partition or closed subset of

[0,∞] such that, for any r > 0, rV d
=V and W is an independent random variable

such that 0 < W <∞ a.s., then WV d
=V.

Consequently, the sets [0, Vn − Vn−1] ∩Mα(n), n ≥ 1, are independent (α, 0)-
regenerative interval partitions rescaled by (Vn−Vn−1), and hence each set [0, Vn−
Vn−1] ∩ Mα(n), n ≥ 1, has the same distribution as (Vn − Vn−1)M∗α(n). By

Proposition 3.8, we conclude that M̃∗(α, θ) defines an (α, θ)-regenerative interval
partition. �

3.3.2. Strings of beads: splitting and merging. The proof of Theorem 3.4 uses an
induction on the splitting steps n ≥ 1. In Lemma 3.12 we describe the initial step.
Its proof requires some basic properties of the Dirichlet distribution.

Proposition 3.11. Let X := (X1, . . . , Xk) ∼ Dirichlet(θ1, . . . , θk) for some θi > 0,
i ∈ [k], and k ∈ N.

(i) Aggregation. For i, j ∈ [k] with i < j define

X ′ := (X1, . . . , Xi−1, Xi +Xj , Xi+1, . . . , Xj−1, Xj+1, . . . , Xk).

Then, X ′ ∼ Dirichlet (θ1, . . . , θi−1, θi + θj , θi+1, . . . , θj−1, θj+1, . . . , θk) .
(ii) Decimation. Let α1, α2, α3 ∈ (0, 1) be such that α1 + α2 + α3 = 1. Fix i ∈

[k], and consider a random vector (P1, P2, P3) ∼ Dirichlet(α1θi, α2θi, α3θi)
which is independent of X. Then

X ′′ := (X1, . . . , Xi−1, P1Xi, P2Xi, P3Xi, Xi+1, . . . , Xk).

has a Dirichlet (θ1, . . . , θi−1, α1θi, α2θi, α3θi, θi+1, . . . , θk) distribution.
(iii) Size-bias. Let I be an index chosen such that P(I = i|(X1, . . . , Xk)) = Xi

a.s. for i ∈ [k]. Then, for any i ∈ [k], conditionally given I = i,

X = (X1, . . . , Xk) ∼ Dirichlet (θ1, . . . , θi−1, θi + 1, θi+1, . . . , θk) .

(iv) Two-dimensional marginals. For any i, j ∈ [k] with i 6= j,

Xi/(Xi +Xj) ∼ Beta(θi, θj).

(v) Deletion. For any i ∈ [k], the vector

X∗ := (X1/(1−Xi), . . . , Xi−1/(1−Xi), Xi+1/(1−Xi), . . . , Xk/(1−Xi))

has a Dirichlet(θ1, . . . , θi−1, θi+1, . . . , θk) distribution.

Proof : (i) and (ii) can be found in Zhang (2008) as Proposition 13 and Proposition
14/Remark 15, for instance. (iii) is Lemma 17 in Addario-Berry et al. (2010). (iv)
and (v) follow directly from the representation of the Dirichlet distribution via
independent Gamma variables. �
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Lemma 3.12. In Algorithm 3.3, the following random variables are independent.

• The mass µ((ρI1 , X1]) ∼ Beta(1, θ);
• the (α, 0)-string of beads(

µ((ρI1 , X1])−α(ρI1 , X1], µ((ρI1 , X1])−1µ �(ρI1 ,X1]

)
;

• the (α, θi)-strings of beads(
µ(E

(2)
i )−αE

(2)
i , µ(E

(2)
i )−1µ �

E
(2)
i

)
, i ∈ [k];

• the mass split(
µ(E

(2)
1 )/µ(E(2)), . . . , µ(E

(2)
k )/µ(E(2))

)
∼ Dirichlet(θ1, . . . , θk).

The proof of Lemma 3.12 will use the following proposition, which is elementary.

Proposition 3.13. Let I be a random variable taking values in a countable set I.
Futhermore, consider a random variable Z taking values in some measurable space
(V,Z) whose distribution conditional on I = i does not depend on i ∈ I. Then, Z
is independent of I, and for any other random variable Z ′ taking values in some
measurable space (V′,Z ′) that is conditionally independent of Z given I, the pair
(Z ′, I) is independent of Z.

Proof of Lemma 3.12: Conditionally given I1, i.e. given that the interval EI1 is
selected in the first step of Algorithm 3.3, by Proposition 3.11(iii), we have

(µ(E1), . . . , µ(EI1−1), µ(EI1), µ(EI1+1), . . . , µ(Ek))

∼ Dirichlet (θ1, . . . , θI1−1, θI1 + 1, θI1+1, . . . , θIk) .

Note that, conditionally given I1, X1 is an element of EI1 which is independent
of Ei, i ∈ [k] \ {I1}. We apply (α, θI1)-coin tossing sampling in the (α, θI1)-string
of beads (µ(EI1)−αEI1 , µ(EI1)−1µ �EI1 ), which gives an atom X1 splitting EI1
according to Dirichlet(α, 1− α, θI1), i.e.

µ(EI1)
−1 (

µ((ρI1 , X1)), µ(X1), µ((X1, ρ
′
I1))
)
∼ Dirichlet(α, 1− α, θI1), (3.18)

see Proposition 3.2. Proposition 3.11(ii), with i = I1, P1 = µ((ρI1 , X1))/µ(EI1),
P2 = µ(X1)/µ(EI1), P3 = µ((X1, ρ

′
I1

))/µ(EI1), and α1 = α/(θI1 + 1), α2 = (1 −
α)/(θI1 + 1), α3 = θI1/(θI1 + 1), yields that the distribution of(

µ ((ρI1 , X1)) , µ(X1), µ(E1), . . . , µ(EI1−1), µ((X1, ρ
′
I1)), µ(EI1+1), . . . , µ(Ek)

)
(3.19)

is Dirichlet(α, 1− α, θ1, . . . , θI1−1, θI1 , θI1+1, . . . , θk). By Proposition 3.2, the pairs(
µ((ρI1 , X1))−α(ρI1 , X1), µ((ρI1 , X1))−1µ �(ρI1 ,X1)

)
(3.20)

and (
µ((X1, ρ

′
I1))−α(X1, ρ

′
I1), µ((X1, ρ

′
I1))−1µ �(X1,ρ′I1

)

)
(3.21)

are (α, α)- and (α, θI1)-strings of beads, respectively, independent of each other and
the mass split (3.18).

By Proposition 3.11(iv) and (3.19) we have that µ((ρI1 , X1))/µ((ρI1 , X1]) ∼
Beta(α, 1−α). Furthermore, by Proposition 3.11(i), µ((ρI1 , X1]) ∼ Beta(1, θ) with

θ =
∑k
i=1 θi. By Proposition 3.5, Remark 3.6 and Proposition 3.7, we conclude

that
(µ((ρI1 , X1])−α(ρI1 , X1], µ((ρI1 , X1])−1µ �(ρI1 ,X1])
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is an (α, 0)-string of beads. The distribution of

(µ(E
(2)
1 )/µ(E(2)), µ(E

(2)
2 )/µ(E(2)), . . . , µ(E

(2)
k )/µ(E(2)))

follows directly from Proposition 3.11(v).
The strings of beads(

µ(E
(2)
i )−αE

(2)
i , µ(E

(2)
i )−1µ �

E
(2)
i

)
, i ∈ [k],

are independent (α, θi)-strings of beads, as, for i ∈ [k] \ {I1}, these are not affected

by the algorithm, conditionally given I1, and E
(2)
I1

= (X1, ρ
′
I1

).
To deduce the claimed independence, note that the distributions of the four

random variables mentioned in Lemma 3.12 do not depend on I1, i.e. we can apply
Proposition 3.13 to these variables inductively with I = I1. �

We are now ready to prove our main result, Theorem 3.4.

Proof of Theorem 3.4: We use Corollary 3.10 to show the claim. Let (Xn)n≥1 be a
sequence of random atoms of E, as sampled in Step (i) of Algorithm 3.3.

By Lemma 3.12, the distribution of the mass split obtained via X1(
µ((ρI1 , X1)), µ(X1), µ(E1), . . . , µ(EI1−1), µ((X1, ρ

′
I1)), µ(EI1+1), . . . , µ(Ek)

)
is Dirichlet(α, 1− α, θ1, . . . , θI1−1, θI1 , θI1+1, . . . , θk). Again by Lemma 3.12,

Y1 := µ((ρI1 , X1]) ∼ Beta(1, θ),

where Y1 is independent of the (α, θi)-strings of beads(
µ(E

(2)
i )−αE

(2)
i , µ(E

(2)
i )−1µ �

E
(2)
i

)
, i ∈ [k], (3.22)

which are also independent of each other. Furthermore, Y1 and the k strings of
beads in (3.22) are also independent of the (α, 0)-string of beads(

µ((ρI1 , X1])−α(ρI1 , X1], µ((ρI1 , X1])−1µ �(ρI1 ,X1]

)
.

X2 is now a random atom picked from E(2) = E(1) \ (ρI1 , X1]. By Lemma 3.12,(
µ((ρ1, ρ

′
1))

µ(E(2))
,. . .,

µ((ρI1−1, ρ
′
I1−1))

µ(E(2))
,
µ((X1, ρ

′
I1

))

µ(E(2))
,
µ((ρI1+1, ρ

′
I1+1))

µ(E(2))
,. . .,

µ((ρk, ρ
′
k))

µ(E(2))

)
has a Dirichlet (θ1, . . . , θI1−1, θI1 , θI1+1, . . . , θk) distribution, and hence X2 splits
the set E(2) according to Dirichlet(α, 1− α, θ1, . . . , θk). Therefore, inductively, for
n ≥ 1, we obtain the representation

Vn := µ

(
n⋃

m=1

(am, bm]

)
= 1−

n∏
m=1

(1− Ym) ,

where (Ym)m≥1 is a sequence of i.i.d. random variables with Ym ∼ Beta(1, θ),
using notation from (3.13). Consider now the sets of interval components defined
via {(an, bn], n ≥ 1}. Applying Lemma 3.12 inductively yields that the sequence
(Ym)m≥1 is i.i.d. and independent of the (α, 0)-strings of beads(

µ((an, bn])−α(an, bn], µ((an, bn])−1µ �(an,bn]

)
, n ≥ 1.

We are now in the situation of Corollary 3.10, and conclude that (E⊎ = (ρ, ρ′), µ)
is indeed associated with an (α, θ)-regenerative interval partition of [0, 1]. By Propo-
sition 3.7, (E⊎ = (ρ, ρ′), µ) equipped with d⊎ defines an (α, θ)-string of beads. �
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4. Branch merging on (continuum) trees

We introduce a branch merging operation on Ford CRTs, i.e. on binary frag-
mentation continuum random trees of the form T α,1−α arising in the scaling limit
of the (α, θ)-tree growth process for θ = 1−α. We construct a sequence of reduced

trees (Rα,2−αk , k ≥ 1) associated with T α,2−α, the scaling limit of the (α, 2−α)-tree
growth process, based on branch merging and the (α, 1− α)-coin tossing construc-
tion of embedded leaves according to the (α, 1− α)-tree growth model.

The (α, 1 − α)-coin tossing construction reduces to uniform sampling from the
mass measure in the case of the Brownian CRT, i.e. when α = θ = 1/2, which yields
a simplified branch merging operation, which we use to construct a new tree-valued
Markov process on a space of continuum trees.

4.1. Preliminaries.

4.1.1. R-trees, self-similar continuum random trees and the Brownian CRT. We
recap some background on R-trees. As we will only work with compact R-trees, we
include compactness in the definition. An R-tree is a compact metric space (T , d)
such that the following two properties hold for every σ1, σ2 ∈ T .

(i) There is an isometric map Φσ1,σ2
: [0, d(σ1, σ2)]→ T such that

Φσ1,σ2(0) = σ1 and Φσ1,σ2(d(σ1, σ2)) = σ2.

(ii) For every injective path q : [0, 1]→ T with q(0) = σ1 and q(1) = σ2,

q([0, 1]) = Φσ1,σ2([0, d(σ1, σ2)]).

We write [[σ1, σ2]] := Φσ1,σ2
([0, d(σ1, σ2)]) for the range of Φσ1,σ2

.
A rooted R-tree (T , d, ρ) is an R-tree (T , d) with a distinguished element ρ, the

root. In what follows, we only work with rooted R-trees. Sometimes we refer to T
as an R-tree, the distance d and the root ρ being implicit. For any α > 0 and any
metric space (T , d), in particular any R-tree, we write αT for (T , αd).

We only consider equivalence classes of rooted R-trees. Two rooted R-trees
(T , d, ρ) and (T ′, d′, ρ′) are equivalent if there exists an isometry from T onto T ′
such that ρ is mapped onto ρ′. We denote by T the set of all equivalence classes of
rooted R-trees. As shown in Evans et al. (2006), the space T is a Polish space when
endowed with the pointed Gromov-Hausdorff distance dGH. The pointed Gromov-
Hausdorff distance between two rooted R-trees (T , d, ρ), (T ′, d′, ρ′) is defined as

dGH((T , d, ρ), (T ′, d′, ρ′)) := inf{max{δ(φ(ρ), φ′(ρ′)), δH(φ(T ), φ′(T ′))}},

where the infimum is taken over all metric spaces (M, δ) and all isometric em-
beddings φ : T → M, φ′ : T ′ → M into (M, δ), and δH is the Hausdorff distance
between compact subsets of (M, δ). In fact, the Gromov-Hausdorff distance only
depends on equivalence classes of rooted R-trees and so induces a metric on T.
We equip T with its Borel σ-algebra, and refer to Evans et al. (2006) for a formal
construction of T.

A weighted R-tree (T , d, ρ, µ) is a rooted R-tree (T , d, ρ) equipped with a prob-
ability measure µ on the Borel sets B(T ). Two weighted R-trees (T , d, ρ, µ) and
(T ′, d′, ρ′, µ′) are called equivalent if there exists an isometry from (T , d, ρ) onto
(T ′, d′, ρ′) such that µ′ is the push-forward of µ. The set of equivalence classes of
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weighted R-trees is denoted by Tw. The Gromov-Hausdorff distance can be ex-
tended to a metric on Tw, the Gromov-Hausdorff-Prokhorov metric, see e.g. Mier-
mont (2009). For any rooted R-tree (T , d, ρ) and x ∈ T , we call d(ρ, x) the height
of x, and supx∈T d(ρ, x) the height of T . A leaf is an element x ∈ T with x 6= ρ
whose removal does not disconnect T . We denote the set of all leaves of T by L(T ).
An element x ∈ T , x 6= ρ, is a branch point if its removal disconnects the R-tree
into three or more components. ρ is a branch point if its removal disconnects the
R-tree into two or more components. The degree of a vertex x ∈ T is the number of
connected components of T \ {x}; we call an R-tree binary if the maximum branch
point degree is 3.

A pair (T , µ) is a continuum tree if T is an R- tree, and µ is a probability measure
on T satisfying the following three properties.

(i) µ is supported by L(T ), the set of leaves of T .
(ii) µ has no atom, i.e. for any singleton x ∈ L(T ) we have µ({x}) = 0.
(iii) For every x ∈ T \ L(T ), µ(Tx) > 0, where

Tx := {σ ∈ T : x ∈ [[ρ, σ]]}.

By definition of a continuum tree, L(T ) is uncountable and has no isolated points.
It will be useful to consider reduced trees: for any rooted R-tree T and any

x1, x2, . . . , xn ∈ L(T ) let

R(T , x1, . . . , xn) :=

n⋃
i=1

[[ρ, xi]] (4.1)

be the reduced subtree associated with T , x1, . . . , xn. R(T , x1, . . . , xn) is an R-tree,
whose root is ρ and whose set of leaves is {x1, . . . , xn}.

For a weighted R-tree (T , d, ρ, µ) and R ⊂ T closed, we define the projection

πR : T → R, σ 7→ Φρ,σ (sup{t ≥ 0 : Φρ,σ(t) ∈ R}) , (4.2)

where the function Φρ,σ : [0, d(ρ, σ)] → T is the isometry with Φρ,σ(0) = ρ and
Φρ,σ (d(ρ, σ)) = σ. We write

µR(C) := µ
((
πR
)−1

(C)
)
, C ∈ B (R) ,

for the push-forward of µ via πR, where B (R) is the Borel σ-algebra on R.
Weighted R-trees can be obtained from height functions, that is, continuous

functions h : [0, 1]→ [0,∞) with h(0) = h(1) = 0. We use h to define a distance by

dh(x, y) := h(x) + h(y)− 2 inf
min{x,y}≤z≤max{x,y}

h(z), x, y ∈ [0, 1]. (4.3)

Let y ∼ y′ if dh(y, y′) = 0, and take the quotient Th = [0, 1)/ ∼. Then (Th, dh, ρ) is
a rooted R-tree coded by the function h, where the root ρ is the equivalence class
of 0. When the height function h : [0, 1] → [0,∞) is random we obtain a random
R-tree (Th, dh, ρ). Note that (random) R-trees can be equipped with a natural mass
measure µh induced by the Lebesgue measure on [0, 1].

We study a certain type of random R-trees, namely binary fragmentation con-
tinuum random trees, arising in the scaling limit of (α, θ)-tree growth processes.

Definition 4.1 (Binary fragmentation continuum random tree). A random weight-
ed rooted binary R–tree (T , d, ρ, µ) is called a binary fragmentation continuum
random tree (CRT) of index γ > 0, if
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(i) the measure µ has no atoms and µ(Tx) > 0 a.s. for all x ∈ T \L(T ), where

Tx = {σ ∈ T : x ∈ [[ρ, σ]]},
and µ([[ρ, x]]) = 0 for all x ∈ T ;

(ii) for each t ≥ 0, given the masses of the connected components (T ti , i ≥ 1) of
{σ ∈ T : d(ρ, σ) > t}, indexed in decreasing order of mass and completed
by a root vertex ρi, i.e. given (µ(T ti ), i ≥ 1) = (mi, i ≥ 1) for some
m1 ≥ m2 ≥ · · · ≥ 0, the rescaled trees(

T ti ,m
−γ
i d �T ti , ρi,m

−1
i µ �T ti

)
are independent identically distributed isometric copies of (T , d, ρ, µ).

Binary fragmentation CRTs are characterized by a self-similarity parameter
α > 0 and a so-called dislocation measure ν(du), that is, a σ-finite measure on
[1/2, 1) satisfying

∫
[1/2,1)

(1− u)ν(du) <∞. They can be decomposed into isomet-

ric i.i.d. copies of the (in a probabilistic sense) “same” tree, when split into subtrees
along the spine from the root to a leaf sampled from the mass measure on the CRT.

Theorem 4.2 (Spinal decomposition, Pitman and Winkel, 2009, Proposition 18).
Let (T , d, ρ, µ) be a binary fragmentation CRT with self-similarity parameter γ > 0.
Select a leaf Σ∗ ∼ µ in T , consider the spine [[ρ,Σ∗]] and the connected components
(Ti, i ∈ I) of T \ [[ρ,Σ∗]], each completed by a root vertex ρi. Furthermore, assign
mass mi := µ(Ti) to each point ρi ∈ [[ρ,Σ∗]] and denote the resulting distribution
on [[ρ,Σ∗]] by µ∗. Then, given the string of beads ([[ρ,Σ∗]], µ∗), the rescaled trees(

Ti,m−γi d �Ti , ρi,m
−1
i µ �Ti

)
, i ∈ I,

are independent identically distributed isometric copies of (T , d, ρ, µ).

For any Σ ∈ L(T ), we say that the spinal decomposition theorem holds for the
spine [[ρ,Σ]] to mean that Theorem 4.2 holds when we replace the leaf Σ∗ by Σ.

Examples for binary fragmentation CRTs include Ford CRTs, i.e. the trees of the
form T α,1−α, α ∈ (0, 1), with self-similarity index α = γ, see Section 4.1.2. When
γ = α = 1/2, the tree T 1/2,1/2 is the Brownian CRT which can be defined in terms of
Brownian excursion, see e.g. Bertoin (2002). Specifically, let W = (W (t), 0 ≤ t ≤ 1)
be a standard Brownian excursion. The tree (T2W , d2W , ρ) defined via 2W as height
function, with mass measure µ2W induced by the Lebesgue measure on [0, 1], is
called the Brownian continuum random tree (Brownian CRT), see Aldous (1991a).

We often need a random R-tree whose equivalence class has the same distribution
as a Ford CRT on T (or Tw). We also refer to such R-trees as Ford CRTs.

4.1.2. Regenerative tree growth: the (α, θ)-model. Ordered (α, θ)-CRPs and related
(α, θ)-strings of beads naturally appear in the study of the (α, θ)-tree growth process
(Tα,θn , n ≥ 1), as studied by Pitman and Winkel (2009).

Consider the set Tbn of rooted binary trees with n leaves labelled by [n] =
{1, . . . , n}. We study the growth model given by the following growth procedure.
Let T1 be the tree consisting of one single edge, joining the root ρ and the leaf with
label 1. At step 2 we select this edge and split it into a Y-shaped tree T2, which
has one edge that connects the root vertex and a binary branch point; there are
two leaves labelled by 1 and 2 which are linked to the single branch point by one
edge each. Now, inductively, to construct Tn+1 conditionally given Tn, select an
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edge of Tn according to some weights (which we specify later). We select the edge
Ωn → Ω′′n, say, directed away from the root. We replace this edge by three edges
Ωn → Ω′n, Ω′n → n + 1 and Ω′n → Ω′′n, meaning that there is one edge connecting
Ωn to a new branch point Ω′n which is linked to the existing vertex Ω′′n and a new
leaf n+ 1. Clearly, Tn ∈ Tbn for all n ≥ 2.

The stochastic process (Tn, n ≥ 1) of random trees created in the described way,
where each edge is selected randomly according to some selection rule, is called a
binary tree growth process. A range of selection rules, which are partly related to
each other, was studied in the literature. We focus on the (α, θ)-selection rule.

Definition 4.3 ((α, θ)-tree growth process). For 0 ≤ α < 1 and θ ≥ 0, the (α, θ)-
selection rule is defined as follows.

(i) For any n ≥ 2, consider the branch point of the tree Tn adjacent of the root,
and the two subtrees Tn,0 and Tn,1 above this point, where Tn,1 contains
the smallest label in Tn . Denote their sizes, i.e. the number of leaves, by
m and n−m, respectively. Assign weight α to the edge connecting the root
and the adjacent branch point, and weights m − α, n −m − 1 + θ to the
subtrees Tn,0, Tn,1, respectively.

(ii) Choose one of the two subtrees or the edge adjacent to the root proportion-
ally to these weights (note that the total weight is n− 1 + θ). If a subtree
with two or more leaves was selected, recursively apply the weighting pro-
cedure and the random selection until an edge or a subtree with a single
leaf is chosen. If a subtree with a single leaf was selected, select the unique
edge of this subtree.

A binary tree growth process (Tα,θn , n ≥ 1) grown via the (α, θ)-rule for some
0 ≤ α < 1 and θ ≥ 0 is called an (α, θ)-tree growth process, see Figure 4.2 for an
example showing the growth procedure.

We write (Tα,θ,on , n ≥ 1) for the delabelled tree growth process. The trees Tα,θn

and Tα,θ,on , n ≥ 1, are considered as R–trees with unit edge lengths.

Remark 4.4 (Ford’s rule). The selection rule for θ = 1 − α, 0 ≤ α < 1, is called
Ford’s rule, see Ford (2006).

Consider the spine [[ρ, 1]], i.e. the unique path in Tα,θn connecting the root and
leaf 1. Referring to the subtrees along the spine as tables and the leaves within these
subtrees as customers we obtain an ordered (α, θ)-CRP with label set {2, 3, . . .}.
Whenever an edge on the spine is selected, the height of leaf 1, that is, the graph
distance between the root ρ and leaf 1, i.e. the number of tables Kn in the CRP,
increases by 1. Note that the j-th customer in the restaurant carries label (j + 1)
as a leaf in the tree, since leaf 1 is not contained in a subtree off the spine. Each
subtree is uniquely characterized by its leaf labels which is a natural consequence
of the growth procedure of Tα,θn , n ≥ 1. Moreover, the order of tables on the spine
(or spinal order) is consistent across different values for n.

(α, θ)-tree growth processes are regenerative in the following sense.

Definition 4.5 (Regenerative tree growth process). A binary tree growth process
(Tn, n ≥ 1) is called regenerative if for each n ≥ 2, conditionally given that the first
split of Tn is into two subtrees Tn,0, Tn,1 with label sets B0, B1, respectively, the

relabelled trees T̃n,0 and T̃n,1 are independent copies of T#Bi , i = 0, 1, respectively,

where #Bi denotes the cardinality of the set Bi, i = 0, 1, and T̃n,i is the tree Tn,i
with leaves relabelled by the increasing bijection Bi → [#Bi], i = 0, 1.
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The trees grown via the (α, θ)-selection rule have leaves which can be identified
by successively assigned labels from {1, 2, . . .}. Pitman and Winkel (2009) studied
exchangeability of leaf labelling.

Lemma 4.6 (Pitman and Winkel, 2009, Proposition 1). Let (Tα,θn , n ≥ 1) be an
(α, θ)-tree growth process for some α ∈ (0, 1) and θ ≥ 0. The leaf labels of Tα,θn are
exchangeable for all n ≥ 1 if and only if α = θ = 1/2.

6

Inserted 6

25 4 3

125

4 3

1

θ

α
α

(1) Selected subtree: continue

2− α

2− α

(2) Selected edge: insert 6

Figure 4.2. Example of two-step recursion in the (α, θ)-model.
First subtree is selected with probability (2−α)/(4+θ); within this
subtree leaf 6 is inserted at the root edge with probability α/(1+θ).

Limits for the delabelled tree growth process (Tα,θ,on , n ≥ 1) were established in
Pitman and Winkel (2009) by considering the reduced trees R(Tα,θn , [k]), k ≥ 1,
where each edge between two vertices v1 and v2 is equipped with the graph distance
in Tα,θn , i.e. with the number of edges between v1 and v2 in Tα,θn .

Proposition 4.7 (Pitman and Winkel, 2009, Proposition 2). Let (Tα,θn , n ≥ 1) be
an (α, θ)-tree growth process for some 0 < α < 1 and θ ≥ 0. Then, for all k ≥ 1,

lim
n→∞

n−αR(Tα,θn , [k]) = Rα,θk a.s., (4.4)

i.e. the edge lengths of R(Tα,θn , [k]) scaled by n−α converge jointly a.s. as n → ∞
to the edge lengths of a tree Rα,θk with the same shape as R(Tα,θn , [k]).

Recall the notation Rα,θ,ok for the delabelled tree associated with Rα,θk .

Theorem 4.8 (Pitman and Winkel, 2009, Theorem 3). Consider the situation from

Proposition 4.7, and the delabelled trees Rα,θ,ok associated with Rα,θk for k ≥ 1. Then

there exists a CRT T α,θ on the same probability space such that

lim
k→∞

Rα,θ,ok = T α,θ a.s. in the Gromov-Hausdorff topology. (4.5)

In general, the trees T α,θ are binary fragmentation CRTs, characterized by
the self-similarity parameter α, and the absolutely continuous dislocation measure
να,θ(du) = foα,θ(u)du for u ∈ (1/2, 1), where the dislocation density is given via

Γ(1− α)foα,θ(u) = α
(
uθ(1− u)−α−1 + u−α−1(1− u)θ

)
+ θ

(
uθ−1(1− u)−α + u−α(1− u)θ−1

)
, 1/2 < u < 1. (4.6)
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Corollary 4.9. For any α ∈ (0, 1), T α,1−α d
= T α,2−α.

The family of trees {T α,1−α, α ∈ (0, 1)} is called Ford CRTs.

Proof : This was shown in Pitman and Winkel (2009).

• The marginal distributions of delabelled trees coincide for the regenerative
(α, 1− α)- and (α, 2− α)-tree growth processes (see Lemma 12 in Pitman
and Winkel, 2009).
• The (α, 1−α)- and the (α, 2−α)-tree growth processes have the trees T α,1−α

and T α,2−α as their distributional scaling limits (Proposition 4.7). �

Corollary 4.10. For α = 1/2 and θ ∈ {1/2, 3/2}, T α,θ is the Brownian CRT.

Proof : It was shown in Haas et al. (2008) that the delabelled (1/2, 1/2)-tree growth
process has the Brownian CRT as its distributional scaling limit. This also follows
from earlier work by Aldous (1993), due to the connection between the (1/2, 1/2)-
tree growth process and conditioned critical binary Galton-Watson trees, whose
scaling limit is the Brownian CRT.

By Corollary 4.9, the Brownian CRT is also the limit of the delabelled (1/2, 3/2)-
tree growth process. T �

Pitman and Winkel (2009) used an embedding of the reduced trees Rα,θk , k ≥ 1,

into the CRT T α,θ to prove convergence results for (Tα,θn , n ≥ 1).

Theorem 4.11. Let (T α,θ, d, ρ, µ) be a CRT as in Theorem 4.8. Then there exists
a sequence of leaves Σk, k ≥ 1, on a suitably enlarged probability space such that

(R(T α,θ,Σ1, . . . ,Σk), k ≥ 1)
d
= (Rα,θk , k ≥ 1). (4.7)

The problem of finding the leaves Σk, k ≥ 1, as in Theorem 4.11 inside a CRT
was solved in Pitman and Winkel (2009) (Lemma 19, Proposition 20 and Corollary
21). We refer to this problem as the leaf embedding problem. In particular, given
a CRT T = T α,θ for some α ∈ (0, 1), θ > 0, with mass measure µ, it involves the
following steps.

(i) Find a leaf Σ1 ∈ T such that ([[ρ,Σ1]], µ[[ρ,Σ1]]) is an (α, θ)-string of beads,
i.e. embed (R1, µ1) into (T , µ) via (R1, µ1) = ([[ρ,Σ1]], µ[[ρ,Σ1]]).

(ii) Given (R1, µ1), find the point on R1 which identifies the root J1 of the
component of T \ R1 which contains Σ2, so that R2 = R1∪]]J1,Σ2]].

(iii) Iterate the procedure to embed (Rk, µk) for general k ≥ 2 into T .

When (α, θ) = (1/2, 1/2) the leaf embedding problem can be solved by sampling
leaves Σk, k ≥ 1, independently from the mass measure µ. The general technique
to solve the leaf embedding problem is more involved, but not needed to under-
stand the Branch Merging Markov Chain, Section 4.2, and the new and simple leaf
embedding approach for (1/2, 3/2)-tree growth processes in Section 4.3.2.

We recap the procedure to solve (i) for α ∈ (0, 1), θ > 0, from Pitman and
Winkel (2009), Section 4.3.

• Let (T (1), d(1), ρ(1), µ(1)) = (T , d, ρ, µ) and let Σ
∗(1)
1 be a random leaf sam-

pled from µ(1) in T (1). Consider the string of beads(
[[ρ,Σ

∗(1)
1 ]], µ

[[ρ,Σ
∗(1)
1 ]]

)
,
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which can be represented via a local time process (L∗(1)(u), 0 ≤ u ≤ 1), i.e.

d(ρ,Σ
∗(1)
1 ) = L∗(1)(1) and

µ
[[ρ,Σ

∗(1)
1 ]]

({
Φ
ρ,Σ
∗(1)
1

(
L∗(1)

(
1− e−ξ

∗(1)
t

))})
= e−ξ

∗(1)

t− − e−ξ
∗(1)
t = −∆e−ξ

∗(1)
t ,

for a subordinator (ξ
∗(1)
t , t ≥ 0), the so-called spinal subordinator, whose

distribution was characterized in Pitman and Winkel (2009), Section 4.1.
Consider the switching time τ (1) associated with the switching probabil-

ity function (p̂(u), 0 ≤ u ≤ 1) defined by

p̂(u) :=
(1− u)fα,θ(1− u)

f∗α,θ(u)
, 0 < u < 1,

as in Proposition 3.2 where, for 0 < u < 1, fα,θ(u) and f∗α,θ(u) are given by

fα,θ = Γ(1− α)−1
(
α(1− u)−α−1uθ−1 + θuθ−2(1− u)−α

)
,

f∗α,θ(u) = ufα,θ(u) + (1− u)fα,θ(1− u).

Note that foα,θ(u) = ufα,θ(u) + (1 − u)fα,θ(1 − u), 1/2 < u < 1, where

foα,θ was given in (4.6). We refer to Pitman and Winkel (2015) (19) for a
derivation of f∗α,θ. Define

Ft := exp(−∆ξ
∗(1)
t ), 0 ≤ t < τ (1), Fτ(1) = 1− exp(−∆ξ

∗(1)

τ(1) ).

• For i ≥ 1, consider the interval partition {1 − exp(−ξ∗(i)t ), t ≥ 0}cl, with
associated local time process (L∗(i)(u), 0 ≤ u ≤ 1), and the junction point

ρ(i+1) = Φ
ρ(i),Σ

∗(i)
1

(
1− L∗(i)

(
exp(−ξ∗(i)

τ(i) )
))

.

Furthermore, define

T (i+1) =
{
σ ∈ T (i) : [[ρ(i), σ]] ∩ [[ρ(i),Σ

∗(i)
1 ]] = [[ρ(i), ρ(i+1)]]

}
,

d(i+1) =
(

1− exp
(
−ξ∗(i)

τ(i)−τ(i−1)

))−α
d(i) �T (i+1) ,

µ(i+1) =
(

1− exp
(
−ξ∗(i)

τ(i)−τ(i−1)

))−1

µ(i) �T (i+1) .

Sample a leaf Σ
∗(i+1)
1 from µ(i+1) in T (i+1), and proceed as before to de-

termine the spinal subordinator ξ∗(i+1) and the switching time τ (i+1). Set

Fτ(i)+t = exp(−∆ξ
∗(i+1)
t ), 0 ≤ t < τ (i+1) − τ (i),

Fτ(i+1) = 1− exp(−∆ξ
∗(i+1)

τ(i+1)−τ(i)).

Lemma 4.12 (Pitman and Winkel, 2009, Proposition 20). The process (Ft, t ≥ 0)
is a Poisson point process in (0, 1) with intensity measure ufα,θ(u) and cemetery
state 1. Furthermore, consider the space

[[ρ,Σ1[[:=
⋃
i≥1

[[ρ, ρ(i)]].

Then Σ1 ∈ T is a leaf a.s., the string of beads ([[ρ,Σ1]], µ[[ρ,Σ1]]) is a weight-
preserving isometric copy of (R1, µ1), and the spinal decomposition theorem holds
for the spine [[ρ,Σ1]] with connected components (Ti, i ∈ I) of T \ [[ρ,Σ1]].
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We refer to this procedure to find the leaf Σ1 as the (α, θ)-coin tossing construc-
tion (or simply the coin tossing construction) in the tree (T , µ).

In order to find the branch point where the spine to leaf Σ1 leaves the spine to leaf
Σ2, we apply (α, θ)-coin tossing sampling in the (α, θ)-string of beads (R1, µ1) which
we have already embedded into (T , µ). By the spinal decomposition theorem, we
conclude that the subtrees associated with that atom as branch point base point is a
rescaled independent copy of (T , µ), and hence we can apply the (α, θ)-coin tossing
construction in this subtree to identifiy Σ2. Therefore, given the embedding of
(R1, µ1) into (T , µ), we can embedd (R2, µ2) by identifying leaf Σ2, and considering
µ2 as the projection of the measure µ onto R2. It was shown in Pitman and Winkel
(2009), Corollary 21, that this method can be used to embed (Rk, µk) into (T , µ)
for all k ≥ 1.

Lemma 4.13 (Embedding of (Rk, µk), Pitman and Winkel, 2009, Corollary 21).
For k ≥ 1, given an embedding of (Rk, µk) into (T , µ), perform the following steps
to embed (Rk+1, µk+1).

• Select an edge e of Rk proportionally to the mass assigned to e by µk.
• If e is an internal edge of Rk, pick an atom Jk from the mass measure µk

restricted to e; otherwise perform (α, θ)-coin tossing sampling (see Propo-
sition 3.2) in the string of beads (µk(e)−αe, µk(e)−1µk �e) to identify Jk.

• Define the pair (Rk+1, µk+1) by

Rk+1 := Rk ∪ [[Jk,Σk+1]], µk+1 := µRk+1
.

4.2. The Branch Merging Markov Chain. We present a branch merging operation
on continuum trees, and use it as transition rule for a Markov process operating on
the space of continuum trees, the so-called Branch Merging Markov Chain.

Given a continuum tree, we pick two leaves independently from the mass measure
on the tree, merge the three branches of the arising reduced Y-shaped tree equipped
with projected subtree masses according to Algorithm 3.3, and replant the subtrees
on the created longer branch. This is in principle a simplified version of the more
elaborate and general branch merging operation presented in Section 4.3, and,
in contrast to Section 4.3, this branch merging operation is detached from leaf
embedding.

Definition 4.14 (Branch Merging Markov Chain). The Branch Merging Markov
Chain (BMMC) is the time-homogeneous Markov Chain (Bk, k ≥ 0) on the space
of continuum trees which is defined via the following transition rule. Given a

continuum tree B0 := (T , d, ρ, µ), obtain a tree B1 := (T̃ , d̃, ρ, µ̃) as follows.

(i)MC Start configuration. Pick two leaves Σ1 and Σ̃1 independently by uniform
sampling from the mass measure µ on T , and denote by Ω the branch point

of the spines from the root ρ to Σ1 and Σ̃1. We write R2 = R(T ,Σ1, Σ̃1),
and obtain the three branches

E1 := [[ρ,Ω[[, E2 :=]]Ω,Σ1[[, E3 := [[Ω, Σ̃1[[. (4.8)

Equip the tree R2 with the mass measure µR2
capturing the masses of the

connected components Sx, x ∈ R2, of T \ R2 projected onto R2 where Sx
is the subtree of T rooted at x ∈ R2, i.e. µR2(x) = µ(Sx).

(ii)MC Cut point sampling. Determine a sequence of cut points (Xk)k≥1 for the
strings of beads (Ei, µR2

�Ei), i ∈ [3], as follows.
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• Set E
(1)
i := Ei, i ∈ [3].

• For k ≥ 1, conditionally given E
(k)
i , i ∈ [3], sample Xk from the nor-

malised mass measure µR2
(E(k))−1µR2

�E(k) on E(k) =
⋃
i∈[3]E

(k)
i .

Set

E
(k+1)
i =

{
E

(k)
i \ [[ρi, Xk]] if Xk ∈ E(k)

i ,

E
(k)
i if Xk /∈ E(k)

i ,

for i ∈ [3] where ρi is the left endpoint of Ei in (4.8), i ∈ [3].
(iii)MC Tree pruning and spine merging. Merge the strings of beads (Ei, µR2 �Ei),

i ∈ [3], using the set of cut points Υ = {Xk, k ≥ 1} (cf. Section 3.1) to

obtain a merged string of beads (R̃1, µR̃1
) connecting the root ρ and the

leaf Σ1.
(iv)MC Subtree replanting. Replant the trees Sx, x ∈ R2, at their root vertices

x ∈ R̃1 to obtain the output tree B1 = (T̃1, d̃1, ρ, µ̃1) where d̃1 and µ̃1

denote the metric and the mass measure on T̃1 pushed forward via this
operation.

Remark 4.15. Note that, in the cut point sampling procedure (ii)
MC

, we subse-
quently cut off the bottom parts of the branches that are hit in the sampling pro-
cedure. This was presented in the context of (α, θ)-strings of beads in Algorithm
3.3(ii)-(iii). In contrast to Algorithm 3.3, we work with general strings of beads
(not necessarily regenerative) and uniform sampling, corresponding to (1/2, 1/2)-
coin tossing sampling.

The merging and replanting procedure (iii)
MC

-(iv)
MC

can be defined explicitely

as follows. Define the merged branch R̃1 via

R̃1 := {ρ} ∪

( ⊎
i∈[3]

Ei

)
∪ {Σ1},

where the operator
⊎

was given in (3.1), Section 3.1, and equip R̃1 with the metric

dR̃1
: R̃1 × R̃1 → R+

0 , dR̃1
(x, y) := |dR̃1

(ρ, x)− dR̃1
(ρ, y)| where

dR̃1
(ρ, x) := d⊎(ρ, x) for x ∈ R̃1 \ {Σ1}, dR̃1

(ρ,Σ1) = d(ρ,Σ1) + d(Ω, Σ̃1).

We get the metric space (T̃1, d̃1) where T̃1 := R̃1∪
⋃
x∈R̃1

Sx and d̃1 : T̃1×T̃1 → R+
0 ,

d̃1(x, y) :=


dR̃1

(x, y) if x, y ∈ R̃1,

dR̃1
(x′, y′) + d(x, x′) + d(y, y′) if x ∈ Sx′ , y ∈ Sy′ , x′, y′ ∈ R̃1, x

′ 6= y′,

dR̃1
(x, y′) + d(y, y′) if x ∈ R̃1, y ∈ Sy′ , y′ ∈ R̃1,

d(x, y) if x, y ∈ Sx′ , x′ ∈ R̃1.

(4.9)

Furthermore, define the mass measure µ̃1 on (T̃1, d̃1) by

µ̃1(T x) :=


∑

y∈T x∩R̃1

µ(Sy) if x ∈ R̃1,

µ(T x ∩ Sx′) if x ∈ Sx′ , x′ ∈ R̃1,
(4.10)

where T x := {y ∈ T̃1 : x ∈ [[ρ, y]]}. Note that (4.10) uniquely identifies µ̃1.
We refer to Figure 4.3 for an illustration of the transition rule of the BMMC.
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Remark 4.16. In fact, the merging operation
⊎

was only defined for intervals.
However, each Ei = [[ρi, ρ

′
i]], i ∈ [3], is isometric to the interval [0, d(ρi, ρ

′
i)], i.e.

we write
⊎
i∈[k]Ei to mean that we apply the merging operation to the strings of

beads that we obtain when we consider the intervals [0, d(ρi, ρ
′
i)] with mass measure

pushed forward via the choice of class representatives.

Ω

Σ̃1

X3

X1

X4

X2

X5

ρ ρ

Σ1

X1

Σ1

Branch merging
X2

X3

X4

X5

Figure 4.3. Transition rule of the BMMC. Reduced tree structure
with subtrees attached in the atoms. Strings of beads are merged
and subtrees are carried forward.

Lemma 4.17. The distribution of the Brownian CRT on the space of continuum
trees is a stationary distribution of the Branch Merging Markov Chain (Bk, k ≥ 0).

Proof : Recall that, by Lemma 4.6, leaf labelling in the (1/2, 1/2)-model is ex-

changeable, i.e. we can embed R1/2,1/2
2 by sampling two leaves independently from

the mass measure. The distribution of the mass split on the three branches of

the Y-shaped tree R1/2,1/2
2 is Dirichlet(1/2, 1/2, 1/2), and the three branches are

rescaled independent (1/2, 1/2)-strings of beads when equipped with the restricted
mass measure (Proposition 3.2). We merge the three (1/2, 1/2)-strings of beads to
obtain a (1/2, 3/2)-string of beads (see Theorem 3.4). By the spinal decomposition

theorem, the subtrees rooted on R1/2,1/2
2 which we carry forward, are rescaled in-

dependent Brownian CRTs, i.e. by Theorem 4.11 and Corollary 4.10, the merged
tree is a Brownian CRT. �

We now study a discrete analogue of the BMMC, and use the framework of R-
trees with unit edge lengths. For n ∈ N, let Ton be the set of rooted unlabelled
trees with n leaves and no degree-two vertices (except the root), and let Tb,on be the
space of binary rooted unlabelled trees with n leaves and no degree-two vertices,
i.e. Tb,on ⊂ Ton. For T ∈ Ton, we consider the uniform probability measure on L(T )
by assigning mass 1/n to any of the leaves. Let (τk, k ≥ 0) be a time-homogeneous
Markov chain operating on Ton with the following transition rule. Conditionally

given τ0 = T with root ρ, perform the following steps to obtain τ1 = T̃ .
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(i)d Select one of the edges of T uniformly at random, and insert one leaf at
this edge to create the tree T+1 ∈ Ton+1 according to the growth rule for
uniform binary tree growth processes (i.e. as in the (1/2, 1/2)-tree growth
process), see Section 4.1.2.

(ii)d Sample two distinct leaves Σ1 and Σ̃1 from the empirical mass measure on
the set of leaves L(T+1) of T+1, as in (i)MC, and let Ω be the unique branch

point of the reduced tree R(T+1,Σ1, Σ̃1).
(iii)d Sample leaf labels 2, . . . , n according to a uniform allocation onto the n− 1

unlabelled leaves (in the sense that leaves are sampled uniformly without
replacement). Define the set of cut points as in (iii)MC, and refer to the
labelled tree as T l+1.

(iv)d Consider R2 = R(T l+1,Σ1, Σ̃1) and the pairs (Ei, µR2
�Ei), i ∈ [3], where

E1 = [[ρ,Ω[[, E2 =]]Ω,Σ1[[, E3 = [[Ω, Σ̃1[[.

Define the merged spine R̃1 and the tree T̃1 as in (iii)MC and (iv)MC to

obtain the output tree T̃ = T̃1.

Note that both in the BMMC and in the discrete version, we accept µR2
(Ω) > 0.

In this case, when the first part of E2 is not the first part of the merged string of
beads, in step (iv)d, we join the two atoms Ω and x for some x ∈ R2, and form
a larger atom with mass µR2

(Ω) + µR2
(x), see the convention from Remark 3.1.

Furthermore, when subtrees are carried forward, we join the trees SΩ = (πR2)−1(Ω)
and Sx = (πR2)−1(x) at their root vertices. We treat the case µR2

(ρ) > 0 analo-

gously. Note that T̃ ∈ Ton as we loose the leaf Σ̃1 under branch merging.

Theorem 4.18. Let n ≥ 2, and consider the Markov chain (τk, k ≥ 0) operating
on Ton, with transition rule given by (i)d - (iv)d. The space Tb,on is the only closed
communicating class of (τk, k ≥ 1), (τk, k ≥ 0) has a unique stationary distribution
π which is supported by Tb,on , and the distribution of τk converges to π as k →∞.

Proof : Consider two trees T, T̃ ∈ Ton. We have to show the following.

• If T ∈ Tb,on , then

P
(
τk ∈ Tb,on for all k ≥ 1|τ0 = T

)
= 1. (4.11)

• If T, T̃ ∈ Tb,on , then

P
(
τk = T̃ for some k ≥ 1|τ0 = T

)
> 0. (4.12)

• If T ∈ Ton \ Tb,on , then

P
(
τk ∈ Tb,on for some k ≥ 2|τ0 = T

)
> 0. (4.13)

We use an induction on the number of leaves n. For n = 2, we have two possible
trees, a Y-shaped tree (say T1), and a tree with two leaves which are directly
connected to the root (say T2). Obviously, given τ0 = T1, τ1 = T1 with probability

1. On the other hand, to obtain T1 from T2, after the leaf insertion, assign label Σ̃1

to the leaf directly connected to the root. This leaf gets lost in the branch merging
operation, and we obtain T1.

Now, assume that (4.11)-(4.13) hold for any 1 ≤ m ≤ n− 1 where n ≥ 2.
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• Proof of (4.11). (4.11) is clear due to the nature of the leaf insertion
procedure: only edges can be selected (but no branch points), and, in the
binary case, there are no atoms in branch points. Hence, degrees of branch
points cannnot increase, and (4.11) follows.
• Proof of (4.12). Conditionally given T ∈ Tb,on , we consider the two subtrees
T1 and T2 into which T splits at the first branch point. Let n1 be the number
of leaves in T1 (i.e. T2 has n − n1 leaves). By the induction assumption,

for any T ′1 ∈ Tb,on1
and any T ′2 ∈ Tb,on−n1

it holds that

P (τk = T ′i for some k ≥ 1|τ0 = Ti) > 0, i = 1, 2.

Assigning label 2 to a leaf in T2, and restricting the remaining leaf insertion

and sampling procedure for the leaves Σ1, Σ̃1 and the labels 3, . . . , n1 + 1
to the tree T1 (and swapping the roles of T1 and T2 afterwards), we obtain
positive probability to attain any tree T ′ ∈ Tb,on which splits at the first
branch point into two subtrees T ′1 and T ′2 of sizes n1 and n−n1, respectively.

It remains to show that, for any 1 ≤ n1 ≤ n − 1, we have positive
probability of attaining a tree T ′ ∈ Tb,on which splits into two subtress of
sizes n1 + 1 and n − n1 − 1 at the first branch point. This is easy to see,
e.g. consider the case when the leaf insertion takes place in the subtree T1,

label 2 is assigned to a leaf in T1, and Σ1, Σ̃1 as well as labels 3, . . . , n−n1

are all in T2. This shows (4.12).
• Proof of (4.13). For a tree T ∈ Ton\Tb,on , conditionally given that the degree

of the root is k, consider the subtrees S1, . . . , Sk of sizes n1, . . . , nk in which
T splits at the root (taking one edge each as a root edge for Si, 1 ≤ i ≤ k).
First, we want to show that we have positive probability to decrease the
degree of the root vertex by one. Therefore, apply the following procedure.
In (i)d insert the leaf in Sk to increase its size by one, assign label 2 to one
of the subtrees S2, . . . , Sk, and consider the subtree S1 in the following.

- At the first branch point Ω1 of S1, the tree splits into k1 subtrees, say,

S1,1, . . . , S1,k1
. Assign labels Σ1, Σ̃1 to leaves in S1,1, S1,k1

, respec-
tively.

- Assign label 3 to a leaf in one of the subtrees S1,2, . . . , S1,k1−1.
- Perform branch merging to obtain a tree S′1 from S1 whose size has

decreased by one, as leaf Σ̃1 gets lost under branch merging.
After branch merging, the tree T becomes a tree T ′ ∈ Ton, which splits
at the root into subtrees S′1, . . . , S

′
k of sizes n1 − 1, n2, . . . , nk−1, nk + 1,

respectively. We perform this procedure n1 − 1 times, and obtain a tree
T ′′, which splits into subtrees S′′1 , . . . , S

′′
k of sizes 1, n2, . . . , nk−1, nk+n1−1.

Note that S′′1 consists of one single edge and one leaf. Now, perform the

leaf insertion in S′′k , assign label Σ1 to a leaf in S′′k , label Σ̃1 to the single
leaf in S′′1 , and label 2 to a leaf in one of the subtrees S′′2 , . . . , S

′′
k−1. After

branch merging, we only have a split into k − 1 subtrees at the root edge.
Clearly, we can perform this procedure another k−2 times, and, eventually,
with positive probability, we obtain a tree with a root of degree 1, which
we denote by T . The tree T has one edge connecting the root and a branch
point at which the tree splits into m, say, subtrees S1, . . . , Sm.

Next, we want to show that there is positive probability to obtain a tree
from T with root degree one and first branch point degree two. Therefore,
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repeat the procedure as above m − 2 times with S1, . . . , Sm. Eventually,
with positive probability, we obtain a tree with a binary branch point, and
denote the two subtrees of sizes n1 and n− n1 by T 1 and T 2, respectively.

We now use the induction assumption related to (4.13). Assigning label
2 to a leaf in T 2, and restricting the remaining leaf insertion and sampling

procedure for the leaves Σ1, Σ̃1 and the labels 3, . . . , n1 + 1 to T 1 (and
swapping the roles of T 1 and T 2 afterwards), by the induction assumption,
we obtain positive probability to turn T 1 and T 2 into binary trees, and
hence, positive probability to turn T into a binary tree, i.e. (4.13) follows.

Hence, for any n ∈ N, the Markov chain (τk, k ≥ 0) on Ton has exactly one
communicating class, namely Tb,on . For T ∈ T0

n, P(τ1 = T | τ0 = T ) > 0, i.e. the
chain is aperiodic. We conclude that (τk, k ≥ 0) has a unique stationary distribution
π, supported on Tb,on , and the distribution of τk converges to π as k →∞. �

Theorem 4.18 gives evidence that the Brownian CRT should be the unique sta-
tionary distribution of the Branch Merging Markov Chain.

Conjecture 4.19. The Markov chain (Bk, k ≥ 0) operating on the space of contin-
uum trees has a unique stationary distribution given by the Brownian CRT, and the
distribution of Bk converges to the distribution of the Brownian CRT as k →∞ with
respect to the Gromov-Hausdorff topology (up to scaling distances by a constant).

Remark 4.20. Note that the R-trees we consider are compact, and hence, continuum
trees are of finite height. For ε > 0 fixed, any continuum tree B0 := T and any
branch point of B0, we consider the subtrees attached of height ≥ ε. The probability

that, in the leaf sampling procedure, the two leaves Σ1 and Σ̃1 are in two distinct
subtrees of this branch point is positive, and the number of subtrees with height ≥ ε
is reduced by one after the branch merging transition. Eventually, the BMMC will
turn this branch point into a binary branch point (ignoring subtrees of size < ε).
Subtrees of size < ε do not matter for convergence in the Gromov-Hausdorff sense,
and hence we conjecture the convergence in distribution of the BMMC (Bk, k ≥ 0)
to the Brownian CRT.

The process (Bk, k ≥ 0) evolves in the space of continuum trees, an uncountable
and awkward state space for a Markov process. This makes it hard to provide a
rigorous proof of Conjecture 4.19.

4.3. General branch merging and the leaf embedding problem. We now turn to a
more general branch merging setting where leaf sampling is not based on uniform
sampling from the mass measure as in the BMMC. As a tree analogue of merging of
(α, θi)-strings of beads, i ∈ [k], in the special case when k = 3 and θ1 = θ2 = 1−α,
θ3 = α, we introduce branch merging on Ford CRTs, and give two applications.

This procedure will be more involved than the branch merging algorithm in
the BMMC. In order to define branch merging on general Ford CRTs, using our
merging algorithm for strings of beads, we need a Dirichlet(α, 1 − α, 1 − α) mass
split between the three branches of the reduced tree structure. In general, this
cannot be achieved via uniform sampling of leaves from the mass measure, see e.g.
Pitman and Winkel (2009), Section 4.2. Therefore, we have to apply the (α, 1−α)-
coin tossing construction in T α,1−α (which corresponds to uniform sampling when
α = 1/2) to determine the start configuration. A similar generalisation is needed

for the partition sampling procedure in (ii)
MC

.
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It is a straightforward generalisation of Lemma 4.17 to conclude that Ford CRTs
are distributionally invariant under this general procedure. However, our goal is to
establish a coupling between the sequences of reduced trees related to the (α, 1−α)-
and the (α, 2 − α)-model. The simple procedure involving two sampled leaves is

enough to relate Rα,1−α1 and Rα,2−α1 but not to apply the procedure recursively,

and to couple the sequences (Rα,1−αk , k ≥ 1) and (Rα,2−αk , k ≥ 1). It is necessary

to find the bead of the second leaf on Rα,2−α1 to obtain a Dirichlet(α, 1− α, 2− α)

mass split at the atom of label 2 in R̃1 which identifies the subtree we have to select
for the recursive application of the merging procedure. Therefore, it is crucial for
the recursive leaf embedding procedure to obtain successively finer allocations of
the non-embedded leaf labels, that is, after step k ≥ 1, the labels {k+ 1, k+ 2, . . .},
onto the atoms of the mass measure µR̃k on the reduced tree R̃k.

4.3.1. Branch merging on Ford CRTs. To highlight the generalisations described
above, we first introduce the branch merging algorithm needed to embed the leaf
labels of the (1/2, 3/2)-tree growth process in the Brownian CRT. In this procedure,
the (α, 1− α)-coin tossing construction is not needed as, for α = 1/2, this reduces
to uniform sampling from the mass measure.

In the Brownian case, by Lemma 4.6, leaf labelling in the (1/2, 1/2)-tree growth
model is exchangeable, and hence, leaf embedding can be done via uniform sampling
from the mass measure. On the other hand, the Brownian CRT is the scaling limit
of the (1/2, 3/2)-tree growth process in which leaf labelling is non-exchangeable.

We construct a Brownian CRT with leaf 1 embedded according to the (1/2, 3/2)-
growth rule from a Brownian CRT equipped with the natural mass measure. In this
sense, uniform sampling from the mass measure on the Brownian CRT in combina-
tion with branch merging allows to embed the first leaf of the (1/2, 3/2)-model by
using a much simpler approach than the (1/2, 3/2)-coin tossing construction from
Lemma 4.12. In Section 4.3.2 we will explain the recursive leaf embedding algorithm
which allows us to obtain a Brownian CRT with all leaves of the (1/2, 3/2)-model
embedded.

The leaf embedding algorithm can be directly obtained from Definition 4.14, in

particular by generalising (ii)
MC

in the sense that we use an i.i.d. allocation of the
leaf labels N≥3 to determine the cut points on the reduced tree structure.

Algorithm 4.21 ((1/2, 3/2)-leaf embedding in the Brownian CRT). Let (T , d, ρ, µ)
be a Brownian CRT with root ρ, mass measure µ and metric d : T × T → R+

0 .

(i)
B

Start configuration. Sample three leaves Ω0,Ω1,Ω2 independently from µ,
and denote the first branch point of the spines from ρ to Ω0,Ω1,Ω2 by Ω.
We obtain the three branches

Ẽ0 :=]]Ω,Ω0]], Ẽ1 :=]]Ω,Ω1]], Ẽ2 :=]]Ω,Ω2]],

and define the start configuration (Σ1, Σ̃1,Θ) by

(
Σ1, Σ̃1,Θ

)
:=


(Ω2,Ω0,Ω1) if Ẽ0 ∩ Ẽ1 6= ∅,
(Ω1,Ω0,Ω2) if Ẽ0 ∩ Ẽ2 6= ∅,
(Ω0,Ω1,Ω2) if Ẽ1 ∩ Ẽ2 6= ∅,
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i.e. we choose (Σ1, Σ̃1,Θ) such that Ω is connected to the root and the leaf

Σ1 by one edge each, and to the two leaves Σ̃1 and Θ via another branch
point ρΘ := πR2(Θ).

Denote by R2 = R(T ,Σ1, Σ̃1) the reduced tree spanned by ρ, Σ1 and

Σ̃1, and by Sx := (πR2)−1(x) the subtrees of T rooted at x ∈ R2, that is,
the connected components of T \ R2 completed by their root vertices on
R2. We equip R2 with the mass measure µR2

capturing projected subtree
massees, i.e. µR2(x) = µ(Sx), x ∈ R2. As illustrated in Figure 4.4, we
obtain a split of R2 into the four branches

E0 :=]]ρ,Ω[[, E1 :=]]Ω,Σ1[[, E2 :=]]Ω, ρΘ[[, E3 :=]]ρΘ, Σ̃1[[. (4.14)

(ii)
B

Partition and cut point sampling. Determine a partition {Πx, x ∈ R2} of
the label set N≥2 = {2, 3, . . .} via Πx = {k : Yk = x} where Y2 = ρΘ and
(Yk)k≥3 are i.i.d. with distribution µR2

.
Define a sequence of cut points (Xk)k≥1 on Ei, i ∈ [3], as follows.

• Let E
(1)
i = Ei, i ∈ [3], and set J0 = 0.

• For k ≥ 1, conditionally given E
(k)
i , i ∈ [k], let

Xk = YJk , Jk := inf{j ≥ Jk−1 + 1 : Yj ∈ E(k)}

where E(k) =
⋃
i∈[3]E

(k)
i . For i ∈ [3], set

E
(k+1)
i =

{
E

(k)
i \ [[ρi, Xk]] if Xk ∈ E(k)

i ,

E
(k)
i if Xk /∈ E(k)

i ,

where ρi denotes the left endpoint of Ei in (4.14), i ∈ [3], respectively.

(iii)
B

Tree pruning and spine merging. Merge the strings of beads (Ei, µR2 �Ei),
i ∈ [3], based on the set of cut points Υ = {Xk, k ≥ 1}, and define the

merged branch R̃1 connecting the root ρ and the leaf Σ1 via

R̃1 := [[ρ,Ω[[∪{ρΘ} ∪

⊎
i∈[3]

Ei

 ∪ {Σ1}, (4.15)

where the operator
⊎

was defined in (3.1), Section 3.1. We obtain the

metric dR̃1
on R̃1 by aligning the parts of R̃1 in the order given in (4.15).

(iv)
B

Subtree replanting. Attach the trees Sx to their root vertices x ∈ R̃1, to

obtain a tree (T̃1, d̃1), i.e. T̃1 = R̃1∪
⋃
x∈R̃1

Sx, and equip T̃1 with the mass
measure µ̃1 pushed forward via these operations.

We provide explicit definitions of (iii)
B

and (iv)
B

. The metric dR̃1
: R̃1 × R̃1 →

R+
0 on R̃1 can be defined by dR̃1

(x, y) := |dR̃1
(ρ, x)− dR̃1

(ρ, y)| where

dR̃1
(ρ, x) :=


d(ρ, x) if x ∈ [[ρ,Ω[[,

d(ρ,Ω) if x = ρΘ,

d(ρ,Ω) + d⊎(ρΘ, x) if x ∈ E1 ∪ E2 ∪ E3,

d(ρ,Ω) + d(ρΘ,Ω) + d(ρΘ, Σ̃1) + d(Ω,Σ1) if x = Σ1.
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The metric space (T̃1, d̃1) is given by T̃1 := R̃1∪
⋃
x∈R̃1

Sx and d̃1 : T̃1×T̃1 → R+
0 ,

d̃1(x, y) :=


dR̃1

(x, y) if x, y ∈ R̃1,

dR̃1
(x′, y′) + d(x, x′) + d(y, y′) if x ∈ Sx′ , y ∈ Sy′ , x′, y′ ∈ R̃1, x

′ 6= y′,

dR̃1
(x, y′) + d(y, y′) if x ∈ R̃1, y ∈ Sy′ , y′ ∈ R̃1,

d(x, y) if x, y ∈ Sx′ , x′ ∈ R̃1.

(4.16)

The mass measure µ̃1 on (T̃1, d̃1) is obtained via

µ̃1(T x) :=

{∑
y∈T x∩R̃1

µ(Sy) if x ∈ R̃1,

µ(T x ∩ Sx′) if x ∈ Sx′ , x′ ∈ R̃1,
(4.17)

where T x := {y ∈ T̃1 : x ∈ [[ρ, y]]}. Note that (4.17) uniquely identifies µ̃1.

We now present the branch merging algorithm on Ford CRTs T α,1−α, α ∈ (0, 1),
in full generality. We pick three leaves according to (α, 1 − α)-coin tossing, and
then choose the cut points similarly to the transition rule presented in Algorithm
4.21. External edges determine (α, 1 − α)-strings of beads, where internal edges
are related to (α, α)-strings of beads. Therefore, on external edges, atoms have to
be selected according to (α, 1− α)-coin tossing sampling; on internal edges we use
uniform sampling from the mass measure which corresponds to (α, α)-coin tossing
sampling.

Algorithm 4.21 is the special case α = 1/2 of the following algorithm.

Algorithm 4.22 (Branch merging on Ford CRTs). Let (T α,1−α, d, ρ, µ) be a Ford
CRT with parameter α ∈ (0, 1), root ρ, mass measure µ and metric d : T ×T → R+

0 .

(i) Start configuration. Embed three leaves Ω0,Ω1,Ω2, i.e. the tree Rα,1−α3 ,
into T α,1−α by using the (α, 1− α)-coin tossing construction.

Define the start configuration (Σ1, Σ̃1,Θ), the reduced tree (R2, µR2
)

and the subtrees Sx, x ∈ R2, as in Algorithm 4.21(i)
B

.
(ii) Partition and cut point sampling. Determine a partition {Πx, x ∈ R2} of

the label set N≥2 = {2, 3, . . .} via Πx = {k : Yk = x} where the sequence
of random variables (Yk)k≥2 is determined as follows. Set Y2 = ρΘ, and,
for k ≥ 3, select one of the branches Ei, i ∈ [3], of R2 or the atom ρΘ

proportionally to mass assigned by µR2 . If ρΘ is selected, set Yk = ρΘ.
Otherwise, if a branch Ei is selected, proceed as follows;
• if Ei is internal, i.e. i ∈ {0, 2}, sample Yk ∈ Ei from the normalised

mass measure µR2
(Ei)

−1µR2
�Ei ;

• if Ei is external, i.e. i ∈ {1, 3}, select the top part ]]Yi,k,Σ
∗
k[[ or the

bottom part Ei\]]Yi,k,Σ∗k[[ of Ei proportionally to mass where

Yi,k := argmax2≤j≤k−1:Yj∈Eid(ρ, Yj)

is the element Yj ∈ Ei closest to the leaf Σ∗k in Ei where Σ∗k = Σ1 if i =

1 and Σ∗k = Σ̃1 if i = 3; if the top part is selected, perform (α, 1− α)-
coin tossing sampling on (]]Yi,k,Σ

∗
k[[, µR2

�]]Yi,k,Σ∗k[[) to determine Yk;
otherwise, sample Yk from the normalised mass measure on the bottom
part Ei\]]Yi,k,Σ∗k[[. Note that, if Yj /∈ Ei for all 2 ≤ j ≤ k − 1, then
the top part of Ei corresponds to the full branch Ei.
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Determine the sequence of cut points (Xk)k≥1 on the branches Ei, i ∈ [3],
as in Algorithm 4.21(ii)B.

(iii)-(iv) Tree pruning, spine merging and subtree replanting. Define the merged

spine R̃1 and the tree (T̃1, d̃1, µ̃1) as in Algorithm 4.21(iii)
B

-(iv)
B

.

Note that the only step which was directly carried forward from the transition

rule of the BMMC (i.e. without any generalisation) is (iv)MC=(iv)
B

=(iv).

Σ̃1

X1

X3
X2

X4

X5

Σ1

ρ

Ω

Θ

Figure 4.4. The reduced tree split into four branches with subtree
masses as atoms. First five cut points X1, . . . , X5 are displayed.

Theorem 4.23 (The merged tree). The quadruple (T̃1, d̃1, ρ, µ̃1) constructed in
Algorithm 4.22, see Figure 4.5, is a random R-tree with the following properties.

(i) Let µR̃1
denote the discrete mass measure on R̃1 obtained by assigning

mass µ(Sx) to x ∈ R̃1, where Sx, x ∈ R̃1, are the connected components of

T̃1 \ R̃1, rooted at x ∈ T̃1 respectively.

Then (R̃1 = [[ρ,Σ1]], µR̃1
) is an (α, 2− α)-string of beads.

(ii) Given (R̃1, µR̃1
), the trees(

Sx, µ̃1(Sx)−αd̃1 �Sx , ρSx := x, µ̃1(Sx)−1µ̃1 �Sx
)
, x ∈ R̃1,

are isometric to independent copies of (T α,1−α, d, ρ, µ).

(iii) The tree (T̃1, d̃1, ρ, µ̃1) is a Ford CRT with parameter α ∈ (0, 1), i.e.

(T̃1, d̃1, ρ, µ̃1)
d
= (T α,1−α, d, ρ, µ)

d
= (T α,2−α, d, ρ, µ).

We prove Theorem 4.23 in a series of propositions.

Proposition 4.24. The leaf embedding procedure Algorithm 4.22(i) induces the
mass split

(µR2
(E0), µR2

(E1), µR2
(E2), µR2

(E3), µR2
(ρΘ))

∼ Dirichlet (α, 1− α, α, 1− α, 1− α) . (4.18)
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Furthermore,

(µR2
(E0), µR2

(ρΘ), µR2
(E1) + µR2

(E2) + µR2
(E3)) ∼ Dirichlet (α, 1− α, 2− α) .

(4.19)

Proof : We refer to Pitman and Winkel (2009), Section 3.5. It was shown that the

leaf embedding procedure on T α,1−α yields a reduced tree R(T α,1−α,Σ1, Σ̃1,Θ)
subject to a Dirichlet mass split with parameter α for each internal branch, and (1−
α) for each external branch. To see (4.18) note that the mass of the branch ]]ρΘ,Θ[[

of R(T α,1−α,Σ1, Σ̃1,Θ) corresponds to the mass of the atom ρΘ on R2. (4.19)
follows from the aggregation property of the Dirichlet distribution, Proposition
3.11(i). �

Proposition 4.25. Let Πx, x ∈ R2, be the label sets from Algorithm 4.22(ii).
Furthermore, let (Σk, k ≥ 1) be a sequence of leaves as in Theorem 4.11. Then, for

any x ∈ R2 and Sx = (πR2)−1(x), we have Πx
d
= {k ≥ 2 : Σk ∈ Sx}.

Proof : This follows from Lemma 4.13. Given R(T α,1−α,Σ1, . . . ,Σk) the selection
rule for the atom x which Σk+1 is attached to, is such that an edge of the reduced
tree is selected proportionally to mass. If an external edge is selected, the (α, 1−α)-
coin tossing construction from Lemma 4.12 is applied. If an internal edge is selected,
an atom is chosen proportionally to weight. Projecting the labels of Σk, k ≥ 2,
onto R2 yields the claimed equality in distribution of the label sets, where we set
Σ2 = Θ. �

Proposition 4.26. Let A(µR2) := {x ∈ R2 : µR2(x) > 0} be the set of atoms of
µR2

. Conditionally given A(µR2
), the quadruples(

Sx, µ(Sx)−αd �Sx , ρSx := x, µ(Sx)−1µ �Sx
)
, x ∈ A(µR2

),

are isometric to independent copies of (T α,1−α, d, ρ, µ).

Proof : This follows directly from Theorem 4.11 in combination with Lemma 4.12.
�

Proposition 4.27. The atom ρΘ splits R̃1 into ]]ρ, ρΘ[[, ρΘ, ]]ρΘ,Σ1[[ such that(
µR̃1

(]]ρ, ρΘ[[), µR̃1
(ρΘ), µR̃1

(]]ρΘ,Σ1[[)
)
∼ Dirichlet(α, 1− α, 2− α). (4.20)

Furthermore, the pair(
µR̃1

(]]ρΘ,Σ1[[)−α]]ρΘ,Σ1[[, µR̃1
(]]ρΘ,Σ1[[)−1µR̃1

�]]ρΘ,Σ1[[

)
(4.21)

is an (α, 2− α)-string of beads, and the pair(
µR̃1

(]]ρ, ρΘ[[)−α]]ρ, ρΘ[[, µR̃1
(]]ρ, ρΘ[[)−1µR̃1

�]]ρ,ρΘ[[[

)
(4.22)

is an (α, α)-string of beads. The strings of beads (4.21) and (4.22) are independent
of each other, and of the Dirichlet mass split (4.20).

Proof : First of all, recall the definition of Ei, i ∈ [3], i.e.

E1 =]]Ω,Σ1[[, E2 =]]Ω, ρΘ[[, E3 =]]ρΘ, Σ̃1[[,

and note that, as a consequence of the embedding procedure, µR̃1
(E1)−αEi, i ∈ [3],

equipped with µR̃1
(Ei)

−1µR̃1
�Ei , i ∈ [3], are independent (α, θi)-strings of beads,

respectively, where θ1 = θ3 = 1−α, θ2 = α, see Pitman and Winkel (2009), Lemma



Branch merging on continuum trees 597

3.2. Hence, by construction of ]]ρΘ,Σ1[[⊂ R̃1 using the operator
⊎

from (3.1) and
Theorem 3.4, the pair

(µR̃1
(]]ρΘ,Σ1[[)−α]]ρΘ,Σ1[[, µR̃1

(]]ρΘ,Σ1[[)−1µR̃1
�]]ρΘ,Σ1[[)

is an (α, 2 − α)-string of beads. On the other hand, the interval E0 =]]ρ, ρΘ[[
with distance d �]]ρ,ρΘ[[ is not affected by Algorithm 4.22, in particular d �]]ρ,ρΘ[[=
dR̃1

�]]ρ,ρΘ[[. Therefore,

(µR̃1
(]]ρ, ρΘ[[)−α]]ρ, ρΘ[[, µR̃1

(]]ρ, ρΘ[[)−1µR̃1
�]]ρ,ρΘ[[)

is an (α, α)-string of beads, cf. Theorem 4.11. By Proposition 3.2, the strings of
beads (4.21) and (4.22) are independent of each other, and of the mass split (4.20).
(4.20) is a direct consequence of the branch merging operation and (4.19). �

Lemma 4.28. The pair (R̃1, µR̃1
) is an (α, 2− α)-string of beads.

Proof : By Proposition 4.27 we have a Dirichlet(α, 1 − α, 2 − α) mass split, an
independent (α, α)- and an independent (α, 2−α)-string of beads as in Proposition

3.7, and we conclude that (R̃1, µR̃1
) is an (α, 2− α)-string of beads. �

Proof of Theorem 4.23: Lemma 4.28 proves Theorem 4.23(i). For (ii), note that,
as an immediate consequence of the nature of the branch merging algorithm, the

rescaled subtrees µ̃1(Sx)−αSx = µR̃1
(x)−αSx, x ∈ R̃1, are i.i.d. copies of T α,1−α,

see Proposition 4.26. (iii) is a direct consequence of the spinal decomposition the-
orem for θ = 2− α, cf. Lemma 4.12, and Corollary 4.9. �

Ω

Σ̃1

ρΘ

X3

X1

X4

X2

X5

ρ

ρ

Σ1

X3

X1

X4

X2

X5

ρΘ

Σ1

Branch merging

Figure 4.5. Branch merging on Ford CRTs. Reduced tree struc-
ture with subtrees attached in the atoms. Strings of beads are
merged and subtrees are carried forward.
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4.3.2. Application: the leaf embedding problem. In order to apply the branch merg-
ing procedure to the leaf embedding problem we first describe how to apply the
branch merging procedure recursively on Ford CRTs.

Recursive branch merging. Let T α,1−α be a Ford CRT for some α ∈ (0, 1)

as in Section 4.3.1. Consider (T̃k, d̃k, ρ, µ̃k), k ∈ N, with leaves Σ1, . . . ,Σk and
root ρ, denoting the random R-tree obtained by performing the branch merging
operation given by Algorithm 4.22 in (T α,1−α, d, ρ, µ), and in k − 1 subsequently
selected subtrees according to the following scheme, which explains how to obtain

(T̃k+1, d̃k+1, ρ, µ̃k+1) from (T̃k, d̃k, ρ, µ̃k), k ∈ N.

Consider the subtree spanned by the leaves Σ1, . . . ,Σk, denoted by R̃k :=

R(T̃k,Σ1, ..,Σk), which is equipped with a random point measure PR̃k given by

PR̃k :=
∑

x∈A(µR̃k
)

δ(x,Sx,Πx)

where the mass measure µR̃k is the push-forward of µ̃k via the projection

πR̃k : T̃k → R̃k, σ → Φ̃(k)
ρ,σ

(
sup{t ≥ 0 : Φ̃(k)

ρ,σ(t) ∈ R̃k}
)

mapping the connected components of T̃k \R̃k onto the closest point of the reduced

tree R̃k, the set A(µR̃k) = {x ∈ R̃k : µR̃k(x) > 0} is the set of atoms of µR̃k , and

Φ̃
(k)
ρ,σ : [0, d̃k(ρ, σ)] → T̃k, σ ∈ T̃k, denote the unique geodesics associated with T̃k.

Suppose that the union of the sets Πx, x ∈ A(µR̃k), is N≥k+1, i.e.⋃
x∈A(µR̃k

)

Πx = N≥k+1.

Recursive application of the spinal decomposition theorem for binary fragmen-
tation CRTs T α,1−α (Lemma 4.12) yields that the point process PR̃k defines a

labelled bead space in the following sense (see also Pitman and Winkel, 2009, 2015
for subtree decompositions).

Definition 4.29 (Labelled bead (space)). Let (T α,1−α, d, ρ, µ) be a Ford CRT for
some α ∈ (0, 1).

(i) A labelled bead is a pair (S,ΠS) where (S, dS) is a pointed metric space
with a distinguished vertex ρS (the “root” of S) and equipped with a mass
measure µS , ΠS is an infinite label set, and, for ∆S := µS(S),

(S,∆−αS dS , ρS ,∆
−1
S µS)

d
= (T α,1−α, d, ρ, µ).

(ii) A labelled bead space is a pair (R,PR) where (R, dR) is a metric space with
a distinguished vertex ρR (the “root” of R) and equipped with a discrete
mass measure µR, and PR is a point process of the form

PR :=
∑

x∈A(µR)

δ(x,Sx,Πx)

where A(µR) is the set of atoms of the measure µR on R, i.e. A(µR) :=
{x ∈ R : µR(x) > 0}, such that (Sx,Πx) is a labelled bead for every
x ∈ A(µR) with root ρSx := x, distance dSx and mass measure µSx .
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In order to obtain the branch linking R̃k and Σk+1 choose the unique labelled

bead (Sx,Πx) whose label set contains k+1, say (Sk,Πk). Note that d �Sk= d̃k �Sk
and µ �Sk= µ̃k �Sk , since each subtree related to a labelled bead on R̃k was present

as a subtree of (T̃k, d̃k, ρ) as well as in the initial CRT (T α,1−α, d, ρ).
We now consider the rescaled tree

(Sk, d̃Sk , ρk, µ̃Sk) := (Sk, µ(Sk)−αd �Sk , ρk, µ(Sk)−1µ �Sk) (4.23)

completed by the root ρk := πR̃k(Sk) and equipped with the label set Πk. Since

(Sk, d̃Sk , ρk, µ̃Sk)
d
= (Tα,1−α, d, ρ, µ)

we can apply the procedure of Algorithm 4.22 when interpreted appropriately.

(i) Choose the start configuration as in Algorithm 4.22(i) but label the three

selected leaves by (Σk+1, Σ̃k+1,Θk) instead of (Σ1, Σ̃1,Θk), and the branch
point by Ωk instead of Ω.

Furthermore, consider the label set Πk := {ni, i ≥ 1} where subscripts
are assigned according to the increasing bijection, i.e. n1 = k + 1 and
n2 = k′, where

k′ := min{n ∈ N : n ∈ Πk \ {k + 1}}.

Determine a partition of the label sets Πk by considering a sequence

of random variables (Yni)i≥2 taking values in R(Sk,Σk+1, Σ̃k+1) as in Al-
gorithm 4.22(i) by proceeding in increasing order of labels ni, i ≥ 2. In
particular, set Yn2 = Yk′ := ρΘk where ρΘk denotes the projection of Θk

onto the reduced tree R(Sk,Σk+1, Σ̃k+1), and assign the labels ni, i ≥ 3, to

atoms Yni of R(Sk,Σk+1, Σ̃k+1) as in Algorithm 4.22(i) .

Algorithm 4.22 applied to (Sk, d̃Sk , ρk, µ̃Sk) yields a CRT incorporating
a spine transformation on the spine from ρk to the leaf Σk+1. We obtain a
labelled bead space (]]ρk,Σk+1]],P]]ρk,Σk+1]]), i.e.

P]]ρk,Σk+1]] :=
∑

x∈A(µ̃]]ρk,Σk+1]])

δ(x,Sx,Πx),

where µ̃]]ρk,Σk+1]] denotes the mass measure on the merged spine ]]ρk,Σk+1]]
whose atoms are the connected components of Sk\]]ρk,Σk+1]] projected
onto ]]ρk,Σk+1]], and

A(µ̃]]ρk,Σk+1]]) = {x ∈]]ρk,Σk+1]] : µ̃]]ρk,Σk+1]](x) > 0}

is the associated set of atoms. Note that the union of the label sets Πx,
x ∈]]ρk,Σk+1]], of the labelled beads aligned along ]]ρk,Σk+1]] is Πk\{k+1}.

(ii) Denote the transformed, scaled back tree by (S ′k, d̃′S′k , ρk, µ̃
′
S′k

). The reduced

tree spanned by the root ρ and leaves Σ1, . . . ,Σk+1 is obtained via

R̃k+1 := R̃k∪]]ρk,Σk+1]].

We replace the point (ρk,Sk,Πk) by a new series of labelled beads aligned
along ]]ρk,Σk+1]] to update the point process PR̃k , and get

PR̃k+1
:=

∑
x∈A(µR̃k+1

)

δ(x,Sx,Πx),
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where A(µR̃k+1
) = {x ∈ R̃k+1 : µR̃k+1

(x) > 0}, and µR̃k+1
is uniquely

determined via

µR̃k+1
�]]ρk,Σk+1]]= µ̃]]ρk,Σk+1]], µR̃k+1

�R̃k\{ρk}= µR̃k , µR̃k+1
(ρk) = 0.

More precisely, we have PR̃k+1
:= PR̃k − δ(ρSk ,Sk,Πk) + P]]ρk,Σk+1]], i.e.

PR̃k+1
=

∑
x∈A(µR̃k

),x 6=ρSk

δ(x,Sx,Πx) +
∑

x∈A(µ̃]]ρk,Σk+1]])

δ(x,Sx,Πx).

Informally speaking, we replace (Sk, d �Sk , ρk, µ �Sk) by attaching the

tree (S ′k, d̃′S′k , ρk, µ̃
′
S′k

) onto ρk, the branch point base point of the subtree

(Sk, d �Sk , µ �Sk ,Πk) on T̃k, where (S ′k, d̃′S′k , ρk, µ̃
′
S′k

) is obtained from the

initial subtree (Sk, d �Sk , µ �Sk ,Πk) by incorporating the distance changes
related to the spine transformation and removing the two points Ωk and

Σ̃k+1 lost in the branch merging operation.

(iii) We define (T̃k+1, d̃k+1, ρ, µ̃k+1) by

T̃k+1 := R̃k+1 ∪
⋃

x∈R̃k+1

Sx

where the distance d̃k+1 is the push-forward of d̃k via the analogue of (4.16),
and the mass measure µ̃k+1 is induced by µ̃k as in (4.17), see Algorithm

4.22 for the precise definition of d̃k+1 and µ̃k+1 in the case k = 0, which
can be easily adapted to the general case k ≥ 0.

Corollary 4.30. Let (T α,1−α, d, ρ, µ) be a Ford CRT for some α ∈ (0, 1) as in

Algorithm 4.22. The sequence of trees ((T̃k, d̃k, ρ, µ̃k), k ≥ 1) constructed recursively
according to Algorithm 4.22 and the recursive leaf embedding procedure, and the
sequence of leaves (Σk, k ≥ 1) are such that

(R(T̃k,Σ1, . . . ,Σk), k ≥ 1)
d
= (Rα,2−αk , k ≥ 1),

where Rα,2−αk is the almost-sure limit as n→∞ of the trees R(Tα,2−αn , [k]) scaled
by n−α associated with the (α, 2− α)-tree growth process as in Proposition 4.7.

Proof : We prove Corollary 4.30 by induction. By Theorem 4.23, R(T̃1,Σ1) defines

an (α, 2 − α)-string of beads and is therefore distributed as Rα,2−α1 . Now, let

k ∈ N, and assume that R(T̃k,Σ1, . . . ,Σk) is distributed as Rα,2−αk . Using the
labelled bead space property, we conclude that the rescaled, transformed subtree

(S ′k, µ(S ′k)−αd̃′S′k
, ρk, µ(Sk)−1µ̃′S′k

)

has the same distribution as (T̃1, d̃1, ρ, µ̃1), and that Σk+1 is such that

R(µ(Sk)−αS′k,Σk+1)
d
=R(T̃1,Σ1).

Therefore, the subtree (Sk, d̃k �Sk , ρk, µ̃k �Sk) in T̃k is replaced by (S ′k, d̃′S′k , ρk, µ̃
′
S′k

)

in order to obtain (T̃k+1, d̃k+1, ρ, µ̃k+1), and(
µ(Sk)−αS ′k, d̃′S′k , ρk, µ(Sk)−1µ̃′S′k

)
d
=
(
T̃1, d̃1, ρ, µ̃1

)
.

Since (T̃k, d̃k, ρ, µ̃k) is such that R(T̃k,Σ1, . . . ,Σk) has the same distribution as

Rα,2−αk by the induction hypothesis, and since, by construction, the projection
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of R(T̃k+1,Σ1, . . . ,Σk+1) onto R(T̃k+1,Σ1, . . . ,Σk) is R(T̃k,Σ1, . . . ,Σk), the claim
follows. �

Remark 4.31. Note that by the refining nature of the branch merging algorithm,

dGH

(
T̃k+1,R

(
T̃k+1,Σ1, . . . ,Σk+1

))
≤ dGH

(
T̃k,R

(
T̃k,Σ1, . . . ,Σk

))
for all k ≥ 1. By Corollary 4.30, the increasing limit

T̃∞ =
⋃
k≥1

R
(
T̃k,Σ1, . . . ,Σk

)
is a random compact R-tree distributed as a Ford CRT (since this holds for the

increasing sequence (Rα,2−αk , k ≥ 1)). By construction,

R
(
T̃∞,Σ1, . . . ,Σk

)
= R

(
T̃k,Σ1, . . . ,Σk

)
. (4.24)

Hence, T̃∞ is a Ford CRT with all leaves Σk, k ≥ 1, embedded. By the nature of
the algorithm, (4.24) can be enriched by the corresponding point processes, i.e.(
R
(
T̃∞,Σ1, . . . ,Σk

)
,PR(T̃∞,Σ1,...,Σk)

)
d
=
(
R
(
T̃k,Σ1, . . . ,Σk

)
,PR(T̃k,Σ1,...,Σk)

)
.

Based on a generalisation of Miermont’s notion of k-marked trees (Miermont, 2009)

to ∞-marked trees, it can be shown that T̃k → T̃∞ a.s. as k → ∞ with all leaves

Σk, k ≥ 1, embedded in T̃∞. See forthcoming work (Rembart and Winkel, 2016+)
for different applications of ∞-marked trees.
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705 (2012a). MR2976559.

R. Abraham, J.-F. Delmas and H. He. Pruning of crt-sub-trees. ArXiv Mathematics
e-prints (2012b). arXiv: 1212.2765v1.

L. Addario-Berry, N. Broutin and C. Goldschmidt. Critical random graphs: limiting
constructions and distributional properties. Electron. J. Probab. 15, no. 25, 741–
775 (2010). MR2650781.

L. Addario-Berry, N. Broutin and C. Holmgren. Cutting down trees with a Markov
chainsaw. Ann. Appl. Probab. 24 (6), 2297–2339 (2014). MR3262504.

D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1), 1–28 (1991a).
MR1085326.

http://www.ams.org/mathscinet-getitem?mr=MR2962090
http://www.ams.org/mathscinet-getitem?mr=MR2976559
http://arxiv.org/abs/1212.2765v1
http://www.ams.org/mathscinet-getitem?mr=MR2650781
http://www.ams.org/mathscinet-getitem?mr=MR3262504
http://www.ams.org/mathscinet-getitem?mr=MR1085326


602 F. Rembart

D. Aldous. The continuum random tree. II. An overview. In Stochastic analysis
(Durham, 1990), volume 167 of London Math. Soc. Lecture Note Ser., pages
23–70. Cambridge Univ. Press, Cambridge (1991b). MR1166406.

D. Aldous. The continuum random tree. III. Ann. Probab. 21 (1), 248–289 (1993).
MR1207226.

D. Aldous. Wright-fisher diffusion with negative mutation rate! Per-
sonal page (1999). Available online at https://www.stat.berkeley.edu/ al-
dous/Research/OP/fw.html.

D. Aldous. Mixing time for a Markov chain on cladograms. Combin. Probab.
Comput. 9 (3), 191–204 (2000). MR1774749.

J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist.
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