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Abstract. We develop a new method for showing that a given sequence of random
variables verifies an appropriate law of the iterated logarithm. Our tools involve
the use of general estimates on multidimensional Wasserstein distances, that are in
turn based on recently developed inequalities involving Stein matrices and transport
distances. Our main application consists in the proof of the exact law of the iterated
logarithm for the Hermite variations of a fractional Brownian motion in the critical
case.

1. Introduction

1.1. Overview. The aim of the present paper is to develop a new technique for
proving laws of the iterated logarithm (LIL) for general sequences of random vari-
ables, possibly having the form of partial sums of random elements displaying some
strong form of dependence. One of the main contributions of our work consists in
a collection of sufficient conditions for the LIL to hold, expressed either in terms
of uniform controls on the (multidimensional) Wasserstein distance between the
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elements of the sequence and some Gaussian counterpart, or in terms of some un-
derlying collection of Stein matrices (see Definition 2.3 below). Stein matrices can
be roughly described as arrays of random variables verifying a generalized inte-
gration by parts formula: they appear naturally when implementing the so-called
Stein’s method for normal approximations, see Nourdin and Peccati (2012) for an
introduction to this topic. One of the key technical tools developed in our work
is the new inequality (3.4), that we believe has a remarkable independent interest,
providing an explicit bound on the multidimensional Kolmogorov distance in terms
of the 1-Wasserstein distance, where the involved constants display a logarithmic
dependence in the dimension. In the proof of our main estimates, we shall often
make use of the recent findings from Ledoux et al. (2015); Nourdin et al. (2014),
where a new connection between Stein matrices and information functionals has
been revealed, thus yielding new bounds on transport distances. Albeit stated in
the slightly more general context of Stein matrices, our findings fit remarkably well
into the context of Gaussian functionals. Indeed, when a Gaussian functional be-
longs to the domain of the Malliavin derivative D, it is extremely simple to build
a Stein’s matrix and subsequently apply the powerful machinery of the so-called
Malliavin-Stein’s method – see Nourdin and Peccati (2009b). The literature con-
tains a plethora of central limit theorems for given functionals of a Gaussian field
which all constitute potential applications of our methods. However, in what fol-
lows we will mainly focus on the law of the iterated logarithm for the fractional
Hermite variations in the critical regime. Indeed, the critical regime seemed to us
particularly challenging because the random variables under consideration display
a form of logarithmic dependence. Indeed, Berry-Essen bounds usually provide
polynomial speeds of convergence. Note that, among others, we might also apply
our method to the case of quadratic functionals of a Brownian sheet which also
display an exact logarithmic speed of convergence in a central limit theorem - as
established in Nourdin and Peccati (2009a, Prop. 5.2).

1.2. Motivation: fractional Hermite variations in the critical regime. Let BH =
{Bt : t ∈ IR} be a standard fractional Brownian motion on the real line with Hurst
parameter H ∈ (0, 1), that is: BH is a centered Gaussian process having covariance
IE[BHs B

H
t ] = 2−1[|t|2H + |s|2H − |s − t|2H ]. Write ZHk := BHk+1 − BHk , k ∈ Z, and

denote by {Hq : q = 0, 1, ...} the usual collection of Hermite polynomials (so that
H0 = 1, H1(x) = x, H2(x) = x2 − 1, and so on; see e.g. Nourdin and Peccati,
2012, Section 1.4). We are interested in the asymptotic behavior of the so-called
Hermite variations of BH , that is, we want to study random sequences of the type
n 7→ Vn :=

∑n
k=1Hq(Z

H
k ), as n → ∞, for fixed values of q and of the Hurst index

H. It is a well-known fact that the fluctuations of such variations heavily depend on
the relation between q and H, a crucial role being played by the so-called ‘critical
regime’, corresponding to the choice of parameters H = 1 − 1

2q . The following

convergence results, involving two well-known Central Limit Theorems (CLTs), are
classical:

(a) (Breuer-Major CLT, see e.g. Nourdin and Peccati, 2012, Chapter 6) If
H ∈ (0, 1− 1/2q), then there exists a finite constant σq > 0, such that the

sequence n−1/2Vn converges in distribution to a centered Gaussian random
variable with variance σ2

q .
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(b) (Non-central convergence, see Dobrushin and Major, 1979; Taqqu, 1974/75)

If H > 1−1/2q, then the sequence nq(1−H)− 1
2Vn converges in distribution to

a non-Gaussian random variable, having a so-called ‘Hermite distribution’.
(c) (CLT in the critical regime, see e.g. Giraitis and Surgailis, 1985) If H = 1−

1/2q, then, for some appropriate constant σq > 0, (log n)−1/2Vn converges
in distribution to a centered Gaussian random variable with variance σ2

q .

The reader is referred to Nourdin and Peccati (2012, Section 7.4) for a unified
modern presentation of these phenomena. Beyond the convergence in distribution,
one might seek for almost sure results, up to adding renormalization factors. As
in the usual law of the iterated logarithm, these factors are very often expressed in
term of iteration of logarithms and provide complementary information about the
order of magnitude of the sequence. The following question is therefore natural:
can one associate an exact law of the iterated logarithm (LIL) to each one of the
convergence results described at Points (a), (b) and (c)? It turns out that, although
an appropriate LIL has been shown in the two cases (a) and (b) (see the discussion
below), none of the available techniques can be used to deal with the critical case
(c). It will be demonstrated that our new approach exactly allows to fill this
fundamental gap.

We will now provide a discussion of the available results concerning LILs for
subordinated Gaussian sequences.

Case (a). Let Z = {Zk : k ∈ Z} be a centered stationary Gaussian sequence, and
let f be a measurable and square-integrable mapping. Since the seminal results by
Breuer and Major (see Breuer and Major, 1983, as well as Nourdin and Peccati,
2012, Chapter 7), many authors tried to deduce criteria on f and Z ensuring that,
for some adequate finite constant σ > 0,

lim sup
n→∞

1√
2n log log n

n∑
k=1

f(Zk) = σ, (1.1)

with probability one. Relying on a seminal paper of Lai and Stout (1980) which
provides conditions for the upper-bound of the iterated logarithm for general par-
tial sums of dependent random variables, and by using systematically the so-called
‘method of moments’, Arcones (1999) and Ho (1995) obtained LILs for non-linear
functionals of general Gaussian fields. First, Ho (1995) has provided criteria ensur-
ing that the left-hand side of (1.1) is bounded from above by some finite constant
σ, by expressing the conditions of Lai and Stout in terms of the covariance of Z
and the coefficients of the Hermite expansion of f . Next, Arcones (1999) has ex-
tended the results of Ho, in particular by obtaining exact lower bounds. The key
idea developed by Arcones in order to obtain lower bounds, is to consider Gaussian
stationary sequences of the form

Gk =

∞∑
n=∞

an+kNn, (1.2)

(withNn an i.i.d. sequence of standard Gaussian) and next to use the classical law of
the iterated logarithm for locally dependent sequences by a truncation argument. It
turns out that some of the results by Arcones contain the exact law of LIL associated
with the CLT at Point (a). Indeed, whereas it is not obvious at first glance, one
can represent the increments of the BH in the form (1.2) (see for instance Hu et al.,
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2015). Besides, the coefficients in the expansion (1.2) are such that ak ∼ 1

k
3
2
−H (see

Beran, 1994, Prop. 2.2, p.64). Plugging these facts in Arcones (1999, Proposition
1), one deduces immediately that, if H < 1− 1

2q , then

lim sup
n→∞

1√
2n log log(n)

n∑
k=1

Hq(B
H
k+1 −BHk ) = σq > 0,

with probability one.

Case (b). The question of the iterated logarithm in this setup was partially solved
by Taqqu (1977). Later on, Lai and Stout (1980) gave criteria for upper bounds,
whereas the complete law of the iterated logarithm was proved by Mori and Oodaira
(1987). At the time being, we do not believe that our approach can cover this case.
Indeed most of our arguments are based on the Gaussian. For instance, a Gaussian
target in bound (3.4) seems crucial in order to obtain a strong estimate.

Case (c). The first LIL ever proved for the critical regime (c) will appear in Theorem
2.4 below: the proof is based on the novel approach developed in the present work.
Note that, so far, there has been no attempt to prove a LIL in this delicate context.
We believe indeed that it would be not possible (or, at least, technically very
demanding) to extend the approaches by Arcones (1999) and Mori and Oodaira
(1987) to deal with this case. One plausible explanation for this impasse is that, in
both cases (a) and (b), the convergence in distribution takes place at an algebraic
speed in n (with respect e.g. to the Kolmogorov distance, see e.g. Nourdin and
Peccati, 2012, p. 146). However, it is known since Biermé et al. (2011, p. 381)
that the speed of convergence is logarithmic in the critical regime (c), and such a
rate is sharp. A careful analysis of the proofs of Mori and Oodaira and Arcones
reveals that most arguments in their approach are based on ‘polynomial’ estimates
in the truncations, derived from upper bounds on moment sequences: as they are,
such estimates are of no use for dealing with a logarithmic speed of convergence.
In contrast, our approach allows one to obtain a simple and transparent proof of
the LIL stated in Theorem 2.4, thus by-passing at once the difficulties mentioned
above.

1.3. Stationary Gaussian sequences. As a by-product of our analysis, in Theorem
2.2 we shall obtain a very general LIL for a stationary Gaussian sequence Z. To
our knowledge, the most general LIL for a stationary Gaussian sequence is due
again to Arcones (1995). In such a reference, the author shows that the LIL holds
under the condition that

∑
k |ρ(k)| < ∞, where ρ is the correlation function of

Z (this covers the result of Deo, 1974). Other conditions were given in Lai and
Stout (1978); Taqqu (1977) which are similar to the condition we provide in the
Theorem 2.2, in the sense that it is required that the variance of the sequence of
partial sums is asymptotically equivalent to a sequence of the type nαL(n), where
L is a regularly varying function. We stress that there is an important difference
between our work and some of the existing literature, namely: we do not need
any further assumptions on the function L, whereas both references Lai and Stout
(1978); Taqqu (1977) need some additional technical requirements on L. Finally, we
stress that our condition covers the findings of Arcones (1995), see Corollary 2.12
below. Our findings support the conjecture that the law of the iterated logarithm in
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this setting holds under the only assumption that the variance is regularly varying
(meaning that Assumption 2.17 below can be dropped).

1.4. Remark on notation. Throughout the paper, we shall use standard notations
from Malliavin calculus – the reader is referred to Nourdin and Peccati (2012,
Chapters 1 and 2) for a standard introduction to this topic. In particular, given an
isonormal Gaussian process G = {G(h) : h ∈ H} over some real separable Hilbert
space H, we shall denote by D and δ, respectively, the Malliavin derivative and di-
vergence operators. Also, we shall write L to indicate the generator of the associated
Ornstein-Uhlenbeck semigroup. We recall that a square-integrable functional F of
G is said to belong to the qth Wiener chaos associated with G (for q = 0, 1, 2, ...) if
LF = −qF . We also recall, for future use, the following crucial hypercontractivity
property of Wiener chaoses (see e.g. Nourdin and Peccati, 2012, Corollary 2.8.14
for a proof): if F is an element of the qth Wiener chaos of a given Gaussian field,
then, for every r > p > 1,

IE[|F |r]1/r ≤
(
r − 1

p− 1

)q/2
× IE[|F |p]1/p. (1.3)

1.5. Plan. The paper is organized as follows. Section 2 contains the statements
of our main results. Section 3 is devoted to some preliminary material, whereas
Sections 4 and 5 contain the proofs, respectively, of our theoretical results and of
our findings connected to applications.

2. Statement of the main results

Throughout the present section, we will consider a sequence

X = {Xn : n ≥ 0}

of real-valued random variables that are defined on a common probability space
(Ω,F , IP). We make the convention that X0 = 0, and we assume that the elements
of the sequence X are centered, i.e., that IE[Xn] = 0 for all n ≥ 1. In general,
the capital letter C stands for a general constant which may vary from line to
line; its dependency on other parameters at hand will be emphasized whenever it
is important.

Given two random elements Z,Y with values in IRd (d ≥ 1), the Kolmogorov
distance between the laws of Z and Y, denoted dK(Z,Y), is defined as follows:

dK(Z,Y) = sup
∣∣∣IP[Z ∈ Q]− IP[Y ∈ Q]

∣∣∣,
where the supremum runs over all rectangles of the form Q = (−∞, a1] × · · · ×
(−∞, ad], with a1, ..., ad ∈ IR.

Fix θ ≥ 1. Given two random elements Z,Y with values in IRd (d ≥ 1) and such
that IE‖Z‖θ

IRd
, IE‖Y‖θ

IRd
< ∞, the θ-Wasserstein distance Wθ(Z,Y) between the

laws of Z and Y is given by

Wθ(Z,Y) := inf
{

(IE[‖U−V‖θIRd ])1/θ
}
,
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where the infimum runs over all 2d-dimensional vectors (U,V) such that U
law
= Z

and V
law
= Y. The value of the dimensional parameter d, which does not appear in

the notation Wθ(Z,Y), will be always clear from the context.
Given two sequences of real numbers (un)n≥1 and (vn)n≥1, the notation un ∼ vn

means that

lim
n→∞

un
vn

= 1.

2.1. A general law of the iterated logarithm. We shall now introduce a collection of
assumptions, that will enter the statements of our main results.

(A1) The sequence X verifies Assumption (A1) if there exists a slowly varying
function L (that is, L is such that limx→∞ L(ax)/L(x) = 1 for every a > 0
— see e.g. Bingham et al., 1989, p. 14) and a function g : N → IR+ such
that for some a ∈]0, 1]

g(n) ∼ naL(n),

and for some C > 0 and all n1 < n2∣∣∣∣IE[Xn2
−Xn1

g(n2 − n1)

]2
− 1

∣∣∣∣ ≤ C

1 + log(n2 − n1)
. (2.1)

(A2) We shall say the X verifies Assumption (A2) if, for every pair of integers
n, p ≥ 1,

lim sup
a→∞

IE[(Xa+n −Xa)2p] <∞.

(A3) Let G be a one-dimensional standard Gaussian random variable, let X ver-
ify assumption (A1), and let g : IR+ → IR+ be the corresponding function.
We say that X verifies Assumption (A3) if there exist constants C, λ > 0
such that, for all θ ≥ 1,

Wθ

(
Xn2
−Xn1

g(n2 − n1)
, G

)
≤ Cα(θ)

θλ

1 + log(n2 − n1)
,

where α(1) = 1 and α(θ) = (θ − 1)
1
2 for θ > 1, and moreover

dK

(
Xn2 −Xn1

g(n2 − n1)
, G

)
≤ C

1 + log(n2 − n1)

for every n2 > n1.
(A4) Given real numbers q > 1, α > 0, and integers d,m ≥ 1, we consider the

particular collection of positive integers (with [x] the integer part of the
real number x)

n↑ := {ni}1≤i≤2d =
{

[q(m+i)1+α ]
}
1≤i≤2d.

For simplicity we write

Yn↑ = (Y1, · · · , Yd) (2.2)

=

(
Xn2
−Xn1

g(n2 − n1)
,
Xn4
−Xn3

g(n4 − n3)
, · · · ,

Xn2d
−Xn2d−1

g(n2d − n2d−1)

)
,

the random vector or size d of increments of X along the subsequence n↑.
We say that the sequence X verifies Assumption (A4) if, for some fixed
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q > 1 and every α > 0, there exists some constant Cα,q such that, for every
d,m ≥ 1,

W1(Yn↑ ,G) ≤ dCα,q
1 + log(n2 − n1)

, (2.3)

where G stands for a d-dimensional vector of i.i.d. centered standard Gauss-
ian random variables.

Remark 2.1. Note that Assumptions (A1) and (A2) are not restrictive since they
only exploit the moment assumptions on the sequence whereas Assumptions (A3)
and (A4) crucially depend on the amount of independence hidden in the sequence.
For instance if the sequence X = {Xn}n≥1 satisfies Assumptions (A1), (A2),
(A3), (A4) and if Y = {Yn}n≥1 is another sequence such that Xn = Yn in law
for every n ≥ 1, then Assumptions (A1) and (A2) continue to hold, whereas
Assumptions (A3)-(A4) may fail.

Remark 2.2. Roughly speaking, assumption (A4) expresses the fact that the nor-

malized increments of X taken at the particular scale qi
1+α

, behave as independent
Gaussian. Moreover, the error in this approximation for the Wasserstein distance
is logarithmic in the size of the smallest increment (n2 − n1).

The next statement is one of the main achievements of the present paper.

Theorem 2.1. Assume that the sequence {Xn : n ≥ 1} satisfies the four assump-
tions (A1)–(A4). Then,

lim sup
n→∞

Xn√
2g2(n) log log n

= 1, a.s. (2.4)

lim inf
n→∞

Xn√
2g2(n) log log n

= −1, a.s. (2.5)

where the mapping g appears in Assumption (A1).

2.2. Checking the assumptions by means of Stein matrices. We will now show how
one can check the validity of Assumptions (A2)–(A4) of the previous section by
using the concept of a Stein matrix associated with a given random vector. As
discussed below, such a notion is particularly well adapted for dealing with the
normal approximation of functionals of general Gaussian fields.

Definition 2.3 (Stein matrices). Fix d ≥ 1, let F = (F1, ..., Fd) be a d-dimensional
centered random vector, and denote by M(d, IR) the space of d × d real matrices.
We say that the matrix-valued mapping

τ : IRd →M(d, IR) : x 7→ τ(x) = {τi,j(x) : i, j = 1, ..., d}
is a Stein matrix for F if τi,j(F ) ∈ L1(IP) for every i, j and the following is verified:

for every differentiable function g : IRd → IR such that g and its partial derivatives
have at most polynomial growth, the two (vector-valued) expectations IE [Fg(F)]
and IE [τ(F)∇g(F)] are well defined and

IE [Fg(F)] = IE [τ(F)∇g(F)] , (2.6)

or, equivalently,

IE [Fig(F)] =

d∑
j=1

IE [τi,j(F)∂jg(F)] , i = 1, ..., d. (2.7)
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Note that, selecting g(x) = xj , j = 1, ..., d, one obtains from (2.6) that IE[FiFj ] =
IE[τi,j(F )] = IE[τj,i(F )], for every i, j = 1, ..., d. Finally, we stress that, in dimension
d = 1 the Stein matrix τ is simply a real-valued mapping, which is customarily
called a Stein factor.

Remark 2.4. As demonstrated below, Assumption (A3) expresses a sort of hyper-
contractivity. However, an inspection of the proof of Theorem 2.1 reveals that the
mere Assumptions (A1), (A2) and (A4) are enough to ensure that

lim sup
n→∞

Xkn

g(kn)
√

2 log log(kn)
= 1 a.s.,

where kn = qn
1+α

and q is the same as in Assumption (A4). Assumptions (A1)
and (A2) have already appeared in the literature, see e.g. Lai and Stout (1980,
Lemma 1). Assumption (A4), which is at the heart of our method, seems to be
new. It encodes the decorrelation of the sequence with respect to the 1-Wasserstein
distance.

The next statement provides an explicit connection between properties of Stein
matrices and the law of the iterated logarithm stated in the previous section.

Proposition 2.5. Let X = {Xn : n ≥ 1} be the sequence of centered random
variables introduced in the previous section. Assume that X verifies Assumption
(A1) (for some adequate mapping g), and also that the following properties hold:

(i) For each d ≥ 1, and each increasing sequence n↑ = {ni}1≤i≤2d of 2d in-
tegers, the vector Yn↑ = (Y1, · · · , Yd), as defined in (2.2), admits a d × d
Stein matrix τn↑ = {τi,j : i, j = 1, ..., d}, in the sense of Definition 2.3.

(ii) There exists q > 1 such that, for every α > 0, there exists a constant
Cα,q > 0 verifying the inequalities√

Var
[
τi,i(Yn↑)

]
≤ Cα,q

1 + log(n2i − n2i−1)
, ∀i = 1, ..., d, (2.8)

and

A(i, j) ≤ Cα,q
1 + log(n2i − n2i−1)

, ∀1 ≤ i < j ≤ d, (2.9)

where

A(i, j) = max

{√
IE
[
τi,j(Yn↑)2

]
,

√
IE
[
τj,i(Yn↑)2

]}
,

for every d ≥ 1 and every increasing collection of integers of the type n↑ =

{ni}1≤i≤2d =
{

[q(m+i)1+α ]
}
1≤i≤2d, where m ≥ 1. Here, we have adopted

the notation (2.2), whereas τn↑ = {τi,j} is the Stein matrix associated with
Yn↑ .

(iii) There exist constants C, λ > 0 such that, for all θ ≥ 1,

∥∥∥τ (Xn2
−Xn1

g(n2 − n1)

)
− 1
∥∥∥
θ

:=
(

IE
∣∣τ (Xn2

−Xn1

g(n2 − n1)

)
− 1
∣∣θ) 1

θ

≤ C
θλ

1 + log (n2 − n1)
, (2.10)

for every n1 < n2, where τ stands for the Stein factor of
Xn2−Xn1

g(n2−n1)
.
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Then, X verifies assumptions (A2), (A3) and (A4).

Combining the latter with Theorem 2.1 leads to the following corollary.

Corollary 2.6. Under assumptions (i)-(ii)-(iii) of Proposition 2.5, it holds that

lim sup
n→∞

Xn√
2g2(n) log log n

= 1, a.s. (2.11)

lim inf
n→∞

Xn√
2g2(n) log log n

= −1, a.s. (2.12)

Remark 2.7. If the random sequence X = {Xn : n ≥ 1} is composed of functionals
of an isonormal Gaussian process G = {G(h) : h ∈ H} and if each Xn lies in the
domain of the Malliavin derivative operator D , then the previous assumption (i)
is always fulfilled by taking

τi,j(Y1, · · · , Yd) = IE
[
〈DYj ,−DL−1Yi〉H | (Y1, · · · , Yd)

]
,

where L−1 stands for the pseudo-inverse of the Ornstein-Uhlenbeck generator (see
e.g. Nourdin and Peccati, 2012, Section 2.8.2). In particular, if the sequence X
belongs to the qth Wiener chaos of G (and therefore L−1Xn = −q−1Xn for every
n), one has the simple representation

τi,j(Y1, · · · , Yd) =
1

q
IE
[
〈DYj , DYi〉H | (Y1, · · · , Yd)

]
, (2.13)

which also implies that the Stein matrix {τi,j(Y1, ..., Yd) : i, j = 1, ..., d} is symmet-
ric. Again, we refer the reader e.g. to Nourdin et al. (2014) for a concise exposition
of the required notions and to the monographs Nourdin and Peccati (2012); Nualart
(2006) for more details.

Remark 2.8. When {Xn : n ≥ 0} lies in a finite sum of Wiener chaoses, Assumption
(iii) is particularly easy to check. Indeed, using hypercontractivity properties (1.3),
it is sufficient to check equation (2.10) only in the case θ = 2. This case is indeed
covered by Assumption (ii).

2.3. First examples: LIL for independent sequences. As demonstrated in the sec-
tions to follow, the techniques developed in the present paper have been specifically
devised for deducing laws of the iterated logarithm involving sums of random vari-
ables displaying some form of non-trivial dependence. However, in order to develop
some intuition about the assumptions appearing in the statements of Theorem 2.1
and Proposition 2.5, it is instructive to first focus on the case of independent ran-
dom variables. We stress that the aim of this section is to provide an illustration
of our techniques in a familiar framework: in particular, we do not aim at gener-
ality. The reader is referred e.g. to Dudley (2002, Section 12.5) for an exhaustive
discussion of the LIL (and its history) for sequences of i.i.d. random variables.

2.3.1. Rademacher sequences. We start by considering the case of independent
Rademacher random variables {εi : i ≥ 1} (that is, IP[εi = 1] = 1/2 = IP[εi = −1],
i ≥ 1). In this case, it is well known that, by noting Sn =

∑n
i=1 εi, n ≥ 1,

lim sup
n→∞

Sn√
2n log log n

= 1 = − lim inf
n→∞

Sn√
2n log log n

, (2.14)
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with probability one. In what follows, we shall show that (2.14) can be directly
deduced from Theorem 2.1 and Proposition 2.5. In order to accomplish this task,
it is indeed preferable to show the equivalent statement: with probability one,

lim sup
n→∞

Xn√
2n log log n

= 1 = − lim inf
n→∞

Xn√
2n log log n

, (2.15)

where Xn = Sn + U and U is a random variable uniformly distributed on [−1, 1],
independent of the εi’s. It is clear that, in this case, Assumption (A1) is verified
for the choice of function g(n) =

√
n. Moreover, a simple computation (based e.g.

on Chatterjee, 2012, Lemma 3.3), shows that, for any choice of n↑, the vector Yn↑

appearing at Assumption (i) of Proposition 2.5 admits a Stein matrix τn↑ = {τi,j :
i, j = 1, ..., d} such that, for i = 1, ..., d,

τi,i =
IE
{
n2i − n2i−1 − (Sn2i

− Sn2i−1
)U + (1− U2)/2

∣∣∣Yn↑

}
n2i − n2i−1

,

and, for 1 ≤ i 6= j ≤ d,

τi,j =
1√

(n2i − n2i−1)(n2j − n2j−1)
IE
{

(1− U2)/2
∣∣∣Yn↑

}
,

and it is a matter of a simple verification to check that Assumption (ii) of Propo-
sition 2.5 is indeed satisfied. Finally, since for any choice of integers n2 > n1 one
has that

τ

(
Xn2
−Xn1√

n2 − n1

)
=

IE
{
n2 − n1−(Sn2

− Sn1
)U+(1− U2)/2

∣∣∣ Xn2
−Xn1√

n2−n1

}
n2 − n1

,

we deduce immediately from a standard application of Khinchin inequality that,
for every θ > 2, ∥∥∥τ (Xn2

−Xn1√
n2 − n1

)
− 1
∥∥∥
θ
≤ (θ − 1)1/2 + 1

n2 − n1
.

This implies in particular that Assumption (iii) in Proposition 2.5 is verified, and
consequently that (2.15) (and therefore (2.14)) holds.

The crucial point of the previous example is of course that, although the random
variables Sn are discrete and not directly amenable to analysis by means of our tech-
niques, the simple addition of the independent bounded component U makes Stein
matrices appear very naturally. For the time being, it is unclear whether a simi-
lar smoothing operation can be realised for an arbitrary sequence of independent
discrete random variables.

2.3.2. Random variables with densities. We now consider a sequence {Zi : i ≥ 1}
of i.i.d. real-valued centered random variables with unit variance. We assume that
the law of Z1 is absolutely continuous with respect to the Lebesgue measure, with
a density f whose support is assumed (for simplicity) to be a (possibly unbounded)
interval. Writing Xn = Sn =

∑n
i=1 Zi, it is of course well-known (see e.g. Dudley,

2002, Theorem 12.5.1) that relation (2.15) holds with probability one. In what
follows, we shall show that, under some additional assumption on the regularity
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of the density f , such a result can be directly deduced from Theorem 2.1 and
Proposition 2.5. To this end, we define an auxiliary function s : IR→ IR as follows:

s(x) =

∫∞
x
yf(y)dy

f(x)
,

for each x in the support of f , and s(x) = 0 otherwise. Then, it is a simple exercise
in integration to show that the random variable s(Z1) is indeed a Stein factor for Z1,
that is: for every smooth mapping ϕ, one has that IE[Z1ϕ(Z1)] = IE[s(Z1)ϕ′(Z1)].
Moreover, one can check that s(Z1) ≥ 0 with probability one (see e.g. Stein, 1986,
Chapter VI). The following statement contains the announced connection with the
main results of the present paper.

Proposition 2.9. Let the above notation and assumptions prevail. If IE[s(Z1)2] <
∞, then Assumption (A1) together with Assumptions (i) and (ii) of Proposition 2.5
are verified for the choice of function g(n) =

√
n. If moreover there exist constants

0 < λ,K <∞ such that

IE[s(Z1)θ]1/θ ≤ Kθλ, θ ≥ 2, (2.16)

then also Assumption (iii) of Proposition 2.5 is satisfied.

Remark 2.10. It is easy to find sufficient conditions on f , ensuring that (2.16) is

satisfied. For instance, if f has the form f(x) = (2π)−1/2q(x)e−x
2/2, where q is

some smooth mapping satisfying q(x) ≥ c > 0 and |q′(x)| ≤ C < ∞, then one has

that s(x) ≤ 1 +
√

2πC/c <∞, so that the requirement (2.16) is trivially met.

Proof of Proposition 2.9. The fact that assumption (A1) is satisfied for g(n) =
√
n

is trivial. Moreover, for any choice of n↑, the vector Yn↑ appearing at Assumption
(i) of Proposition 2.5 admits a Stein matrix τn↑ = {τi,j : i, j = 1, ..., d} such that,
for i = 1, ..., d,

τi,i =
1

n2i − n2i−1
IE

 n2i∑
k=n2i−1+1

s(Zk)
∣∣∣Yn↑

 ,
and τi,j = 0 for every i 6= j. Since Var(τi,i) ≤ (n2i − n2i−1)−1IE[(1 − s(Z1))2],
we deduce immediately that Assumption (ii) of Proposition 2.5 is indeed satisfied.
To see that relation (2.16) implies that Assumption (iii) of Proposition 2.5 is also
verified, we shall apply Rosenthal inequality for centered random variables (see e.g.
de la Peña and Giné, 1999, p. 46), together with the fact that IE[s(Z1)] = 1 and

that, for every choice of integers n1 < n2, a Stein factor for
Xn2
−Xn1√

n2−n1
is given by

τ

(
Xn2
−Xn1√

n2 − n1

)
=

1

n2 − n1

n2∑
k=n1+1

s(Zk).

According to the Rosenthal inequality, one has indeed that, for some universal finite
constant C and for every θ ≥ 2,∥∥∥τ (Xn2

−Xn1√
n2 − n1

)
− 1
∥∥∥
θ

≤ C θ

log θ

(
1√
n

IE[(s(Z1)− 1)2]1/2 +
1

n1−1/θ
IE[(s(Z1)− 1)θ]1/θ

)
,

from which we immediately deduce the desired conclusion. �
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Starting from the next section, we shall focus on sequences of dependent random
variables living on a Gaussian space.

2.4. LIL for Gaussian sequences. As a more substantial application of our main
results, we shall now prove a general version of the law of the iterated logarithm
for a centered stationary Gaussian sequence {Zk : k ≥ 1} with correlation function
r(k) := IE[ZnZn+k]. We write Xn =

∑n
k=1 Zk.

The following statement is the main result of the section. Note that the results
stated in this subsection are not particular cases of the Breuer-Major Theorem
since it is not assumed that

∑
k |r(k)| is convergent. Take for instance a > 1

2 in the
Theorem below.

Theorem 2.2. Assume that g(n) :=
√

IE [X2
n] ∼ naL(n), where a ∈ (0, 1) and L

is a slowly varying function. Moreover, we assume that

n2∑
k=n1

r(k) = O
(

(n2 − n1)2a−1L(n2 − n1)
)
. (2.17)

Then, we have the following law of the iterated logarithm

lim sup
n→∞

Xn√
2g2(n) log log n

= 1 a.s.-IP. (2.18)

Remark 2.11. We emphasize that the condition (2.17) is strongly related to the
fact that g(n) is regularly varying. This can be seen from the equation

g2(n) = 2

n−1∑
k=1

r(k)(n− k) + n.

We conjecture that assumption (2.17) can indeed be removed, but such an improve-
ment seems difficult for the time being.

The next corollary generalizes some results contained in Arcones (1995); Deo
(1974); Lai and Stout (1978); Taqqu (1977): to our knowledge, it corresponds
to the most general statement for stationary Gaussian sequences available in the
literature. The fact that

∑
k |r(k)| < ∞ is sufficient to get the law of the iterated

logarithm is due to Arcones (1995, Corollary 2.1). Let us stress that Lai and Stout
have provided in Lai and Stout (1978, Theorem 4) criteria for the law of the iterated
logarithm under additional assumptions on the slowly varying function L. Case (i)
of the next corollary with b ≤ 1 seems to be new.

Corollary 2.12. Let the assumptions and notation of the present section prevail.
The following two implications hold:

(i) Let g(n) = naL(n) with a ∈ (0, 1). If r(k) = O( 1
kb

) where b = 2− 2a, then
(2.18) holds.

(ii) If
∑∞
k=1 |r(k)| <∞, then (2.18) holds.

2.5. LIL in the Breuer-Major theorem: critical and non-critical regimes. As an-
ticipated in the Introduction, our main results allow one to deduce sharp laws of
the iterated logarithm for the Hermite variations of a fractional Brownian motion.
This fact is resumed in the next two Propositions. We stress that Theorem 2.3 can
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be deduced from Arcones (1999, Proposition 1), whereas Theorem 2.4 seems to be
outside the scope of any other available technique.

Theorem 2.3. Let q ≥ 2 and Hq stands for Hermite polynomial of degree q. As-
sume that BH = {BHt }t∈IR be a fractional Brownian motion with Hurst parameter
H < 1− 1

2q . Set Zk = BHk+1 −BHk , k ∈ Z. Define

Xn :=

n−1∑
k=0

Hq(Zk) =

n−1∑
k=0

Hq(B
H
k+1 −BHk ) n ≥ 1. (2.19)

Then, Theorem 2.1 with g(n) ∼
√
n implies that there exists a positive constant l

such that

lim sup
n→∞

Xn√
2n log log n

= l a.s.-IP.

Here,

l =
q!

2q

∑
r∈Z

(
|r + 1|2H + |r − 1|2H − 2|r|2H

)q
.

In fact, l is the limit of the variance of the sequence {Xn√
n
}n≥1, see Nourdin and

Peccati (2012, Theorem 7.4.1).

Theorem 2.4. Let the notation of Proposition 2.3 prevail, and set H = 1 − 1
2q .

Then, applying Theorem 2.1 with g(n) ∼
√
n log n implies that there exists a positive

constant l such that

lim sup
n→∞

Xn√
2n log n log log n

= l a.s.-IP.

In this case,

l = 2q!

(
1− 1

q

)q (
1− 1

2q

)q
.

Similarly, l is the limit of the variance of the sequence { Xn√
n logn

}n≥1, see Nourdin

and Peccati (2012, Theorem 7.4.1).

The next section contains a number of preliminary results, that will be exploited
in the proofs of our main findings.

3. Preliminaries

In this section, we gather together several useful statements, that are needed in
order to prove our main results.

3.1. A result by Lai and Stout. As anticipated in the Introduction, one of the key
contributions of the present paper is a new technique, allowing one to deduce exact
lower bounds in the LIL for possibly dependent sequences. For upper bounds, our
principal tool will be a classical result by Lai and Stout (1980, Lemma 1), that we
reformulate in a way that is convenient for our discussion.

Lemma 3.1 (Lemma 1 in Lai and Stout, 1980). Let the sequence X = {Xn : n ≥ 1}
verify Assumption (A1) (for some appropriate mapping g) and Assumption (A2)
of Section 2.1, and assume that the following two conditions hold:
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(a) For every 0 < ε < 1, there exist ε′,K > 0 such that, for n, a ∈ IN large
enough,

IP

(
Xn+a −Xa

g(n)
≥ (1 + ε)

√
2 log log n

)
≤ K

log1+ε′ n
.

(b) There exist numbers θ,K ′ > 0 and B > 1 such that, for a and n large
enough,

IP

(
Xn+a −Xa

g(n)
≥ x

√
2 log log n

)
≤ K ′

xθ log logn
, x ≥ B.

Then, with IP-probability one,

lim sup
n→∞

|Xn|√
2g(n)2 log log n

≤ 1. (3.1)

Remark 3.2. In view of the assumptions on the mapping g appearing in (A1), one
has always that

lim inf
n→∞

g(K ′′n)/g(n) > 1, ∀K ′′ > 1 (3.2)

and also that, for every ε > 0, there exists ρ < 1 such that

lim sup
n→∞

{
max

ρn≤i≤n
g(i)/g(n)

}
≤ 1 + ε. (3.3)

Relations (3.2)–(3.3) imply, in particular, that the mapping n 7→ IE[X2
n] automat-

ically satisfies relations (1.1)–(1.2) in Lai and Stout (1980), that in turn appear
as explicit assumptions in the original statement of Lai and Stout (1980, Lemma
1). One should also notice that, in the statement of Lai and Stout (1980, Lemma
1), conditions (a) and (b) require that K = K ′ = 1. It is immediately checked
that the conclusion remains valid if one considers instead arbitrary finite constants
K,K ′ > 0.

3.2. Comparison of multivariate Kolmogorov and 1-Wasserstein distances.
The next result, which is of independent interest, is a crucial step in our approach.
We emphasis that the logarithmic dependence on the dimension in the forthcoming
estimate (3.4) is absolutely necessary for achieving the proof of our main results.

Theorem 3.1. Let d ≥ 1 be an integer, let X = (X1, · · · , Xd) be any random
vector and let G = (G1, · · · , Gd) be a Gaussian random vector with covariance
identity. Then, one has that

dK(X,G) ≤ 3 log
1
4 (d+ 1)

√
W1(X,G). (3.4)

Proof : Without loss of generality, we can assume that X and G are defined on
the same probability space, and also that IE

[
‖X − G‖

]
= W1(X,G). Let t =

(t1, · · · , td). For convenience, we set {X ≤ t} := {X1 ≤ t1, · · · , Xd ≤ td} and
{G ≤ t} = {G1 ≤ t1, · · · , Gd ≤ td}. Let us be given a positive parameter ε > 0. We
have the following inequalities (where we set for simplicity ‖x‖∞ := maxi=1,··· ,d |xi|
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and ‖x‖ := ‖x‖IRd =
√
x21 + · · ·+ x2d):

IP(X ≤ t)− IP(G ≤ t)

≤ IP
(
X ≤ t, ‖X−G‖∞ ≤ ε

)
− IP(G ≤ t) +

1

ε
IE
[
‖X−G‖∞

]
≤

(
IP(G ≤ t + (ε, · · · , ε))− IP(G ≤ t)

)
+

1

ε
IE
[
‖X−G‖

]
≤

(
IP(G ≤ t + (ε, · · · , ε))− IP(G ≤ t)

)
+
W1(X,G)

ε

In order to estimate the first term, we set

φ(x) = IP
(
G ≤ t + (x, · · · , x)

)
.

One has

|φ(ε)− φ(0)| ≤ sup
x∈IR
|φ′(x)|ε.

Besides, one has

φ′(x) =
d

dx

(
d∏
i=1

∫ ti+x

−∞
e−

u2

2
du√
2π

)

=
1

(2π)
d
2

d∑
i=1

e−
(ti+x)

2

2

∏
j 6=i

∫ tj+x

−∞
e−

u2

2 du

≤ θd := sup
t∈IRd

1

(2π)
d
2

d∑
i=1

e−
t2i
2

∏
j 6=i

∫ tj

−∞
e−

u2

2 du

To estimate θd we follow an iterative scheme. Namely, one has

θd ≤ sup
t1∈IR

(
1√
2π
e−

t21
2 +

∫ t1

−∞
e−

u2

2
du√
2π
θd−1

)
.

We are left to estimate the maximum of the next univariate function

h(t1) =
1√
2π
e−

t21
2 +

∫ t1

−∞
e−

u2

2
du√
2π
θd−1.

We have

h′(t1) = (θd−1 − t1)
e−

t21
2

√
2π
,

implying that the maximum of h is reached when t1 = θd−1. From theses facts, we
obtain the following recursion.

θd ≤
1√
2π
e−

θ2d−1
2 + θd−1

∫ θd−1

−∞
e−

u2

2
du√
2π

:= f(θd−1).

We will now show that the previous inequality entails that θd ≤
√

2 log(d+ 1). We
proceed with induction on d. When d = 1, one has θ1 ≤ 1√

2π
≤
√

2 log 2. Let us

assume now that d ≥ 2, a straightforward computation implies that f is increasing.
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Therefore,

θd+1 ≤ f(θd) ≤ f(
√

2 log(d+ 1))

=
1√
2π

1

d+ 1
+
√

2 log(d+ 1)

∫ √2 log(d+1)

−∞
e−

u2

2
du√
2π

≤ 1√
2π

1

d+ 1
+
√

2 log(d+ 1)
(

1− 1

(d+ 1)
√

2 log(d+ 1)

)
≤

√
2 log(d+ 1) + (

1√
2π
− 1)

1

d+ 1

≤
√

2 log(d+ 2).

The same strategy can be implemented to deduce an analogous bound for IP(G ≤
t)− IP(X ≤ t). Putting these facts together, we have showed that, for every ε > 0,

dK(X,G) ≤ ε
√

2 log(d+ 1) +
1

ε
W1(X,G).

A standard argument of optimization implies the desired bound. �

When d = 1, one recovers from (3.4) the inequality dK(X,G) ≤ c
√
W1(X,G),

where c = 3(log 2)1/4 ≈ 2.737. This estimate is slightly worse than the usual bound

dK(X,G) ≤ 2
√
W1(X,G), see e.g. Nourdin and Peccati, 2012, formula (C.2.6) and

the references therein.

3.3. Bounds on Wasserstein and Kolmogorov distances in terms of Stein matrices.
The following statement shows how Stein’s matrices can be directly put into use,
in order to asses normal approximations (both in the sense of the Wasserstein and
Kolmogorov distances). Part (a) corresponds to Proposition 3.4 in Ledoux et al.
(2015), while Part (b) follows from a standard application of the one-dimensional
Stein’s method (see e.g. Nourdin and Peccati, 2012, Chapters 3 and 5).

Proposition 3.3. Fix an integer d ≥ 1, as well as θ ∈ [1,∞). Let X = (X1, ..., Xd)
be any centered random vector whose entries have moments of order θ, and let
G = (G1, ..., Gd) be a centered standard Gaussian vector. Assume that X has a
Stein matrix τ(X) (in the sense of Definition 2.3).

(a) If the entries of τ(X) have finite moments of order θ, then

Wθ(X,G) ≤ D(d, θ)

 d∑
i,j=1

IE |τi,j(X)− δij |θ
 1

θ

, (3.5)

where δi,j is the Kronecker symbol, and D(d, θ) := cθd
1−1/θ if θ ∈ [1, 2),

and D(d, θ) := cθd
1−2/θ if θ ≥ 2, with cθ := (IE|G1|θ)1/θ.

(b) If d = 1, and therefore X = X, G = G and τ(X) are one-dimensional
random variables,

dK(X,G) ≤ IE |τ(X)− 1| . (3.6)

In order to bound the 1-Wasserstein distance, we will actually need a slightly
different bound, proven e.g. by means of Stein’s method and of a slight modification
of the arguments used in the proof of Nourdin et al. (2010, Proposition 3.5): under
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the assumptions of Proposition 3.3, and assuming the entries of of τ(X) are square-
integrable,

W1(X,G) ≤

√√√√ d∑
i,j=1

IE[(τi,j(X)− δij)2]. (3.7)

4. Proofs of the main theoretical results

4.1. Proof of Theorem 2.1.

4.1.1. Proof of the upper bound. Let g(n) be the mapping appearing in Assumption
(A1). We shall prove that, under (A3), both Conditions (a) and (b) in the state-
ment of Lemma 3.1 are verified, thus implying that the asymptotic upper bound
(3.1) holds with probability one.

Verification of Condition (a). Fix integers a, n such that 2 log log n > 1, as well as
a real number p ≥ 1. In view of Assumption (A3), there exists on some auxiliary
probability space a coupling (U, V ) such that

U
law
=

Xn+a −Xa

g(n)

V
law
= N (0, 1)

IE
[
|U − V |2p

]
≤ (2p− 1)p

(
C

(2p)λ

1 + log n

)2p

. (4.1)

The Markov inequality yields therefore that, for every ε ∈ (0, 1),

IP

(
Xn+a −Xa

g(n)
≥ (1 + ε)

√
2 log log n

)
≤ IP

(
V ≥ (1 +

ε

2
)
√

2 log log n
)

+IP
(
|U − V | > ε

2

√
2 log log n

)
≤ 1

log(1+ ε
2 )

2

n
+

22p

ε2p
IE
[
|U − V |2p

]
,

where we have used the basic estimate IP[V ≥ c] ≤ e−c
2/2, for every c > 1. Since,

the previous bound is valid for any p, one can choose 2p = log log n. We now claim
that, for n sufficiently large,

2log logn

εlog logn
(log log n)

log logn

(
C

(log log n)λ

1 + log n

)log logn

≤ 1

log(1+ ε
2 n)2

.

To see this, just observe that the logarithm of the left hand side of the previous
expression is given by

log log n×
(

log
2

ε
+ log log log n+

logC + λ log log log n
)
− (log log n)

2 ∼ − (log log n)
2
,
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whereas the logarithm of the right hand side is given by

−
(

1 +
ε

2

)2
log log(n).

In view of these relations, we conclude immediately that Condition (a) is verified (for

some appropriate K ≥ 1, by choosing ε′ = (1 + ε
2 )2− 1 for some 0 < ε < 2(

√
2− 1).

Verification of Condition (b). If n is such that 2 log log n > 1, the same coupling
strategy as above yields the bound: for every x > 1

IP

(
Xn+a −Xa

g(n)
≥x
√

2 log log n

)
≤ 1

log( x2 )
2

n
+

22p

x2p
IE
[
|U − V |2p

]
,

where p ≥ 1 is arbitrary and the coupling (U, V ) verifies the bound (4.1). We now
choose p = 2−1 log log n, and we shall verify that each of the summands on the right-
hand side of the previous inequality is less than 1

xlog logn for n large enough. The

logarithm of the first summand is −
(
x
2

)2
log log n, which is less than − log logn log x

for every x > 0. On the other hand, the logarithm of the second summand is

log logn
(

log 2 + log log log n+ logC

+λ log log log n
)
− (log log n)

2 − log log n log x.

which also verifies the desired inequality, since

log log n (log 2 + log log log n+ logC + λ log log log n)− (log log n)
2
< 0.

The above computations show that Condition (b) is verified for B = θ = 1, and
some appropriate K ′ ≥ 2.

4.2. Proof of the lower bound. Let q > 1 be the real number appearing in Assump-
tion (A4). For any ε > 0, we select a strictly positive number αε > 0 in such a way
that the following condition holds:

(1 + αε)(1− ε)2 < 1. (4.2)

We need some further notation. Let d ≥ 1, and let p = 1, 2, ... be an arbitrary
integer. We define the d-dimensional vector:

Zp,d =

(
Xq(2p+2)1+αε −Xq(2p+1)1+αε

g
(
q(2p+2)1+αε − q(2p+1)1+αε

) ,
· · · ,

Xq(2p+2d)1+αε −Xq(2p+2d−1)1+αε

g
(
q(2p+2d)1+αε − q(2p+2d−1)1+αε

)) .
We also write

Ap =

{
Xq(2p+2)1+αε −Xq(2p+1)1+αε

g
(
q(2p+2)1+αε − q(2p+1)1+αε

) ≥ (1− ε)×

×
√

2 log log
(
q(2p+2)1+αε − q(2p+1)1+αε

)}
.

We consider a sequence of i.i.d. standard Gaussian random variables {Gi : i ≥ 1},
and define

Gp,d = (Gp, · · · , Gp+d−1) .
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Finally, we introduce the set

Bp =

{
Gp ≥ (1− ε)

√
2 log log

(
q(2p+2)1+αε − q(2p+1)1+αε

)}
.

We shall now prove that Ap is realized infinitely often with IP-probability one. This is
indeed the most difficult part of the proof. Indeed, because of lack of independence
of the increments of {Xn}n, one can not simply use the Borel-Cantelli Lemma.
However, the assumption (A4) expresses the fact that, at the particular scale

qp
1+αε

, the increments become sufficiently decorrelated to get the desired result.
In order to prove it, we need to translate the amount of information contained
in (A4) in terms of Kolmogorov distance between the vector of increments and a
Gaussian target. This delicate procedure will rely on Theorem 3.4 and Proposition
3.3. We are therefore naturally led to write the following estimates (where Cq,ε is
a constant which only depends on (q, ε) and that may change from line to line):∣∣∣∣∣∣IP

p+d−1⋂
i=p

Aci

− IP

p+d−1⋂
i=p

Bci

∣∣∣∣∣∣
≤ dK

(
Zp,d,Gp,d

)
≤ 3 log

1
4 (d+ 1)

√
W1

(
Zp,d,Gp,d

)
(by using (3.4))

≤ Cq,ε log
1
4 (d+ 1)

√
d√

1 + log
(
q(2p+2)1+αε − q(2p+1)1+αε

) (by using (A4)).

On the other hand, exploiting the independence of the events Bi,

log IP

p+d−1⋂
i=p

Bci

 =

p+d−1∑
i=p

log
(

1− IP(Bi)
)

≤ −
p+d−1∑
i=p

IP(Bi)

≤ −Cq,ε
p+d−1∑
i=p

1

i(1+αε)(1−ε)2
1√
log i

≤ −Cq,ε
∫ p+d−1

p

dx

x(1+αε)(1−ε)2
√

log x
,

where we have used that, if G
law
= N (0, 1), then IP(G > x) > e−

x2

2

x . Now we choose

η > 0 such that 1− η > (1 +αε)(1− ε)2. The existence of η is indeed supported by
the condition 4.2. We have∫ p+d−1

p

dx

x(1+αε)(1−ε)2
√

log x
> Cq,ε

∫ p+d−1

p

dx

x1−η
= Cq,ε

(
(p+ d− 1)η − pη

)
.

This implies that

log IP

p+d−1⋂
i=p

Bci

 ≤ −Cq,ε((p+ d− 1)η − pη
)
.
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Therefore,

IP

p+d−1⋂
i=p

Aci

 ≤ e
−Cq,ε

(
(p+d−1)η−pη

)

+
Cq,ε log

1
4 (d+ 1)

√
d√

1 + log
(
q(2p+2)1+αε − q(2p+1)1+αε

) .
We can now take d = px: if x > 1 then the first term in the right hand side of the
above inequality tends to zero as p tends to infinity. To deal with the second term,
we infer that

Cq,ε log
1
4 (d+ 1)

√
d√

1 + log
(
q(2p+2)1+αε − q(2p+1)1+αε

) < Cq,ε,x
p
x
2

p
1+αε

2

log
1
4 p.

This term goes to zero when p tends to infinity if x < 1 + αε. As a matter of fact,
for any 1 < x < 1 + αε, we have shown that

lim
p→∞

IP

p+px−1⋂
i=p

Aci

 = 0.

The fact claimed above, namely that Ap is realized infinitely often with probability
one, follows at once from the observation that for all k ≥ 1

IP

( ∞⋂
i=k

Aci

)
≤ lim
p→∞

IP

p+px−1⋂
i=p

Acp

 = 0.

We now proceed towards the end of the proof. Recall that we have shown that,
almost surely, one has infinitely often that

Xq(2p+2)1+αε −Xq(2p+1)1+αε

g
(
q(2p+2)1+αε − q(2p+1)1+αε

) (4.3)

≥ (1− ε)
√

2 log log
(
q(2p+2)1+αε − q(2p+1)1+αε

)
.

For simplicity, we set ψ(t) = g(t)
√

2 log log t. First, we will prove that, for any
α > 0, one has that

∞∑
k=0

IP
(
|Xqk1+α | > ψ

(
qk

1+α))
<∞.

To accomplish this task, we use Assumption (A3) to deduce that

dK

(
Xqk1+α

g(qk1+α)
, G

)
≤ C

k1+α
. (4.4)

By the triangle inequality and inequality (4.4), we get

∞∑
k=1

IP(Ak) < Cq,α

∞∑
k=1

1

k1+α
+

∞∑
k=1

IP

(
G >

√
2 log log qk1+α

)
.
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Hence, since 1 + α > 1, the first sum converges. So, one is left to show that the

second sum converges as well. Indeed, using the bound IP(G > t) ≤ e− t
2

2 for t ≥ 1,
we have that, for k large enough,

IP

(
G >

√
2 log log qk1+α

)
≤ e− log(log(qk

1+α
)) ≤ Cq,α

k1+α
.

By virtue of the first Borel-Cantelli Lemma, we can now infer that, for p large
enough, one has

Xq(2p)
1+αε ≥ −ψ

(
q(2p)

1+αε
)
.

Coming back to (4.3), we deduce that almost surely we have infinitely often

Xq(2p+2)1+αε ≥ (1− ε)ψ
(
q(2p+2)1+αε − q(2p+1)1+αε

)
− ψ

(
q(2p+1)1+αε

)
.

Therefore, almost surely,

lim sup
p→∞

Xq(2p+2)1+αε

ψ
(
q(2p+2)1+αε

)
≥ lim
p→∞

(1− ε)
ψ
(
q(2p+2)1+αε − q(2p+1)1+αε

)
ψ
(
q(2p+2)1+αε

) −
ψ
(
q(2p+1)1+αε

)
ψ
(
q(2p+2)1+αε

)


= (1− ε).

To obtain the last equality, we have used the fact that

lim
p→∞

ψ
(
q(2p+2)1+αε − q(2p+1)1+αε

)
ψ
(
q(2p+2)1+αε

) = 1,

lim
p→∞

ψ
(
q(2p+1)1+αε

)
ψ
(
q(2p+2)1+αε

) = 0,

which can be easily deduced from the Karamata integral representation of the slowly
varying function L (see e.g. Bingham et al., 1989, p. 14).

4.3. Proof of Proposition 2.5. We have to check that, under the assumptions in the
statement, the three conditions (A2), (A3) and (A4) are verified.

Proof of (A2). Fix n, a ∈ IN, and let τ indicate the Stein factor of the random
variable (Xn+a−Xa)/g(n) (that exists by virtue of (i)). According to the definition
of τ , one has that

IE

[(
Xn+a −Xa

g(n)

)2p
]

= (2p− 1)IE

[(
Xn+a −Xa

g(n)

)2p−2

τ

(
Xn+a −Xa

g(n)

)]

≤ (2p− 1)IE

[(
Xn+a −Xa

g(n)

)2p
] p−1

p

IE

[
τ

(
Xn+a −Xa

g(n)

)p] 1
p

.
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Applying Assumption (iii) in the statement, we therefore deduce that

IE

[(
Xn+a −Xa

g(n)

)2p
]
≤ (2p− 1)p IE

[
τ

(
Xn+a −Xa

g(n)

)p]
.

≤ (2p− 1)p
(

1 + C
pλ

g(n)

)p
,

thus yielding the desired conclusion.

Proof of (A3). Fix n2 > n1, and let τ indicate the Stein factor of the random
variable (Xn2

−Xn1
)/g(n2 − n1). According to Proposition 3.3-(a), one has that,

for every θ ≥ 1

Wθ

(
Xn2
−Xn1

g(n2 − n1)
, G

)
≤ cθ

∥∥∥τ(Xn2
−Xn1

g(n2 − n1)

)
− 1
∥∥∥
θ
,

so that the desired estimate in the θ-Wasserstein distance follows from (2.10), as well
as the bound cθ ≤ α(θ). The required one-dimensional bound in the Kolmogorov
distance is an immediate consequence of (2.10) and (3.6).

Proof of (A4). The conclusion follows at once from (3.7), as well as Assumption
(ii) in the statement.

5. Proofs connected to applications

In what follows we shall implicitly use the following elementary fact. Let Z =
{Zk : k ∈ Z} be a centered stationary Gaussian sequence. Then, it is a classical
result (use e.g. the results discussed in Nourdin and Peccati, 2012, Section 2.1)
that one can always find an isonormal Gaussian process G = {G(h) : h ∈ H} such
that the separable Hilbert space H contains a sequence {hk : k ∈ Z} having the
property that {G(hk) : k ∈ Z} has the same distribution as Z.

5.1. Proof of Theorem 2.2. We have to check that properties (A1) and (i), (ii) and
(iii) in Proposition 2.5 are verified. First of all we observe that, since the sequence
X is Gaussian, then every vector of the type Yn↑ has a Stein matrix given by its
own covariance. In view of this fact, it is immediate to check that all the required
properties are verified, provided one can show that, for all j ≥ i,∣∣∣∣∣ IE

[
(Xn2i −Xn2i−1)(Xn2j −Xn2j−1)

]
g(n2i − n2i−1)g(n2j − n2j−1)

∣∣∣∣∣ ≤ C

1 + log(n2i − n2i−1)
.

Now, in view of our assumptions, for all n2i−1 ≤ k ≤ n2i,∣∣∣∣∣∣
n2j−k∑

l=n2j−1−k

r(l)

∣∣∣∣∣∣ ≤ C(n2j − n2j−1)2a−1L(n2j − n2j−1).
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and also ∣∣∣∣∣ IE
[
(Xn2i

−Xn2i−1
)(Xn2j

−Xn2j−1
)
]

g(n2i − n2i−1)g(n2j − n2j−1)

∣∣∣∣∣
=

∣∣∣∣∣
∑n2i

k=n2i−1

∑n2j

l=n2j−1
r(l − k)

g(n2i − n2i−1)g(n2j − n2j−1)

∣∣∣∣∣
≤ n2i − n2i−1
g(n2i − n2i−1)g(n2j − n2j−1)

max
n2i−1≤k≤n2i

∣∣∣∣∣∣
n2j−k∑

l=n2j−1−k

r(l)

∣∣∣∣∣∣ .
≤
(
n2i − n2i−1
n2j − n2j−1

)1−a
L(n2j − n2j−1)

L(n2i − n2i−1)
.

≤ Cε
(
n2i − n2i−1
n2j − n2j−1

)1−a−ε

,

where we have used the fact that L(n)
L(m) ≤ Cε

(
n
m

)ε
for any ε > 0 (see Lai and

Stout, 1978, Theorem 4.4). Choosing ε small enough leads at once to the desired
conclusion.

5.2. Proofs of Theorem 2.3 and Theorem 2.4. For the sake of brevity, we will only
focus on the more delicate case of Theorem 2.4, as the non-critical case can be
treated in the same way (and is also proved in Arcones, 1999, Proposition 1). We
will check that Assumption (A1) is verified, together with properties (i), (ii) and
(iii) in the statement of Proposition 2.5. We adopt the same notations as in 2.19,
we set H = 1− 1

2q , and

l =

√
2q!

(
1− 1

q

)q (
1− 1

2q

)q
,

and we set

g(n) :=
√
ln log(n).

In view of the papers Breuer and Major (1983); Dobrushin and Major (1979);
Giraitis and Surgailis (1985), it is well known that

Xn

g(n)

law−−−−→
n→∞

N (0, 1).

Checking (A1). First, by using the stationarity of the increments of a fractional
Brownian motion, we infer that

Xn2
−Xn1

Law
= Xn2−n1

.

One immediately deduces that∣∣∣∣IE[Xn2 −Xn1

g(n2 − n1)

]2
− 1

∣∣∣∣ =

∣∣∣∣IE[ Xn2−n1

g(n2 − n1)

]2
− 1

∣∣∣∣ .
Now we observe that the covariance function ρH of the Gaussian sequence {Zk}k∈Z
is given by

ρH(k) =
1

2

(
|k + 1|2−1/q − 2|k|2−1/q + |k − 1|2−1/q

)
,
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and therefore verifies the following straightforward asymptotic relation:

ρH(k)q =

(
(1− 1

2q
)(1− 1

q
)

)q
|k|−1 +O(|k|−3), as |k| → ∞. (5.1)

On the other hand, we have that

IE

[
X2
n

g(n)2

]
=

q!

l2n log n

n−1∑
k,l=0

ρqH(k − l)

=
1(

(1− 1
2q )(1− 1

q )
)q
n log n

n−1∑
k=0

(n− k − 1)ρqH(k)

(5.1)
=

1

n log n

n−1∑
k=1

(n− k − 1)
1

k
+O

(
1

n log(n)

n−1∑
k=1

(n− k − 1)
1

k3

)

+O

(
1

log n

)
= I1 + I2 + I3.

First, we notice that

I2 ≤
1

log n

n−1∑
k=1

1

k3
= O

(
1

log n

)
.

As a consequence, we have only to show that

I1 = 1 +O

(
1

log n

)
.

To do so, we use the relations

I1 =
1

n log n

(
(n− 1)

n−1∑
k=1

1

k
− (n− 1)

)

=
1

log n

n∑
k=1

1

k
+O

(
1

log n

)
=

1

log n

(
log n+ γ +O

(
1

n

))
+O

(
1

log n

)
= 1 +O

(
1

log n

)
,

where γ stands for the Euler-Mascheroni constant appearing in the asymptotic
development of the harmonic series.

Checking (i) in Proposition 2.5. A consequence of the previous discussion is that
Xn can be represented as a sequence of elements of the q-th Wiener chaos associated
with some isonormal Gaussian process G = {G(h) : h ∈ H}. The existence of the
required Stein matrices follows immediately from relation (2.13).
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Checking (ii) in Proposition 2.5. Recall once again the explicit expression of the
Stein matrix for chaotic random variables given in (2.13). Now, in Nourdin and
Peccati (2012, p. 146) it is proved that, writing σ2

n = IE[X2
n],√√√√IE

[(
1− 1

qσ2
n

‖DXn‖2H
)2
]
≤ C

log n
. (5.2)

By the triangle inequality, we have√√√√IE

[(
1− 1

qg(n)2
‖DXn‖2H

)2
]

≤ C

log n
+

∣∣∣∣1− σ2
n

g(n)2

∣∣∣∣
√√√√IE

[(
1

qσ2
n

‖DXn‖2H
)2
]
.

As a consequence, one infers that IE

[(
1
qσ2
n
‖DXn‖2H

)2]
is a bounded sequence by

hypercontractivity (1.3). Besides, we have showed in checking assumption (A1)
that

σ2
n

g(n)2
=

1

g(n)2
IE[X2

n] = 1 +O

(
1

log(n)

)
.

It follows that, √√√√IE

[(
1− 1

qg(n)2
‖DXn‖2H

)2
]
≤ C

log(n)
. (5.3)

Making use of the stationarity of the Zk, one can see that

‖DXn −DXm‖2H
Law
= ‖DXn−m‖2H.

This implies that (2.8) is verified. In order to prove the assumption (A4) (2.9), we
shall use Nourdin and Peccati (2012, p 120, Lemma 6.2.1). This Lemma says that
for two elements F,G in the same Wiener chaos of order q, one has

IE
[
〈DF,DG〉2H

]
≤ Cq

(
IE [FG]

2
+ Var

[
‖DF‖2H

]
+ Var

[
‖DG‖2H

])
.

We apply such an estimate to

F =
Xni −Xni−1

g(ni − ni−1)

G =
Xnj −Xnj−1

g(nj − nj−1)
.

Relying on equation (5.3), one is left to show that (if i < j)∣∣∣IE[FG]
∣∣∣ ≤ C

1 + log(ni − ni−1)
.
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∣∣∣IE[FG]
∣∣∣ ≤ q!

l2g(ni − ni−1)g(nj − nj−1)

ni∑
k=ni−1

nj∑
l=nj−1

|ρH(l − k)|q

≤ C

g(ni − ni−1)g(nj − nj−1)

ni∑
k=ni−1

nj∑
l=nj−1

1

(l − k)

≤ C

g(ni − ni−1)g(nj − nj−1)

∫ ni

ni−1

∫ nj

nj−1

dxdy

y − x

=
C

g(ni − ni−1)g(nj − nj−1)

∫ ni

ni−1

(
log(nj − x)− log(nj−1 − x)

)
dx

≤ C

g(ni − ni−1)g(nj − nj−1)

∫ ni

ni−1

log(nj − x)dx

≤ C

g(ni − ni−1)g(nj − nj−1)
log(nj − ni−1)(ni − ni−1)

≤ C log(nj − ni−1)

log(ni − ni−1) log(nj − nj−1)

≤ C

log(ni − ni−1)

log nj + log(1− ni−1

nj
)

log nj + log(1− nj−1

nj
)

Since when i, j →∞ we have both ni−1

nj
→ 0 and

nj−1

nj
→ 0 we see that

log nj + log(1− ni−1

nj
)

log nj + log(1− nj−1

nj
)

=
1 +

log(1−ni−1
nj

)

lognj

1 +
log(1−

nj−1
nj

)

lognj

is a bounded sequence which gives the desired bound.

Checking (iii) in Proposition 2.5. Such an assumption is a straightforward applica-
tion of (5.3) and hypercontractivity (1.3).
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