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Abstract. We show that the rescaled maximum of the discrete Gaussian Free Field
(DGFF) in dimension larger or equal to 3 is in the maximal domain of attraction of
the Gumbel distribution. The result holds both for the infinite-volume field as well
as the field with zero boundary conditions. We show that these results follow from
an interesting application of the Stein-Chen method from Arratia et al. (1989).

1. Introduction

In this article we consider the problem of determining the scaling limit of the
maximum of the discrete Gaussian free field (DGFF) on Zd, d ≥ 3. Recently, for
d = 2, Bramson et al. (2016) showed that the maximum of the DGFF on box of
size N converges to a non-trivial limit law, after appropriate recentering. In this
case, due to the presence of the logarithmic growth of covariances, the problem is
connected to extremes of various other models, for example the Branching Brownian
motion and the Branching random walk. In d ≥ 3, the presence of covariances
decaying polynomially changes the setting but the behavior of maxima is still hard
to determine Chatterjee (2014, Section 9.6). This dependence also becomes a hurdle
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in various properties of level set percolation of the DGFF which were exhibited in a
series of interesting works (Rodriguez and Sznitman, 2013; Sznitman, 2012; Drewitz
and Rodriguez, 2015). The behavior of local extremes in the critical dimension has
also been unfolded recently in the papers Biskup and Louidor (2016, 2014).

We consider the lattice Zd, d ≥ 3 and take the infinite-volume Gaussian free field

(ϕα)α∈Zd with law P on RZd . The covariance structure of the field is given by the
Green’s function g of the standard random walk, namely E [ϕαϕβ ] = g(α − β), for
α, β ∈ Zd. For more details of the model we refer to Section 2. It is well- known
(see for instance Lawler, 1991) that for α 6= β, g(α−β) decays likes ‖α−β‖2−d and
hence for ‖α− β‖ → +∞, the covariance goes to zero. However this is not enough
to conclude that the scaling is the same of an independent ensemble. To give an
example where this is not the case, when VN is the box of volume N ,

∑
α∈VN ϕα is

of order N1/2+1/d, unlike the i. i. d. setting (see for example Funaki, 2005, Section
3.4).

The expected maxima over a box of volume N behaves like
√

2g(0) logN as
N → +∞. An independent proof of this fact is provided in Proposition 2.2 below;
this confirms the idea that the extremes of the field resemble that of independent
N (0, g(0)) random variables. In this article we show that the similarity is even
deeper, since the fluctuations of the maximum after recentering and scaling converge
to a Gumbel distribution. Note that in d = 2 the limit is also Gumbel, but with a
random shift (see Bramson et al., 2016, Theorem 2.5, Biskup and Louidor, 2016).
The main results of this article is the following.

Theorem 1.1. Let AN be a sequence of subsets of Zd such that |AN | = N . We
define two sequences as follows:

bN =
√
g(0)

[√
2 logN − log logN + log(4π)

2
√

2 logN

]
and aN = g(0)(bN )−1 (1.1)

so that for all z ∈ R

lim
N→+∞

P

(
maxα∈AN ϕα − bN

aN
< z

)
= exp(− e−z).

Note that scaling and centering are exactly the same as in the i. i. d. N (0, g(0))
case, see for example Hall (1982). As in d = 2, the argument depends on a com-
parison lemma. We show that in fact the proof is an interesting application of a
Stein-Chen approximation result. Not only does the result depend on the corre-
lation decay, but also crucially on the Markov property of the Gaussian free field.
We use Theorem 1 of the paper by Arratia et al. (1989) which approximates an
appropriate dependent Binomial process with a Poisson process, and gives some
calculable error terms. In general showing that the error terms go to zero is a
non-trivial task. In the DGFF case, thanks to estimates on the Green’s function
and the Markov property, the error terms are negligible.
The techinques used for the infinite-volume DGFF allow us to draw conclusions
also for the field with boundary conditions. For n > 0 let N := nd; we consider the
discrete hypercube VN := [0, n− 1]d ∩Zd. We define therein a mean zero Gaussian
field (ψα)α∈Zd whose covariance matrix (gN (α, β))α, β∈VN is the Green’s function
of the discrete Laplacian with Dirichlet boundary conditions outside VN (again for
a more precise definition see Section 2). The convergence result is the following:
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Theorem 1.2. Let VN be as above and (ψα)α∈Zd be a DGFF with zero boundary

conditions outside VN with law P̃VN . Let the centering and scaling be as in (1.1).
Then for all z ∈ R

lim
N→+∞

P̃VN

(
maxα∈VN ψα − bN

aN
< z

)
= exp(− e−z).

The core of the proof is an application of Slepian’s Lemma and also the use
Theorem 1.1 with the help of the Markov property. The structure of the article is
as follows. In Section 2 we recall the main facts on the DGFF that will be used in
Section 3 to prove the main theorem.

2. Preliminaries on the DGFF

Let d ≥ 3 and denote with ‖ · ‖ the `∞-norm on the lattice. Let ψ = (ψα)α∈Zd
be a discrete Gaussian Free Field with zero boundary conditions outside a finite set

Λ b Zd. On the space Ω := RZd endowed with its product topology, its law P̃Λ can
be explicitly written as

P̃Λ(dψ) =
1

ZΛ
exp

− 1

4d

∑
α, β∈Zd: ‖α−β‖=1

(ψα − ψβ)
2

 ∏
α∈Λ

dψα
∏

α∈Zd\Λ

δ0(dψα).

In other words ψα = 0 P̃Λ-a. s. if α ∈ Zd \ Λ, and (ψα)α∈Λ is a multivariate
Gaussian random variable with mean zero and covariance (gΛ(α, β))α, β∈Zd , where
gΛ is the Green’s function of the discrete Laplacian problem with Dirichlet boundary
conditions outside Λ. For a thorough review on the model the reader can refer for
example to Sznitman (2012). One can define also an infinite volume version of
this model, namely by ϕ = (ϕα)α∈Zd , a centered Gaussian field with covariance
matrix g(α, β)α, β∈Zd which admits the following random walk representation: if

Pα denotes the law of a simple random walk S started at α ∈ Zd, then

g(α, β) = Eα

∑
n≥0

1{Sn=β}

 .
Since g(0) < +∞ for d ≥ 3, it is known Georgii (1988, Chapter 13) that ϕ is the

limit as Λ ↑ Zd of the finite-volume measure ψ in the weak topology of probability
measures (for d ≥ 3). With a slight abuse of notation we write g(α−β) for g(α, β)
and also gΛ(α) = gΛ(α, α).

A key fact for the Gaussian Free Field is its spatial Markov property, which will
be used in the paper. The proof of the following Lemma can be found in Rodriguez
and Sznitman (2013, Lemma 1.2).

Lemma 2.1 (Markov property of the Gaussian Free Field). Let ∅ 6= K b Zd,
U := Zd \K and define (ϕ̃α)α∈Zd by

ϕα = ϕ̃α + µα, α ∈ Zd

where µα is the σ(ϕβ , β ∈ K)-measurable map defined as

µα =
∑
β∈K

Pα (HK < +∞, SHK = β)ϕβ , α ∈ Zd. (2.1)
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Here HK := inf {n ≥ 0 : Sn ∈ K} . Then, under P, (ϕ̃α)α∈Zd is independent of

σ(ϕβ , β ∈ K) and distributed as (ψα)α∈Zd under P̃U .

As an immediate consequence of the Lemma (see Rodriguez and Sznitman, 2013,
Remark 1.3)

P ((ϕα)α∈Zd ∈ · |σ(ϕβ , β ∈ K)) = P̃U ((ψα + µα)α∈Zd ∈ ·) P− a. s.

where µα is given in (2.1), P̃U does not act on (µα)α∈Zd and (ψα)α∈Zd has the law

P̃U .

2.0.1. Law of large numbers of the recentered maximum. Although this can be ob-
tained directly by Theorem 1.1, we think it is interesting to insert an independent
proof of the behavior of the maximum of the DGFF.

Proposition 2.2 (LLN for the maximum). Let VN := [0, n−1]d∩Zd, N := nd > 0.
The following limit holds:

lim
N→+∞

E [maxα∈VN ϕα]√
2 logN

=
√
g(0).

Proof : Using Slepian’s lemma and by comparison with independent N (0, g(0)) ran-
dom variables, the upper bound is immediate. As for the lower bound, we will use
Sudakov-Fernique inequality, see Adler and Taylor (2007, Theorem 2.2.3). We first

need a lower bound for E
[
(ϕα − ϕβ)

2
]
: we will apply here the bound

g(α) ≤

(
c
√
d

‖α‖

)d−2

, ‖α‖ ≥ d (2.2)

whose proof is provided in Sznitman (2011). The key to obtain the result is to

use a diluted version of the DGFF as follows. Consider V
(k)
N := VN ∩ kZd, where

k := blog nc ∈ {1, 2, . . .}. Note the fact that the expected maximum on VN is lower

bounded by that on the diluted lattice V
(k)
N . Now for α, β ∈ T := V

(k)
N and k > d

E
[
(ϕα − ϕβ)

2
]

= 2g(0)− 2g(α− β)
(2.2)

≥ 2

g(0)−

(
c
√
d

‖α− β‖

)d−2


≥ 2

g(0)−

(
c
√
d

blog nc

)d−2
 =: 2ν(n, d)>0

for n large enough. Notice also that lim→+∞ ν(n, d) =
√
g(0). Now take (Gα)α∈T

to be centered independent Gaussian random variables with variance ν(n, d). Then
from above we get that

E
[
(ϕα − ϕβ)2

]
≥ E

[
(Gα −Gβ)2

]
.

By an application of the Sudakov-Fernique inequality we have, E [maxα∈T ϕα] ≥
E [maxα∈T Gα] and hence,

E [maxα∈VN ϕα]√
logN

≥ ν(n, d)

√
log |T |
logN

.
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We obtain log |T | = d log
⌊
n
k

⌋
(1 + o (1)) = d log

⌊
n

blognc

⌋
(1 + o (1)). It follows that

log|T |
logN = 1 + o (1) and

lim
N→+∞

E [maxα∈VN ϕα]√
logN

≥
√

2g(0).

�

3. Proof of the main result

The proof of the main result is an application of the Stein-Chen method. To
keep the article self contained we recall the result from Arratia et al. (1989).

3.1. Poisson approximation for extremes of random variables. The main tool we
will use relies on a two-moment condition to determine the convergence of the
number of exceedances for a sequence of random variables. Let (Xα)α∈A be a
sequence of (possibly dependent) Bernoulli random variables of parameter pα. Let
W :=

∑
α∈AXα and λ := E [W ]. Now for each α we assume the existence of a

subset Bα ⊆ A which we consider a “neighborhood” of dependence for the variable
Xα, such that Xα is nearly independent from Xβ if β ∈ A \Bα. Set

b1 :=
∑
α∈A

∑
β∈Bα

pαpβ ,

b2 :=
∑
α∈A

∑
α6=β∈Bα

E [XαXβ ] ,

b3 :=
∑
α∈A

E [|E [Xα − pα | Hα]|]

where

Hα := σ (Xβ : β ∈ A \Bα) .

Theorem 3.1 (Theorem 1, Arratia et al., 1989). Let Z be a Poisson random
variable with E [Z] = λ and let dTV denote the total variation distance between
probability measures. Then

dTV (L(W ), L(Z)) ≤ 2(b1 + b2 + b3)

and ∣∣P (W = 0)− e−λ
∣∣ < min

{
1, λ−1

}
(b1 + b2 + b3).

Let now A b Zd with N := |A|, uN (z) := aNz + bN , and define for all α ∈ A

Xα = 1{ϕα>uN (z)} ∼ Be(pα).

A standard tool to determine the asymptotic of pα is Mills ratio:(
1− 1

t2

)
e−t

2/2

√
2πt

≤ P (N (0, 1) > t) ≤ e−t
2/2

√
2πt

, t > 0. (3.1)

This yields pα ∼ N−1 exp(−z) as N → ∞. Since pα is independent of α, we
suppress the subscript α throughout. We will also use later a bivariate form of
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this bounds in the form proved by Savage (1962, formula (I)): for X = (X1, X2) ∼
N (0, Σ), a = (a1, a2) ∈ R2 and fX the density of X, one has

P(X1 > a, X2 > a2) ≤ fX(a)

(
2∏
i=1

∆i

)−1

(3.2)

with ∆i :=
∑2
j=1 ai(Σ

−1)ji. We furthermore introduce W :=
∑
α∈AXα and

see that E [W ] ∼ e−z. Of course W is closely related to the maximum since
{maxα∈A ϕα ≤ uN (z)} = {W = 0}. We will now fix z ∈ R and λ := e−z. We
are now ready to prove our main result.

Proof : Our main idea is to apply Theorem 3.1. The proof will first show that the
limit is Gumbel, and in the second part we will prove uniform convergence. To this
scope we define, for a fixed but small ε > 0,

Bα := B
(
α, (logN)2+2ε

)
∩A

where B(α, L) denotes the ball of center α of radius L in the `∞-distance. We draw
below examples of such neighborhoods when

α ∈ ∂A :=
{
γ ∈ A : ∃β ∈ Zd \A, ‖β − γ‖ = 1

}
and α ∈ int(A) = A \ ∂A.

Convergence. The method is based on the estimate of three terms (cf. Sub-
sec. 3.1).

(i) Recall b1 =
∑
α∈A

∑
β∈Bα p

2. Using Mills ratio we have

b1 ≤ cN(logN)d(2+2ε)

(√
g(0) e−

1
2g(0)

uN (z)2

√
2πuN (z)

)2

= N−1(logN)d(2+2ε) e−2z+o(1) = o (1) . (3.3)

(ii) Recall b2 =
∑
α∈A

∑
α 6=β∈Bα E [XαXβ ]. First we need to estimate the joint

probability

P (ϕα > uN (z), ϕβ > uN (z)) .

Denote the covariance matrix

Σ2 =

[
g(0) g(α− β)

g(α− β) g(0)

]
Note that, for w ∈ R2, one has

wtΣ−1
2 w =

1

g(0)2 − g(α− β)2

(
g(0)

(
w2

1 + w2
2

)
− 2g(α− β)w1w2

)
.

Using 1 := (1, 1)t we denote by

∆i := uN (z)
(
1tΣ−1

2

)
i

=
uN (z)(g(0)− g(α− β))

g(0)2 − g(α− β)2
=

uN (z)

g(0) + g(α− β)
, i = 1, 2.

Exploiting (3.2) we have

P(ϕα > uN (z), ϕβ > uN (z)) ≤ 1

2π

1

|det Σ2|1/2∆1∆2
exp

(
−uN (z)2

2
1tΣ−1

2 1

)
(3.4)
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(a) Bα when α ∈ int(A).

(b) Bα when α ∈ ∂A.

Figure 3.1. Examples of Bα

Note that using the explicit formula for the determinant one can bound the first
factor easily by

1

2π

1

|det Σ2|1/2∆1∆2
≤

(
1 + g(α−β)

g(0)

)3/2

(
1− g(α−β)

g(0)

)1/2
.

Now using uN (z)2 = b2N + 2g(0)z+ g(0)2z2/b2N and the bound of b2N by Hall (1982,
Equation 3)

g(0)(2 logN − log logN − log 4π) ≤ b2N ≤ 2g(0) logN
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we can now upper bound the exponential term by,

exp

(
−uN (z)2

2
1tΣ−1

2 1

)
≤ N−

2g(0)
g(0)+g(α−β) e−

2g(0)z
g(0)+g(α−β) +o(1) .

Also note that for x 6= 0, g(‖x‖)/g(0) ≤ g(e1)/g(0) = 1 − κ where κ :=

P0

(
H̃0 = +∞

)
∈ (0, 1) and H̃0 = inf {n ≥ 1 : Sn = 0}. Hence we have that

g(0)

g(0) + g(α− β)
≥ 1

2− κ
and

g(α− β)

g(0) + g(α− β)
≤ 1− κ.

We thus obtain

P (ϕα > uN (z), ϕβ > uN (z))

≤ (2− κ)3/2

κ1/2
N−

2
(2−κ) max

(
e−2z

1{z≤0}, e
−2z/(2−κ)

1{z>0}

)
.

We get finally for some constants c, c′ > 0 depending only on d and κ

b2 ≤ cN(logN)d(2+2ε) (2− κ)3/2

κ1/2
N−

2
(2−κ) max

(
e−2z

1{z≤0}, e
−2z/(2−κ)

1{z>0}

)
≤ c′N−

κ
(2−κ) (logN)d(2+2ε) max

(
e−2z

1{z≤0}, e
−2z/(2−κ)

1{z>0}

)
. (3.5)

Since κ/(2− κ) > 0 we have that b2 = o (1).

(iii) Recall b3 =
∑
α∈A E [|E [Xα − pα | Hα]|]. It will be convenient to introduce

also another σ-algebra which strictly contains Hα = σ (Xβ : β ∈ A \Bα), that is

H′α = σ (ϕβ : β ∈ A \Bα) .

Using the tower property of the conditional expectation and Jensen’s inequality

E [|E [Xα − p | Hα]|] ≤ E [|E [Xα − p | H′α]|] .

At this point we recognize, thanks to Corollary 2.1, that

E [Xα | H′α] = P̃Zd\(A\Bα)(ψα + µα > uN (z)) P− a. s.

where (ψα)α∈Zd is a Gaussian Free Field with zero boundary conditions outside
A \ Bα. In addition, setting Uα := Zd \ (A \ Bα), we observe that gUα(α) ≤ g(0)
Lawler (1991, Section 1.5).

We will make use of the fact that µα is a centered Gaussian, and apply the same
estimates of Popov and Ráth (2015): first observe using strong Markov property
we have β ∈ A \Bα,

g(α, β) =
∑

γ∈A\Bα

Pα
(
HA\Bα < +∞, SHA\Bα = γ

)
g(γ, β). (3.6)

We can plug this in to obtain

Var [µα]
(3.6)
=

∑
β∈A\Bα

Pα
(
HA\Bα < +∞, SHA\Bα = β

)
g(α, β) ≤ sup

β∈A\Bα
g(α, β)

≤ c

(logN)2(1+ε)(d−2)
(3.7)

by the standard estimates for the Green’s function

cd‖α− β‖2−d ≤ g(α, β) ≤ Cd‖α− β‖2−d (3.8)
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for some 0 < cd ≤ Cd < +∞ independent of α and β Lawler (1991, Theorem
1. 5. 4). Using the estimate

P (|N (0, 1)| > a) ≤ e−a
2/2, a > 0 (3.9)

we get that there exists a constant C > 0 such that

P
(
|µα| > (uN (z))

−1−ε
)
≤ C exp

(
−(logN)(2d−5)(1+ε)

)
. (3.10)

Note that this quantity goes to zero since d ≥ 3. Hence

E
[∣∣∣P̃Uα(ψα + µα > uN (z))− p

∣∣∣]
= E

[∣∣∣P̃Uα(ψα + µα > uN (z))− p
∣∣∣1{|µα|≤(uN (z))−1−ε}

]
+E
[∣∣∣P̃Uα(ψα + µα > uN (z))− p

∣∣∣1{|µα|>(uN (z))−1−ε}
]

=: T1 + T2.

By (3.10) and the fact that d ≥ 3, we notice that NT2 = o (1). Therefore it is
sufficient to treat the term T1. By conditioning on whether p is larger or smaller
than PUα(ψα + µα > uN (z)) we can split the event in T1 into the following two
terms.

E
[(

P̃Uα(ψα + µα > uN (z))− p
)
1{|µα|≤(uN (z))−1−ε} 1{p<P̃Uα (ψα+µα>uN (z))}

]
+E
[(
p− P̃Uα(ψα + µα > uN (z))

)
1{|µα|≤(uN (z))−1−ε} 1{p≥P̃Uα (ψα+µα>uN (z))}

]
=: T1,1 + T1,2. (3.11)

We will now deal with T1,2. The first one can be treated with a similar calculation.
Using Mills ratio and fact that ψα has variance gUα we get that,

p− P̃Uα(ψα + µα > uN (z))

≤
√
g(0) e

−uN (z)2

2g(0)

√
2πuN (z)

−

(
1−

( √
gUα(α)

uN (z)− µα

)2) √
gUα(α) e

− (uN (z)−µα)2

2gUα
(α)

√
2π(uN (z)− µα)

(3.12)

We have on the event
{
|µα| ≤ (uN (z))

−1−ε
}

that the above is bounded by

√
g(0) e−

uN (z)2

2g(0)

√
2πuN (z)

×

×

1− (1 + o (1))

√
gUα(α)uN (z) e

(
1− g(0)

gUα
(α)

)
uN (z)2

2g(0)
+
uN (z)−ε
gUα

(α)
−uN (z)−2−2ε

2gUα
(α)√

g(0)uN (z)(1− uN (z)−2−ε)

 .

(3.13)

Since the bound is non random, by bounding the indicator functions by 1,

E
[(
p− P̃Uα(ψα + µα > uN (z))

)
1{|µα|≤(uN (z))−1−ε} 1{p≥P̃Uα (ψα+µα≤uN (z))}

]
is bounded above by (3.13). Now

b3 ≤
∑
α∈A

(T1 + T2)
(3.10)

≤
∑
α∈A

T1 + o (1) =
∑
α∈A

T1,1 +
∑
α∈A

T1,2 + o (1) . (3.14)
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Then

T1,2 =

√
g(0) e−

uN (z)2

2g(0)

√
2πuN (z)

×

×

1− (1 + o (1))

√gUα(α)uN (z) e

(
1− g(0)

gUα
(α)

)
uN (z)2

2g(0)
+o(1)√

g(0)uN (z)(1 + o (1))

 .

Observe that 1− g(0)
gUα (α) < 0 since g(0) > gUα(α). We observe further that (and we

will prove it in a moment)

Claim 3.2. supα∈A

(
1− g(0)

gUα (α)

)
uN (z)2 = o (1) .

Therefore T1,2 = o (1) uniformly in α. This yields that

∑
α∈A

T1,2 ≤ N
√
g(0) e−

uN (z)2

2g(0)

√
2πuN (z)

o (1) = e−z+o(1) o (1) . (3.15)

Analogously,
∑
α∈A T1, 1 = o (1). Plugging (3.15) in (3.14), one obtains b3 = o (1).

We now only need to show Claim 3.2. By the Markov property we know

gUα(α) = g(0)−
∑

γ∈A\Bα

Pα
(
HA\Bα < +∞, SHA\Bα = γ

)
g(γ, α).

This shows that

0 ≤ g(0)

gUα(α)
− 1 ≤

supγ∈A\Bα g(γ, α)

gUα(α)
.

Note that g(γ, α)
(3.8)

≤ Cd(logN)−2(d−2)(1+ε). Also,

gUα(α) = Eα

HA\Bα∑
n=0

1{Sn=α}

 ≥ 1

and hence we have

0 ≤ g(0)

gUα(α)
− 1 ≤ c(logN)−2(d−2)(1+ε) (3.16)

from which it follows that(
1− g(0)

gUα(α)

)
uN (z)2 ≤ c(logN)−2(d−2)(1+ε)(logN + z + o (1)) = o (1) . (3.17)

Therefore the claim follows and we have shown pointwise convergence.
�

3.2. DGFF with boundary conditions: proof of Theorem 1.2. The idea of the proof
is to exploit the convergence we have obtained in the previous section. We will show
a lower bound through a comparison with i. i. d. variables, and an upper bound
by considering the maximum restricted to the bulk of VN , concluding by means of
a convergence-of-types result. We abbreviate gN (·, ·) := gVN (·, ·). For δ > 0 define
(recall that VN = [0, n− 1]d ∩ Zd, with N = nd)

V δN :=
{
α ∈ VN : ‖α− γ‖ > δN1/d, γ ∈ Zd \ VN

}
.

We begin with the easier lower bound.
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Proof of Theorem 1.2: lower bound: We will need a lower and an upper bound on
the limiting distribution of the maximum. Let us start with the former. We use

the shortcut P̃N := P̃VN . First we note that since the covariance of (ψα) is non-
negative, we can apply Slepian’s lemma for the lower bound. Let (Zα)α∈VN be
independent mean zero Gaussian variables with variance gN (α); then by Slepian’s
lemma it follows that

P̃N

(
max
α∈VN

Zα ≤ uN (z)

)
≤ P̃N

(
max
α∈VN

ψα ≤ uN (z)

)
,

where uN (z) = aNz + bN as before. Then we want to analyze P(maxα∈A Zα ≤
uN (z)). First fix z ∈ R. Take N large enough such that −g(0)b2N ≤ z (this is
possible as b2N → +∞). Now note that

P̃N

(
max
α∈VN

Zα ≤ uN (z)

)
=
∏
α∈VN

(1− P̃N (Zα > uN (z)))

(3.1)

≥
∏
α∈VN

1− e
−uN (z)2

2gN (α)

√
2πuN (z)

√
gN (α)

 ≥
1− e−

uN (z)2

2g(0)

√
2πuN (z)

√
g(0)

N

.

The last term converges to exp(− e−z) as N → +∞. This shows that for any fixed
z ∈ R,

lim inf
N→+∞

P̃N

(
max
α∈VN

ψα ≤ uN (z)

)
≥ exp(− e−z).

�

In order to prove the upper bound of Theorem 1.2, we shall need a Lemma
which will allow us to derive the convergence of the maximum in VN from that of
the maximum in V δN .

Lemma 3.3. Let N ≥ 1, FN be a distribution function, and mN = (1 − 2δ)dN .
Let aN and bN be as in (1.1). If limN→+∞ FN (amN z + bmN ) = exp(− e−z), then

lim
N→+∞

FN (aNz + bN ) = exp
(
− e−z+d log(1−2δ)

)
.

Proof : The proof follows from a convergence-of-types theorem (see Resnick, 1987,
Proposition 0.2) if we can show that

amN
aN

→ 1 and
bmN − bN

aN
→ d log(1− 2δ). (3.18)

It is easy to see that

amN
aN

∼
(

1 +
d log(1− 2δ)

logN

)1/2

→ 1.

To show the second asymptotics note that√
2g(0) logmN −

√
2g(0) logN =

[
d log(1− 2δ)

2 logN
+ O

(
1

(logN)2

)]√
2g(0) logN.

(3.19)
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Also observe that as N → +∞ one gets√
g(0)

[
log log(4πN)

2
√

2 logN
− log log(4πmN )

2
√

2 logmN

]
=

√
g(0)

2
√

2 logN

[
− log

(
1 +

d log(1− 2δ)

logN

)
+ o (1)

]
. (3.20)

(3.19) and (3.20) together give

bmN − bN =
√
g(0)

d log(1− 2δ)√
2 logN

+ O
(

(logN)−
3
2

)
.

Using a−1
N = g(0)−1

√
2g(0) logN(1 + o (1)) and the above we get that

bmN − bN
aN

→ d log(1− 2δ).

�

We have now the tools to finish the upper bound.

Proof of Theorem 1.2: upper bound: First fix z ∈ R and δ > 0, set mN :=
∣∣V δN ∣∣ =

(1 − 2δ)dN . For the upper bound, we again use Lemma 2.1 and the fact that, for

α ∈ V δN , one has the equality ϕα = ψα +µ
(N)
α under the infinite volume measure P,

where µ
(N)
α = E [ϕα|F∂VN ]. Hence if we fix ε > 0, and condition on the event that{

max
α∈V δN

|µ(N)
α | ≤ εamN

}
(where amN is defined according to (1.1)) we have

P̃N

(
max
α∈VN

ψα ≤ umN (z)

)
≤ P

(
max
α∈V δN

ϕα ≤ umN (z + ε)

)

+ P

(
max
α∈V δN

|µα| > εamN

)
. (3.21)

First we show that the second term goes to zero. Observe that µα is a centered
Gaussian with variance

max
β∈V δN

Var [µβ ] ≤ sup
β∈V δN , γ∈∂VN

g(β, γ) = O
(
N (2−d)/d

)
.

Let (Φα)α∈V δN be a collection of i.i.d. Gaussians with mean zero and E
[
Φ2
α

]
=

E
[
µ2
α

]
for all α. By Slepian and Talagrand (2003, Prop. 1.1.3) we have

P

(
max
α∈V δN

|µα| > εamN

)
≤

2E
[
maxα∈V δN Φα

]
amN ε

+ 2P

(
max
α∈V δN

Φα ≤ 0

)

≤
2
√

maxβ∈V δN Var [µβ ] log
∣∣V δN ∣∣

amN ε
+ o (1) .
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Since aN grows like
(√

2 logN
)−1

as N → +∞, we can conclude that, for every
ε > 0,

lim
N→+∞

P

(
max
α∈V δN

|µα| > εamN

)
= 0.

Using Theorem 1.1 we have that

lim
N→+∞

P

(
max
α∈V δN

ϕα ≤ umN (z + ε)

)
= exp

(
− e−(z+ε)

)
.

Using continuity of the limit above and letting ε → 0 in the above we obtain
from (3.21),

lim sup
N→+∞

P̃N

(
max
α∈V δN

ψα ≤ umN (z)

)
≤ exp(− e−z). (3.22)

Now using an easy comparison with independent random variables just as in the
proof of the lower bound of Theorem 1.2 above it follows that (3.22) is in fact an
equality. By Lemma 3.3 one can conclude that

lim
N→+∞

P̃N

(
max
α∈V δN

ψα ≤ uN (z)

)
= exp

(
− e−z+d log(1−2δ)

)
and thus letting δ → 0, the upper bound follows.

�
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