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Abstract. We study the block counting process and the fixation line of exchange-
able coalescents. Formulas for the infinitesimal rates of both processes are provided.
It is shown that the block counting process is Siegmund dual to the fixation line.
For exchangeable coalescents restricted to a sample of size n and with dust we
provide a convergence result for the block counting process as n tends to infin-
ity. The associated limiting process is related to the frequencies of singletons of
the coalescent. Via duality we obtain an analog convergence result for the fixa-
tion line of exchangeable coalescents with dust. The Dirichlet coalescent and the
Poisson–Dirichlet coalescent are studied in detail.

1. Introduction

Coalescent processes have attracted the interest of many researchers over the
last decades, mainly in probability theory and population genetics. Most results
in coalescent theory concern coalescents with multiple collisions independently in-
troduced by Pitman (1999) and Sagitov (1999). Less is known for the full class of
exchangeable coalescents Π = (Πt)t≥0 allowing for simultaneous multiple collisions
of ancestral lineages. Note that Π is a Markovian process taking values in the space
P of partitions of N := {1, 2, . . .}. Schweinsberg (2000a) showed that every ex-
changeable coalescent Π can be characterized by a finite measure Ξ on the infinite
simplex

∆ := {x = (xr)r∈N : x1 ≥ x2 ≥ · · · ≥ 0, |x| :=
∑∞
r=1 xr ≤ 1}. (1.1)

Exchangeable coalescents are therefore called Ξ-coalescents. The aim of this article
is to provide some more information on the block counting process and the fixation
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line of the Ξ-coalescent and on the relation between these two processes. We there-
fore briefly recall the definition of the block counting process and turn afterwards
to the fixation line.

For t ≥ 0 let Nt denote the number of blocks of Πt. It is well known that
N := (Nt)t≥0 is a Markovian process with state space S := N ∪ {∞}, called the

block counting process of Π. We use the notation N
(n)
t for the number of blocks

of Πt restricted to a sample of size n ∈ N. The block counting process has been
studied extensively in the literature with a main focus on coalescents with multiple
collisions (Λ-coalescents). We will revisit some of its properties throughout this
article.

The definition of the fixation line is more involved. As in Schweinsberg (2000a)
decompose Ξ = Ξ({0})δ0 + Ξ0 with δ0 the Dirac measure at 0 ∈ ∆ and Ξ0 having
no atom at 0. For x = (xr)r∈N ∈ ∆ define (x, x) :=

∑∞
r=1 x

2
r and ν(dx) :=

Ξ0(dx)/(x, x). One possible definition of the fixation line is based on the lookdown
construction going back to Donnelly and Kurtz (1996, 1999). For some further
information on the lookdown construction we refer the reader to Birkner et al.
(2009). Imagine a population consists of countably many individuals distinguished
by their levels. The level of an individual is a positive integer, and the individual
at time t ≥ 0 at level i ∈ N is denoted by (t, i). In the following we use the
Poisson process construction of Schweinsberg (2000a, Section 3). Define N0 :=
{0, 1, 2, . . .} and, for every x = (xr)r∈N ∈ ∆, let Px be the law of a sequence ξ =
(ξ1, ξ2, . . .) of independent and identically distributed N0-valued random variables
with distribution P(ξ1 = 0) := 1− |x| and P(ξ1 = r) = xr, r ∈ N. Furthermore, for
i, j ∈ N with i < j let zij be the sequence (z1, z2, . . .) with zi = zj := 1 and zk := 0
for k /∈ {i, j}. Take a Poisson process on [0,∞)×NN

0 with intensity measure λ⊗µ,
where λ denotes the Lebesgue measure on [0,∞) and

µ(A) := Ξ({0})
∑
i,j∈N
i<j

1{zij∈A} +

∫
∆

Px(A) ν(dx) (1.2)

for all measurable A ⊆ NN
0 . Each atom (t, x) corresponds to a reproduction event

which is defined as follows. For r ∈ N define Jr := {j ∈ N : ξj = r}. For r ∈ N
and j ∈ Jr, the individual (t, j) is a child of the individual (t−,min Jr). The other
lineages are shifted upwards keeping the order they had before the reproduction
event. The construction of this countable infinite population model is called the
lookdown construction.

We are now able to define the fixation line. Fix i ∈ N. The levels of the offspring
at time t ≥ 0 of the individual (0, i + 1), that is the individual at time 0 at level

i+1, form a subset of N, whose minimal element (if it exists) we denote by L
(i)
t +1.

If this subset is empty, we define L
(i)
t := ∞. For example, if at the time of a

reproduction event, J1 = N and Jr = ∅ for all r ∈ N \ {1}, then the individual

at time 0 at level 2 has no offspring at all, so in this case we have L
(1)
t = ∞. By

construction, the process L(i) := (L
(i)
t )t≥0 has state space {i, i+ 1, . . .} ∪ {∞} and

non-decreasing paths. Moreover, L
(1)
t ≤ L

(2)
t ≤ · · · . We define Lt := L

(1)
t and

L := (Lt)t≥0. When Lt reaches level n, all the individuals at time t with levels
1, . . . , n are offspring of the single individual (0, 1). Therefore, the whole finite
population of size n (consisting of the n individuals at time t with levels 1, . . . , n)
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stems from the same individual at time 0, an event called fixation in population
genetics.

The process L is hence called the fixation line. This process can be traced back
to Pfaffelhuber and Wakolbinger (2006) for the Kingman coalescent. For the Λ-
coalescent the fixation line appears in Labbé (2014) and was further studied by
Hénard (2013, 2015).

The block counting process and the fixation line are two rather useful processes in
coalescent theory. Several functionals of the n-coalescent (the coalescent restricted
to a sample of size n ∈ N), for example the number of jumps, the time back
to the most recent common ancestor (absorption time) and the total tree length
of the n-coalescent, can be expressed in terms of the the block counting process

(N
(n)
t )t≥0. We exemplarily refer the reader to Gnedin et al. (2014) for a survey on

the asymptotic behavior of these functionals as n tends to infinity. The fixation
line is itself an important functional of generalized Fleming–Viot processes. For the
Kingman case it has for example been proven to be a powerful tool in the study of
evolving coalescent trees (Pfaffelhuber and Wakolbinger, 2006; Pfaffelhuber et al.,
2011). Last but not least, conditions for the Ξ-coalescent to come down from infinity
are translated via Siegmund duality into conditions for explosion of the fixation line
(see Remark 2.11) and may therefore help to solve the in its full generality still open
problem to find a nice characterization of all measures Ξ for which the Ξ-coalescent
comes down from infinity (Herriger and Möhle, 2012; Schweinsberg, 2000a).

We close the introduction by a brief summary of the organization of the article.
Section 2 contains the main results. Propositions 2.1 and 2.5 provide formulas for
the infinitesimal rates and the total rates of the block counting process N = (Nt)t≥0

and the fixation line L = (Lt)t≥0 for arbitrary Ξ-coalescents. Theorem 2.9 shows
that the block counting process N is Siegmund dual to the fixation line L. For
Ξ-coalescents with dust, Theorem 2.13 provides a convergence result for N and L
when their initial state tends to infinity. The limiting processes are related to the
frequencies of singletons of the coalescent and can be expressed in terms of the
subordinator associated with the coalescent. Similar limiting processes appear in
other frameworks of Markov chains with rare large jumps, see for example Haas
and Miermont (2011) and the recent preprint of Bertoin and Kortchemski (2014).
In Sections 3 and 4 we study the Dirichlet coalescent and the Poisson–Dirichlet
coalescent respectively. The proofs of the results stated in Section 2 are provided
in Section 5. The appendix deals with a duality relation for generalized Stirling
numbers being closely related to the Siegmund duality of N and L.

2. Results

Throughout the article we shall use the following subsets of the infinite simplex
∆ defined in (1.1). For n ∈ N define ∆n := {x = (xr)r∈N ∈ ∆ : x1 + · · · + xn =
1}. Furthermore let ∆f :=

⋃
n∈N ∆n = {x = (xr)r∈N ∈ ∆ : x1 + · · · + xn =

1 for some n ∈ N} and ∆∗ := {x ∈ ∆ : |x| = 1}. Note that ∆1 ⊂ ∆2 ⊂ · · · ⊂
∆f ⊂ ∆∗ ⊂ ∆ and that ν(∆n) ≤ nΞ(∆n) < ∞, since (x, x) =

∑n
r=1 x

2
r = 1/n +∑n

r=1(xr − 1/n)2 ≥ 1/n for all n ∈ N and x ∈ ∆n.
In order to state our first result it is convenient to introduce the following urn

model which is essentially a version of Kingman’s paintbox construction (King-
man, 1982, Section 8) and can be also viewed as a generalization of an infinite
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urn model investigated by Hwang and Janson (2008). Fix x = (xr)r∈N ∈ ∆. Re-
call that |x| :=

∑∞
r=1 xr and define x0 := 1 − |x| for convenience. Imagine a

countable infinite number of boxes having labels r ∈ N0. Balls are allocated suc-
cessively to these boxes, where it is assumed that every ball will go to box r ∈ N0

with probability xr independently of the other balls. If Xr(i, x) denotes the num-
ber of balls in box r ∈ N0 after i ∈ N0 balls have been allocated, then clearly
(X0(i, x), X1(i, x), X2(i, x), . . .) has an infinite multinomial distribution with pa-
rameters i and (x0, x1, x2, . . .). The random variable

Y (i, x) := X0(i, x) +

∞∑
r=1

1{Xr(i,x)≥1} (2.1)

counts the balls contained in box 0 plus the number of other boxes which are non-
empty. In the language of Kingman’s paintbox, when a ball goes to box r ∈ N, it
will be painted with color r. The box 0 plays a distinguished role. Each ball going
to box 0 is painted with a new color never seen before. Y (i, x) is the number of
different colors after i balls have been painted.

Propositions 2.1 and 2.5 below underline the well known fact that the process
(Y (i, x))i∈N0

plays a fundamental role in coalescent theory. Proposition 2.1 concerns
the infinitesimal rates of the block counting process N . These rates are essentially
known from the literature (see, for example, Freund and Möhle, 2009). We state
the result for the record and since the case Ξ(∆f ) > 0 requires some attention.

Proposition 2.1 (Rates of the block counting process). Let Ξ be a finite measure
on ∆ and let Π be a Ξ-coalescent. The block counting process N = (Nt)t≥0 of Π
moves from state i ∈ N to state j ∈ N with j < i at the rate

qij = Ξ({0})
(
i

2

)
δj,i−1 +

∫
∆

P(Y (i, x) = j) ν(dx) (2.2)

with Y (i, x) defined via (2.1). The probability below the integral in (2.2) can be

provided explicitly as P(Y (i, x) = j) =
∑j
k=1 fijk(x), where

fijk(x) :=
xj−k0

(j − k)!

∑
i1,...,ik∈N

i1+···+ik=i−j+k

i!

i1! · · · ik!

∑
r1,...,rk∈N
r1<···<rk

xi1r1 · · ·x
ik
rk
. (2.3)

The total rates are

qi :=

i−1∑
j=1

qij = Ξ({0})
(
i

2

)
+

∫
∆

P(Y (i, x) < i) ν(dx) (2.4)

= Ξ({0})
(
i

2

)
+

∫
∆

(
1− xi0 −

i∑
k=1

(
i

k

)
xi−k0

∑
r1,...,rk∈N
all distinct

xr1 · · ·xrk
)
ν(dx),

i ∈ N. Moreover, q∞j = ν(∆j)−ν(∆j−1) for j ∈ N (∆0 := ∅) and q∞∞ = −ν(∆f ).

Remark 2.2. From qi+1−qi = iΞ({0})+
∫

∆
P(Y (i+1, x) = i, Y (i, x) = i) ν(dx) ≥ 0

we conclude that qi+1 ≥ qi with equality qi+1 = qi if and only if Ξ(∆ \∆i−1) = 0,
i ∈ N. Thus, if Ξ(∆ \∆f ) > 0 then the total rates qi, i ∈ N, are pairwise distinct.

Remark 2.3. For the rates of the block counting process of the Dirichlet coalescent
and the Poisson–Dirichlet coalescent we refer the reader to (3.1), (3.2) and (4.1).
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Remark 2.4. For the Λ-coalescent the rate (2.2) reduces to the well known formula
(see, for example, Pitman, 1999 or Möhle, 2006, Eq. (13))

qij =

(
i

j − 1

)∫
[0,1]

xi−j−1(1− x)j−1 Λ(dx), i, j ∈ N, j < i, (2.5)

and the total rates are (Möhle, 2006, Eq. (14))

qi = Λ({0})
(
i

2

)
+

∫
(0,1]

1− (1− x)i − ix(1− x)i−1

x2
Λ(dx), i ∈ N.

For the β(a, b)-coalescent with parameters a, b ∈ (0,∞) the rate (2.5) reduces to

qij =
Γ(a+ b)

Γ(a)Γ(b)

Γ(i+ 1)

Γ(i− 2 + a+ b)

Γ(j − 1 + b)

Γ(j)

Γ(i− j − 1 + a)

Γ(i− j + 2)
, i, j ∈ N, j < i.

(2.6)

We now state the analog result for the rates of the fixation line L = (Lt)t≥0.

Proposition 2.5 (Rates of the fixation line). Let Ξ be a finite measure on ∆. The
fixation line L = (Lt)t≥0 moves from state i ∈ N to state j ∈ N with j > i at the
rate

γij = Ξ({0})
(
j

2

)
δj,i+1 +

∫
∆

P(Y (j, x) = i, Y (j + 1, x) = i+ 1) ν(dx) (2.7)

with Y (., x) defined in (2.1). Moreover, γi∞ = ν(∆i) for all i ∈ N and γ∞∞ =
0. The probability below the integral in (2.7) can be provided explicitly, namely

P(Y (j, x) = i, Y (j + 1, x) = i+ 1) =
∑i
k=1 gijk(x), where

gijk(x) :=
xi−k0

(i− k)!

∑
i1,...,ik∈N

i1+···+ik=j−i+k

j!

i1! · · · ik!

∑
r1,...,rk∈N
r1<···<rk

xi1r1 · · ·x
ik
rk

(
1−

k∑
l=1

xrl

)
. (2.8)

The total rates are γi :=
∑
j∈{i+1,i+2,...}∪{∞} γij = qi+1, i ∈ N.

Remark 2.6. In general gijk(x) is not equal to fjik(x) (see (2.3)) because of the

additional factor 1 −
∑k
l=1 xrl occurring on the right hand side in (2.8). This

additional factor comes from the fact that in the paintbox construction, on the
event that box 0 contains i− k balls and that the boxes r1, . . . , rk are non-empty,
{Y (j + 1, x) = i + 1} corresponds to the event that ball j + 1 belongs to a box

r ∈ N0 \ {r1, . . . , rk}, which has probability 1−
∑k
l=1 xrl .

Remark 2.7. Note that γi+1 = γi if and only if Ξ(∆\∆i) = 0, i ∈ N. If Ξ(∆\∆f ) > 0
then the total rates γi, i ∈ N, are pairwise distinct.

Remark 2.8. For the Λ-coalescent the rate (2.7) reduces to

γij =

(
j

i− 1

)∫
[0,1]

xj−i−1(1− x)i Λ(dx), i, j ∈ N, i < j, (2.9)

in agreement with Hénard (2015, Lemma 2.3). The total rates are

γi = qi+1 = Λ({0})
(
i+ 1

2

)
+

∫
(0,1]

1− (1 + ix)(1− x)i

x2
Λ(dx), i ∈ N.

For the Λ-coalescent the equality γi = qi+1 was already observed by Hénard (2015).

For the Kingman coalescent (Λ = δ0) we have γi = γi,i+1 =
(
i+1
2

)
and γij = 0

for all j /∈ {i, i+ 1}. Thus, L is a pure birth process with state space N∪ {∞} and
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birth rates γi =
(
i+1
2

)
, i ∈ N. This process explodes, i.e. P(Lt = ∞) > 0 for all

t > 0, since
∑∞
i=1 1/γi <∞. In fact, L reaches ∞ in finite time almost surely. The

explosion of the fixation line for the Kingman case has for example been applied to
study evolving coalescent trees (Pfaffelhuber and Wakolbinger, 2006; Pfaffelhuber
et al., 2011) and related functionals (Delmas et al., 2010). For more details on
explosion of L we refer the reader to Remark 2.11.

For the β(a, b)-coalescent with a, b ∈ (0,∞) the rates (2.9) of the fixation line
reduce to

γij =
Γ(a+ b)

Γ(a)Γ(b)

Γ(i+ b)

Γ(i)

Γ(j + 1)

Γ(j − 1 + a+ b)

Γ(j − i− 1 + a)

Γ(j − i+ 2)
, i, j ∈ N, i < j.

(2.10)
Simple formulas for the total rates γi seem to be only available for particular param-
eter choices of a and b. For example, for the β(2−α, α)-coalescent with parameter
0 < α < 2, which has attracted the interest of several researchers, the fixation line
has total rates

γi =

∞∑
j=i+1

γij =
1

Γ(2− α)Γ(α)

Γ(i+ α)

Γ(i)

∞∑
j=i+1

Γ(j − i+ 1− α)

Γ(j − i+ 2)

=
1

Γ(2− α)Γ(α)

Γ(i+ α)

Γ(i)

Γ(2− α)

α
=

Γ(i+ α)

Γ(α+ 1)Γ(i)
=

i−1∏
k=1

k + α

k
, i ∈ N.

In particular, γi = i for the Bolthausen–Sznitman coalescent (α = 1). Another
class of beta-coalescents for which a nice formula for the total rate γi is available is
the β(3, b)-coalescent with parameter b > 0. In this case the fixation line has total
rates

γi =

∞∑
j=i+1

γij =
Γ(3 + b)

Γ(3)Γ(b)

Γ(i+ b)

Γ(i)

∞∑
j=i+1

Γ(j + 1)

Γ(j + b+ 2)

=
Γ(3 + b)

Γ(3)Γ(b)

Γ(i+ b)

Γ(i)

Γ(i+ 2)

bΓ(i+ b+ 2)
=

(b+ 1)(b+ 2)i(i+ 1)

2(i+ b)(i+ b+ 1)
, i ∈ N.

We now turn to the duality of the block counting process N and the fixation
line L. The following result (Theorem 2.9) is a reformulation and generalization of
Lemma 2.1 of Hénard (2015). Note that Theorem 2.9 holds for any Ξ-coalescent.
Recall the notation S := N ∪ {∞}.

Theorem 2.9 (Siegmund duality of N and L). Let Π be a Ξ-coalescent and let
N = (Nt)t≥0 and L = (Lt)t≥0 denote the block counting process and the fixation
line of Π respectively. Then N is dual in the sense of Liggett (2005, p. 84, Definition
3.1) to L with respect to the Siegmund duality kernel H : S2 → {0, 1} defined via
H(i, j) := 1 for i ≤ j and H(i, j) := 0 otherwise, i.e.

P(N
(i)
t ≤ j) = P(Nt ≤ j |N0 = i) = E(H(Nt, j) |N0 = i)

= E(H(i, Lt) |L0 = j) = P(Lt ≥ i |L0 = j) = P(L
(j)
t ≥ i)

for all i, j ∈ S and t ≥ 0. If Q = (qij)i,j∈S and Γ = (γij)i,j∈S denote the generator
matrices of N and L respectively then qi,≤j :=

∑
k∈S,k≤j qik =

∑
k∈S,k≥i γjk =:

γj,≥i for all i, j ∈ S.

Remark 2.10. Note that L is dual to N with respect to the transposed duality kernel
H> : S2 → {0, 1} defined via H>(i, j) := H(j, i) for all i, j ∈ S. For i, j ∈ S define
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gij :=
∫∞

0
P(N

(i)
t = j) dt ∈ [0,∞] and ĝij :=

∫∞
0

P(L
(i)
t = j) dt ∈ [0,∞]. Note that

G := (gij)i,j∈S and Ĝ := (ĝij)i,j∈S are the Green matrices of N and L respectively.

The matrix G is lower left triangular whereas Ĝ is upper right triangular. From
Theorem 2.3 it follows that

gi,>j =

∫ ∞
0

P(N
(i)
t > j) dt =

∫ ∞
0

P(L
(j)
t < i) dt = ĝj,<i, i, j ∈ S,

where gi,>j :=
∑
k∈S,k>j gik and ĝj,<i :=

∑
k∈S,k<i ĝjk, i, j ∈ S. For i, j ∈ T :=

N \ {1}, the set of states which are transient for N and L, it follows that

gij = gi,>j−1 − gi,>j = ĝj−1,<i − ĝj,<i =
∑

k∈S,k<i

(ĝj−1,k − ĝjk)

and

ĝij = ĝi,<j+1 − ĝi,<j = gj+1,>i − gj,>i =
∑

k∈S,k>i

(gj+1,k − gjk).

Remark 2.11. As in Schweinsberg (2000a) we say that Π comes down from infinity
if P(Nt < ∞) = 1 for all t > 0 and that Π stays infinite if P(Nt = ∞) = 1 for
all t > 0. Note that there exist coalescents, for example the Dirichlet coalescent
studied in Section 3, that neither come down from infinity nor stay infinite. We refer
the reader to Schweinsberg (2000a,b) and Herriger and Möhle (2012) for methods
to determine whether a coalescent Π comes down from infinity or stays infinite.

We say that L does not explode if T∞ := inf{t > 0 : Lt− = ∞} = ∞ almost
surely. Note that L does not explode if and only if P(Lt <∞) = 1 for all t ≥ 0. By
the general explosion criterion for Markov chains, L does not explode if and only if∑∞
n=0 1/γχn =∞ almost surely, where χ = (χn)n∈N0 denotes the jump chain of L.

Note that χ has transition probabilities pij := γij/γi, 1 ≤ i < j ≤ ∞.
If Π comes down from infinity then L explodes. Moreover, Π stays infinite if and

only if L does not explode.
Proof. If Π comes down from infinity, then Π eventually becomes absorbed

almost surely, i.e. limt→∞ P(Nt = 1) = 1. Thus, by duality, P(Lt = ∞) = P(Nt =
1) > 0 for all sufficiently large t, i.e. L explodes.

If Π stays infinite, then P(Nt = ∞) = 1 for all t ≥ 0. Thus, P(Lt = ∞) =
P(Nt = 1) = 0 for all t ≥ 0, i.e. L does not explode. Conversely, suppose that
L does not explode. Then, by the first statement, Π does not come down from
infinity. Moreover, we must have γi∞ = 0 for all i ∈ N, because otherwise every
Lt would be equal to ∞ with positive probability. Since γi∞ = ν(∆i) it follows
that ν(∆f ) = limi→∞ ν(∆i) = 0. Thus, Ξ(∆f ) = 0. But under the additional
assumption that Ξ(∆f ) = 0 the coalescent does not come down from infinity if and
only if the coalescent stays infinite (see Schweinsberg, 2000a).

Remark 2.12. Recall that L explodes if Π comes down from infinity. The converse
holds under the additional assumption that Ξ(∆f ) = 0, but it does not hold in
general. Examples where L explodes but Π does not come down from infinity are
provided in Section 3 (Dirichlet coalescent).

A Ξ-coalescent Π = (Πt)t≥0 has proper frequencies if, for all times t ≥ 0, the fre-
quency of singletons St of Πt satisfies St = 0 almost surely. For a precise definition
of St we refer the reader to Möhle (2010, Section 3). Schweinsberg (2000a, Propo-
sition 30) showed that Π does not have proper frequencies if and only if Ξ({0}) = 0
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and
∫

∆
|x| ν(dx) <∞. In this case the process Z := (Zt)t≥0 := (− logSt)t≥0 (with

the convention − log 0 := ∞) is a drift-free subordinator with state space [0,∞]
and Laplace exponent

Φ(η) =

∫
∆

(1− (1− |x|)η) ν(dx), η ≥ 0. (2.11)

Note that E(Sηt ) = E(e−ηZt) = e−tΦ(η), η ≥ 0. A coalescent without proper
frequencies is also called a coalescent with dust (Gnedin et al., 2011). Theorem
2.13 below clarifies the asymptotic behavior of the block counting process N (n) and
the fixation line L(n) as n→∞ for Ξ-coalescents with dust. Note that we use the
conventions e−∞ := 0, e∞ :=∞ and 1/0 :=∞.

Theorem 2.13. Let Π be a Ξ-coalescent with dust or, equivalently, Ξ({0}) = 0 and∫
∆
|x| ν(dx) <∞. Then, the following two assertions hold.

a) As n→∞ the scaled block counting process (N
(n)
t /n)t≥0 converges in D[0,1][0,∞)

to the frequency of singleton process S = (St)t≥0 = (e−Zt)t≥0.

b) As n → ∞ the scaled fixation line (L
(n)
t /n)t≥0 converges in D[1,∞][0,∞) to the

reciprocal frequency of singleton process (1/St)t≥0 = (eZt)t≥0.

Remark 2.14. Theorem 2.13 can be stated logarithmically as follows. For Ξ-

coalescents with dust, as n→∞, both processes (log n−logN
(n)
t )t≥0 and (logL

(n)
t −

log n)t≥0 converge in D[0,∞][0,∞) to the drift-free subordinator Z with Laplace ex-
ponent (2.11). Similar limiting processes appear in other frameworks of Markov
chains with rare large jumps (see, for example, Bertoin and Kortchemski, 2014 and
Haas and Miermont, 2011). Clearly, Theorem 2.13 holds for Λ-coalescents with
dust, for example for β(a, b)-coalescents with a > 1 and b > 0.

Remark 2.15. If Ξ is concentrated on ∆∗ then the coalescent has dust if and only if
ν is finite. In this case the Laplace exponent (2.11) satisfies Φ(η) = ν(∆∗), η > 0,
so St has the same distribution as 1{Tf>t} for all t ≥ 0, where Tf is exponentially
distributed with parameter ν(∆∗). Examples are the Dirichlet coalescent studied in
Section 3, the Poisson–Dirichlet coalescent (Sagitov, 2003, Section 3) and the two-
parameter Poisson–Dirichlet coalescent (Möhle, 2010, Section 6). More information
on the two-parameter Poisson–Dirichlet coalescent is provided in Section 4.

Remark 2.16. Theorem 2.13 excludes dust-free coalescents. For the Bolthausen–
Sznitman coalescent we refer the reader to Kukla and Möhle (2016), Möhle (2015)
and Schweinsberg (2012) for asymptotic results concerning the block counting pro-
cess N (n) and the fixation line L(n). For dust-free coalescents different from the
Bolthausen–Sznitman coalescent we leave the asymptotic analysis of N (n) and L(n)

for future work.

3. The Dirichlet coalescent

Let X := (X1, . . . , XN ) be symmetric Dirichlet distributed with parameters
N ∈ N and α > 0 and let X(1) ≥ · · · ≥ X(N) denote the order statistics of X.
We consider the Ξ-coalescent when the characteristic measure ν is the distribu-
tion of (X(1), . . . , X(N), 0, 0, . . .). We call this coalescent the Dirichlet coalescent
with parameters N ∈ N and α > 0. Note that ν is concentrated on ∆N . The
Dirichlet coalescent neither comes down from infinity nor stays infinite. In order
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to see this we may assume without loss of generality that the Dirichlet coalescent
is constructed via a Poisson point process (e(t))t≥0 as described in Appendix B of
Schweinsberg (2000a) with characteristic measure µ on NN

0 defined via (1.2). Define
Af := {(n1, n2, . . .) ∈ NN

0 : {n1, n2, . . .} is finite}. Note that Px(Af ) = 1 for all
x ∈ ∆f . By Schweinsberg (2000a, Lemma 41), Tf := inf{t > 0 : e(t) ∈ Af} is
exponentially distributed with parameter

∫
∆
Px(Af ) ν(dx) =

∫
∆f

Px(Af ) ν(dx) =

ν(∆f ) = 1. Thus, P(Nt =∞) = P(Tf > t) = e−t ∈ (0, 1) for all t > 0, which shows
that the Dirichlet coalescent neither comes down from infinity nor stays infinite.
Note that the fixation line L = (Lt)t≥0 explodes, since the coalescent does not stay
infinite.

In agreement with Hsu and Shiue (1998) we use the notation [x|y]n :=
∏n−1
k=0(x+

ky) and (x|y)n :=
∏n−1
k=0(x − ky) for x, y ∈ R and n ∈ N0 with the convention

that empty products are equal to 1. We furthermore write [x]n := [x|1]n and
(x)n := (x|1)n. The proof of the following lemma is given at the end of this section.

Lemma 3.1 (Rates of the block counting process). The block counting process of
the Dirichlet coalescent with parameters N ∈ N and α > 0 has infinitesimal rates

qij =
(Nα|α)j

[Nα]i
Sα(i, j) 1 ≤ j < i <∞, (3.1)

where Sα(i, j) := S(i, j;−1, α, 0) are the generalized Stirling numbers defined in Hsu
and Shiue (1998) satisfying the recursion Sα(i+1, j) = Sα(i, j−1)+(i+αj)Sα(i, j).
Alternatively,

qij =

(
N

j

)
(
Nα+ i− 1

i

) ∑
i1,...,ij∈N

i1+···+ij=i

(
i1 + α− 1

i1

)
· · ·
(
ij + α− 1

ij

)
, 1 ≤ j < i <∞.

(3.2)
Moreover, q∞N = 1, q∞j = 0 for j ∈ N \ {N} and, hence, q∞∞ = −1.

Remark 3.2. The Dirichlet coalescent is closely related to the Chinese restaurant
process. Imagine a restaurant with N ∈ N tables each of infinite capacity. Cus-
tomers successively enter the restaurant. When the (i+ 1)th customer arrives and
j tables are already occupied (by at least one person), the customer sits at an
empty table with probability (Nα−jα)/(Nα+ i). This corresponds to the Chinese
restaurant process (see Pitman, 2006) with κ := α and θ := Nα. Let Ki denote the
number of occupied tables after the ith customer has been seated. It is easily veri-
fied by induction on i that Ki has distribution P(Ki = j) = (Nα|α)jSα(i, j)/[Nα]i,
j ∈ {1, . . . , i}. For j < i, P(Ki = j) coincides with qij in (3.1). Note that Ki has
mean

E(Ki) = N −N [(N − 1)α]i
[Nα]i

.

Remark 3.3. The Dirichlet coalescent has total rates qi :=
∑i−1
j=1 qij =

∑i−1
j=1 P(Ki =

j) = 1− P(Ki = i) = 1− (Nα|α)i/[Nα]i. Note that 0 = q1 < q2 < · · · < qN < 1 =
qN+1 = qN+2 = · · · . Therefore the Dirichlet coalescent serves as an example that
in general the total rates of a coalescent do not need to be pairwise distinct.

Example 3.4. For α = 1 the Stirling number S1(i, j) coincides with the Lah number

S(i, j;−1, 1, 0) = i!
j!

(
i−1
j−1

)
and we conclude that qij =

(
N
j

)(
i−1
j−1

)
/
(
N+i−1

i

)
. In this
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case Ki has a hypergeometric distribution with parameters N+ i−1, N and i. The
total rates are qi = 1−N !(N − 1)!/(N − i)!/(N + i− 1)! for i ≤ N and qi = 1 for
i > N .

Example 3.5. For α → ∞ it follows that qij = N−i(N)jS(i, j), where the S(i, j)
are the usual Stirling numbers of the second kind. In this case Ki counts the
number of non-empty boxes when i balls are allocated at random to N boxes. This
corresponds to the Dirac Ξ-coalescent where the measure ν assigns its total mass 1
to the single point x ∈ ∆ whose first N coordinates are all equal to 1/N .

Example 3.6. For α → 0 and N → ∞ such that Nα → θ ∈ (0,∞) the rates qij
converge to those of the Poisson–Dirichlet coalescent with parameter θ and α = 0
studied in the following Section 4.

In the following we provide the asymptotics of some functionals of the Dirichlet
n-coalescent when the sample size n tends to infinity. By Theorem 2.13 and Remark

2.15, (N
(n)
t /n)t≥0 converges in D[0,1][0,∞) to (St)t≥0 as n → ∞ and (L

(n)
t /n)t≥0

converges in D[1,∞][0,∞) to (1/St)t≥0, where St := 1{Tf>t} and Tf is exponentially
distributed with parameter 1.

Let Cn denote the number of jumps and τn := inf{t > 0 : Nt = 1} denote
the absorption time of the Dirichlet n-coalescent. The following lemma clarifies the
asymptotics of Cn and τn as n→∞. Its proof is given at the end of this section. In
the following R = (rij)i,j∈S denotes the transition matrix of the jump chain of the
block counting process of the Dirichlet coalescent. Note that r11 = 1, rij = qij/qi
for i ≥ 2 and 1 ≤ j < i, and rij = 0 otherwise.

Lemma 3.7 (Asymptotics of the number of jumps and the absorption time). For
the Dirichlet coalescent with parameter N ∈ N and α > 0 the following two state-
ments hold.

(i) The number of jumps Cn converges to C∞ := 1 + CN in distribution as

n → ∞. The limit C∞ has distribution P(C∞ = k) = r
(k−1)
N1 , 1 ≤ k ≤ N , where

r
(k−1)
N1 is the entry in row N and column 1 of the (k − 1)th power Rk−1 of the

transition matrix R.
(ii) The absorption time τn converges to τ∞ := E + τN in distribution as n →

∞, where E is standard exponentially distributed and independent of τN . The
Laplace transform ψN of τN can be recursively computed via ψ1(λ) = 1 and ψn(λ) =

qn/(qn + λ)
∑n−1
k=1 rnkψk(λ), n ∈ {2, . . . , N}, λ ≥ 0.

We now turn to the fixation line L = (Lt)t≥0 of the Dirichlet coalescent.

Lemma 3.8 (Rates of the fixation line). The fixation line of the Dirichlet coalescent
with parameters N ∈ N and α > 0 has rates

γij =
(Nα|α)i+1

[Nα]j+1
Sα(j, i), i, j ∈ N, i < j. (3.3)

Moreover γi∞ = 0 for i ∈ {1, . . . , N − 1} and γi∞ = 1 for i ∈ {N,N + 1, . . .}.

Remark 3.9. Note that γij = Nα−iα
Nα+j qji = P(Kj = i,Kj+1 = i + 1) = P(Kj ≤

i,Kj+1 > i) = P(Kj ≤ i)−P(Kj+1 ≤ i). Summation over all j ∈ {i+1, i+2, . . .}∪
{∞} shows that the fixation line has total rates γi = qi+1, i ∈ N, in agreement with
Proposition 2.5.

Example 3.10. For α = 1 we obtain γij = ((N−i)/(N+j))qji =
(
N−1
i

)(
j−1
j−i
)
/
(
N+j
N

)
.
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By duality (Theorem 2.9), for all i, j ∈ N with i > j, the two quantities

qi,≤j =

j∑
k=1

qik =
1

[Nα]i

j∑
k=1

(Nα|α)jSα(i, j) (3.4)

and

γj,≥i =
∑

k∈N∪{∞}
k≥i

γjk =

 (Nα|α)j+1

∞∑
k=i

Sα(k, j)

[Nα]k+1
if j < N

γj∞ = 1 if j ≥ N
(3.5)

coincide. The equality of (3.4) and (3.5) follows alternatively from Möhle (2016+,
Lemma 4.1), applied to the Markov chain K, or from Lemma 6.1 in the appendix,
applied with a := −1, b := α, r := 0 and t := Nα. Note that limi→∞ qi,≤j =
limi→∞ P(Ki ≤ j) = 0 for all j < N , since all states j < N of the Markov chain K
are transient.

In the remaining part of this section we prove Lemmata 3.1, 3.7 and 3.8.

Proof : (of Lemma 3.1) Since the measure ν is concentrated on ∆N it follows from
(2.2) and (2.3) that

qij =
i!

j!

∑
i1,...,ij∈N

i1+···+ij=i

φ(i1, . . . , ij)

i1! · · · ij !
, (3.6)

where

φ(i1, . . . , ij) :=

∫
∆

∑
r1,...,rj∈N
all distinct

xi1r1 · · ·x
ij
rj ν(dx) =

∫
∆

N∑
r1,...,rj=1

all distinct

xi1r1 · · ·x
ij
rj ν(dx).

The function below the latter integral is symmetric with respect to x1, . . . , xN .
Thus,

φ(i1, . . . , ij) =

N∑
r1,...,rj=1

all distinct

∫
xi1r1 · · ·x

ij
rj DN (α)(dx1, . . . ,dxN ) = (N)jE(Xi1

1 · · ·X
ij
j ),

where the last equality holds, since the Dirichlet distribution DN (α) is symmetric
and, hence, the integrals (over each summand) are identical. The moments of the
symmetric Dirichlet distribution DN (α) are well known (see, for example, Kotz

et al., 2000, p. 488) to be E(Xi1
1 · · ·X

ij
j ) = [α]i1 · · · [α]ij/[Nα]i, where i := i1 +

· · ·+ ij . Plugging all this into (3.6) leads to

qij =
i!

j!

(N)j
[Nα]i

∑
i1,...,ij∈N

i1+···+ij=i

[α]i1 · · · [α]ij
i1! · · · ij !

=

(
N

j

)
(
Nα+ i− 1

i

) ∑
i1,...,ij∈N

i1+···+ij=i

(
i1 + α− 1

i1

)
· · ·
(
ij + α− 1

ij

)
,
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which is (3.2). Since (Nα|α)j = (N)jα
j and

Sα(i, j) =
i!

j!

∑
i1,...,ij∈N

i1+···+ij=i

1

i1! · · · ij !
Γ(α+ i1)

Γ(α+ 1)
· · · Γ(α+ ij)

Γ(α+ 1)

it follows that the right hand sides of (3.2) and (3.1) coincide. By Proposition 2.1,
q∞j = ν(∆j) − ν(∆j−1) = δj,N (Kronecker symbol) for all j ∈ N, since ν(∆j) = 0
for j < N and ν(∆j) = 1 for j ≥ N . Moreover, q∞∞ = −ν(∆f ) = −1. �

Proof : (of Lemma 3.7) (i) Clearly, (Cn)n∈N satisfies the distributional recursion

Cn
d
= 1 +CIn with initial condition C1 = 0, where In denotes the state of the jump

chain of the block counting process of the Dirichlet n-coalescent with parameters
N ∈ N and α > 0 after its first jump. By Lemma 3.1 and the remarks thereafter,
In has distribution P(In = k) = qnk/qn = P(Kn = k)/(1− P(Kn = n)), 1 ≤ k < n.
Since Kn → N in distribution as n→∞ we conclude that In → N in distribution

as n → ∞. Thus, Cn
d
= 1 + CIn → 1 + CN =: C∞ in distribution as n → ∞.

Clearly, P(C∞ = k) = P(CN = k − 1) = r
(k−1)
N1 for 1 ≤ k ≤ N , where r

(k−1)
N1 is the

entry in row N and column 1 of the (k− 1)th power Rk−1 of the transition matrix
R of the jump chain of the block counting process.

(ii) The sequence (τn)n∈N satisfies the distributional recursion τn
d
= En+τIn with

initial condition τ1 = 0, where En is independent of In and exponentially distributed
with parameter qn = 1 − P(Kn = n). Since qn → 1 as n → ∞ and In → N in

distribution as n→∞ we conclude that τn
d
= En+ τIn → E+ τN as n→∞, where

E is standard exponentially distributed and independent of τN . From τn
d
= En+τIn

it follows that the Laplace transform ψN of τN can be recursively computed via
ψ1(λ) = 1 and ψn(λ) = E(e−λ(En+τIn )) = E(e−λEn)

∑n−1
k=1 rnkE(e−λτk) = qn/(qn +

λ)
∑n−1
k=1 rnkψk(λ), n ∈ {2, . . . , N}, λ ≥ 0. �

Proof : (of Lemma 3.8) Since ν is concentrated on ∆N it follows from (2.7) and
(2.8) that

γij =
j!

i!

∑
j1,...,ji∈N

j1+···+ji=j

ψ(j1, . . . , ji)

j1! · · · ji!
,

where

ψ(j1, . . . , ji) :=

∫
∆

N∑
r1,...,ri=1
all distinct

xj1r1 · · ·x
ji
ri

(
1−

i∑
k=1

xrk

)
ν(dx).

The same arguments as in the proof of Lemma 3.1 show that

ψ(j1, . . . , ji) = (N)iE
(
Xj1

1 · · ·X
ji
i

(
1−

i∑
k=1

Xk

))

= (N)i

(
[α]j1 · · · [α]ji

[Nα]j
−

i∑
k=1

[α]j1 · · · [α]jk+1 · · · [α]ji
[Nα]j+1

)

= (N)i
[α]j1 · · · [α]ji

[Nα]j+1

(
(Nα+ j)−

i∑
k=1

(α+ jk)

)
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=
Nα− iα
Nα+ j

(N)i
[α]j1 · · · [α]ji

[Nα]j
=

Nα− iα
Nα+ j

φ(j1, . . . , ji).

It follows that γij = qji(Nα− iα)/(Nα+ j) and (3.3) follows from (3.1). Moreover,
by Proposition 2.5, γi∞ = ν(∆i) for all i ∈ N. It remains to note that ν(∆i) = 0
for i < N and ν(∆i) = 1 for i ≥ N . �

4. The Poisson–Dirichlet coalescent

If Ξ({0}) = 0 and if the measure ν(dx) = Ξ0(dx)/(x, x) is the Poisson–Dirichlet
distribution with parameters 0 ≤ α < 1 and θ > −α then the Ξ-coalescent is
called the two-parameter Poisson–Dirichlet coalescent (Möhle, 2010). Note that ν
is concentrated on ∆∗\∆f . Since

∫
∆
|x| ν(dx) = ν(∆∗) = 1 <∞ it follows that this

coalescent has dust and hence cannot come down from infinity. Since Ξ(∆f ) = 0,
this coalescent stays infinite, and, hence, L does not explode. The associated block
counting process has rates (see Möhle, 2010, p. 2170)

qij = cj,α,θ
Γ(θ + αj)

Γ(θ + i)
sα(i, j), i > j, (4.1)

where

cj,α,θ :=

j∏
k=1

Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)

and

sα(i, j) :=
i!

j!

∑
i1,...,ij∈N

i1+···+ij=i

Γ(i1 − α) · · ·Γ(ij − α)

i1! · · · ij !

is a kind of generalized absolute Stirling number of the first kind satisfying the
recursion sα(i + 1, j) = Γ(1 − α)sα(i, j − 1) + (i − αj)sα(i, j). More precisely,
sα(i, j)/(Γ(1−α))j coincides with the generalized Stirling number S(i, j;−1,−α, 0)
as defined in Hsu and Shiue (1998). For α = 0 (and hence θ > 0) the rate qij reduces
to

qij = θj
Γ(θ)

Γ(θ + i)
s(i, j), i > j,

where s(i, j) := S(i, j;−1, 0, 0) are the (usual) absolute Stirling numbers of the first
kind. For θ = 0 (and hence 0 < α < 1) we obtain

qij =
αj−1

(Γ(1− α))j
(j − 1)!

(i− 1)!
sα(i, j) = αj−1 (j − 1)!

(i− 1)!
S(i, j;−1,−α, 0), i > j.

In order to compute the total rates of the block counting process of the two-
parameter Poisson–Dirichlet coalescent we proceed as follows. Let K = (Kn)n∈N0

be a Markov chain with state space N0, K0 := 0, K1 := 1 and transition probabili-
ties pk(n) := P(Kn+1 = k+1 |Kn = k) := (θ+αk)/(θ+n) and P(Kn+1 = k |Kn =
k) = 1− pk(n) for n ∈ N and k ∈ {1, . . . , n}. Note that 1 ≤ Kn ≤ n, n ∈ N. As for
the Dirichlet coalescent one may interpret Kn as the number of occupied tables in a
particular Chinese restaurant process. When customer n+ 1 enters the restaurant
and k tables are already occupied, he sits at an empty table with probability pk(n).
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In the following it is verified by induction on n ∈ N that Kn has distribution (see
also Pitman, 2006, p. 65, Eq. (3.11))

P(Kn = k) = ck,α,θ
Γ(θ + αk)

Γ(θ + n)
sα(n, k), k ∈ N0.

For n = 1 this is obvious, since K1 = 1, c1,α,θ = Γ(θ + 1)/Γ(1 − α)/Γ(θ + α) and
sα(1, 1) = Γ(1−α). The induction step from n ∈ N to n+1 works as follows. By the
Markov property, P(Kn+1 = k) = pk−1(n)P(Kn = k − 1) + (1− pk(n))P(Kn = k).
By induction,

pk−1(n)P(Kn = k − 1) =
θ + α(k − 1)

θ + n
ck−1,α,θ

Γ(θ + α(k − 1))

Γ(θ + n)
sα(n, k − 1)

=
Γ(θ + 1 + α(k − 1))

Γ(θ + n+ 1)
ck−1,α,θ sα(n, k − 1)

=
Γ(θ + kα)Γ(1− α)

Γ(θ + n+ 1)
ck,α,θ sα(n, k − 1)

and

(1− pk(n))P(Kn = k) =
n− αk
θ + n

ck,α,θ
Γ(θ + kα)

Γ(θ + n)
sα(n, k)

=
Γ(θ + kα)

Γ(θ + n+ 1)
ck,α,θ (n− αk) sα(n, k).

Summation of these two terms yields

P(Kn+1 = k) =
Γ(θ + αk)

Γ(θ + n+ 1)
ck,α,θ

(
Γ(1− α)sα(n, k − 1) + (n− αk)sα(n, k)

)
=

Γ(θ + αk)

Γ(θ + n+ 1)
ck,α,θ sα(n+ 1, k),

which completes the induction. As a consequence, the block counting process of
the two-parameter Poisson–Dirichlet coalescent has total rates

qi =

i−1∑
j=1

qij =

i−1∑
j=1

P(Ki = j) = 1− P(Ki = i)

= 1− ci,α,θ
Γ(θ + αi)

Γ(θ + i)
sα(i, i) = 1− Γ(θ + αi)

Γ(θ + i)

i∏
k=1

Γ(θ + 1 + (k − 1)α)

Γ(θ + kα)
,

i ∈ N. For α = 0 the total rates reduce to qi = 1− θiΓ(θ)/Γ(θ + i), i ∈ N, and for
θ = 0 we obtain qi = 1− αi−1, i ∈ N.

Let us now turn to the fixation line. The rates γij , i < j, of the fixation line
are obtained in a similar vein as the rates qij as follows. Since the measure ν is
concentrated on ∆∗ it follows from (2.7) and (2.8) that

γij =
j!

i!

∑
j1,...,ji∈N

j1+···+ji=j

I(j1, . . . , ji)

j1! · · · ji!
,

where

I(j1, . . . , ji) :=

∫
∆

∑
r1,...,ri∈N
all distinct

xj1r1 · · ·x
ji
ri

(
1−

i∑
k=1

xrk

)
ν(dx).
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By Handa (2009, Eq. (2.1)),

I(j1, . . . , ji) =

∫
Ri

xj11 · · ·x
ji
i

(
1−

i∑
k=1

xk

)
µi(dx1, . . . ,dxi),

where µi denotes the ith correlation measure associated with the Poisson–Dirichlet
distribution. The density (correlation function) of µi is explicitly known (see, for
example, Handa, 2009, Theorem 2.1) and we obtain

I(j1, . . . , ji) = ci,α,θ

∫
∆i

xj1−α−1
1 · · ·xji−α−1

i

(
1−

i∑
k=1

xk

)θ+αi
dx1 · · · dxi.

The last integral is known (Liouville’s integration formula), and it follows that

I(j1, . . . , ji) = ci,α,θ
Γ(j1 − α) · · ·Γ(ji − α)Γ(θ + αi+ 1)

Γ(θ + j + 1)
,

j := j1 + · · ·+ ji > i. Plugging this expression into the above formula for γij leads
to

γij = ci,α,θ
Γ(θ + αi+ 1)

Γ(θ + j + 1)

j!

i!

∑
j1,...,ji∈N

j1+···+ji=j

Γ(j1 − α) · · ·Γ(ji − α)

j1! · · · ji!

= ci,α,θ
Γ(θ + αi+ 1)

Γ(θ + j + 1)
sα(j, i), i < j. (4.2)

For α = 0 the rate γij reduces to

γij = θi
Γ(θ + 1)

Γ(θ + j + 1)
s(j, i), i < j

whereas for θ = 0 we obtain

γij =
αi

(Γ(1− α))i
i!

j!
sα(j, i) = αi

i!

j!
S(j, i;−1,−α, 0), i < j.

In particular,

qi,≤j =

j∑
k=1

qik =
1

Γ(θ + i)

j∑
k=1

ck,α,θΓ(θ + αk)sα(i, k), i > j, (4.3)

and

γj,≥i =

∞∑
k=i

γjk = cj,α,θΓ(θ + αj + 1)

∞∑
k=i

sα(k, j)

Γ(θ + k + 1)
, i > j. (4.4)

The two expressions (4.3) and (4.4) are equal by duality (Theorem 2.9). The
equality of (4.3) and (4.4) also follows from Möhle (2016+, Lemma 4.1), applied
to the Markov chain K. Alternatively, one may apply Lemma 6.1 in the appendix
with a := −1, b := −α, r := 0 and t := θ. Note however that formally the case
θ = 0 is not covered by Lemma 6.1. As a last option one may prove the equality
of (4.3) and (4.4) directly (using the recursion for generalized Stirling numbers) as
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follows. We have

qki − qk+1,i

= ci,α,θ
Γ(θ + αi)

Γ(θ + k)
sα(k, i)− ci,α,θ

Γ(θ + αi)

Γ(θ + k + 1)
sα(k + 1, i)

= ci,α,θ
Γ(θ + αi)

Γ(θ + k)
sα(k, i)

−ci,α,θ
Γ(θ + αi)

Γ(θ + k + 1)

(
Γ(1− α)sα(k, i− 1) + (k − αi)sα(k, i)

)
= ci,α,θ

Γ(θ + αi)

Γ(θ + k + 1)
sα(k, i)((θ + k)− (k − αi))

−ci,α,θ
Γ(θ + αi)

Γ(θ + k + 1)
Γ(1− α)sα(k, i− 1)

= ci,α,θ
Γ(θ + 1 + αi)

Γ(θ + k + 1)
sα(k, i)− ci−1,α,θ

Γ(θ + 1 + (i− 1)α)

Γ(θ + k + 1)
sα(k, i− 1).

Summation over all i ∈ {1, . . . , j} yields

qk,≤j − qk+1,≤j = cj,α,θ
Γ(θ + 1 + αj)

Γ(θ + k + 1)
sα(k, j).

Another summation over all k ≥ i yields

qi,≤j = cj,α,θΓ(θ + 1 + αj)

∞∑
k=i

sα(k, j)

Γ(θ + k + 1)
,

which shows that (4.3) and (4.4) coincide.

5. Proofs

Proof : (of Proposition 2.1) The formulas (2.2) and (2.4) for the rates qij and the
total rates qi of the block counting process are known from the literature (Freund
and Möhle, 2009, Eqs. (1.2) and (1.3)). For given x = (xr)r∈N ∈ ∆ the block
counting process jumps from ∞ to j ∈ N if and only if x1 + · · · + xj = 1 and
x1, . . . , xj > 0, i.e. if and only if x ∈ ∆j \ ∆j−1 with the convention ∆0 := ∅.
Integration with respect to ν yields q∞j = ν(∆j \∆j−1) = ν(∆j)− ν(∆j−1) for all
j ∈ N. Since the generator Q = (qij)i,j∈S is conservative, it follows that q∞∞ =
−
∑
j∈N q∞j = −

∑
j∈N(∆(νj)−∆(νj−1)) = − limn→∞ ν(∆n) = −ν(∆f ). �

Proof : (of Proposition 2.5) We generalize the proof of Lemma 2.3 in Hénard (2015).
Recall the pathwise definition of the fixation line based on the lookdown construc-
tion provided in the introduction. Assume first that Ξ({0}) = 0. The fixation line
jumps from i ∈ N to j ∈ N with j > i if and only if there exists k ∈ {1, . . . , i} and
1 ≤ r1 < · · · < rk such that

(i) exactly i− k of the individuals 1, . . . , j belong to J0 :=
⋃
r∈N Jr,

(ii) for every l ∈ {1, . . . , k} at least one of the individuals 1, . . . , j belongs to
Jrl and

(iii) the individual j + 1 does not belong to Jr1 ∪ · · · ∪ Jrk .
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For fixed x = (xr)r∈N ∈ ∆ this event has probability(
j

i− k

)
(1− |x|)i−k

∑
i1,...,ik∈N

i1+···+ik=j−(i−k)

(j − (i− k))!

i1! · · · ik!
xi1r1 · · ·x

ik
rk

(
1−

k∑
l=1

xrl

)
.

Summing this probability over all k ∈ {1, . . . , i} and 1 ≤ r1 < · · · < rk and

integrating with respect to the law ν yields γij =
∫

∆

∑i
k=1 gijk(x) ν(dx) with gijk(x)

defined in (2.8). From the definition of Y (., x) in (2.1) it follows that
∑i
k=1 gijk(x) =

P(Y (j, x) = i, Y (j + 1, x) = i+ 1).

If Ξ({0}) > 0 then the rate γij increases by Ξ({0})
(
j
2

)
δj,i+1, since

(
j
2

)
δj,i+1 is the

rate at which the fixation line of the Kingman coalescent jumps from i to j. Thus
(2.7) is established. Similarly, given x = (xr)r∈N ∈ ∆, the fixation line jumps from
i ∈ N to ∞ if and only if x1 + · · · + xi = 1, i.e. if and only if x ∈ ∆i. Integration
with respect to ν yields γi∞ = ν(∆i), i ∈ N. Clearly, γ∞∞ = 0, since the state ∞
is absorbing.

It remains to determine the total rates γi, i ∈ N. From the definition of Y (., x)
in (2.1) via the paintbox construction it follows that Y (j + 1, x)− Y (j, x) ∈ {0, 1}
for all j ∈ N and x ∈ ∆. Thus, for all i, j ∈ N, P(Y (j, x) = i, Y (j + 1, x) = i+ 1) =
P(Y (j, x) ≤ i, Y (j + 1, x) > i) = P(Y (j, x) ≤ i) − P(Y (j + 1, x) ≤ i). Summation
over all j ∈ N with j > i yields∑

j∈N
j>i

P(Y (j, x) = i, Y (j + 1, x) = i+ 1)

=
∑
j∈N
j>i

(
P(Y (j, x) ≤ i)− P(Y (j + 1, x) ≤ i)

)
= P(Y (i+ 1, x) ≤ i)− lim

k→∞
P(Y (k, x) ≤ i)

=

{
P(Y (i+ 1, x) ≤ i) if x ∈ ∆ \∆i,

0 if x ∈ ∆i,

since P(Y (k, x) ≤ i) → 0 as k → ∞ if x ∈ ∆ \ ∆i and P(Y (k, x) ≤ i) = 1 for all
k ∈ N if x ∈ ∆i. Thus, the total rates of the fixation line are

γi = γi∞ +
∑
j∈N
j>i

γij

= γi∞ + Ξ({0})
(
i+ 1

2

)
+

∫
∆\∆i

P(Y (i+ 1, x) ≤ i) ν(dx)

= Ξ({0})
(
i+ 1

2

)
+

∫
∆

P(Y (i+ 1, x) ≤ i) ν(dx), i ∈ N.

A comparison with the total rate qi of the block counting process shows that γi =
qi+1, i ∈ N. �

Proof : (of Theorem 2.9) From Y (k + 1, x) − Y (k, x) ∈ {0, 1} for all k ∈ N and
x ∈ ∆ we conclude that

P(Y (k, x) = j, Y (k + 1, x) = j + 1) = P(Y (k, x) ≤ j, Y (k + 1, x) > j)

= P(Y (k, x) ≤ j)− P(Y (k + 1, x) ≤ j)
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for all j, k ∈ N and x ∈ ∆. Integration with respect to ν and taking the formula
(2.7) for the rates of the fixation line into account, it follows for all j, k ∈ N with
j < k that

γjk = Ξ({0})
(
k

2

)
δk,j+1 +

∫
∆

P(Y (k, x) = j, Y (k + 1, x) = j + 1) ν(dx)

= Ξ({0})
(
k

2

)
δj,k−1 +

∫
∆

(
P(Y (k, x) ≤ j)− P(Y (k + 1, x) ≤ j)

)
ν(dx)

=

j∑
l=1

(
Ξ({0})

(
k

2

)
δl,k−1 +

∫
∆

P(Y (k, x) = l) ν(dx)

−Ξ({0})
(
k + 1

2

)
δl,k −

∫
∆

P(Y (k + 1, x) = l) ν(dx)

)
=

j∑
l=1

(qkl − qk+1,l) = qk,≤j − qk+1,≤j , j, k ∈ N, j < k,

where the second last equality holds by (2.2). Let i, j ∈ N with i > j. Summing
over all k ∈ N with k ≥ i yields∑

k∈N
k≥i

γjk =
∑
k∈N
k≥i

(qk,≤j − qk+1,≤j) = qi,≤j − lim
k→∞

qk,≤j = qi,≤j − ν(∆j).

The last equality holds since, by (2.2),

qk,≤j =

j∑
l=1

qkl = Ξ({0})
(
k

2

)
δj,k−1 +

∫
∆

P(Y (k, x) ≤ j) ν(dx)

→
∫

∆

1∆j
(x) ν(dx) = ν(∆j)

as k →∞ by dominated convergence. Note that P(Y (k, x) ≤ j) ≤ P(Y (j + 1, x) ≤
j) for all k > j and that the dominating map x 7→ P(Y (j+1, x) ≤ j) is ν-integrable.

Since γj∞ = ν(∆j) it follows that

qi,≤j =
∑
k∈S
k≥i

γjk = γj,≥i (5.1)

for all i, j ∈ N with i > j. Eq. (5.1) holds as well for i, j ∈ N with i ≤ j since in this
case both sides in (5.1) are equal to 0. Moreover, qi,≤∞ = 0 = γ∞,≥i for all i ∈ S
and q∞,≤j = ν(∆j) = γj∞ = γj,≥∞ for all j ∈ N. Thus, (5.1) holds for all i, j ∈ S.

Let Q = (qij)i,j∈S and Γ = (γij)i,j∈S denote the generator matrices of N and L
respectively and let H = (hij)i,j∈S denote the matrix with entries hij := 1 for i ≤ j
and hij := 0 for i > j. Since (QH)ij =

∑
k∈S,k≤j qikhkj =

∑
k∈S,k≤j qik = qi,≤j and

(HΓ>)ij =
∑
k∈S,k≥i hikγjk =

∑
k∈S,k≥i γjk = γj,≥i it follows that QH = HΓ>.

It follows that QkH = H(Γ>)k for all k ∈ N and, hence, etQH = H(etΓ)> for all
t ≥ 0. Since etQ and etΓ are the transition matrices of the block counting process
N = (Nt)t≥0 and the fixation line L = (Lt)t≥0 respectively, this shows that N is
Siegmund dual to L with respect to the kernel H. �
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Remark 5.1. For Λ-coalescents Lemma 2.1 of Hénard (2015) essentially states the
Siegmund duality of N and L and Lemma 2.4 of Hénard (2015) is a reformulation
of this duality in terms of the generators of N and L.

Proof : (of Theorem 2.13) For n ∈ N and i ∈ {1, . . . , n} let τn,i := inf{t > 0 :

i is not a singleton of Π
(n)
t } denote the length of the ith external branch of Π(n).

For every i ∈ N the sequence (τn,i)n≥i is non-increasing in n with τn,i ↘ τi almost
surely as n→∞, where τi := inf{t > 0 : {i} is not a singleton of Πt} denotes the
length of the ith external branch of Π. Let t1, . . . , tk ≥ 0. Given St1 , . . . , Stk the
conditional probability that i is still a singleton at time ti for all i ∈ {1, . . . , k} is
St1 · · ·Stk . Thus, P(τ1 > t1, . . . , τk > tk) = E(St1 · · ·Stk). In particular, P(τ1 >
t, . . . , τk > t) = E(Skt ).

Proof of part a). For n ∈ N and t ≥ 0 decompose N
(n)
t = E

(n)
t + I

(n)
t , where

E
(n)
t :=

∑n
i=1 1{τn,i>t} and I

(n)
t := N

(n)
t − E(n)

t denotes the number of singleton

and non-singleton blocks of Π
(n)
t respectively. We think of E

(n)
t and I

(n)
t as the

number of ‘external’ and ‘internal’ blocks of Π
(n)
t and proceed similarly as in the

proof of Theorem 3 of Möhle (2010). For t ≥ 0 and n, k ∈ N,

E((E
(n)
t )k) = E((1{τn,1>t} + · · ·+ 1{τn,n>t})

k)

=
∑

k1,...,kn∈N0
k1+···+kn=k

k!

k1! · · · kn!
E(1k1{τn,1>t} · · · 1

kn
{τn,n>t})

=

k∑
j=1

(
n

j

) ∑
k1,...,kj∈N

k1+···+kj=k

E(1k1{τn,1>t} · · · 1
kj
{τn,j>t}),

where the last equality holds since the random variables τn,i, i ∈ {1, . . . , n}, are
exchangeable. Thus,

E((E
(n)
t )k) =

k∑
j=1

(n)jS(k, j)P(τn,1 > t, . . . , τn,j > t), t ≥ 0, n, k ∈ N, (5.2)

where (n)j := n(n− 1) · · · (n− j + 1) and S(., .) denote the Stirling numbers of the
second kind. Dividing by nk, letting n → ∞ and noting that (n)j/n

k → δj,k it
follows that

lim
n→∞

E((E
(n)
t /n)k) = P(τ1 > t, . . . , τk > t) = E(Skt ), k ∈ N. (5.3)

Since 0 ≤ E
(n)
t /n ≤ 1 and 0 ≤ St ≤ 1 the convergence (5.3) of moments implies

the convergence E
(n)
t /n → St in distribution as n → ∞. In order to show that

N
(n)
t /n → St in distribution as n → ∞ it remains to verify that I

(n)
t /n → 0 in

distribution as n → ∞. In the following it is verified that the latter convergence
even holds in L1. Each internal branch is generated by a collision. Thus, if Cn
denotes the total number of collisions, the inequality E(I

(n)
t ) ≤ E(Cn) holds. The

assumption that the coalescent has dust ensures that Cn/n→ 0 in L1 by Lemma 4.1

of Freund and Möhle (2009). Thus, I
(n)
t /n → 0 in L1 as n → ∞, which yields the

desired convergence N
(n)
t /n→ St in distribution as n→∞. Thus, the convergence

of the one-dimensional distributions is established.
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Let us now turn to the proof of the convergence in D[0,1][0,∞). Let (T
(n)
t )t≥0 and

(Tt)t≥0 denote the semigroups of (N
(n)
t /n)t≥0 and (St)t≥0 respectively. By Ethier

and Kurtz (1986, p. 172, Theorem 2.11), applied with state spaces E := [0, 1] and
En := {j/n : j ∈ {1, . . . , n}}, n ∈ N, and with the maps ηn : En → E and
πn : B(E) → B(En) defined via ηn(x) := x for all x ∈ En and πnf(x) := f(x) for
all f ∈ B(E) and all x ∈ En, it suffices to verify that for every t ≥ 0 and f ∈ C(E),

lim
n→∞

sup
x∈En

|T (n)
t πnf(x)− πnTtf(x)| = 0.

Obviously, T
(n)
t πnf(x) = E(πnf(N

(n)
s+t/n) |N (n)

s /n = x) = E(f(N
(nx)
t /n)) and

πnTtf(x) = Ttf(x) = E(f(xSt)). Thus, we have to verify that

lim
n→∞

sup
x∈En

|E(f(N
(nx)
t )/n)− E(f(xSt))| = 0.

Since the polynomials are dense in C(E) it suffices to verify the latter equation for
monomials f(x) = xk, so we have to prove that

lim
n→∞

sup
x∈En

|E((N
(nx)
t )k)/nk − xkE(Skt )| = 0, k ∈ N, t ≥ 0.

Using the decomposition N
(nx)
t = E

(nx)
t +I

(nx)
t and the facts that I

(nx)
t ≤ Cnx ≤ Cn

and that Cn/n → 0 in L1 (see Lemma 4.1 of Freund and Möhle, 2009), it suffices
to show that

lim
n→∞

sup
x∈En

|E((E
(nx)
t )k)/nk − xkE(Skt )| = 0.

By (5.2), E((E
(nx)
t )k) =

∑k
j=1(nx)jS(k, j)P(τnx,1 > t, . . . , τnx,j > t). Thus, it

suffices to verify that

lim
n→∞

sup
x∈En

∣∣∣∣ (nx)k
nk

P(τnx,1 > t, . . . , τnx,k > t)− xkE(Skt )

∣∣∣∣ = 0.

Since (nx)k/n
k → xk as n→∞ uniformly on [0, 1] it remains to prove that

lim
n→∞

sup
x∈En

xk|P(τnx,1 > t, . . . , τnx,k > t)− E(Skt )| = 0.

This is seen as follows. Choose a sequence (εn)n∈N satisfying εn → 0 and nεn →∞
(for example εn := n−1/2) and distinguish the two cases x ∈ En ∩ [0, εn] and
x ∈ En ∩ (εn, 1]. Clearly,

sup
x∈En∩[0,εn]

xk|P(τnx,1 > t, . . . , τnx,k > t)− E(Skt )| ≤ 2εkn → 0, n→∞.

Moreover, since pt,k(m) := P(τm,1 > t, . . . , τm,k > t) is non-increasing in m (≥ k)
and, hence, pt,k(m) ≥ P(τ1 > t, . . . , τk > t) = E(Skt ) for all m ≥ k, it follows for all
n ∈ N with nεn ≥ k that

sup
x∈En∩(εn,1]

xk|P(τnx,1 > t, . . . , τnx,k > t)− E(Skt )|

≤ sup
x∈En∩(εn,1]

|pt,k(nx)− E(Skt )| ≤ pt,k(bnεnc)− E(Skt ) → 0

as n → ∞, where bnεnc := max{z ∈ Z : z ≤ nεn}. The proof of part a) is
complete.

Proof of part b). We have to verify that (L
(n)
t /n)t≥0 converges in D[1,∞][0,∞)

to (1/St)t≥0 as n → ∞. Define ϕ : D[0,1][0,∞) → D[1,∞][0,∞) via ϕ(x) :=
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(1/xt)t≥0 for all x = (xt)t≥0 ∈ D[0,1][0,∞) with the convention 1/0 := ∞. Since

the transformation ϕ is continuous we will (equivalently) verify that (n/L
(n)
t )t≥0

converges in D[0,1][0,∞) to (St)t≥0 as n→∞.
Let Fn := {n/j : j ∈ {n, n+1, . . .}}∪{0} and F := [0, 1] denote the state spaces

and (U
(n)
t )t≥0 and (Ut)t≥0 the semigroups of (n/L

(n)
t )t≥0 and (St)t≥0 respectively.

Define πn : B(F )→ B(Fn) via πnf(x) := f(x), f ∈ B(F ), x ∈ Fn. By Ethier and
Kurtz (1986, p. 172, Theorem 2.11) it suffices to verify that for all t ≥ 0 and all
f ∈ C(F ),

lim
n→∞

sup
x∈Fn

|U (n)
t πnf(x)− πnUtf(x)| = 0.

Obviously, U
(n)
t πnf(x) = E(πnf(n/L

(n)
s+t) |n/L

(n)
s = x) = E(f(n/L

(n/x)
t )) and

πnUtf(x) = Utf(x) = E(f(xSt)). Thus, we have to verify that

lim
n→∞

sup
x∈Fn

|E(f(n/L
(n/x)
t ))− E(f(xSt))| = 0.

Since the polynomials are dense in C(F ) it suffices to verify the latter equation for

monomials f(x) = xk, so we have to prove that limn→∞ supx∈Fn
|E((n/L

(n/x)
t )k)−

xkE(Skt )| = 0 for all t ≥ 0 and k ∈ N. In the following it is even shown that

lim
n→∞

sup
x∈[0,1]

|E((n/L
(bn/xc)
t )k)− xkE(Skt )| = 0, t ≥ 0, k ∈ N. (5.4)

For m ∈ N, t ≥ 0 and y ∈ (0, 1], it follows by duality (Theorem 2.9 applied with
i := dm/ye := min{z ∈ Z : z ≥ m/y} and j := m) that

P(m/L
(m)
t ≤ y) = P(L

(m)
t ≥ m/y) = P(L

(m)
t ≥ dm/ye)

= P(N
(dm/ye)
t ≤ m) = P

(
N

(dm/ye)
t

dm/ye
≤ m

dm/ye

)
.

Since N
(m)
t /m → St in distribution as m → ∞ by part a) of Theorem 2.13,

which is already proven, and since m/dm/ye → y as m → ∞, we conclude that

limm→∞ P(m/L
(m)
t ≤ y) = P(St ≤ y), if y ∈ (0, 1] is a continuity point of the

distribution function of St. The point y = 0 has to be treated separately. For

all m ∈ N we have P(m/L
(m)
t ≤ 0) = P(L

(m)
t = ∞) = limn→∞ P(L

(m)
t ≥ n) =

limn→∞ P(N
(n)
t ≤ m) = limn→∞ P(N

(n)
t /n ≤ m/n) = P(St ≤ 0), if y = 0 is a

continuity point of the distribution function of St. The pointwise convergence of

the distribution functions implies the convergence m/L
(m)
t → St in distribution as

m→∞.
Fix x ∈ (0, 1]. Replacing m by bn/xc it follows by an application of Slutzky’s

theorem that n/L
(bn/xc)
t → xSt in distribution as n → ∞. This convergence

obviously holds as well for x = 0 with the convention n/0 := ∞. Noting that the
map y 7→ yk is bounded and continuous on [0, 1] we conclude that

lim
n→∞

E((n/L
(bn/xc)
t )k) = xkE(Skt ), t ≥ 0, k ∈ N, x ∈ [0, 1].

In order to see that this pointwise convergence holds even uniformly for all x ∈ [0, 1]
we proceed as follows. Fix t ≥ 0, k ∈ N and n ∈ N. By the pathwise con-

struction of the fixation line, we have L
(1)
t ≤ L

(2)
t ≤ · · · . It follows that the

map x 7→ E((n/L
(bn/xc)
t )k) is non-decreasing on [0, 1]. Clearly, the limiting map
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x 7→ xkE(Skt ) is non-decreasing, bounded and continuous on [0, 1]. Thus, the point-
wise convergence holds even uniformly for all x ∈ [0, 1]. Note that the proof that
this pointwise convergence holds even uniformly works the same as the proof that
pointwise convergence of distribution functions is uniform if the limiting distribu-
tion function is continuous (Pólya, 1920, Satz I). Therefore, (5.4) is established.
The proof is complete. �

6. Appendix

We establish a sort of duality relation for generalized Stirling numbers. Let
a, b, r ∈ R and suppose that t /∈ {0, a, 2a, 3a, . . .} such that we can define

qij :=
(t− r|b)j

(t|a)i
S(i, j), i, j ∈ N0,

where (t|a)i :=
∏i−1
k=0(t − ak) and the coefficients S(i, j) := S(i, j; a, b, r) are the

generalized Stirling numbers as defined in Hsu and Shiue (1998). The recursion
S(i + 1, j) = S(i, j − 1) + (jb − ia + r)S(i, j) for the generalized Stirling numbers
(see Hsu and Shiue, 1998, Theorem 1) obviously transforms into the recursion

qi+1,j =
t− r − (j − 1)b

t− ia
qi,j−1 +

jb− ia+ r

t− ia
qij (6.1)

for the quantities qij (qi,−1 := 0). Note that
∑∞
j=0 qij = 1 for all i ∈ N0. For

i, j ∈ N0 we define qi,≤j :=
∑j
k=0 qik.

Lemma 6.1. Fix j ∈ N0 and suppose that the limit limk→∞ qk,≤j exists. Then,
for all i ∈ N0,

qi,≤j − lim
k→∞

qk,≤j =

∞∑
k=i

t− r − jb
t− ka

qkj . (6.2)

Remark 6.2. At a first glance Lemma 6.1 looks somewhat technical and does not
seem to have many applications. Indeed, in general it seems to be not straightfor-
ward to verify the existence of the limit limk→∞ qk,≤j and to determine this limit
(if it exists). However, for particular parameter choices (for instance for a ≤ 0,
b > 0, r = 0 and t > 0 an integer multiple of b), the qij turn out to be non-negative.
In this case there exists a random variable Ki with distribution P(Ki = j) = qij ,
j ∈ N0. Based on the recursion (6.1) the sequence K := (Ki)i∈N0

can be even
constructed such that K is a Markov chain with initial state K0 = 0 satisfying
Ki+1 −Ki ∈ {0, 1} for all i ∈ N0. Hence, qi,≤j = P(Ki ≤ j) is non-increasing in i,
which ensures the existence of the limit limi→∞ qi,≤j . If all states 0, 1, . . . , j of the
chain K are transient, then limi→∞ qi,≤j = 0 and (6.2) reduces to

j∑
k=0

qik =

∞∑
k=i

t− r − jb
t− ka

qkj . (6.3)

Roughly speaking, (6.3) is a sort of analytic reformulation of a particular Siegmund
duality. For typical examples we refer the reader to the equality of (3.4) and (3.5)
for the Dirichlet coalescent and to the equality of (4.3) and (4.4) for the Poisson–
Dirichlet coalescent.
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Proof : (of Lemma 6.1) The proof is purely analytic and straightforward. For all
k, i ∈ N0 we have

qki − qk+1,i = qki −
t− r − (i− 1)b

t− ka
qk,i−1 −

ib− ka+ r

t− ka
qki

=
t− r − ib
t− ka

qki −
t− r − (i− 1)b

t− ka
qk,i−1.

Summation over all i ∈ {0, . . . , j} yields qk,≤j−qk+1,≤j = ((t−r− jb)/(t−ka))qkj .
Another summation over all k ≥ i yields the result. �
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M. Möhle. Asymptotic results for coalescent processes without proper frequencies
and applications to the two-parameter Poisson-Dirichlet coalescent. Stochastic
Process. Appl. 120 (11), 2159–2173 (2010). MR2684740.
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