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Abstract. In the classical leader election procedure all players toss coins indepen-
dently and those who get tails leave the game, while those who get heads move to
the next round where the procedure is repeated. We investigate a generalizion of
this procedure in which the labels (positions) of the players who remain in the game
are determined using an integer-valued random walk. We study the asymptotics of
some relevant quantities for this model such as: the positions of the persons who
remained after n rounds; the total number of rounds until all the persons among
1, 2, . . . ,M leave the game; and the number of players among 1, 2, . . . ,M who sur-
vived the first n rounds. Our results lead to some interesting connection with
Galton-Watson branching processes and with the solutions of certain stochastic-
fixed point equations arising in the context of the stability of point processes under
thinning. We describe the set of solutions to these equations and thus provide a
characterization of one-dimensional point processes that are stable with respect to
thinning by integer-valued random walks.
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1. Introduction

The classical leader-election procedure (Bruss and Grübel (2003); Fill et al.
(1996); Grübel and Hagemann (2016); Janson and Szpankowski (1997); Prodinger
(1993)), when applied to the infinite set of positive integers N, may be viewed as
a random sieve which in each round eliminates an integer not yet sieved in accor-
dance with the outcome of a coin tossing event. The integers are typically viewed
as players in a game who independently toss a coin so as to determine whether they
will stay in the game for the next round or not. An alternative description is the
following: Relabel kept integers (players) at the beginning of each round by 1, 2, . . .
while keeping the original order. Then let R = {R(k) : k ≥ 1} be the random set
of integers kept for the next round, where

R(0) := 0, R(k) := ξ1 + . . .+ ξk, k ≥ 1

is a random walk with independent identically distributed (iid) increments ξ1, ξ2, . . .
having a geometric distribution on N. Adopting this viewpoint, a natural general-
ization is to replace the geometric distribution by an arbitrary distribution (pn)n≥1
on N with p1 < 1.

The purpose of this paper is to study the asymptotics of some relevant quantities
for this generalization which will lead us to some interesting connection with Galton-
Watson branching processes (GWP) and the solutions of certain related stochastic-
fixed point equations (SFPE). Such SFPE’s in turn arise in connection with the
stability of point processes as will be explained in Section 2.3.

A more formal model description is next; see Figure 1.1 for a sample realization.
Let R(n), n ≥ 1, be independent copies of a random walk R on N and denote the

increments of R(n) by ξ
(n)
1 , ξ

(n)
2 , . . . That is, the ξ

(n)
k for k, n ∈ N are iid random

variables with P{ξ(n)k = i} = pi, i ∈ N, and

R(n)(0) = 0, R(n)(k) = ξ
(n)
1 + . . .+ ξ

(n)
k .

In round n, players with current labels R(n)(1), R(n)(2), . . . stay for the next round
while all other players leave the game. Remaining players are relabeled by 1, 2, . . .
and the procedure is repeated over and over again. The quantities to be studied
hereafter are

• N (n)
M , the number of players among 1, 2, . . . ,M who survived the first n

rounds, formally

N
(0)
M := M and N

(n)
M := #{j ∈ N : R(n)(j) ≤ N (n−1)

M } (1.1)

for M ∈ N0 := {0, 1, 2, . . .} and n ∈ N.

• 1 ≤ S
(n)
1 < S

(n)
2 < S

(n)
3 < . . ., the original numbers of the players who

survived the first n rounds, formally

S
(n)
j := inf{i ∈ N : N

(n)
i = j} (1.2)

for j ∈ N and n ∈ N0.

• T (M), the number of rounds until all players 1, 2, . . . ,M have been elimi-
nated, thus

T (M) := inf{n ∈ N : N
(n)
M = 0} (1.3)

for M ∈ N.
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Figure 1.1. A realization of the leader election procedure. The
players are arranged horizontally, the vertical axis corresponds to
the number of rounds, the bottom line being the first round. Play-
ers leaving (staying in) the game are shown as empty (filled) circles.

The connection with simple GWP stems from the basic observation that, for
each n ∈ N0, (

S
(n)
1 , S

(n)
2 , . . .

)
=
(
S
(n−1)
R(n)(1)

, S
(n−1)
R(n)(2)

, . . .
)
,

whence, using the initial conditions S
(0)
j = j for j ∈ N,(

S
(n)
1 , S

(n)
2 , . . .

)
=
(
R(1) ◦ · · · ◦R(n)(1), R(1) ◦ · · · ◦R(n)(2), . . .

)
for n ∈ N0, where ◦ denotes the usual composition f ◦ g(·) = f(g(·)). This shows

that the random vector (S
(n)
1 , S

(n)
2 , . . .) is the n-fold forward iteration of the random

walk R when viewed as a random mapping from N to N. Passing to the backward
iterations, which does not change the distribution, we obtain the basic relation for
our leader-election procedure:(

S
(n)
1 , S

(n)
2 , . . .

)
d
=
(
R(n) ◦ · · · ◦R(1)(1), R(n) ◦ · · · ◦R(1)(2), . . .

)
(1.4)

for n ∈ N0. Now, the j-th coordinate of the random vector on the right-hand side
is nothing but the number of descendants of individuals 1, . . . , j in generation n
of a GWP starting from countably many individuals 1, 2, . . . and having offspring
distribution (pn)n≥1. A sample realization of this GWP is shown in Figure 1.2.
Since we assume p1 < 1, the GWP is supercritical and survives with probability one.
Two classes of leader-election procedures will be investigated separately hereafter
and lead to quite different asymptotics: those generated by a law (pn)n≥1 with
finite mean, in which case the corresponding GWP has also finite mean, and those
where

∑
n≥1 npn =∞.

As indicated by (1.4), our limit results for (S
(n)
1 , S

(n)
2 , . . .), stated as Theorems 2.1

and 2.8, will be derived from appropriate limit results for GWP. The asymptotic

behavior of N
(n)
M , as n,M → ∞, and T (M), as M → ∞, is then found in a

straightforward manner by drawing on the simple duality relations

{N (n)
M ≥ k} = {S(n)

k ≤M} and {T (M) ≤ k} = {S(k)
1 > M}

for k,M ∈ N and n ∈ N0, see Theorems 2.2, 2.3, 2.9 and 2.11. The limit processes
appearing in Theorems 2.1 and 2.8 are solutions to certain stochastic fixed-point
equations, see (2.2) and (2.10). The description of the set of all solutions to these
equations, to be given in Theorems 2.6 and 2.13, is a much more delicate question,
for the necessary analysis heavily relies on deep results about the behavior of GWP.
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Figure 1.2. A Galton-Watson process starting with countably
many individuals 1, 2, . . . The (n+1)-st row (counting from the top)
shows the individuals in the n-th generation. The j-th individual
in generation n is shown at horizontal position µ−nj, where µ ∈
(1,∞) is the expected number of offspring of one individual. Any
individual in the n-th generation is connected by a line segment to
its last descendant in generation n+1. For example, individual 1 in
the top row has 2 direct descendants, whereas individuals 2, . . . , 8
in the top row have one direct descendant each.

We have organized this work as follows. All results are stated in the next section.
Proofs are then provided in Section 3 for the case when

∑
n≥1 npn < ∞ and in

Section 4 for the case when
∑
n≥1 npn =∞. Some technical lemmata may be found

in a short appendix. Let us finally mention that in Alsmeyer et al. (2016+), we
have studied another modification of the classical leader-election procedure which
is based on records in an iid sample. This modification is closely related to the
Poisson-Dirichlet coalescent and its asymptotic behavior is different from the model
studied here.

2. Results

In the following, ξ always denotes a generic copy of the increments of the random
walks R(n) underlying the considered leader-election procedure, thus P{ξ = n} = pn

for n ∈ N. Moreover,
f.d.d.−→ shall denote convergence of finite-dimensional distribu-

tions.

2.1. The case when Eξ <∞. We start with a convergence result for (S
(n)
j )j≥1. Put

µ := Eξ and let (Zn)n≥0 denote a GWP with offspring distribution (pn)n∈N. If µ is
finite, thus µ ∈ (1,∞), then the normalization (µ−nZn)n≥0 constitutes a positive
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martingale and converges a.s. to a limit Z∞ which is either a.s. positive, namely if
Eξ log ξ <∞, or a.s. zero.

Theorem 2.1. Suppose that µ ∈ (1,∞). Then, as n→∞,(
S
(n)
1

µn
,
S
(n)
2

µn
,
S
(n)
3

µn
. . .

)
f.d.d.−→ (Z(1)

∞ , Z(1)
∞ + Z(2)

∞ , Z(1)
∞ + Z(2)

∞ + Z(3)
∞ , . . .), (2.1)

where Z
(1)
∞ , Z

(2)
∞ , . . . are independent copies of Z∞. The distribution of the limit

vector in (2.1) satisfies the SFPE(
µX1, µX2, . . .

)
d
=
(
XR(1), XR(2), . . .

)
, (2.2)

where the random walk (R(j))j≥0 on the right-hand side with generic increment ξ
is independent of (Xj)j≥0.

In what follows, we denote by D := D[0,∞) the Skorokhod space of real-valued
functions that are defined and right-continuous on [0,∞), and with finite limits
from the left on (0,∞). Weak convergence on the space D (which may be endowed

with the J1- or M1-topology depending on the situation) is denoted by
d

=⇒.

Theorem 2.2. Let µ ∈ (1,∞) and Eξ log ξ <∞. Then, as n→∞,

N
(n)
bµn·c

d
=⇒ N ′(·)

weakly in the Skorokhod space D endowed with the J1-topology, where N ′(x) :=

#{k ∈ N : Z
(1)
∞ + . . .+ Z

(k)
∞ ≤ x} for x ≥ 0.

Note that N ′(·) is the renewal counting process associated with (
∑k
j=1 Z

(j)
∞ )k≥1

and therefore a homogeneous Poisson process if the law of Z∞ is exponential, see
Example 2.5 below.

The next theorem provides a one-dimensional result for the number T (M) of
rounds until all players 1, . . . ,M have been eliminated. Although not difficult
to prove, we have refrained from a statement of a corresponding functional limit
theorem like Theorem 2.2 because it would have required the introduction of a lot
more additional notation. See Alsmeyer et al. (2016+) for results of this type in a
similar setup.

Theorem 2.3. Let µ ∈ (1,∞) and Eξ log ξ <∞. For fixed x > 0, we have

T (bµnxc)− n d→ T ′(x),

where the distribution of T ′(x) is given by

P{T ′(x) ≤ k} = P{Z∞ > µ−kx}, k ∈ Z. (2.3)

Remark 2.4. In Theorems 2.2 and 2.3, we assume Eξ log ξ < ∞ since otherwise
Z∞ = 0 a.s. which means that N ′(x) and T ′(x) are undefined. If µ ∈ (1,∞) and
Eξ log ξ =∞ it is possible to obtain counterparts of Theorems 2.1, 2.2 and 2.3 using
a Seneta-Heyde normalization for the GWP (Zn)n≥0. More precisely, if (cn)n∈N0

is
such that, as n→∞,

Zn
cn
→ Z(SH)

∞ a.s.

where Z
(SH)
∞ is a.s. positive, then all the claims of Theorems 2.1, 2.2 and 2.3 remain

valid upon dropping the assumption Eξ log ξ <∞ and after replacing µn by cn and
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Z∞ by Z
(SH)
∞ everywhere, except the term µ−k in formula (2.3). The latter formula

in that case takes the form

P{T ′(x) ≤ k} = P{Z(SH)
∞ > µ−kx}, k ∈ Z.

Example 2.5. In the classical leader-election procedure, the players who stay in
the game for the next round are determined by iid Bernoulli trials, so that ξ has
a geometric distribution on N with some parameter p ∈ (0, 1). Looking at the
number of players who survive the first n rounds then leads to a Bernoulli process
with parameter pn. It follows that the process on the right-hand side of (2.1) is a

random walk with standard exponential increments Z
(k)
∞ , k ∈ N, and (N ′(x))x≥0 a

standard Poisson process.

An interesting and intriguing problem arising from Theorem 2.1 is to describe
the set of all positive nondecreasing solutions to the SFPE (2.2). Indeed, we can
view (2.2) as a definition of a certain stability property of point processes; see
Section 2.3 for more details. Note that if the distribution of a random sequence
(X1, X2, . . .) satisfies (2.2) and G : R+ → R+, where R+ := [0,∞), is an arbitrary
nondecreasing random process independent of (X1, X2, . . .) and with the restricted
self-similarity property

(G(µt))t∈R+
f.d.d.

= (µG(t))t∈R+ , (2.4)

then (G(X1), G(X2), . . .) also satisfies (2.2). Property (2.4) is known in the litera-
ture under the name semi-selfsimilarity. We refer to Maejima and Sato (1999) for
a general definition of semi-selfsimilar processes and their basic properties. We also
mention in passing that the class of semi-selfsimilar processes forms a semigroup
with respect to composition of independent realizations.

Our next result shows that all solutions to (2.2) can be constructed in the above
way and the limit in (2.1) provides a solution which is fundamental in a certain
sense.

Theorem 2.6. Let (X1, X2, . . .) be a random element of RN such that 0 ≤ X1 ≤
X2 ≤ . . . and (2.2) holds with (R(j))j≥0 independent of (Xj)j∈N and µ = ER(1) =
Eξ. Assume further that

ER(1) logR(1) = Eξ log ξ < ∞, (2.5)

so that P{Z∞ > 0} = 1. Let (Z
(j)
∞ )j∈N be independent copies of Z∞. Then there

exists a nondecreasing random process (G(t))t∈R+ , independent of (Z
(j)
∞ )j≥1 and

satisfying (2.4), such that

(Xj)j≥1
d
=
(
G(Z(1)

∞ + . . .+ Z(j)
∞ )
)
j≥1.

Remark 2.7. Our proof of Theorem 2.6 does not work in the case when µ ∈ (1,∞)
and Eξ log ξ = ∞, and we do not know whether the result still holds without the

(ξ log ξ)-assumption after replacing Z∞ by Z
(SH)
∞ as in Remark 2.4. Of course, the

direct part of the claim, namely that all vectors of the form(
G(Z(SH)(1)

∞ + . . .+ Z(SH)(j)
∞ )

)
j≥1

are solutions to (2.2), is obvious. However, it remains open whether the converse
is true.
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2.2. The case when Eξ = ∞. The behavior of GWP with infinite mean has been
studied by various authors including Darling (1970), Seneta (1973), Davies (1978),
Grey (1977), Schuh and Barbour (1977). In the last reference, it has been proved
that for an arbitrary infinite-mean GWP there always exists a function U and a
sequence of deterministic constants (Cn)n∈N such that U(Zn)/Cn converges almost
surely to a non-degenerate random variable. However, the implicit construction of
U and Cn makes it difficult to deduce any quantitative result for our model in this
general framework. Here we work under the assumption of Davies (1978), which
to the best of our knowledge, are the most general conditions allowing the explicit
construction of U and Cn. They also guarantee that the a.s. limit is positive on the
set of survival. Davies’ assumption is:

x−α−γ(x) ≤ P{ξ ≥ x} ≤ x−α+γ(x), x ≥ x0, (2.6)

for some 0 < α < 1, x0 ≥ 0, and a nonincreasing, non-negative function γ(x)
such that xγ(x) is nondecreasing and

∫∞
x0
γ(exp(ex)) dx < ∞. For example, this

assumption is satisfied if xαP{ξ > x} stays bounded away from 0 and +∞ for
x ≥ x0 (to see this, take γ(x) = C/ log x). For a GWP (Zn)n≥0 with generic
offspring variable ξ satisfying the above assumptions and Z0 = 1, Davies (1978,
Thms. 1 and 2) proved the existence of the limit

Z∗∞ := lim
n→∞

αn log(1 + Zn) ∈ (0,∞) a.s. (2.7)

Since P{ξ = 0} = 0 in our setting, we have 1 ≤ Zn → ∞ a.s. and therefore the
equivalence of (2.7) with

Z∗∞ = lim
n→∞

αn logZn ∈ (0,∞) a.s. (2.8)

Moreover, Z∗∞ has a continuous distribution on (0,∞), see van der Hofstad et al.
(2007, p. 715) or Athreya (2012, bottom of p. 3763).

Theorem 2.8. Consider a leader-election procedure in which the distribution of ξ
satisfies (2.6) for some α ∈ (0, 1). Then(
αn logS

(n)
j

)
j≥1

f.d.d.−→
(
Z(∗,1)
∞ , Z(∗,1)

∞ ∨ Z(∗,2)
∞ , Z(∗,1)

∞ ∨ Z(∗,2)
∞ ∨ Z(∗,3)

∞ , . . .
)
, (2.9)

where Z
(∗,1)
∞ , Z

(∗,2)
∞ , . . . are independent copies of Z∗∞ and ∨ denotes the maximum.

The distribution of the limit vector in (2.9) satisfies the SFPE

(X1, X2, . . .)
d
=
(
αXR(1), αXR(2), . . .

)
, (2.10)

where the random walk (R(j))j≥1 on the right-hand side is independent of (Xj)j≥1.

On the right-hand side of (2.9), we thus have the running maximum process of
iid positive random variables instead of sums as in the finite-mean case. For a study
of this process (including, for example, a proof of the Markov property and exact
expressions for the transition probabilities), we refer to Nevzorov (2001, Lectures
14, 15, 17). Let us stress that this process has multiple elements which means that
the original numbers of players remaining after n rounds tend to build clusters (at
least asymptotically on the log-scale). In fact, it follows from the Rényi theorem
on records Nevzorov (2001, p. 58) that among the first k elements of this process
there are just ' log k distinct ones, as k →∞.
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Theorem 2.9. Under the assumptions of Theorem 2.8, we have

N
(n)
bexp(·α−n)c

d
=⇒ N ′′(·),

weakly in the Skorokhod space D endowed with the M1-topology, where N ′′(x) :=

#{k ∈ N : Z
(∗,1)
∞ ∨ . . . ∨ Z(∗,k)

∞ ≤ x}, x ≥ 0.

Remark 2.10. The above theorem breaks down if D is endowed with the J1-

topology. Indeed, the sample paths of the process (N
(n)
bexp(xα−n)c)x≥0 belong to

the set of piecewise constant non-decreasing functions with jumps of size 1 which
is a closed subset of D in the J1-topology. But the process N ′′ has jumps of size at
least 2 with probability 1 (due to the clustering), hence Theorem 2.9 cannot hold
when using the J1-topology.

The next result is the counterpart of Theorem 2.3 in the infinite-mean case.

Theorem 2.11. Under the assumptions of Theorem 2.8, we have, for any fixed
x > 0,

T ([eα
−nx])− n d→ T ′′(x)

as n→∞, where the distribution of T ′′(x) is given by

P{T ′′(x) ≤ k} = P{Z∗∞ > αkx}, k ∈ Z.

An interesting example of an infinite-mean GWP is obtained by choosing the
law of ξ, i.e. (pn)n≥1, to be a Sibuya distribution with generating function

fα(t) := Etξ = 1− (1− t)α, 0 ≤ t ≤ 1,

for some parameter α ∈ (0, 1).

Proposition 2.12. If ξ has a Sibuya distribution with parameter α ∈ (0, 1), then
weak convergence of point processes on R+ holds true, viz.

∞∑
j=1

δ
αn logS

(n)
j

w→
∞∑
i=1

Gi δPi ,

where P1 < P2 < . . . are the points of a standard Poisson process on (0,∞), and,
given these points, the random variables G1, G2, . . . are conditionally independent
with Gj having a geometric distribution with parameter e−Pj .

So we have in the Sibuya case that after normalization with αn log x and for

large n, the points S
(n)
j form approximately a standard Poisson process and have

geometrically distributed multiplicities (cluster sizes), their parameters being ≈
(S

(n)
j )−α

n

.

Our last theorem is the infinite-mean counterpart of Theorem 2.6 and provides
the description of the set of all solutions to (2.10) under the Davies’ assumption
(2.6) on ξ.

Theorem 2.13. Let (X1, X2, . . .) be a random element of RN such that 0 ≤ X1 ≤
X2 ≤ . . . and (2.10) holds with (R(j))j≥0 independent of (Xj)j∈N. Suppose further

Davies’ condition (2.6) and let (Z
(∗,j)
∞ )j∈N be independent copies of Z∗∞, defined by

(2.8). Then there exists a nondecreasing random process G : R+ → R+ satisfying

(G(αt)t∈R+
d
= (αG(t))t∈R+ (2.11)
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and independent of (Z
(∗,j)
∞ )j≥1 such that

(Xj)j≥1
d
=
(
G(Z(∗,1)

∞ ∨ . . . ∨ Z(∗,j)
∞ )

)
j≥1

.

2.3. Stability of point processes: a natural connection. The description of the set of
solutions to the fixed-point equations (2.2) and (2.10) provided by our Theorems
2.6 and 2.13 may be interpreted from a different point of view involving the notion
of stability of point processes, see Davydov et al. (2008, 2011) and Zanella and
Zuyev (2015). To define such stability usually requires two operations, namely
thinning and rescaling. Given a point process X :=

∑∞
k=1 δXk in [0,∞) with

0 ≤ X1 ≤ X2 ≤ . . ., and an increasing integer-valued random walk R = (R(k))k≥1,
we define the thinning of X by R as

X •R :=

∞∑
k=1

δXR(k)
.

This random operation transforms X into a “sparser” point process X • R by re-
moving points of X with indices outside the range of the random walk R. In order
to compensate such thinning, a second operation is used for rescaling, namely the
usual multiplication a · X :=

∑∞
k=1 δaXk , a ∈ (0, 1). We call a point process X

a-stable with respect to thinning by an integer-valued increasing random walk R if

X d
= a · (X •R). (2.12)

Note that X is a-stable if and only if X β is aβ-stable, where X β :=
∑∞
k=1 δXβk

and

β > 0. This observation implies that, given a random walk R, it is enough to study
only a-stable point processes for some particular choice of a ∈ (0, 1).

Adopting this viewpoint, Theorems 2.6 and 2.13 are nothing else but charac-
terizations of a-stable point processes with respect to thinning by random walks.
Moreover, the particular choice of a (a = µ−1 in Theorem 2.6 and a = α in Theorem
2.13) does not reduce generality which means that the aforementioned theorems ac-
tually provide the description of the set of solutions to (2.12) for arbitrary a ∈ (0, 1).

3. Proofs in the finite-mean case

3.1. Auxiliary results about GWP with finite-mean offspring distribution. The re-
sults of this section are used in the proof of Theorem 2.6.

Lemma 3.1. Let θ be a positive random variable with µ := Eθ ∈ (1,∞) and
Eθ log+ θ <∞. Then, for each p ∈ [1, 2),

∞∑
k=1

(
E|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p
<∞.

Proof : The statement is obvious for p = 1 as the series on the left-hand side then
reduces to E|θ − µ|1{|θ−µ|>1}. So let p ∈ (1, 2) and choose q > 2 > p such that

1/p + 1/q = 1. Using Hölder’s inequality |
∑
k akbk| ≤ (

∑
k |ak|p)1/p(

∑
k |bk|q)1/q
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with bk = k−1/p and ak =
(
kE|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p
, we obtain

∞∑
k=1

(
E|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p
≤

( ∞∑
k=1

kE|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p( ∞∑
k=1

k−q/p

)1/q

.

The second series converges because q > p and the first one can be bounded by

E

( ∞∑
k=1

( log |θ − µ|
logµ

+ 1
)
|θ − µ|1{µk−1<|θ−µ|≤µk}

)

which is finite because Eθ log+ θ <∞. �

Lemma 3.2. Let (θ
(n)
k )n∈N, k∈N be an array of independent copies of a positive

random variable θ having µ = Eθ ∈ (1,∞) and Eθ log+ θ < ∞. For n ∈ N, define
the increasing random walks

R(n)(0) := 0, R(n)(k) := θ
(n)
1 + . . .+ θ

(n)
k , k ∈ N.

Then, for any T > 0,

∞∑
n=1

sup
t∈[0,T ]

∣∣∣µ−nR(n)(btµn−1c)− t
∣∣∣ < ∞ a.s.

Proof : Put θ
(n)
6,k := (θ

(n)
k − µ)1{|θ(n)

k −µ|≤µn}
and θ

(n)
>,k := (θ

(n)
k − µ)1{|θ(n)

k −µ|>µn}
.

We have

sup
t∈[0, T ]

∣∣∣µ−nR(n)(btµn−1c)− t
∣∣∣ ≤ µ−n sup

t∈[0, T ]

|R(n)(btµn−1c)− µbtµn−1c|

+ µ−n sup
t∈[0,T ]

|µbtµn−1c − tµn|

≤ µ−n

 sup
t∈[0,T ]

∣∣∣∣∣∣
btµn−1c∑
k=1

θ
(n)
6,k

∣∣∣∣∣∣+ sup
t∈[0,T ]

∣∣∣∣∣∣
btµn−1c∑
k=1

θ
(n)
>,k

∣∣∣∣∣∣
+ µ−n.

Hence it is enough to show that

∞∑
n=1

µ−n sup
0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

θ
(n)
6,k

∣∣∣∣∣ and

∞∑
n=1

µ−n sup
0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

θ
(n)
>,k

∣∣∣∣∣ (3.1)

are both almost surely finite. As for the second series, this follows by the Borel-
Cantelli lemma if we can show that

∞∑
n=1

P
{

there exists k = 1, . . . , bTµn−1c : θ
(n)
>,k 6= 0

}
< ∞. (3.2)
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To this end, we use Boole’s inequality to infer

∞∑
n=1

P
{

there exists k = 1, . . . , bTµn−1c : θ
(n)
>,k 6= 0

}
≤

∞∑
n=1

(Tµn−1)P
{
θ
(n)
>,1 6= 0

}
=

∞∑
n=1

(Tµn−1)P{|θ − µ| > µn} = E

( ∞∑
n=1

(Tµn−1)1{|θ−µ|>µn}

)

≤ T

µ
E

( ∞∑
n=1

|θ − µ|1{|θ−µ|>µn}

)
≤ T

µ
E

(
(θ + µ)

∞∑
n=1

1{θ≥µn}

)

≤ T

µ
E

(
(θ + µ)

∞∑
n=1

1{log+ θ≥n log µ}

)
≤ T

µ
E
(

(θ + µ)
log+ θ

logµ

)
< ∞

where the finiteness of the last term follows from Eθ log+ θ <∞. To show that the
first series in (3.1) converges, we argue as follows:

∞∑
n=1

µ−n sup
0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

θ
(n)
6,k

∣∣∣∣∣
≤

∞∑
n=1

µ−n sup
0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

θ
(n)
6,k −mEθ(n)6,1

∣∣∣∣∣ +
T

µ

∞∑
n=1

|Eθ(n)6,1|.

The last term on the right-hand side is finite because

∞∑
n=1

|Eθ(n)6,1| =

∞∑
n=1

|Eθ(n)>,1| ≤
∞∑
n=1

E|θ − µ|1{|θ−µ|>µn} < ∞,

where the finiteness of the last sum has already been shown above. To bound

the first term, note that
(∑m

k=1

(
θ
(n)
6,k − Eθ(n)6,1

))
m∈N is an Lp-martingale for each

p ∈ (1, 2] whence

E

(
sup

0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

(
θ
(n)
6,k − Eθ(n)6,1

)∣∣∣∣∣
)
≤

∥∥∥∥∥ sup
0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

(
θ
(n)
6,k − Eθ(n)6,1

)∣∣∣∣∣
∥∥∥∥∥
p

≤ p

p− 1

∥∥∥∥∥∥
bTµn−1c∑
k=1

(
θ
(n)
6,k − Eθ(n)6,1

)∥∥∥∥∥∥
p

≤ 2p

p− 1
T 1/pµ(n−1)/p

∥∥∥θ(n)6,1 − Eθ(n)6,1

∥∥∥
p

≤ 4p

p− 1
T 1/pµn/p

∥∥∥θ(n)6,1

∥∥∥
p
,

having utilized the inequalities by Doob and von Bahr and Esseen (1965, Formula
4). Put q := p

p−1 , thus 1/p+1/q = 1, and use the inequality |
∑
i xi|1/p ≤

∑
i |xi|1/p

to infer

∞∑
n=1

µ−n/q
∥∥∥θ(n)6,1

∥∥∥
p
≤

∞∑
n=1

µ−n/q

(
1 +

n∑
k=1

E|θ − µ|p1{µk−1<|θ−µ|≤µk}

)1/p

≤
∞∑
n=1

µ−n/q

(
1 +

n∑
k=1

µk/q
(
E|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p)
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and then further (with C denoting a suitable finite positive constant)

∞∑
n=1

µ−n/q
n∑
k=1

µk/q
(
E|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p
=

∞∑
k=1

µk/q
(
E|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p ∞∑
n=k

µ−n/q

≤ C

∞∑
k=1

(
E|θ − µ|1{µk−1<|θ−µ|≤µk}

)1/p
,

which is finite by Lemma 3.1 if p ∈ (1, 2). We thus arrive at

E
∞∑
n=1

µ−n sup
0≤m≤bTµn−1c

∣∣∣∣∣
m∑
k=1

θ
(n)
6,k −mEθ(n)6,1

∣∣∣∣∣ < ∞
and this completes the proof of the lemma. �

Lemma 3.2 allows us to prove the following proposition which is the key ingre-
dient to the proof of Theorem 2.6.

Proposition 3.3. Let (R(n)(k))k∈N0,n∈N be as in Lemma 3.2 with θ taking positive
integer values only and put

gn(t) := µ−nR(n)(bµn−1tc) (3.3)

for n ∈ N and t ≥ 0.

(A1) There exists a D-valued random process (Z∞(t))t≥0 such that(
gn ◦ · · · ◦ g1(t)

)
t≥0

n→∞−→
(
Z∞(t)

)
t≥0 a.s.

in the space D endowed with the J1-topology. The process (Z∞(t))t≥0 is
the limit of the normalized number of descendants of individuals 1, . . . , btc
in a GWP with generic offspring variable θ and countably many ancestors
1, 2, . . ., thus

Z∞(t) = Z(1)
∞ + . . .+ Z(btc)

∞ , t ≥ 0,

where the Z
(j)
∞ , j ∈ N, denote independent copies of Z∞, the limit of the

same normalized GWP with one ancestor.
(A2) For each k ∈ N0, there exists a copy (Zk,∞(t))t≥0 of (Z∞(t))t≥0 such that(

gn ◦ · · · ◦ gk+1(t)
)
t≥0

n→∞−→
(
µ−kZk,∞(tµk)

)
t≥0 a.s.

in the space D endowed with the J1-topology.
(A3) As t→∞,

inf
k≥1

gk ◦ · · · ◦ g1(t) → ∞ a.s.

(A4) For every fixed T > 0,

sup
k≥1

sup
t∈[0,T ]

∣∣∣gn+k ◦ · · · ◦ gn+1(t)− t
∣∣∣ n→∞−→ 0 a.s.

(A5) The set
{
µ−kZk,∞(tµk) : t ≥ 0, k ∈ N

}
is almost surely dense in [0,∞).
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Remark 3.4. To motivate the definition of gn in (3.3), consider a GWP starting
from countably many individuals 1, 2, . . ., as shown in Figure 1.2. Since the expected
number of offspring of one individual is µ, it is natural to place the j-th individual
in generation n at position µ−nj. By definition of gn, we have gn(µ−(n−1)j) =
µ−nR(n)(j) for all j ∈ N, so that gn maps the position of the j-th individual in
generation n− 1 to the position of its last offspring in generation n. By the law of
large numbers, gn(t) should be close to t for large n. Part (A4) of Proposition 3.3
provides the confirmation of this in a very strong uniform sense, and it may also be
assessed graphically in Figure 1.2 where slope line segments connecting individuals
in consecutive generations become closer and closer to vertical lines as n grows.

Proof of Proposition 3.3: (A1) Since gn ◦ · · · ◦ g1(t) = µ−nR(n) ◦ · · · ◦R(1)(btc), the
assertion is equivalent to(

µ−nR(n) ◦ · · · ◦R(1)(j)
)
j∈N0

n→∞−→ (Z∞(j))j∈N0
a.s. (3.4)

For each n, the sequence on the left-hand side constitutes a random walk (that
is, it has iid increments) since a composition of independent increasing, N-valued
random walks is again a random walk (a similar statement in the theory of Lévy
processes is well-known and called Bochner’s subordination). Hence, in order to
prove (3.4), it suffices to show that

µ−nR(n) ◦ · · · ◦R(1)(1)
n→∞−→ Z(1)

∞ a.s. (3.5)

The quantity on the left is the normalized number of individuals at time n in a
GWP with generic offspring variable θ and one ancestor, and (3.5) follows from the
a.s. convergence of its normalization (which is a nonnegative martingale).

(A2) This follows from (A1), when using the representation

gn ◦ · · · ◦ gk+1(t) = µ−kµ−(n−k)R(n) ◦ · · · ◦R(k+1)(btµkc), t ≥ 0,

valid for n > k.

(A3) Here we have

gk ◦ · · · ◦ g1(t) =

btc∑
j=1

µ−kZ
(j)
k , t ≥ 0,

where the (Z
(j)
k )k≥0, j ∈ N, are independent copies of a GWP (Zk)k≥0 with generic

offspring variable θ and Z0 = 1. Passing to the infimum yields

inf
k∈N

gk ◦ · · · ◦ g1(t) ≥
btc∑
j=1

inf
k≥1

(µ−kZ
(j)
k ), t ≥ 0

and the result follows from P
{

infk≥1(µ−kZ
(1)
k ) = 0

}
= 0.

(A4) Fix T > 0. From (A3), we know that there exists a random T1 > 0 such
that

inf
k≥1

gk ◦ · · · ◦ g1(T1) ≥ T a.s.
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We further note that

A1 := sup
k≥0

sup
n>k

sup
t∈[0, T ]

gn ◦ · · · ◦ gk+1(t) = sup
k≥0

sup
n>k

gn ◦ · · · ◦ gk+1(T )

≤ sup
k≥0

sup
n>k

gn ◦ · · · ◦ g1(T1) = sup
n≥1

gn ◦ · · · ◦ g1(T1) < ∞ a.s.,

the finiteness being ensured by (A1), and that∣∣gn+k◦· · ·◦gn+1(t)−t
∣∣ ≤ ∣∣gn+1(t)−t

∣∣+ k∑
j=2

∣∣gn+j◦· · ·◦gn+1(t)−gn+j−1◦· · ·◦gn+1(t)
∣∣

by the triangle inequality. Consequently,

sup
k∈N

sup
t∈[0, T ]

∣∣gn+k ◦ · · · ◦ gn+1(t)− t
∣∣

≤ sup
t∈[0, T ]

∣∣gn+1(t)− t
∣∣+

∞∑
j=2

sup
t∈[0, T ]

∣∣gn+j ◦ · · · ◦ gn+1(t)− gn+j−1 ◦ · · · ◦ gn+1(t)
∣∣

≤ sup
t∈[0, T ]

∣∣gn+1(t)− t
∣∣+

∞∑
j=2

sup
s∈[0, A1]

∣∣gn+j(s)− s∣∣ n→∞−→ 0

by Lemma 3.2.

(A5) By (A4), for any s ∈ [0,∞) and ε > 0, there exists a random m ∈ N such
that

s− ε/2 ≤ gm+k ◦ · · · ◦ gm+1(s) ≤ s+ ε/2 (3.6)

for all k ∈ N. Choosing k sufficiently large and applying (A2), we obtain

µ−mZm,∞(sµm)− ε/2 ≤ gm+k ◦ · · · ◦ gm+1(s) ≤ µ−mZm,∞(sµm) + ε/2. (3.7)

Finally, (3.6) and (3.7) imply

s− ε ≤ µ−mZm,∞(sµm) ≤ s+ ε

and the proof is complete. �

3.2. Proof of Theorems 2.1, 2.2, 2.3 and 2.6. Define a random map ψ : RN → RN

by

ψ((x1, x2, . . .)) :=
1

µ

(
xR(1), xR(2), . . .

)
(3.8)

and further ψn : RN → RN for n ∈ N by

ψn((x1, x2, . . .)) :=
1

µ

(
xR(n)(1), xR(n)(2), . . .

)
(3.9)

which are independent copies of ψ.

Proof of Theorem 2.1: In view of the basic identity (1.4), we have(S(n)
1

µn
,
S
(n)
2

µn
, . . .

)
d
=
(
µ−nR(n) ◦ · · · ◦R(1)(1), µ−nR(n) ◦ · · · ◦R(1)(2), . . .

)
= ψ(1) ◦ · · · ◦ ψ(n)(1, 2, . . .).

By (A1) of Proposition 3.3, the last sequence converges a.s. to (Z
(1)
∞ , Z

(1)
∞ +Z

(2)
∞ , . . .)

which proves (2.1). The fixed-point relation (2.2) follows from the almost sure
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continuity of the map ψ with respect to the product topology on RN and the
continuous mapping theorem. This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2: Observe that (N
(n)
bxµnc)x≥0 is the counting process associated

with the increasing random sequence (µ−nS
(n)
k )k∈N. By Theorem 2.1, the finite-

dimensional distributions of the latter sequence converge as n→∞ to those of the

strictly increasing random sequence (Z
(1)
∞ + . . .+Z

(k)
∞ )k∈N with associated counting

process (N ′(x))x≥0. Also, for every fixed n ∈ N,

lim
k→∞

S
(n)
k = lim

k→∞
(Z(1)
∞ + . . .+ Z(k)

∞ ) = +∞ a.s.

because ξ > 0 a.s. and Z
(1)
∞ > 0 a.s. By Lemma 5.2 from the Appendix, this implies

the weak convergence of the corresponding counting processes on the Skorokhod
space D endowed with the J1-topology. �

Proof of Theorem 2.3: For this result, it suffices to note

P {T (bµnxc)− n ≤ k} = P
{
S
(n+k)
1 > bµnxc

}
= P

{
S
(n+k)
1 > µnx

}
= P

{
µ−(n+k)S

(n+k)
1 > µ−kx

}
.

�

Proof of Theorem 2.6: Let (X
(0)
1 , X

(0)
2 , . . .) be a solution to (2.2), i.e.(

µX
(0)
1 , µX

(0)
2 , . . .

) d
=
(
X

(0)
R(1), X

(0)
R(2), . . .

)
.

By the Kolmogorov consistency theorem, the underlying probability space (Ω,A,P)
may be assumed to be large enough to carry the following objects:

• the random sequence (X
(0)
1 , X

(0)
2 , . . .);

• a two-sided sequence (R(n)(·))n∈Z of independent copies of the random walk
R(·) and the corresponding sequence of random maps (3.9);

• a two-sided stationary sequence (Vk)k∈Z =
(
(X

(k)
1 , X

(k)
2 , . . .)

)
k∈Z such that

Vk is independent of (ψn)n≤k for each k ∈ Z, and

V0 :=
(
X

(0)
1 , X

(0)
2 , . . .

)
and Vk = ψk+1(Vk+1), k ∈ Z,

thus(
X

(k)
1 , X

(k)
2 , . . .

)
=

1

µ

(
X

(k+1)

R(k+1)(1)
, X

(k+1)

R(k+1)(2)
, . . .

)
, k ∈ Z.

By construction, Vk
d
= V0 for k ∈ Z. Define a sequence of random measures (νn)n≥0

on [0,∞) by 1

νn[0, t] :=

{
0, if t < µ−n,

µ−nX
(n)
btµnc, if t ≥ µ−n,

which is possible because (X
(0)
j )j≥1 is nondecreasing and (X

(n)
j )j≥1

d
= (X

(0)
j )j≥1

for each n ∈ N0. Let us assume for a moment that νn converges almost surely, as
n→∞, to some limit random measure ν∞ in the vague topology on [0,∞), i.e.

νn
v→ ν∞ a.s. (3.10)

1For ease of notation, we write νn[0, t] instead of νn([0, t]).
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Let us show that (X
(0)
k )k≥1

d
= (G(Z

(1)
∞ ), G(Z

(1)
∞ + Z

(2)
∞ ), . . .) with G(t) := ν∞[0, t].

Indeed, (
X

(0)
1 , X

(0)
2 , . . .

)
= µ−n

(
X

(n)

bµnẐn(1)c
, X

(n)

bµnẐn(2)c
, . . .

)
=
(
νn[0, Ẑn(1)], νn[0, Ẑn(2)], . . .

)
, n ∈ N,

where Ẑn(j) := µ−n(R(n) ◦ · · · ◦ R(1))(j) is independent of νn. As already pointed
out, (

Ẑn(j)
)
j≥1

n→∞−→
(
Z(1)
∞ + . . .+ Z(j)

∞

)
j≥1

a.s. (3.11)

which in combination with (3.10) implies(
νn,
(
Ẑn(j)

)
j∈N

)
n→∞−→

(
ν∞,

(
Z(1)
∞ + . . .+ Z(j)

∞

)
j∈N

)
a.s.

in the product topology, the components of the limit vector on the right-hand

side being independent. Condition (2.5) entails that the law of Z
(1)
∞ is absolutely

continuous, see Athreya and Ney (1972, Corollary 4 on p. 36), whence

P
{
ν∞({Z(1)

∞ + . . .+ Z(j)
∞ }) = 0

}
= 1

for all j ∈ N. Lemma 5.1 in the Appendix now yields(
X

(0)
1 , X

(0)
2 , . . .

)
=
(
νn[0, Ẑn(1)], νn[0, Ẑn(2)], . . .

)
n→∞−→

(
ν∞[0, Z(1)

∞ ], ν∞[0, Z(1)
∞ + Z(2)

∞ ], . . .
)

a.s.,

which shows the asserted representation of
(
X

(0)
1 , X

(0)
2 , . . .

)
as a solution to (2.2).

It remains to prove (3.10). Recall that gn(t) := µ−nR(n)(btµn−1c), n ∈ N, t ≥ 0,
are the random maps introduced in Proposition 3.3. We have that

νn[0, t] = νn+1[0, gn+1(t)] (3.12)

for n ∈ N0 and t ≥ 0, and this shows that νn+1 differs from νn by a random
perturbation of time. But the latter is negligible for large n by the strong law of
large numbers, viz.

gn+1(t)
n→∞−→ t a.s.,

cf. Lemma 3.2. For arbitrary fixed k ∈ N0, iteration of (3.12) provides us with

νk[0, t] = νn+k[0, gn+k ◦ · · · ◦ gk+1(t)], (3.13)

in particular

ν0[0, t] = νn[0, Ẑn(btc)] (3.14)

for n ∈ N and t ≥ 0. Since

lim
t→∞

lim
n→∞

Ẑn(btc) = lim
t→∞

Z∞(t) = ∞,

equation (3.14) implies that, for each T > 0,

sup
n≥0

νn[0, T ] < ∞ a.s. (3.15)

Hence, (νn)n≥0 is a.s. relatively compact in the vague topology (see 15.7.5 in
Kallenberg, 1983). Let (νmn)n≥1, where (mn)n∈N is random, be an a.s. vaguely



Leader election using random walks 1111

convergent subsequence and ν′∞ its limit. From (3.13), we have for every fixed
k ∈ N0 and mn > k that

νk[0, t] = νmn [0, gmn ◦ · · · ◦ gk+1(t)], t ≥ 0. (3.16)

By part (A2) of Proposition 3.3

gmn ◦ · · · ◦ gk+1(t)
n→∞−→ µ−kZk,∞(tµk) a.s.

in the space D endowed with the J1-topology. Sending n → ∞ in (3.16) and
applying Lemma 5.1, we obtain that a.s.

νk[0, t] = ν′∞[0, µ−kZk,∞(tµk)], t ≥ 0 (3.17)

for every fixed k ∈ N0. By part (A5) of Proposition 3.3, the random set

S :=
{
µ−kZk,∞(tµk) : t ≥ 0, k ∈ N0

}
is a.s. dense in [0,∞). If ν′′∞ is another subsequential limit of (νn)n∈N0

, then

ν′′∞[0, t] = ν′∞[0, t]

for all t ∈ S, and therefore ν′′∞ = ν′∞ a.s., proving (3.10).

It remains to show that the random process G satisfies the restricted self-
similarity property (2.4). But this follows immediately from

νn[0, µt] = µ−nX
(n)
btµn+1c

d
= µ−nX

(n+1)
btµn+1c = µνn+1[0, t], t ≥ µ−(n+1),

where the equality in law is a consequence of the stationarity of (Vk)k∈Z. �

4. Proofs in the infinite-mean case

4.1. Some auxiliary results about infinite-mean Galton-Watson processes.

Lemma 4.1. Let θ be an N-valued random variable satisfying Davies’ assumption,
viz.

x−α−γ(x) ≤ P{θ > x} ≤ x−α+γ(x), x ≥ x0,
for some x0 > 0, α ∈ (0, 1), and a nonincreasing nonnegative function γ(x) such
that xγ(x) is nondecreasing and

∫∞
x0
γ(exp(ex)) dx <∞. Let (θn)n∈N be a sequence

of independent copies of θ, and put

R(0) := 0, R(n) := θ1 + . . .+ θn, M(n) := max
k=1,...,n

θk, n ∈ N.

Then, for each ε > 0 and each β ∈ (0, α), there exist c, C > 0 such that, for all
n ∈ N,

cn−(1/α+ε)βα
−1γ(n1/α+ε) ≤ E

(
R(n)

n1/α

)β
≤ Cn(1/α+ε)βα

−1γ(n1/α+ε), (4.1)

and

cn−(1/α+ε)βα
−1γ(n1/α+ε) ≤ E

(
M(n)

n1/α

)−β
≤ Cn(1/α+ε)βα

−1γ(n1/α+ε). (4.2)

Proof : If θ belongs to the domain of attraction of an α-stable law, α ∈ (0, 1),
equivalently if x 7→ P{θ > x} is regularly varying at infinity with index α, then
the β-th moment of R(n)/c(n), where c(·) is such that limn→∞ nP{θ > c(n)} = 1,
converges to the β-th moment of the limit α-stable law for all β ∈ (0, α). Unfor-
tunately, Davies’ condition does not imply that θ is in the domain of attraction of
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an α-stable law. Yet, in some sense θ can be bounded from below and above by
random variables with regularly varying tails, which is the idea employed in the
following argument.

We first recall, see Davies (1978, Lemma 3), that the function x 7→ xγ(x) is slowly
varying at infinity. Pick x1 > x0 so large that x−α+γ(x) ≤ 1 for x ≥ x1 and let
θ ≥ 1 and θ ≥ 1 be random variables with distributions

P{θ > x} :=

{
1, if 1 ≤ x < x1,

supy>x y
−α+γ(y), if x ≥ x1;

and

P{θ > x} :=

{
P{θ > x}, if 1 ≤ x < x1,

infx1≤y≤x y
−α−γ(y), if x ≥ x1.

It is clear from the construction that, with ≤st denoting stochastic majorization,

θ ≤st θ ≤st θ.

Moreover, by Theorem 1.5.3 in Bingham et al. (1989), both x 7→ P{θ > x} and
x 7→ P{θ > x} are regularly varying at infinity of order −α and therefore belong to
the domain of attraction of an α-stable law.

Let (θk)k≥1 and (θk)k≥1 be sequences of independent copies of θ and θ, re-

spectively, with associated zero-delayed random walks (R(k))k≥0 and (R(k))k≥0.
Further, let (c(n))n∈N and (c(n))n∈N be such that

lim
n→∞

nP{θ > c(n)} = lim
n→∞

nP{θ > c(n)} = 1.

From Lemma 5.2.2 in Ibragimov and Linnik (1971), we infer

0 < lim
n→∞

ER(n)β

cβ(n)
< ∞ and 0 < lim

n→∞

ER(n)β

cβ(n)
< ∞,

and since

ER(n)β ≤ ER(n)β ≤ ER(n)β ,

relation (4.1) follows if we can show that, for some c1, C1 > 0 and all n ∈ N,

c1n
−(1/α+ε)γ(n1/α+ε)/α ≤ c(n)

n1/α
and

c(n)

n1/α
≤ C1n

(1/α+ε)γ(n1/α+ε)/α. (4.3)

We prove only the first inequality in (4.1), for the second one follows in a similar
manner. It is known that (c(n)) is regularly varying with index 1/α. Hence, for
large enough n, we have c(n) ≤ n1/α+ε. On the other hand, using the monotonicity
of x 7→ xγ(x), we have

nP{θ > c(n)} ' n c(n)−α−γ(c(n)) ≥ (n−1/αc(n))−α(n1/α+ε)−γ(n
1/α+ε),

and therefore

lim sup
n→∞

(n−1/αc(n))−α(n1/α+ε)−γ(n
1/α+ε) ≤ 1,

yielding

c1n
−(1/α+ε)γ(n1/α+ε)/α ≤ c(n)

n1/α

for some c1 > 0.
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To show (4.2), we argue in a similar manner. Set

M(n) := max
1≤k≤n

(−θ−1k ), M(n) := max
1≤k≤n

(−θ−1k ), n ∈ N.

The Fisher-Tippett-Gnedenko theorem implies that (−c(n)M(n)) and (−c(n)M(n))
both converge weakly to a Weibull distribution. Moreover, Theorem 2.1 in Pickands
(1968) ensures that the moments of order β also converge, so

0 < lim
n→∞

E
(
− c(n)M(n)

)β
< ∞ and 0 < lim

n→∞
E
(
− c(n)M(n)

)β
< ∞.

On the other hand,

E
(
− c(n)M(n)

)β
= E

(
c(n) min

1≤k≤n
θ−1k

)β
= E

(
c(n)

max1≤k≤n θk

)β
≥ E

(
c(n)

max1≤k≤n θk

)β
.

and

E
(
− c(n)M(n)

)β
= E

(
c(n) min

1≤k≤n
θ
−1
k

)β
= E

(
c(n)

max1≤k≤n θk

)β
≤ E

(
c(n)

max1≤k≤n θk

)β
.

Combining this with (4.3), we obtain (4.2). �

The next result is the counterpart of Lemma 3.2 in the infinite-mean case.

Lemma 4.2. Let (θ
(n)
k )n∈N, k∈N be an array of independent copies of a positive

random variable θ which satisfies the assumptions of Lemma 4.1. For each n ∈ N,
define the increasing random walk

R(n)(0) := 0, R(n)(k) := θ
(n)
1 + . . .+ θ

(n)
k , k ∈ N.

Then, for arbitrary T > 0,

∞∑
n=1

sup
t∈[0, T ]

∣∣∣αn logR(n)(betα
−(n−1)

c)− t
∣∣∣ <∞ a.s.

Proof : Put mn(t) := betα−(n−1)c and Nn := mn(T ). Then

αn−1 logmn(t) ≤ t < αn−1 log(mn(t) + 1)

and therefore

sup
t∈[0, T ]

∣∣∣αn logR(n)(betα
−(n−1)

c)− t
∣∣∣

≤ sup
t∈[0, T ]

∣∣∣αn logR(n)(mn(t))− αn log(mn(t))1/α
∣∣∣ + sup

t∈[0, T ]

∣∣∣αn−1 logmn(t)− t
∣∣∣

≤ αn sup
1≤k≤Nn

∣∣∣∣log
R(n)(k)

k1/α

∣∣∣∣ + αn−1 log(1 + (mn(t))−1)

≤ αn sup
1≤k≤Nn

∣∣∣∣log
R(n)(k)

k1/α

∣∣∣∣ + αn−1 log 2.
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Hence, we must show

∞∑
n=1

αn sup
1≤k≤Nn

∣∣∣ log
R(n)(k)

k1/α

∣∣∣ < ∞ a.s.

which amounts to checking the following two relations:

∞∑
n=1

αn sup
1≤k≤Nn

(
log+ R(n)(k)

k1/α

)
< ∞ a.s. (4.4)

and
∞∑
n=1

αn sup
1≤k≤Nn

(
log−

R(n)(k)

k1/α

)
< ∞ a.s. (4.5)

Fixing β ∈ (0, α), we obtain

β E
(

sup
1≤k≤Nn

log+ R(n)(k)

k1/α

)
= E

(
log sup

1≤k≤Nn

(R(n)(k))β

kβ/α

)

≤ E

log

blogNnc∑
j=0

sup
k∈(e−(j+1)Nn, e−jNn]

(R(n)(k))β

kβ/α


≤ log

bTα−(n−1)c∑
j=0

E

(
sup

k∈(e−(j+1)Nn, e−jNn]

(R(n)(k))β

kβ/α

)

where the last line follows from Jensen’s inequality. For any ε > 0, we further infer
with the help of Lemma 4.1 and (4.1)

E

(
sup

k∈(e−(j+1)Nn, e−jNn]

R(n)(k)β

kβ/α

)
≤ C E

(
R(n)(de−jNne)
de−jNne1/α

)β
≤ C

(
de−jNne(1/α+ε)γ(de

−jNne1/α+ε)
)β/α

,

where C ∈ (0,∞) denotes a suitable constant which here and hereafter may differ
from line to line. By combining the previous estimates and using the monotonicity
of x 7→ xγ(x), we obtain

β E
(

sup
1≤k≤Nn

log
R(n)(k)

k1/α

)

≤ C + log

dTα−(n−1)e∑
j=0

(
de−jNne(1/α+ε)γ(de

−jNne1/α+ε)
)β/α

≤ C + log

((
dTα−(n−1)e+ 1

)(
N

(1/α+ε)γ(N1/α+ε
n )

n

)β/α)
.

Consequently, (4.4) follows from the inequality

∞∑
n=1

αn log
(
N

(1/α+ε)γ(N1/α+ε
n )

n

)
≤ C

∞∑
n=1

γ(N1/α+ε
n )
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and the fact that
∫∞
x0
γ(exp(ex)) dx < ∞ implies (see calculations on p. 473 in

Davies, 1978)
∞∑
n=1

γ(euα
−n

) < ∞.

for any u > 0.

Equation (4.5) is verified along similar lines. Using log− x = log(x−1 ∧ 1) ≤
log(1 + x−1), we obtain for arbitrary β ∈ (0, α)

β E
(

sup
1≤k≤Nn

log−
R(n)(k)

k1/α

)
≤ β E

(
log

(
1 + sup

1≤k≤Nn

(
k1/α

R(n)(k)

)))

≤ E log

(
1 +

blogNnc∑
j=0

sup
k∈(e−(j+1)Nn, e−jNn]

(
kβ/α

R(n)(k)β

))

≤ log

(
1 +

blogNnc∑
j=0

E

(
sup

k∈(e−(j+1)Nn, e−jNn]

(
kβ/α

R(n)(k)β

)))

≤ log

(
1 +

blogNnc∑
j=0

E

(
de−jNneβ/α

(R(n)(de−(j+1)Nne))β

))

≤ log

(
1 +

blogNnc∑
j=0

E

(
de−jNne1/α

maxk=1,...,de−(j+1)Nne θ
(n)
k

)β)
.

By (4.2) in Lemma 4.1,

E

(
de−jNne1/α

maxk=1,...,de−(j+1)Nne θ
(n)
k

)β
≤ C

(
de−(j+1)Nne(1/α+ε)γ(de

−(j+1)Nne1/α+ε)
)β/α

,

and this implies
∞∑
n=1

αnE sup
1≤k≤Nn

(
log−

R(n)(k)

k1/α

)
<∞

by the same argument as above. The proof of Lemma 4.2 is complete. �

The counterpart of Proposition 3.3 is next.

Proposition 4.3. Let (R(n)(k))k∈N0,n∈N be as in Lemma 4.2 and put

hn(t) := αn logR(n)(betα
−(n−1)

c)
for n ∈ N and t ≥ 0.

(B1) There exists a D-valued random process (Z∗∞(t))t≥0 such that(
hn ◦ · · · ◦ h1(t)

)
t≥0

n→∞−→
(
Z∗∞(t)

)
t≥0 a.s.

in the space D endowed with the J1-topology. The process (Z∗∞(t))t≥0 is the
a.s. limit of (αn logZn(t))t≥0 as n→∞, where Zn(t) denotes the number of
descendants in generation n of ancestors 1, . . . , betc in a GWP with generic
offspring variable θ and countably many ancestors 1, 2, . . . in generation 0.
The process (Z∗∞(t))t≥0 has the following representation:

Z∗∞(t) := Z(∗,1)
∞ ∨ Z(∗,2)

∞ ∨ . . . ∨ Z(∗,betc)
∞ , t ≥ 0,
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with (Z
(∗,j)
∞ )j∈N denoting independent copies of Z∗∞, the limit in (2.8).

(B2) For every fixed k ∈ N0 there exists a copy (Z∗k,∞(t))t≥0 of the process

(Z∗∞(t))t≥0 such that(
hn ◦ · · · ◦ hk+1(t)

)
t≥0

n→∞−→
(
αkZ∗k,∞(tα−k)

)
t≥0

a.s.

in the space D endowed with the J1-topology.
(B3) As t→∞,

inf
k∈N

hk ◦ · · · ◦ h1(t) → ∞ a.s.

(B4) For any T > 0,

sup
k∈N

sup
t∈[0,T ]

∣∣∣hn+k ◦ · · · ◦ hn+1(t)− t
∣∣∣ n→∞−→ 0 a.s.

(B5) The set
{
αkZ∗k,∞(tα−k) : t ≥ 0, k ∈ N

}
is almost surely dense in [0,∞).

Proof : (B1) The statement is equivalent to(
αn logR(n) ◦ · · · ◦R(1)(j)

)
j∈N

n→∞−→ (Z∗∞(j))j∈N a.s.

Introducing

Zn,1 := R(n) ◦ . . . ◦R(1)(1),

Zn,j := R(n) ◦ . . . ◦R(1)(j)−R(n) ◦ . . . ◦R(1)(j − 1), j = 2, 3, . . . ,

we obtain independent GWP (Zn,1)n∈N, (Zn,2)n∈N, . . . with generic offspring vari-
able θ. By (2.8), the random variables

Z(∗,j)
∞ := lim

n→∞
αn logZn,j , j ∈ N

exist a.s. in (0,∞) and are independent with the same distribution as Z∗∞. It follows
that

αn logR(n) ◦ . . . ◦R(1)(j) = αn log(Zn,1 + . . .+ Zn,j)
n→∞−→ Z(∗,1)

∞ ∨ . . . ∨ Z(∗,j)
∞ ,

for any j ∈ N which completes the proof of (B1).

(B2) This is an immediate consequence of (B1) and the identity

hn ◦ · · · ◦ hk+1(t) = αkα(n−k)R(n) ◦ · · · ◦R(k+1)(detα
−k
e), t ≥ 0

valid for n > k.

(B3) Keeping the notation from (B1), we have

hk ◦ · · · ◦ h1(t) = αk log

( betc∑
j=1

Zk,j

)
, t ≥ 0,

and hence for all t ≥ 0 and arbitrary n0 ∈ N
inf
k∈N

hk ◦ · · · ◦ h1(t) ≥ inf
k∈N

max
1≤j≤betc

(αk logZk,j)

=
(

inf
k>n0

max
1≤j≤betc

(αk logZk,j)
)
∧
(

inf
k≤n0

max
1≤j≤betc

(αk logZk,j)
)

≥
(

max
1≤j≤betc

inf
k>n0

(αk logZk,j)
)
∧
(

max
1≤j≤betc

inf
k≤n0

(αk logZk,j)
)
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by the minimax inequality. Since the infk≤n0
(αk logZk,j), j ∈ N, are iid with a law

having unbounded support2, i.e.

P
{

inf
k≤n0

(αk logZk,1) > z

}
> 0

for every z > 0, we deduce that

max
1≤j≤betc

inf
k≤n0

(αk logZk,j)
t→∞−→ →∞ a.s.

By the same arguments,

max
1≤j≤betc

inf
k>n0

(αk logZk,j)
t→∞−→ →∞ a.s.

if we can show the existence of n0 ∈ N such that

P{ inf
k≥n0

(αk logZk,1) > z} > 0 (4.6)

for all z > 0. To this end, fix z > 0 and note that, by Davies (1978, Theorem 2),
we have a := P{Z∗∞ > z + 1} < 1. On the other hand, we know from (B1) that

lim
n→∞

P
{

sup
k≥n
|αk logZk,1 − Z∗∞| ≥ 1

}
= 0.

In particular, for each 0 < δ < a, we find n0 ∈ N such that

P
{

sup
k≥n0

|αk logZk,1 − Z∗∞| ≥ 1

}
< δ,

and so

P
{

inf
k≥n0

(αk logZk,1) ≤ z
}

= P
{

inf
k≥n0

(αk logZk,1) ≤ z, Z∗∞ ≤ z + 1

}
+ P

{
inf
k≥n0

(αk logZk,1) ≤ z, Z∗∞ > z + 1

}
≤ 1− a+ P

{
sup
k≥n0

|αk logZk,1 − Z∗∞| ≥ 1

}
≤ 1− a+ δ < 1,

which proves (4.6).

The proofs of (B4) and (B5) are omitted because they follow verbatim those of
parts (A4) and (A5) of Proposition 3.3 (with Lemma 4.2 for part (B4) instead of
Lemma 3.2 for part (A4) in Proposition 3.3). �

4.2. Proof of Theorems 2.8, 2.9, 2.11 and 2.13, and Proposition 2.12. Define the
random map φ : RN → RN by

φ((x1, x2, . . .)) := α(xR(1), xR(2), . . .) (4.7)

and further φn : RN → RN for n ∈ N by

φn((x1, x2, . . .)) := α(xR(n)(1), xR(n)(2), . . .), n ∈ N (4.8)

which are independent copies of φ (compare (3.8) and (3.9) in the finite-mean case).

2This is an easy consequence of the fact that θ has unbounded support in view of Eθ = ∞.
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Proof of Theorem 2.8: The convergence in (2.9) is a consequence of (1.4) and part
(B1) of Proposition 4.3. The SFPE (2.10) follows from the continuity of the map
φ with respect to the product topology on RN. �

Proof of Theorem 2.9: Note first that (N
(n)
bexp(xα−n)c)x∈R+ is the counting process

associated with the increasing random sequence (αn logS
(n)
k )k≥1. By Theorem 2.8,

the finite-dimensional distributions of this sequence converge as n → ∞ to those

of the nondecreasing random sequence (Z
(∗,1)
∞ ∨ . . . ∨ Z(∗,k)

∞ )k≥1 with associated
counting process (N ′′(x))x∈R+ . Also, for every fixed n ∈ N,

lim
k→∞

αn logS
(n)
k = lim

k→∞
(Z(∗,1)
∞ ∨ . . . ∨ Z(∗,k)

∞ ) = ∞ a.s.

because ξ > 0 a.s. and Z∗∞ is not bounded from above. The latter statement follows

from the SFPE α(Z
(∗,1)
∞ ∨ . . . ∨ Z(∗,ξ)

∞ )
d
= Z∗∞. By Lemma 5.2 from the Appendix,

this implies the weak convergence of the corresponding counting processes on D
endowed with the M1-topology. �

Proof of Theorem 2.11: Here the assertion is implied by

P
{
T (beα

−nxc)− n ≤ k
}

= P
{
S
(n+k)
1 > beα

−nxc
}

= P
{
αn+k logS

(n+k)
1 > αkx

}
n→∞−→ P{Z∗∞ > αkx}.

�

Proof of Proposition 2.12: If ξ has a Sibuya-distribution with parameter α, then
the size Zn of the associated GWP in generation n has a Sibuya distribution with
parameter αn because fα ◦ fβ = fαβ and hence,

EtZn = fα ◦ . . . ◦ fα(t) = fαn(t).

By Lemma 5.3 in Appendix, the random variable Z∗∞ from (2.8) has a standard
exponential law. It remains to argue that

∞∑
j=1

δ
Z

(∗,1)
∞ ∨...∨Z(∗,j)

∞

d
=

∞∑
i=1

GiδPi .

But a well-known consequence of the memoryless property of the exponential dis-
tribution is that the record values (taken without repetitions and denoted by

P1, P2, . . .) in the sequence (Z
(∗,j)
∞ )j≥1 form a Poisson point process (Tata’s rep-

resentation, Nevzorov, 2001, p. 69). Given the record values P1, P2, . . ., the inter-
record times G1, G2, . . . are independent and have geometric distributions with pa-
rameters e−P1 , e−P2 , . . ., respectively, by Nevzorov (2001, Theorem 17.1, p. 77). �

Proof of Theorem 2.13: Again our arguments follow along similar lines as those in

the proof of Theorem 2.6 for the finite-mean case. Let (X
(0)
1 , X

(0)
2 , . . .) be a solution

to (2.10), i.e.

(X
(0)
1 , X

(0)
2 , . . .)

d
= α(X

(0)
R(1), X

(0)
R(2), . . .).

By the Kolmogorov consistency theorem, the underlying probability space (Ω,A,P)
may be assumed to be large enough to carry the following objects:

• the random sequence (X
(0)
1 , X

(0)
2 , . . .);
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• a two-sided sequence (R(n)(·))n∈Z of independent copies of the random walk
R(·) and the corresponding sequence of random maps (4.8);

• a two-sided stationary sequence (Vk)k∈Z =
(
(X

(k)
1 , X

(k)
2 , . . .)

)
k∈Z such that

Vk is independent of (φn)n≤k for each k ∈ Z, and

V0 :=
(
X

(0)
1 , X

(0)
2 , . . .

)
and Vk = φk+1(Vk+1), k ∈ Z,

thus(
X

(k)
1 , X

(k)
2 , . . .

)
= α

(
X

(k+1)

R(k+1)(1)
, X

(k+1)

R(k+1)(2)
, . . .

)
, k ∈ Z.

Define a sequence of random measures (υn)n≥0 on [0,∞) by

υn[0, t] := αn logX
(n)
bexp(tα−n)c, t ≥ 0

for n ∈ N0. As in the proof of Theorem 2.6, it is enough to show that the sequence
(υn)n∈N converges almost surely in the vague topology, i.e.

υn
v→ υ∞ a.s. (4.9)

Recall from Proposition 4.3 that hn(t) = αn logR(n)(betα−(n−1)c) for n ∈ N and
t ≥ 0. We have

υn[0, t] = υn+1[0, hn+1(t)] (4.10)

and upon iteration

υk[0, t] = υn+k[0, hn+k ◦ · · · ◦ hk+1(t)] (4.11)

for n ∈ N0 and t ≥ 0, in particular for k = 0

υ0([0, t]) = υn

0, αn log

betc∑
j=1

Zn,j

 , n ∈ N, t ≥ 0. (4.12)

Since

lim
t→∞

lim
n→∞

αn log

betc∑
j=1

Zn,j = lim
t→∞

Z∗∞(t) =∞ a.s.,

see (B1) in Proposition 4.3, equation (4.12) implies that, for any T > 0,

sup
n∈N0

υn[0, T ] < ∞ a.s.

and therefore almost sure relative compactness of (υn)n≥0 in the vague topology.

Let (υmn)n≥1 be an a.s. vaguely convergent subsequence and υ′∞ its limit. From
(4.11), we have a.s. for each k ∈ N0 and mn > k that

υk[0, t] = υmn [0, hmn ◦ · · · ◦ hk+1(t)], t ≥ 0. (4.13)

By part (B2) of Proposition 4.3,

hmn ◦ · · · ◦ hk+1(t)
n→∞−→ αkZ∗k,∞(tα−k) a.s.

in the space D endowed with the J1-topology. Sending n → ∞ in (4.13) and
applying Lemma 5.1, we obtain

υk[0, t] = υ′∞[0, αkZ∗k,∞(tα−k)], t > 0
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for every fixed k ∈ N0. By part (B6) of Proposition 4.3, the random set consisting
of αkZ∗k,∞(tα−k) for t ≥ 0, k ∈ N0 is a.s. dense in [0,∞). Hence, if υ′′∞ denotes

another subsequential limit of (υn)n≥1, then a.s.

υ′′∞[0, t] = υ′∞[0, t]

on a dense subset of [0,∞) and therefore υ′′∞ ≡ υ′∞, proving the convergence (4.9).

The restricted self-similarity property (2.11) can be checked as in the proof of
Theorem 2.6. �

5. Appendix

Lemma 5.1. Let M := M[0,∞) be the set of locally finite measures on [0,∞)
endowed with the vague topology and let φ :M× [0,∞)→ R+ be defined by

φ(µ, x) = µ([0, x]).

Endowing M× [0,∞) with the product topology, the mapping φ is continuous at
any (µ, x) such that µ({x}) = 0.

Proof : Let µn
v→ µ0, limn→∞ xn = x0 and set f0(s) := 1{s≤x0}, B0 := (0,∞)\{x0},

fn(s) := 1{s≤xn}, Bn := [0,∞) for n ∈ N. The result now follows from Lemma
15.7.3 in Kallenberg (1983). �

Lemma 5.2. For every n ∈ N ∪ {∞} let 0 ≤ X
(n)
1 ≤ X

(n)
2 ≤ . . . be a random

sequence such that limk→∞X
(n)
k =∞ a.s. and

(X
(n)
1 , X

(n)
2 , . . .)

f.d.d.−→ (X
(∞)
1 , X

(∞)
2 , . . .). (5.1)

Define the corresponding counting processes N (n)(x) := #{k ∈ N : X
(n)
k ≤ x},

x ≥ 0, n ∈ N ∪ {∞}. Then

(N (n)(x))x≥0
d

=⇒ (N (∞)(x))x≥0

in D endowed with the M1-topology, and the latter may be even replaced with the

J1-topology if the sequence (X
(∞)
k )k≥1 is strictly increasing with probability 1.

Proof : Consider the space L≤ of all sequences y = (yk)k∈N such that 0 ≤ y1 ≤ y2 ≤
. . . and limk→∞ yk =∞. We endow L≤ with the topology of pointwise convergence.
It is well-known that this topology is metrizable. Consider a map Ψ : L≤ → D
which assigns to each sequence y = (yk)k∈N the corresponding counting function

Ψ(y)(x) = #{k ∈ N : yk ≤ x}, x ≥ 0.

If we endow the D with the M1-topology, then it is an easy exercise to check that
the map Ψ is continuous on L≤. Let us now endow D with the J1-topology. Then,
Ψ is not continuous on L≤ (because the points can build clusters in the limit), but
it is continuous on the subset L< consisting of strictly increasing sequences.

We can consider (X
(n)
k )k≥1, n ∈ N∪{∞}, as random elements with values in L≤

(in L< when using the J1-topology). Then the convergence in (5.1) is equivalent
to the weak convergence of the corresponding random elements. The statement of
the lemma thus follows from the continuous mapping theorem. �
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Lemma 5.3. If Sα denotes a random variable with a Sibuya distribution with
parameter 0 < α < 1, then

lim
α↓0

P{α logSα ≤ x} = 1− e−x

for all x > 0.

Remark 5.4. It is known Cressie (1975/76) that if Zα is a positive α-stable variable
with α ∈ (0, 1), then α logZα converges in distribution to the Gumbel double
exponential law.

Proof of Lemma 5.3: Consider independent Bernoulli variablesB1, B2, . . . such that
P{Bi = 1} = α/i. Then it is easy to check that Sα := min{n ∈ N : Bi = 1} has the
required Sibuya distribution with parameter α. Taking any x > 0, we now infer

P{α logSα ≤ x} = P{Sα ≤ bex/αc} = 1− P{B1 + . . .+Bbex/αc = 0}.

But for α ↓ 0, the probability on the right-hand side converges to e−x because

B1 + . . .+Bbex/αc
d−→
α↓0

Poi (x).

For the proof, just note that
∑bex/αc
i=1

α
i ' α logbex/αc ' x, as α ↓ 0, and apply the

Poisson limit theorem. �
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