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Abstract. Let ξ = (ξt, t ≥ 0) be a real-valued Lévy process and define its associ-
ated exponential functional as follows

It(ξ) :=

∫ t

0

exp{−ξs}ds, t ≥ 0.

Motivated by applications to stochastic processes in random environment, we study
the asymptotic behaviour of

E
[
F
(
It(ξ)

)]
as t→∞,

where F = (F (x), x ≥ 0) is a function with polynomial decay at infinity and
which is non increasing for large x. In particular, under some exponential moment
conditions on ξ, we find five different regimes that depend on the shape of the
Laplace exponent of ξ. Our proof relies on a discretization of the exponential
functional It(ξ) and is closely related to the behaviour of functionals of semi-direct
products of random variables.

We apply our results to three questions associated to stochastic processes in ran-
dom environment. We first consider the asymptotic behaviour of extinction and
explosion for self-similar continuous state branching processes in a Lévy random
environment. Secondly, we focus on the asymptotic behaviour of the mean popula-
tion size in a model with competition or logistic growth which is affected by a Lévy
random environment and finally, we study the tail behaviour of the maximum of a
diffusion in a Lévy random environment.
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1. Introduction and main results

A one-dimensional Lévy process is a stochastic process issued from the origin
with stationary and independent increments and almost sure càdlàg paths. We
write ξ = (ξt : t ≥ 0) for its trajectory and P for its law. The process ξ is a strong
Markov process, and for each x ∈ R, we denote by Px its law when issued from x
with the understanding that P0 = P. The law of a Lévy process is characterized
by its one-time transition probabilities. In particular there always exists a triple
(δ, ρ,Π) where δ ∈ R, ρ ∈ R and Π is a measure on R\{0} satisfying the integrability
condition

∫
R(1 ∧ x2)Π(dx) <∞, such that, for all z ∈ R

E[eizξt ] = etψ(iz),

where the Laplace exponent ψ(z) is given by the Lévy-Khintchine formula

ψ(z) =
1

2
ρ2z2 + δz +

∫
R

(ezx − 1− zx`(x)) Π(dx), z ∈ R.

Here, `(x) is the cutoff function which is usually taken to be `(x) = 1{|x|<1}.
Whenever the process ξ has finite mean, we will take `(x) ≡ 1.

In this paper, we are interested in studying the exponential functional of ξ,
defined by

It(ξ) :=

∫ t

0

e−ξsds, t ≥ 0.

In recent years there has been a general recognition that exponential functionals
of Lévy processes play an important role in various domains of probability theory
such as self-similar Markov processes, generalized Ornstein-Uhlenbeck processes,
random processes in random environment, fragmentation processes, branching pro-
cesses, mathematical finance, Brownian motion on hyperbolic spaces, insurance
risk, queueing theory, to name but a few (see Bertoin and Yor, 2005; Carmona
et al., 1997; Kyprianou and Pardo, 2008 and references therein).

There is a vast literature about exponential functionals of Lévy processes drifting
to +∞ or killed at an independent exponential time eq with parameter q ≥ 0, see
for instance Bertoin et al. (2008); Bertoin and Yor (2005); Pardo et al. (2013). For
a Lévy process ξ satisfying one of these assumptions, I∞(ξ) or Ieq (ξ) is finite almost
surely with an absolute continuous density. According to Theorem 3.9 in Bertoin
et al. (2008), there exists a density for I∞(ξ), here denoted by h. In the case when
q > 0, the existence of the density of Ieq (ξ) appears in Pardo et al. (2013). Most
of the known results on I∞(ξ) and Ieq (ξ) are related to the knowledge of their
densities or the behaviour of their tail distributions.

From Theorem 2.2. in Kuznetsov et al. (2012), under the assumption that
E[|ξ1|] <∞, the density h is completely determined by the following integral equa-
tion: for v > 0,

δ

∫ ∞
v

h(x)dx+
ρ2

2
vh(v) +

∫ ∞
v

Π
(−) (

ln
x

v

)
h(x)dx

+

∫ v

0

Π
(+) (

ln
x

v

)
h(x)dx+

∫ ∞
v

h(x)

x
dx = 0,

(1.1)

where

Π
(+)

(x) =

∫ ∞
x

∫ ∞
y

Π(dz)dy and Π
(−)

(x) =

∫ ∞
x

∫ −y
−∞

Π(dz)dy.
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We refer to Bertoin et al. (2008); Bertoin and Yor (2005); Kuznetsov et al. (2012);
Pardo et al. (2013), and the references therein, for more details about these facts.

In this paper, we are interested in the case when the Lévy process ξ does not
satisfy such conditions, in other words when It(ξ) does not converge almost surely
to a finite random variable, as t goes to ∞. More precisely, one of our aims is to
study the asymptotic behaviour of

E
[
F
(
It(ξ)

)]
as t→∞,

where F is a function which, at infinity, is non-increasing and has polynomial decay,
under some exponential moment conditions on ξ. We find five regimes that depend
on the shape of the Laplace exponent ψ. These results will be applied in Section 2
for some particular cases such as

F (x) = x−p, F (x) = 1− ex
−p
, F (x) = e−x, or F (x) =

a

b+ x
,

for a, b, p, x > 0. Up to our knowledge, the case when the exponential functional
of a Lévy process does not converge has only been studied in a few papers and
not in its most general form, see for instance Bansaye et al. (2013); Böinghoff and
Hutzenthaler (2012); Palau and Pardo (2016+). In all these papers, the main moti-
vation comes from the study of some asymptotic properties of stochastic processes
in random environment, that we briefly describe.

A recent manuscript authored by Li and Xu (2016), that appeared on Arxiv at
the same time this manuscript was prepared, also studied the asymptotic behaviour
of exponential functionals for Lévy processes. They obtained interesting results
which are similar to the ones we present below using fluctuation theory for Lévy
processes and the knowledge of Lévy processes conditioned to stay positive. Our
approach is completely different and is based on a discretization of the exponential
functional of Lévy processes and on the asymptotic behaviour of functionals of
semi-direct products of random variables which was described by Guivarc’h and
Liu (2001).

We would like to stress that Bansaye et al. (2013) already used a discretization
technique to get the asymptotic behaviour of the survival probability for branchnig
processes with catastrophes. However the discretization used in Bansaye et al.
(2013) is different and only covers the case of compound Poisson processes.

Branching processes in random environment (BPREs) have been introduced and
first studied by Smith and Wilkinson. This type of process has attracted consid-
erable interest in the last decade (see for instance Afanasyev et al., 2012, 2005;
Bansaye and Berestycki, 2009; Böinghoff et al., 2010 and the references therein).
One of the reason is that BPREs are more realistic models than classical branching
processes. And, from the mathematical point of view, they have interesting features
such as a phase transition in the subcritical regime. Scaling limits for BPREs have
been studied by Kurtz (1978) in the continuous case and more recently by Bansaye
and Simatos (2015) in a more general setting.

Continuous state branching processes (CB-processes for short) in random en-
vironment, the continuous analogue in time and state space of BPREs, can be
defined as a strong solution of a particular stochastic differential equation. They
have been studied recently by several authors in different settings. Böinghoff and
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Hutzenthaler (2012) and Bansaye et al. (2013) studied extinction rates for branch-
ing diffusions in a Brownian environment and branching processes in a random
environment driven by a Lévy process with bounded variations, respectively. Mo-
tivated by these works, Palau and Pardo (2016+) studied the long-term behaviour
(extinction, explosion, conditioned version) of branching processes in a Brownian
random environment. In all these manuscripts, the existence of such processes is
proved via a stochastic differential equation and it is observed that the speed of
extinction is related to an exponential functional of a Lévy process which is asso-
ciated to the random environment. Moreover, and similarly to the case of BPREs,
a phase transition in the subcritical regime appears. Recently, branching processes
in a general Lévy random environment were introduced by Palau and Pardo (2015).

Exponential functionals occur naturally in the study of some models of diffusions
in random environment, which we now describe informally. Associated with a
stochastic process V = (V (x), x ∈ R) such that V (0) = 0, a diffusion XV =
(XV (t), t ≥ 0) in the random potential V is, loosely speaking, a solution to the
stochastic differential equation

dXV (t) = dβt −
1

2
V ′(XV (t))dt, XV (0) = 0,

where (βt, t ≥ 0) is a standard Brownian motion independent of V . More rigorously,
the process XV should be considered as a diffusion whose conditional generator,
given V , is:

1

2
exp(V (x))

d

dx

(
e−V (x) d

dx

)
.

Observe that from Feller’s construction of such diffusions, the potential V does
not need to be differentiable. Kawazu and Tanaka (1993) studied the asymptotic
behaviour of the tail of the distribution of the maximum of a diffusion in a drifted
Brownian potential. Carmona et al. (1997) considered the case when the potential
is a Lévy process whose jump structure is of bounded variation. More precisely,
they studied the following question: How fast does P(maxt≥0XV (t) > x) decay as
x go to infinity? From these works, we know that

P
(

max
t≥0

XV (t) > x

)
= E

[
Ĩ

Ĩ + Ix(−V )

]
where

Ĩ =

∫ 0

−∞
eV (t)dt and Ix(−V ) =

∫ x

0

eV (t)dt

are independent. As a consequence, exponential functionals play an essential role
in this domain.

Let us now state our main results. Assume that

θ+ = sup {λ > 0 : ψ(λ) <∞} (1.2)

exists and is positive. In other words, the Laplace exponent of the Lévy process ξ
can be defined on [0, θ+), see for instance Lemma 26.4 in Sato (2013). Besides, ψ
satisfies

ψ(λ) = logE
[
eλξ1

]
, λ ∈ [0, θ+).
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From Theorem 25.3 in Sato (2013), ψ(λ) <∞ is equivalent to∫
{|x|>1}

eλx Π(dx) <∞. (1.3)

Moreover ψ belongs to C∞([0, θ+)) with ψ(0) = 0, ψ′(0+) ∈ [−∞,∞) and ψ′′(λ) >
0, for λ ∈ (0, θ+) (see Lemma 26.4 in Sato, 2013). Hence, the Laplace exponent ψ is
a convex function on [0, θ+) implying that either it is always positive or it may take
negative values. In the latter scenario, ψ may have at most one global minimum
on (0, θ+). Whenever such a global minimum exists, we denote by τ the position
where it is reached. As we will see below, the shape of ψ is essential to determine
the asymptotic behaviour of E [It(ξ)

−p], for 0 < p < θ+.
Let us introduce the exponential change of measure known as the Esscher trans-

form. According to Theorem 3.9 in Kyprianou (2006), for any λ such that (1.3) is
satisfied, we can perform the following change of measure

dP(λ)

dP

∣∣∣∣
Ft

= eλξt−ψ(λ)t, t ≥ 0 (1.4)

where (Ft)t≥0 is the natural filtration generated by ξ which is naturally completed.

Moreover, under P(λ) the process ξ is still a Lévy process with Laplace exponent
given by

ψλ(z) = ψ(λ+ z)− ψ(λ), z ∈ R.

Theorem 1.1. Assume that 0 < p < θ+.

i) If ψ′(0+) > 0, then

lim
t→∞

E
[
It(ξ)

−p] = E
[
I∞(ξ)−p

]
> 0.

ii) If ψ′(0+) = 0 and ψ′′(0+) < ∞, then there exists a positive constant c1
such that

lim
t→∞

√
tE
[
It(ξ)

−p] = c1.

iii) Assume that ψ′(0+) < 0
a) if ψ′(p) < 0, then

lim
t→∞

e−tψ(p)E
[
It(ξ)

−p] = E(p)[I∞(−ξ)−p]> 0.

b) if ψ′(p) = 0 and ψ′′(p) < ∞ , then there exists a positive constant c2
such that

lim
t→∞

√
te−tψ(p)E

[
It(ξ)

−p] = c2.

c) ψ′(p) > 0 and ψ′′(τ) <∞ then

E
[
It(ξ)

−p] = o(t−1/2etψ(τ)), as t→∞.

Moreover if we also assume that ξ is non-arithmetic (or non-lattice)
then

E
[
It(ξ)

−p] = O(t−3/2etψ(τ)), as t→∞.

It is important to note that for any q > 0 satisfying (1.3) for λ = q, we necessarily
have that E [It(ξ)

−q] is finite for all t > 0. Indeed, since (eqξt−tψ(q), t ≥ 0) is a
positive martingale, we deduce from L1-Doob’s inequality (see for instance Acciaio
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et al., 2013) and the Esscher transform (1.4), that the following series of inequalities
hold: for t ≤ 1,

E
[
It(ξ)

−q] ≤ t−qE [ sup
0≤u≤1

eqξu
]
≤ t−qeψ(q)∨0E

[
sup

0≤u≤1
eqξu−uψ(q)

]
≤ t−q e

1+ψ(q)∨0

e− 1

(
1 + E(q)

[
qξ1 − ψ(q)

])
= t−q

e1+ψ(q)∨0

e− 1
[1 + qψ′(q)− ψ(q)] ,

(1.5)

which is finite. The finiteness for t > 1 follows from the fact that It(ξ) is non-
decreasing.

We are now interested in extending the above result for a class of functions
which have polynomial decay and are non-increasing at ∞. As we will see below
such extension is not straightforward and need more conditions on the exponential
moments of the Lévy process ξ.

For simplicity, we write

EF (t) := E [F (It(ξ))] ,

where F belongs to a particular class of continuous functions on R+ that we will
introduce below. Let k be a positive constant. We will consider functions F sat-
isfying one of the following conditions: There exists x0 ≥ 0 such that F (x) is
non-increasing for x ≥ x0, and

(A1) F satisfies

F (x) = k(x+ 1)−p
[
1 + (1 + x)−ςh(x)

]
, for all x > 0,

where 0 < p ≤ τ , ς ≥ 1 and h is a Lipschitz function which is bounded.
(A2) F is an Hölder function with index α > 0 satisfying

F (x) ≤ k(x+ 1)−p, for all x > 0,

with p > τ.

Theorem 1.2. Assume that 0 < p < θ+. We have the following five regimes for
the asymptotic behaviour of EF (t) for large t.

i) If ψ′(0+) > 0 and F is a positive and continuous function which is bounded,
then

lim
t→∞

EF (t) = EF (∞).

ii) If ψ′(0+) = 0, F satisfies (A2) and θ− := inf{λ < 0 : ψ(λ) < ∞} exists
and is strictly negative, then there exists a positive constant C1 such that

lim
t→∞

√
tEF (t) = C1.

iii) Suppose that ψ′(0+) < 0:
a) If F satisfies (A1) and ψ′(p) < 0, then,

lim
t→∞

e−tψ(p)EF (t) = lim
t→∞

e−tψ(p)kE
[
It(ξ)

−p] =kE(p)
[
I∞(−ξ)−p

]
.

b) If F satisfies (A1), ψ′(p) = 0 and ψ′′(p) <∞, then,

lim
t→∞

√
te−tψ(p)EF (t) = lim

t→∞

√
te−tψ(p)kE

[
It(ξ)

−p] =kc2,

where c2 has been defined in point iii) b) of Theorem 1.1.
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c) If F satisfies (A2), ψ′(p) > 0 and τ + p < θ+ then there exists a
positive constant C3 such that

lim
t→∞

t3/2e−tψ(τ)EF (t) = C3.

The remainder of the paper is structured as follows. In Section 2, we apply our
results to self-similar CB-processes, a population model with competition and diffu-
sions whose dynamics are perturbed by a Lévy random environment. In particular,
we study the asymptotic behaviour of the probability of extinction and explosion
for some classes of self-similar CB-processes in a Lévy random environment. For
the population model with competition, we describe the asymptotic behaviour of
its mean. For the diffusion in a Lévy random environment, we provide the asymp-
totic behaviour of the tail probability of its global maximum. Finally, Section 3 is
devoted to the proofs of Theorems 1.1 and 1.2.

2. Applications

2.1. Self-similar CB-processes in a Lévy random environment. A [0,∞]-valued
strong Markov process Y = (Yt, t ≥ 0) with probabilities (Px, x ≥ 0) is called a
CB-process if it has càdlàg paths and its law satisfies the branching property; i.e.
for any x, y ≥ 0, Px+y is equal in law to the convolution of Px and Py. The law of
Y is completely characterized by its Laplace transform

Ex
[
e−λYt

]
= e−xut(λ), ∀x > 0, t ≥ 0,

where u is a differentiable function in t satisfying

∂ut(λ)

∂t
= −Ψ(ut(λ)), u0(λ) = λ.

The function Ψ is known as the branching mechanism of Y and satisfies the cele-
brated Lévy-Khintchine formula

Ψ(λ) = −aλ+ γ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx1{x<1}

)
µ(dx), λ ≥ 0,

where a ∈ R, γ ≥ 0 and µ is a measure concentrated on (0,∞) such that
∫
(0,∞)

(
1∧

x2
)
µ(dx) <∞.

Here we are interested in the case where the branching mechanism is stable, that
is to say

Ψ(λ) = cβλ
β+1, λ ∈ R,

for some β ∈ (−1, 0) ∪ (0, 1] and cβ is such that βcβ > 0. We call its associated
CB-process a self-similar CB-process. Under this assumption, the process Y can
also be defined as the unique non-negative strong solution of the following SDE (see
for instance Fu and Li, 2010)

Yt =Y0 + 1{β=1}

∫ t

0

√
2cβYsdBs + 1{β 6=1}

∫ t

0

∫ ∞
0

∫ Ys−

0

zN̂(ds,dz,du),

where B = (Bt, t ≥ 0) is a standard Brownian motion, N is a Poisson random
measure independent of B with intensity

cββ(β + 1)

Γ(1− β)

1

z2+β
dsdzdu,
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Ñ is its compensated version and

N̂(ds,dz,du) =

{
N(ds,dz,du) if β ∈ (−1, 0),

Ñ(ds,dz,du) if β ∈ (0, 1).

According to Palau and Pardo (2015), we can define a self-similar branching
process whose dynamics are affected by a Lévy random environment (SSBLRE) as
the unique non-negative strong solution of the stochastic differential equation

Zt = Z0 + 1{β=1}

∫ t

0

√
2cβZsdBs

+ 1{β 6=1}

∫ t

0

∫ ∞
0

∫ Zs−

0

zN̂(ds,dz,du) +

∫ t

0

Zs−dSs,

(2.1)

where

St = αt+ σWt +

∫ t

0

∫
(−1,1)

(ev − 1)Ñ (e)(ds,dv) +

∫ t

0

∫
R\(−1,1)

(ev − 1)N (e)(ds,dv),

(2.2)
α ∈ R, σ ≥ 0,W = (Wt, t ≥ 0) is a standard Brownian motion, N (e) is a Poisson

random measure in R+ × R independent of W with intensity dsπ(dy), Ñ (e) repre-
sents its compensated version and π is a σ-finite measure concentrated on R \ {0}
such that ∫

R
(1 ∧ v2)π(dv) <∞.

In addition, Z satisfies the strong Markov property and, conditioned on the envi-
ronment, the branching property. In what follows, we introduce the auxiliary Lévy
process

Kt = dt+ σWt +

∫ t

0

∫
(−1,1)

vÑ (e)(ds,dv) +

∫ t

0

∫
R\(−1,1)

vN (e)(ds,dv), (2.3)

where

d = α− σ2

2
−
∫
(−1,1)

(ev − 1− v)π(dv).

The Laplace transform of Zte
−Kt can be computed explicitly and provides a

closed formula for the probabilities of survival and non explosion of Z. Indeed
according to Proposition 1 in Palau and Pardo (2015), if (Zt, t ≥ 0) is a stable
SSBLRE with index β ∈ (−1, 0) ∪ (0, 1], then for all z, λ > 0 and t ≥ 0,

Ez
[

exp
{
− λZte−Kt

}∣∣∣K] = exp

{
−z
(
λ−β + βcβ

∫ t

0

e−βKudu

)−1/β}
. (2.4)

Here, we are interested in two events which are of immediate concern for the process
Z, explosion and extinction. The event of explosion before time t, is given by
{Zt =∞}, and the event {∃ t > 0, Zt = 0} is referred as extinction.

2.1.1. Speed of explosion of SSBLRE. Let us first study the event of explosion for
self-similar CB-processes in a Lévy random environment. It is important to note
that this event has only been studied in the case when the random environment
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is driven by a Brownian motion with drift, see Palau and Pardo (2016+). From
Equation (2.4) and letting λ go to 0, we deduce

Pz
(
Zt <∞

∣∣∣K) = 1{β>0} + 1{β<0} exp

{
−z
(
βcβ

∫ t

0

e−βKudu

)−1/β}
a.s.

(2.5)

Let us focus on the most interesting case, β ∈ (−1, 0). Recall that when there
is no environment, a self-similar CB-process explodes at time t with probability
1− exp

{
−z(βcβt)−1/β

}
. Under the presence of a Lévy random environment three

different regimes appear for the asymptotic behaviour of the non-explosion proba-
bility. We call these regimes subcritical-explosion, critical-explosion or supercritical-
explosion depending on whether this probability stays positive, converges to zero
polynomially fast or converges to zero exponentially fast.
Before stating our result, let us introduce the Laplace transform of the Lévy process
K by

κ(θ) = logE[eθK1 ], (2.6)

whenever it exists (see discussion on page 1238).
We assume that θ−K < 0 < θ+K ,where

θ−K := inf{λ < 0 : κ(λ) <∞} and θ+K := sup{λ > 0 : κ(λ) <∞}.
As a consequence, the Laplace exponent κ of K is well defined on the interval
(θ−K , θ

+
K). If m := κ′(0+) > 0 then κ takes only positive values on (0, θ+K), and

some negatives values on (θ−K , 0). In this case, we may assume that κ has a global

minimum on (θ−K , 0) and we denote by τ̂ for its position. As we see below, the
asymptotic behaviour of the probability of explosion depends on the sign of m.

Proposition 2.1. Let (Zt, t ≥ 0) be the SSBLRE with index β ∈ (−1, 0) defined by
the SDE (2.1) with Z0 = z > 0, and recall the definition of the random environment
K in (2.3). Assume that 0 < θ+K .

i) Subcritical-explosion. If m < 0, then, for every z > 0

lim
t→∞

Pz
(
Zt <∞

)
= E

[
exp

{
−z
(
βcβ

∫ ∞
0

e−βKudu

)−1/β}]
> 0.

ii) Critical-explosion. If m = 0, then for every z > 0 there exists c1(z) > 0
such that

lim
t→∞

√
tPz
(
Zt <∞

)
= c1(z).

iii) Supercritical-explosion. If m > 0, then for every z > 0 there exists c2(z) >
0 such that

lim
t→∞

t
3
2 etκ(τ̂)Pz

(
Zt <∞

)
= c2(z).

Proof : Observe that the function

F : x ∈ R+ 7→ exp(−z(βcβx)−1/β)

is non-increasing, continuous, bounded, and satisfies Assumption (A2) for every
positive p. We also note that the processes (βKt, t ≥ 0) and (Kt, t ≥ 0) have
oposite signs implying

κ̂(θ) := logE
[
eβθK1

]
= κ(βθ),
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is well defined for θ ∈ (θ+K/β, θ
−
K/β). Hence Proposition 2.1 is a direct application

of Theorem 1.2 points i), ii) and iii) c) with (ξt, t ≥ 0) = (βKt, t ≥ 0). �

2.1.2. Speed of extinction of SSBLRE. Let us now focus on the survival probability.
Throughout this section, we assume that β ∈ (0, 1]. From Equation (2.4) and taking
λ go to ∞, we get

Pz
(
Zt > 0

∣∣∣K) = 1− exp

{
−z
(
βcβ

∫ t

0

e−βKudu

)−1/β}
a.s.

Similarly as for the explosion probability, the asymptotic behaviour of the prob-
ability depends on the sign of m = κ′(0+). But in contrast with the explosion
probability, five regimes appear, and a second parameter to take into account is the
sign of

m1 = κ′(1).

We recall that the Laplace exponent κ of K is well defined on the interval (θ−K , θ
+
K)

with θ−K < 0 < θ+K . In the case when m < 0, we may also assume that κ has a

global minimum on (0, θ+K) and we denote by τ for its position.

Proposition 2.2. Let (Zt, t ≥ 0) be a SSBLRE with index β ∈ (0, 1] defined by the
SDE (2.1) with Z0 = z > 0, and recall the definition of the random environment K
in (2.3). Assume that 1 < θ+K .

i) Supercritical case. If m > 0, then for every z > 0

lim
t→∞

Pz
(
Zt > 0

)
= E

[
1− exp

{
−z
(
βcβ

∫ ∞
0

e−βKudu

)−1/β}]
> 0.

ii) Critical case. If m = 0, then for every z > 0, there exists c1(z) > 0 such
that

lim
t→∞

√
tPz(Zt > 0) = c1(z).

iii) Subcritical case. Assume that m < 0 , then
a) (Strongly subcritical regime). If m1 < 0, then there exists c2 > 0 such

that for every z > 0,

lim
t→∞

e−tκ(1)Pz(Zt > 0) = c2z,

b) (Intermediate subcritical regime) If m1 = 0, then there exists c3 > 0
such that for every z > 0,

lim
t→∞

√
te−tκ(1)Pz(Zt > 0) = c3z,

c) (Weakly subcritical regime) If m1 > 0, then for every z > 0, there
exists c4(z) > 0 such that

lim
t→∞

t3/2e−tκ(τ)Pz(Zt > 0) = c4(z).

Proof : This is a direct application of Theorem 1.2, with (ξt, t ≥ 0) = (βKt, t ≥ 0)
and F (x) = 1− exp(−z(βcβx)−1/β). �

In the strongly and intermediate subcritical cases a) and b), E[Zt] provides the
exponential decay factor of the survival probability which is given by κ(1), and the
probability of non-extinction is proportional to the initial state z of the population.
In the weakly subcritical case c), the survival probability decays exponentially with
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rate κ(τ), which is strictly smaller than κ(1), and c4 may not be proportional to z
(it is also the case for c1). We refer to Bansaye (2009) for a result in this vein for
discrete branching processes in random environment.

More generally, the results stated above can be compared to the results which
appear in the literature of discrete (time and space) branching processes in random
environment, see e.g. Afanasyev et al. (2005); Geiger et al. (2003); Guivarc’h and
Liu (2001). In the continuous framework, such results have been established in
Böinghoff and Hutzenthaler (2012) for the Feller diffusion case (i.e. β = 1) in
a Brownian environment, in Palau and Pardo (2016+) for a general CB-process
in a Brownian environment, and in Bansaye et al. (2013) for stable CB-process
(β ∈ (0, 1]) subject to random catastrophes killing a fraction of the population.

2.2. Population model with competition in a Lévy random environment. We now
study an extension of the competition model introduced in Evans et al. (2014) and
studied by Palau and Pardo (2015). Following Palau and Pardo (2015), we define
a logistic process with competition in a Lévy random environment, (Zt, t ≥ 0), as
the unique strong solution of the SDE

Zt = Z0 +

∫ t

0

Zs(r − kZs)ds+

∫ t

0

Zs−dSs

where r > 0 is the drift, k > 0 is the competition, and the environment S is given
by the Lévy process defined in (2.2). Moreover, the process Z satisfies the Markov
property and we have

Zt = Z0e
Kt

(
1 + kZ0

∫ t

0

eKsds

)−1
, t ≥ 0,

where K is the Lévy process defined in (2.3).
The following result studies the asymptotic behaviour of Ez[Zt], where Pz denotes

the law of Z starting from z. Before stating our result, let us recall the definition
of the Laplace transform κ of K in (2.6) and that τ is the position of its global
minimum, m = κ′(0) and m1 = κ′(1).

Proposition 2.3. Assume that 1 < θ+K . For z > 0, we have the following five
regimes for the asymptotic behaviour of Ez[Zt].

i) If m > 0, then for every z > 0

lim
t→∞

Ez[Zt] =
1

k
E
[

1

I∞(K)

]
> 0.

ii) If m = 0, then

Ez[Zt] = O(t−1/2).

iii) Suppose that m < 0:
a) If m1 < 0, then,

lim
t→∞

e−tκ(1)Ez[Zt] = E(1)

[
z

1 + zkI∞(−K)

]
> 0,

where E(1) denotes the Esscher transform (1.4) of K with λ = 1.
b) If m1 = 0, then there exists a positive constant c(z, k) that depends on

z and k such that

lim
t→∞

√
te−tκ(1)Ez[Zt] = c(z, k).
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c) If m1 > 0 and τ + 1 < θ+ then there exists a positive constant c1(z, k)
that depends on z and k such that

lim
t→∞

t3/2e−tκ(τ)Ez[Zt] = c1(z, k).

Proof : We first recall from Lemma II.2 in Bertoin (1996) that the time reversed
process (Kt −K(t−s)− , 0 ≤ s ≤ t) has the same law as (Ks, 0 ≤ s ≤ t). Then

e−KtIt(−K) = e−Kt
∫ t

0

eKt−sds =

∫ t

0

e−(Kt−Kt−s)ds
(d)
=

∫ t

0

e−Ksds = It(K),

(2.7)

and

(e−Kt , e−KtIt(−K))
(d)
= (e−Kt , It(K)),

where
(d)
= stands for equality in law. The above implies that

Ez[Zt] = zE

[(
e−Kt + kze−Kt

∫ t

0

eKsds

)−1]
= zE

[(
e−Kt + kzIt(K)

)−1]
. (2.8)

Let us now prove part i). Assume that m > 0, then K drifts to ∞ and e−Kt

converges to 0 as t goes to ∞. By Theorem 1 in Bertoin and Yor (2005), It(K)
converges a.s. to I∞(K), a non-negative and finite limit as t goes to∞. We observe
that the result follows from identity (2.8) and the Monotone Convergence Theorem.

Part ii) follows from the inequality

Ez[Zt] = zE
[(
e−Kt + kzIt(K)

)−1] ≤ E
[
(kIt(K))

−1
]
,

and Theorem 1.1 part (ii).
Finally, we prove part iii). Observe by applying the Esscher transform (1.4) with

λ = 1 that

Ez[Zt] = zeκ(1)tE(1)

[(
1 + kz

∫ t

0

eKsds

)−1]
.

Part iii)-a) follows by observing that under the probability measure P(1), the process
K is a Lévy process with mean E(1)[K1] = κ′(1) ∈ (−∞, 0). We then conclude
as in the proof of part i) by showing that E(1)[(1 + kzIt(−K))−1], converges to
E(1)[(1 + kzI∞(−K))−1], as t increases.

Finally parts iii)-b) and c) follow from a direct application of Theorem (1.2)
parts iii)-b) and c), respectively, with the function F : x ∈ R+ 7→ z(1 +kzx)−1. �

2.3. Diffusions in a Lévy random environment. Let (V (x), x ∈ R) be a stochastic
process defined on R such that V (0) = 0. As presented in the introduction, a
diffusion process X = (X(t), t ≥ 0) in a random potential V is a diffusion whose
conditional generator given V is

1

2
eV (x) d

dx

(
e−V (x) d

dx

)
.

It is well known that X may be constructed from a Brownian motion through
suitable changes of scale and time, see Brox (1986).

The problem that we would like to study is the following: How fast does
P(maxt≥0X(t) > x) decay as x go to infinity? In order to make our analysis more
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tractable, we consider (ξt, t ≥ 0) and (ηt, t ≥ 0) two independent Lévy processes,
and we define

V (x) =

{
−ξx if x ≥ 0
−η−x if x ≤ 0.

We want to determine the asymptotic behaviour of

P
(

max
s≥0

X(s) > t

)
= E

[
I∞(η)

I∞(η) + It(ξ)

]
.

We assume that η drifts to ∞, and recall the notations of Section 1 for the Laplace
exponent ψ of ξ.

Proposition 2.4. Assume that 1 < θ+.

i) If ψ′(0+) > 0, then

lim
t→∞

P
(

max
s≥0

X(s) > t

)
= E

[
I∞(η)

I∞(η) + I∞(ξ)

]
> 0.

ii) If ψ′(0+) = 0, then there exists a positive constant C1 that depends on the
law of I∞(η) such that

lim
t→∞

√
tP
(

max
s≥0

X(s) > t

)
= C1.

iii) Suppose that ψ′(0+) < 0:
a) If ψ′(1) < 0, then there exists a positive constant C2 that depends on

the law of I∞(η) such that,

lim
t→∞

e−tψ(1)P
(

max
s≥0

X(s) > t

)
= C2.

b) If ψ′(1) = 0 and ψ′′(1) < ∞, then there exists a positive constant C3

that depends on the law of I∞(η) such that

lim
t→∞

√
te−tψ(1)P

(
max
s≥0

X(s) > t

)
= C3.

c) If ψ′(1) > 0, and τ + 1 < θ+, then

lim
t→∞

P
(

max
s≥0

X(s) > t

)
= o(t−1/2e−tψ(τ)).

Moreover, if the process ξ is non-arithmetic (or non-lattice) then there
exists a positive constant C4 that depends on the law of I∞(η) such
that

lim
t→∞

t3/2e−tψ(τ)P
(

max
s≥0

X(s) > t

)
= C4.

Furthermore, if there exists a positive ε such that

E[I∞(η)1+ε] <∞,

then

Ci = ciE[I∞(η)], i ∈ {2, 3},
where (ci, i ∈ {2, 3}) do not depend on the law of I∞(η).
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Proof : Since η and ξ are independent, we have

P
(

max
s≥0

X(s) > t

)
= E

[
I∞(η)E

[
1

I∞(η) + It(ξ)

∣∣∣η]] = E [I∞(η)f(I∞(η), t)] , t > 0,

where

f(a, t) = E
[
(a+ It(ξ))

−1] , a, t > 0.

The result follows from an application of Theorems 1.1 and 1.2 with the function

F : x ∈ R+ 7→ z(a+ x)−1.

We only prove case ii), as the others are analogous. By Theorem 1.2 there exists
c1(a) > 0 such that

lim
t→∞

t1/2f(a, t) = c1(a).

On the other hand, by Theorem 1, there exists c1 such that

lim
t→∞

t1/2f(0, t) = c1.

Let us define Gt(a) = at1/2f(a, t), and G0
t (a) = at1/2f(0, t). Observe that

Gt(a) ≤ G0
t (a), for all t, a ≥ 0

and

lim
t→∞

E
[
G0
t (I∞(η))

]
= c1E [I∞(η)] .

Then, by the Dominated Convergence Theorem (see for instance Dudley, 2002
problem 12 p. 145),

lim
t→∞

√
tP
(

max
s≥0

X(s) > t

)
= lim
t→∞

E [Gt(I∞(η))] = E [I∞(η)c1(I∞(η))] .

We complete the proof for the existence of the limits by observing that

0 < C1 = E [I∞(η)c1(I∞(η))] ≤ c1E [I∞(η)] <∞.

The last part of the proof consists in justifying the form of the constants C2 and
C3 under the additional condition E[I∞(η)1+ε] < ∞ for a positive ε. For every
0 ≤ ε ≤ 1, we have

I∞(η)

It(ξ)
− I∞(η)

I∞(η) + It(ξ)
=
I∞(η)

It(ξ)

I∞(η)

I∞(η) + It(ξ)

≤ I∞(η)

It(ξ)

(
I∞(η)

I∞(η) + It(ξ)

)ε
≤
(
I∞(η)

It(ξ)

)1+ε

.

Hence

0 ≤ E
[
I∞(η)

It(ξ)
− I∞(η)

I∞(η) + It(ξ)

]
≤ E[(I∞(η))1+ε]E

[
1

(It(ξ))1+ε

]
.

But from point iii)-c) of Theorem 1.1 and Equation (3.10) in the proof of Theo-
rem 1.2, we know that in the cases iii)-a) and iii)-b),

E
[
It(ξ)

−(1+ε)
]

= o
(
E
[
It(ξ)

−1]) .
This ends the proof. �
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3. Proofs of Theorems 1.1 and 1.2.

This section is dedicated to the proofs of the main results of the paper.
We first prove Theorem 1.1. The proof of part ii) is based on the following

approximation technique. Let (N
(q)
t , t ≥ 0) be a Poisson process with intensity

q > 0, which is independent of the Lévy process ξ, and denote by (τ qn)n≥0 its
sequence of jump times with the convention that τ q0 = 0. For simplicity, we also
introduce for n ≥ 0,

ξ
(n)
t = ξτqn+t − ξτqn , t ≥ 0.

For n ≥ 0, we define the following random variables

S(q)
n := ξτqn , M (q)

n := sup
τqn≤t<τqn+1

ξt and I(q)n := inf
τqn≤t<τqn+1

ξt.

Observe that (S
(q)
n , n ≥ 0) is a random walk with step distribution given by ξτq1 and

that τ q1 is an exponential r.v. with parameter q which is independent of ξ.

Similarly for the process ξ(n), we also introduce

m(q)
n := sup

t<τqn+1−τ
q
n

ξ
(n)
t and i(q)n := inf

t<τqn+1−τ
q
n

ξ
(n)
t .

Lemma 3.1. Using the above notation we have

M (q)
n = S(+,q)

n +m
(q)
0 , I(q)n = S(−,q)

n + i
(q)
0 , n ≥ 0

where each of the processes S(+,q) = (S
(+,q)
n , n ≥ 0) and S(−,q) = (S

(−,q)
n , n ≥ 0)

are random walks with the same distribution as S(q). Moreover S(+,q) and m
(q)
0 are

independent, as are S(−,q) and i
(q)
0 .

The proof of this lemma is based on the Wiener-Hopf factorisation (see Equations
(4.3.3) and (4.3.4) in Doney, 2007). It follows from similar arguments as those used
in the proof of Theorem IV.13 in Doney (2007), which considers the case when
the exponential random variables are jump times of the process ξ restricted to
R \ [−η, η], for η > 0. So, we omit its proof for the sake of brevity.

Recall that τ q1 goes to 0, in probability, as q increases and that ξ has càdlàg
paths. Hence, there exists an increasing sequence (qn)n≥0 such that qn →∞ and

eλi
(qn)
0 −→

n→∞
1, a.s. (3.1)

We also recall the following form of the Wiener-Hopf factorisation, for q > ψ(λ)

q

q − ψ(λ)
= E

[
eλi

(q)
0

]
E
[
eλm

(q)
0

]
. (3.2)

From the Dominated Convergence Theorem and identity (3.2), it follows that for
ε ∈ (0, 1), there exists N ∈ Z+ such that for all n ≥ N

1− ε ≤ E
[
eλi

(qn)
0

]
≤ E

[
eλm

(qn)
0

]
≤ 1 + ε. (3.3)

Next, we introduce the compound Poisson process

Y
(q)
t := S

(q)

N
(q)
t

, t ≥ 0,
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whose Laplace exponent satisfies

ψ(q)(λ) := logE
[
eλY

(q)
1

]
=

qψ(λ)

q − ψ(λ)
,

which is well defined for λ such that q > ψ(λ). Similarly, we define

Ĩ
(q)
t = I

(q)

N
(q)
t

, M̃
(q)
t = M

(q)

N
(q)
t

, Y
(+,q)
t = S

(+,q)

N
(q)
t

, and Y
(−,q)
t = S

(−,q)
N

(q)
t

.

We observe from the definitions of M̃ (q) and Ĩ(q), and Lemma 3.1, that for all t ≥ 0,
the following inequalities are satisfied

e−m
(q)
0

∫ t

0

e−Y
(+,q)
s ds ≤

∫ t

0

e−ξsds ≤ e−i
(q)
0

∫ t

0

e−Y
(−,q)
s ds. (3.4)

We have now all the tools needed to prove Theorem 1.1.

Proof of Theorem 1.1: i) Assume that ψ′(0+) > 0. According to Theorem 1 in
Bertoin and Yor (2005), It(ξ) converges a.s. to I∞(ξ), a non-negative and finite
limit as t goes to ∞. Then, we observe that the result follows from the Monotone
Convergence Theorem.

We now prove part ii). In order to do so, we use the approximation and notation
that we introduced at the beginning of this section. Let (qn)n≥1 be a sequence

defined as in (3.1) and observe that for n ≥ 1, we have ψ(qn)(0) = 0, ψ′(qn)(0+) = 0
and ψ′′(qn)(0+) <∞. We also observe that the processes Y (+,qn) and Y (−,qn) have
bounded variation paths.

We take ` ≥ N and 0 < ε < 1. Hence from Lemmas 13 and 14 in Bansaye et al.
(2013), we observe that there exists a positive constant c1(`) such that

(1− ε)c1(`)t−1/2 ≤ E

[(∫ t

0

e−Y
(±,q`)
s ds

)−p]
≤ (1 + ε)c1(`)t−1/2,

for t sufficiently large. Therefore using (3.3) and (3.4) in the previous inequality,
we obtain

(1− ε)2c1(`)t−1/2 ≤ E[It(ξ)
−p] ≤ (1 + ε)2c1(`)t−1/2, (3.5)

for t sufficiently large.
Next, we take n,m ≥ N and observe that the previous inequalities imply(

1− ε
1 + ε

)2

c1(n) ≤ c1(m) ≤
(

1 + ε

1− ε

)2

c1(n), for all n,m ≥ N.

Thus, we deduce that (c1(n))n≥1 is a Cauchy sequence. Let us denote c1 its limit
which, by the previous inequalities is positive. Let l ≥ N such that

(1− ε)c1 ≤ c1(l) ≤ (1 + ε)c1.

Using this inequality and (3.5), we observe

(1− ε)3c1t−1/2 ≤ E[It(ξ)
−p] ≤ (1 + ε)3c1t

−1/2,

for t sufficiently large. This completes the proof of part ii).
Now, we prove part iii)-a). Recalling (2.7) yields that

It(ξ)
(d)
= e−ξtIt(−ξ), t ≥ 0. (3.6)
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Hence using the Esscher transform (1.4), with λ = p, we have

E
[
It(ξ)

−p] = E
[
epξtIt(−ξ)−p

]
= etψ(p)E(p)

[
It(−ξ)−p

]
, t ≥ 0. (3.7)

The inequality (1.5) with q = p and the previous identity imply that the decreasing
function t 7→ E(p)[It(−ξ)−p] is finite for all t > 0. Recall that under the probability
measure P(p), the process ξ is a Lévy process with mean E(p)[ξ1] = ψ′(p) ∈ (−∞, 0).
Then, as in the proof of part i), E(p)[It(−ξ)−p] converges to E(p)[I∞(−ξ)−p], as t
increases.

Part iii)-b) follows from part ii) and the Esscher transform (1.4). More precisely,
we apply the Esscher transform with λ = p and observe that the Laplace transform
of the process ξ under the probability measure P(p), satisfies ψ′p(0+) = ψ′(p) = 0
and ψ′′p (0+) = ψ′′(p) < ∞. Therefore by applying part ii) and identity (3.7), we
get the existence of a constant c2 > 0 such that

E
[
It(ξ)

−p] = etψ(p)E(p)[It(−ξ)−p] ∼ c2t−1/2etφ(p).

Finally we prove part iii)-c). Again from the Esscher transform with λ = τ , we
see

E
[
It(ξ)

−p] = etψ(τ)E(τ)[e(p−τ)ξtIt(−ξ)−p], t > 0.

On the one hand, for t > 0,

E(τ)[e(p−τ)ξtIt(−ξ)−p]

= E(τ)

[
e(p−τ)(ξt−ξt/2)

(e−ξt/2It/2(−ξ) +
∫ t
t/2

eξu−ξt/2du)−(p−τ)

(It/2(−ξ) + eξt/2
∫ t
t/2

eξu−ξt/2du)τ

]

≤ E(τ)

[
e(p−τ)(ξt−ξt/2)

(
∫ t/2
0

eξs+t/2−ξt/2ds)−(p−τ)

It/2(−ξ)τ

]
= E(τ)

[
e(p−τ)(ξt/2)It/2(−ξ)−(p−τ)

]
E(τ)

[
It/2(−ξ)−τ

]
,

where we have used in the last identity the fact that (ξu+t/2 − ξt/2, u ≥ 0) is
independent of (ξu, 0 ≤ u ≤ t/2) and with the same law as (ξu, u ≥ 0).

On the other hand, from (3.6) we deduce

E(τ)
[
e(p−τ)(ξt/2)It/2(−ξ)−(p−τ)

]
= E(τ)

[
It/2(ξ)−(p−τ)

]
, t > 0.

Putting all the pieces together, we get

E(τ)[e(p−τ)ξtIt(−ξ)−p] ≤ E(τ)
[
It/2(ξ)−(p−τ)

]
E(τ)

[
It/2(−ξ)−τ

]
, t > 0

implying

E
[
It(ξ)

−p] ≤ etψ(τ)E(τ)
[
It/2(ξ)−(p−τ)

]
E(τ)

[
It/2(−ξ)−τ

]
, t > 0.

Since ψ′(τ) = 0, we have E(τ)[ξ1] = 0 and the process ξ oscillates under P(τ).
Moreover since ψ′′(τ) < ∞, we deduce that ψ′′τ (0+) < ∞. The latter condition
implies from part ii) that there exists a constant c1(τ) > 0 such that

E(τ)[It(ξ)
−(p−τ)] ∼ c1(τ)t−1/2,
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for t sufficiently large. Since the process ξ oscillates under P(τ), the dual −ξ also
oscillates. This implies that It(−ξ) goes to∞ and therefore E(τ)[It(−ξ)−(p−τ)] goes
to 0, as t increases. In other words, we have

E
[
It(ξ)

−p] = o(t−1/2etψ(τ)), as t→∞,

as expected.
We now assume that ξ is non-arithmetic, our arguments are similar to those used

in Bansaye et al. (2013). We will prove

lim sup
t→∞

t3/2e−tψ(τ)E
[
It(ξ)

−p] <∞.
In order to prove it, we take t > 0 and observe

Ibtc(ξ) =

btc−1∑
k=0

e−ξk
∫ 1

0

e−(ξk+u−ξk)du,

where btc denotes the integer part of t. Therefore

E
[
Ibtc(ξ)

−p] ≤ E

[
min

k≤btc−1
epξk

(∫ 1

0

e−(ξk+u−ξk)du

)−p]
.

Conditioning on the value when the minimum is attained, let say k′, and observing

that epξk′ is independent of
(∫ 1

0
e−(ξk′+u−ξk′ )du

)−p
and the latter has the same law

as
(∫ 1

0
e−ξudu

)−p
, we deduce

E
[
Ibtc(ξ)

−p] ≤ E
[

min
k≤btc−1

epξk
]
E

[(∫ 1

0

e−ξudu

)−p]
.

Finally, by Lemma 7 in Hirano (1998), there exists a C > 0 such that

E
[

min
k≤btc−1

epξk
]
∼ Cbtc−3/2ebtcψ(τ), for t large.

The claim follows from the monotonicity of E
[
Ibtc(ξ)

−p] and the fact that t ∈
[btc, btc+ 1). �

The idea of the proof of Theorem 1.2 is to study the asymptotic behaviour of
EF (n/q) for q fixed and large n, and then to use the monotonicity of F to deduce
the asymptotic behaviour of EF (t) when t goes to infinity. In order to do so, we use
a key result due to Guivarc’h and Liu that we state in the Appendix for the sake
of completeness.

Let q > 0 and define the sequence qn = n/q, for n ≥ 0. For k ≥ 0, we also define

ξ̃(k)u = ξqk+u − ξqk , for u ≥ 0,

and

ak = e
−ξ̃(k)q(k+1)−qk and bk =

∫ q(k+1)−qk

0

e−ξ̃
(k)
u du. (3.8)

Hence, (ak, bk) is a R2
+-valued sequence of i.i.d. random variables. Observe that

a0 = e
−ξ 1

q and
b0

1− a0
=

I 1
q
(ξ)

1− e
−ξ 1

q

,
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which are not constant a.s. as required by Theorem A.1. Moreover, we have∫ qi+1

qi

e−ξudu = e−ξqi bi =

i−1∏
k=0

akbi = Aibi,

where Ak is defined as in Theorem A.1. The latter identity implies

Iqn(ξ) =

n−1∑
i=0

∫ qi+1

qi

e−ξudu =

n−1∑
i=0

Aibi := Bn.

In other words, we have all the objects required to apply Theorem A.1.

Proof of Theorem 1.2: i) The proof uses similar arguments as those used in the
proof of Theorem 1.1-i).

ii) We now assume that ψ′(0+) = 0. We define the sequence (ak, bk)k≥0 as in
(3.8) and follow the same notation as in Theorem A.1. We take 0 < η < α and
dp > 1 such that −θ−/dp < p and θ− < −η < η + p < θ+, and let

(η, κ, ϑ) =

(
η,
−θ−

dp
, p

)
.

Next, we verify the moment conditions of Theorem A.1 for the couple (a0, b0). From
the definition of (a0, b0), we get

E [ln a0] =
ψ′(0+)

q
= 0, E [aκ0 ] = eψ(−κ)/q and E

[
a−η0

]
= eψ(η)/q,

which are well defined. Similarly as in (1.5), by L1-Doob’s inequality (see Acciaio
et al., 2013) and the Esscher transform (1.4)

E [bη0 ] ≤ qηE

[
sup

0≤u≤1/q
e−ηξu

]
≤ e

e− 1
qηe

ψ(−η)
q (1− ηψ′(−η)− ψ(−η)) <∞,

and

E
[
a−η0 b−ϑ0

]
≤ qϑE

[
e
ηξ 1
q sup

0≤u≤1/q
eϑξu

]
≤ qϑE

[
sup

0≤u≤1/q
e(η+ϑ)ξu

]
<∞.

Therefore the asymptotic behaviour of EF (qn) for large n follows from a direct
application of Theorem A.1. In other words, there exists a positive constant c(q)
such that √

nEF (qn) ∼ c(q), as n→∞.
In order to get our result, we take t to be a positive real number. Since the mapping
s 7→ EF (s) is non-increasing, we get

√
tEF (t) ≤

√
tEF (bqtc/q) =

√
t

bqtc
√
bqtcEF (bqtc/q).

Similarly

√
tEF (t) ≥

√
tEF ((bqtc+ 1)/q) =

√
t

bqtc+ 1

√
bqtc+ 1EF ((bqtc+ 1)/q).

Therefore √
tEF (t)∼c(q)q−1/2, as t→∞.
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Moreover, we deduce that c(q)q−1/2 is positive and does not depend on q. Hence
we denote this constant by c1. This concludes the proof of point ii).

iii) For the rest of the proof, we assume that ψ′(0) < 0. We first prove part a).
Since ψ′(p) < 0, from Theorem 1.1 part iii)-a) we know that

E
[
It(ξ)

−p] ∼ etψ(p)E(p)[I∞(−ξ)−p], as t→∞.
Hence the asymptotic behaviour is proven if we show that

EF (t) ∼ kE
[
It(ξ)

−p] , as t→∞.

Since ψ′(p) < 0, there is ε > 0 such that p(1 + ε) < θ+, ψ(p(1 + ε)) < ψ(p) and
ψ′((1 + ε)p) < 0. Hence, from Lemma 2 (see the Appendix), we deduce that there
is a constant M such that∣∣F (It(ξ))− kIt(ξ)

−p∣∣ ≤MIt(ξ)
−(1+ε)p. (3.9)

In other words, it is enough to prove

E
[
It(ξ)

−(1+ε)p
]

= o(etψ(p)), as t→∞. (3.10)

From the Esscher transform (1.4) with λ = (1 + ε)p, we deduce

E
[
It(ξ)

−(1+ε)p
]

= E
[
ep(1+ε)ξsIt(−ξ)−(1+ε)p

]
= etψ(p)etψp(εp)E((1+ε)p)

[
It(−ξ)−(1+ε)p

]
.

This and Equation (1.5) with λ = (1 + ε)p imply that E((1+ε)p)[It(−ξ)−(1+ε)p] is
finite for all t > 0. Similarly as in the proof of Theorem 1.1 iii)-a), we can deduce
that E((1+ε)p)[It(−ξ)−(1+ε)p] has a finite limit, as t goes to ∞. We conclude by
observing that ψp(εp) is negative implying that (3.10) holds. We complete the
proof of point iii)-a) by observing that (3.9) and (3.10) yield

E[F (It(ξ))] ∼ kE[It(ξ)
−p], t→∞.

We now prove part b). Since ψ′(p) = 0 and ψ′′(p) <∞, from Theorem 1.1 part
iii)-b) we know that there exists a positive constant c2 such that

E
[
It(ξ)

−p] ∼ c2t−1/2etψ(p), as t→∞.
Similarly as in the proof of part a), the asymptotic behaviour is proven if we show
that

EF (t) ∼ kE
[
It(ξ)

−p] , as t→∞,
which amounts to showing that

E
[
It(ξ)

−(1+ε)p
]

= o(t−1/2etψ(p)), as t→∞

for ε small enough. The latter follows from Theorem 1.1 iii)-c).

Finally, we prove part c). Similarly as in the proof of part ii), we define the
sequence (ak, bk)k≥0 as in (3.8) and follow the same notation as in Theorem A.1.
Let us choose 0 < η < α such that 0 < τ − η < τ + p+ η < θ+ and take

(η, κ, ϑ) = (η, τ, p) .
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Next, we apply the Esscher transform (1.4) with λ = τ and observe

E[F (I(qn))]e−qnψ(τ) = E(τ)[e−τξqnF (I(qn))] = E(τ)[AτnF (Bn)]. (3.11)

Hence in order to apply Theorem A.1, we need the moment conditions on (a0, b0)
to be satisfied under the probability measure P(τ). We first observe,

E(τ)[ln a0] = E(τ)[ξ1/q] = e−ψ(τ)/qE[ξ1/qe
τξ1/q ] =

ψ′(τ)

q
= 0.

Similarly, we get

E(τ) [aκ0 ] = E(τ)[e−κξ1/q ] = e−ψ(τ)/q and E(τ)
[
a−η0

]
= E(τ)[eηξ1/q ] = eψτ (η)/q,

where ψτ (λ) = ψ(τ+λ)−ψ(τ). From our assumptions both expectations are finite.
Again, we use similar arguments as those used in (1.5) to deduce

E(τ) [bη0 ] ≤ q−ηE(τ)

[
sup

0≤u≤1/q
e−ηξu

]
≤ q−ηe−ψ(τ)/qE

[
sup

0≤u≤1
e(τ−η)ξu

]
<∞,

and

E(τ)
[
a−η0 b−p0

]
≤ qpE(τ)

[
e
ηξ 1
q sup

0≤u≤1/q
epξu

]

≤ qpe−ψ(τ)/qE
[

sup
0≤u≤1

e(τ+η+p)ξu
]
<∞.

Therefore the asymptotic behaviour of E(τ)[AτnF (Bn)] follows from a direct appli-

cation of Theorem A.1 with the functions ψ̃(x) = F (x) and φ̃(x) = xτ . In other
words, we conclude that there exists a positive constant c(q) such that

n3/2E(τ)[AτnF (Bn)] ∼ c(q), n→∞.

In particular from (3.11), we deduce

EF (qn) ∼ c(q)e−nψ(τ)/qn−3/2, n→∞.

Then using the monotonicity of F at infinity as in the proof of part ii), we get that
for n large enough,

c(q)q−3/2e−ψ(τ)/q ≤ n3/2enψ(τ)EF (n) ≤ c(q)q−3/2. (3.12)

A direct application of Lemma A.3 then yields the existence of a non-negative
constant c4 such that

lim
q→∞

c(q)q−3/2 = C3.

Moreover, (3.12) yields that C3 is positive. This ends the proof. �

A. Appendix

We recall in this section a Theorem due to Guivarc’h and Liu (see Theorem 2.1
in Guivarc’h and Liu, 2001) and two technical Lemmas stated in Bansaye et al.
(2013):
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Theorem A.1 (Guivarc’h and Liu, 2001). Let (an, bn)n≥0 be a R2
+-valued sequence

of i.i.d. random variables such that E[ln a0] = 0. Assume that b0/(1 − a0) is not
constant a.s. and define

A0 := 1, An :=

n−1∏
k=0

ak and Bn :=

n−1∑
k=0

Akbk, for n ≥ 1.

Let η, κ, ϑ be three positive numbers such that κ < ϑ, and φ̃ and ψ̃ be two positive
continuous functions on R+ such that they do not vanish and for a constant C > 0
and for every a > 0, b ≥ 0, b′ ≥ 0, we have

φ̃(a) ≤ Caκ, ψ̃(b) ≤ C

(1 + b)ϑ
, and |ψ̃(b)− ψ̃(b′)| ≤ C|b− b′|η.

Moreover, assume that

E
[
aκ0
]
<∞, E

[
a−η0

]
<∞, E

[
bη0
]
<∞ and E

[
a−η0 b−ϑ0

]
<∞.

Then, there exist two positive constants c(φ̃, ψ̃) and c(ψ̃) such that

lim
n→∞

n3/2E
[
φ̃(An)ψ̃(Bn)

]
= c(φ̃, ψ̃) and lim

n→∞
n1/2E

[
ψ̃(Bn)

]
= c(ψ̃).

Lemma A.2. Assume that F satisfies one of the Assumptions (A1) or (A2).
Then there exist two positive finite constants η and M such that for all (x, y) in
R2

+ and ε in [0, η], ∣∣∣F (x)− kx−p
∣∣∣ ≤ Mx−(1+ε)p,∣∣∣F (x)− F (y)
∣∣∣ ≤ M

∣∣∣x−p − y−p∣∣∣.
Lemma A.3. Assume that the non-negative sequences (an,q)(n,q)∈Z2

+
, (a′n,q)(n,q)∈Z2

+

and (bn)n∈Z+ satisfy for every (n, q) ∈ Z2
+:

an,q ≤ bn ≤ a′n,q,

and that there exist three sequences (a(q))q∈Z+
, (c−(q))q∈Z+

and (c+(q)q∈Z+
such

that

lim
n→∞

an,q = c−(q)a(q), lim
n→∞

a′n,q = c+(q)a(q), and lim
q→∞

c−(q) = lim
q→∞

c+(q) = 1.

Then there exists a non-negative constant a such that

lim
q→∞

a(q) = lim
n→∞

bn = a.
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