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Abstract. Fractional Brownian motion of index 0 < H < 1, H-FBM, with d-
dimensional time is considered in a spherical domain that contains 0 at its boundary.
The main result: the log-asymptotics of the probability that H-FBM does not
exceed a fixed positive level is (H — d + o(1))log T, where T' >> 1 is the radius of
the domain.

1. Introduction

Fractional Brownian motion of index H € (0,1), H-FBM, with multivariate time
t € R% is a centered Gaussian random process wy (t) with correlation function

BEwp (twi(s) = 0.5([t1* + |s|* — [t — s[*'").
H-FBM is H-self-similar (H-ss), isotropic, and has stationary increments (si), i.e.,

{U}H()\Ut + to) - U)H(to)}i{AHwH(t)}

holds in the sense of the equality of finite-dimensional distributions for any fixed
to, A > 0, and orthogonal mapping U : RY — R<.

The one-sided exit problem for a random process £(t) and its characteristics, the
so-called survival exponents:

b = Jim —log P(§() < 1,1 € Ar)/(T) (L1)

are the subject of intensive analysis in applications. Here Ar is an increasing se-
quence of domains of size T', and 1)(+) is a suitable slowly varying function, typically,
Y(T) =logT for ss-processes. The greatest progress in this area has been achieved
for processes with one-dimensional time. (See surveys by Bray et al., 2013 of the
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physics literature and by Aurzada and Simon, 2015 of the relevant mathematical
publications).

H-FBM was one of the first non-trivial examples of non-Markovian processes for
which the survival exponents have been found exactly (Molchan, 1999). Namely,
for ¢(T) = log T, the survival exponents for H-FBM are

0wy =1—H, Ar=(0,T) and 0,, =d, Ar=(-T,T)%. (1.2)
Recently, Aurzada et al. (2016) considerably refined the asymptotics of probability
pr = P(wH(t) <1l,te AT), Ar = (O,T) (13)

and showed that the exponent § = 1 — H is universal for a broad class of H-ss
processes with stationary increments. The ideas of this work have proved useful
in the analysis of the conjecture that 6,,,, = d — kH for wg(t) in Ar = [0,T]% x
[T, T)4=* (Molchan, 2012).

The case k = 0 corresponds to the right part of (1.2). The case k = 1 is supported
by the result which we discuss below: 6,,, = d — H for fractional Brownian motion
in Ap = TAy, where Aj is a unit ball that contains 0 at its boundary.

The main idea of the paper by Aurzada et al. (2016) is to show that for a broad
class of si-processes, £(t),£(0) = 0, with discrete time

|Ar| P(E(t) < 1,t € Ar NZY) =~ Emax(£(t), t € Ap NZY), (1.4)

where Ar = [0, 7], |Ar| = T, and ~ means up to a multiplicative term in 7°("). For
H-ss processes with continuous time, the right-hand part of (1.4) is proportional
to TH, and therefore the exponent for (1.3) is 1 — H. However, the result by
Aurzada et al. (2016) essentially uses the 1-D nature of time. Considering |Ar|
as the volume of Ar, relation (1.4) is found to be in formal agreement with the
conjecture for k = 1, but not for k¥ > 1; in addition, (1.4) is very crude for k = 0
(see (1.3)). This means that the analysis of the cases d > 1,k > 1 needs more ideas.

2. The lower bound

Proposition 2.1. Let £(t),£(0) = 0,t € R? be a centered isotropic random process
with stationary increments. Then

P(&(t) < —1,t € Ap,|t] > 1) < T YEmax(£(t),t € Ay),
where Ap = TAq is a ball of radius T that contains 0 at its boundary.

Consequence 2.2. If £(t) is fractional Brownian motion of index H € (0,1) in Ar,
then the survival exponent has the lower bound 0, > d — H.

Remark 2.3. Proposition 2.1 holds for Ap = [0,T] x [T, T]%"! as well.

Proof: Let Ur = {xg,a, a0 = 1,2, ...,k = 1,2,...} be a subset of ball By of radius
T in R%; Uy consists of Ny points such that

|xk,a| =Tk, |1'k,a — .’Em’5| > 1, Nt > CTd, 1<r, < Tk+1 <T. (2].)

Consider the following increasing sequence of subsets of Up:

«@
Ukt1,0 =Ur U U Tht1.8, Uk ={Zi~ t |Tiqy| <78}
B—1
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Fix Ap = {t : [t+Te| < T}, where e = (0,...,0,1). Let O, be an orthogonal
mapping transforming x o in Ti,o = rre. Setting Uy,o = Ok Uk o, one has
(e — Fa)\{0} C AP\By, (k) # (1,1). (2:2)
Therefore, using the notation M (A) = sup({(t), t € A), we get
pr(=1) == P(£(t) < =1, t € Ap\By) < P(M((Up.o — Zr.0)\{0}) < —1).  (2.3)
By the si-property of £(t), we can continue
= P(M(Up,o\#r,a) = E(Fra) < =1) = P(M(Uga-1) +1 < &(z10)).  (24)

The last equality holds because £(t) is rotation invariant.
The event {M(Uj a—1) +1 < (2 o)} is measurable relative to the sequence

§@11)s- 8@ )i €(@ra), - E(@hmy )i - (2.5)

This event take place when §(z o) is realized as a record in the sequence (2.5)
which exceeds the previous one by at least 1. Let vy be the number of such records
n (2.5). Then, by (2.3, 2.4),

(Nz —1)pr(=1) < ZP (Uk,a) +1 <&(@h,a41)) = Evy < E(M(Ur) = &(21,1)),
where Uy 1 = {11}, Ukny = Uks1s Thngt1 = Thr11, (ka) # (1, 1).
Finally, by (2.1),
pr(—1) < E(M(Ur))/(Np —1) < ¢T~"E(sup&(t), t € Ar). (2.6)

Suppose that £(t) is fractional Brownian motion of index H € (0,1) in Ar. By
the standard procedure, we can compare pr(—1) with

pr(l) = P(wu(t) < 1, t € (Ar\B1)). (2.7
For this purpose we can find a continuous function ¢r(t) such that
er(t) =1, [t > 1, o7 5 < const, (2.8)

where ||-|| ;7 7 is the norm of the Hilbert space Hg (A7) with the reproducing kernel
Ewyg(t)wg(s), (t,s) € Ar x Ap (see for this fact Molchan, 1999 or Appendix).
Then

pr(=1) = P(wu(t) +2pr(t) < 1,t € (Ar\B1)).
According to Aurzada and Dereich (2013),

Vi pr(D) - Vi1 pr (=1)| < 12671l /V2 (2.9)

From the self-similarity of H-FBM and (2.6) one has

pr(=1) < er~CU=HEM,, (A)). (2.10)

Combining (2.8-2.10), one has
(In1/Pwg(t) < 1,t € Ap)]Y?/VInT > Vd - H+ O(1/VInT), (2.11)
ie,0, >d—H. O

wWH
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3. The upper bound
Below we use notation M(A) = sup(wg(t),t € A) and |A| = #{t:t € A}

Proposition 3.1. Let wy(t) be H-FBM in A = TA; C R where A is a bounded
domain and 0 € Ay. Consider a finite 1-net of Arp, i.e. a subset Up = {z, k =
1,...,Nr} C Ap, {0} ¢ Ur such that
Nt
c< NT/Td <C and ArC U By (x,),
r=1
where By(x) is a unit ball centered at x. Then there is a 0 < q < 1 such that for
all T > To
P(M(Ar) < egV4dInT) > qP(M(Ur) < 0). (3.1)
In addition,
EM(Ur) = EM(A7)(1+0(1)) = THEM(A)(1 + 0(1)), T — oo. (3.2)
Proof: One has
where
Ar = {mgxmtax(wg(t) —wg(x),t € Bi(zk)) < br}.
We can continue the previous inequality

< P(M(Ar) <br)+ ZP(maX(wH(t) —wg(xg),t € Bi(zk)) > br)

< P(M(AT) < bT) NTP( ( ) > bT) =pi,7r +P2,1- (34)
Applying the Fernique (1975) inequality to wg (t), we have
oo
P(M(By) > rrey) < cd/ e 2du, rp > (14 4d)/2. (3.5)
rT
Hence, setting by = /2(2d + ¢)InTcp,e > 0, one has
por < OT* - T727¢/\/InT = CT~%¢/VInT. (3.6)

To show that pe r = o(p1,1), note that Ar C Bypp, where D is the diameter of A;.
Therefore

p1r = P(M(Ar) < br) > P(M(Brp) < br) = P(M(Br/) < 1), (3.7)
where T" = TD/blT/H. By Molchan (1999),
P(M(Br) <1) > T4,
Due to (3.6), (3.7), we have
por/prir < c(InT)~+/H/2 — (1), (3.8)
Relations (3.3, 3.4) and (3.8) imply (3.1):
P(MUr) <0) < (1+o01)pr,r < (1+e)P(M(Ar) <br),
where by = v/4dInTcy. To prove relation (3.2), note that
M(Ar) < M(Ur) + mgxmtax(wH(t) —wpg(zg),t € Bi(xg))
:= M(Ur) + 6r.
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As above, using the event Ay = {maxy, max;(wg (t)—wg (k) t € Bi(z)) < br},
one has
Eér < bp+ E(STIA% < br + NTEM(Bl)[M(B1) > bT], (39)

where by = V4dInTey and Ny < CT?.
Therefore, the second term in (3.9) is o(1), because
(EM(B,)[M(B1) > br])*> < EM?*(By)P(M(By) > by) = O(T~**/v/InT).
Due to (3.9), the relation (3.2) follows from the inequality:
EM(Up) > EM(Ar) — ESy > EM(A7) — eV/InT + o(1)
=THEM(A1) — evVInT + o(1).
O
Proposition 3.2. Let wy(t), t € Ar be H-FBM, A = TA; C RY, where A is a
unit ball and 0 € Ay. Then
P(M(Ar) < 1) > T~ B (/InT)~4/H,
i.e., the survival exponent for H-FBM in Ar has the upper bound 9+ <d-H.

Corollary 3.3. Due to Propositions 2.1, 3.2, the survival exponent for H-FBM in
Ar exists and equals d — H.

Proof: Proceeding as in the proof of Proposition 2.1, we consider again the subset
Ur of the ball By C R : Ur = {&g0,a = 1,203k = 1,2,...}, {0} ¢ Ur. In
addition to the properties (2.1), we suppose that the elements of Ur are enumerated
in such a way that
That1 € Ba(Tha) and i1 € Ba(Tppn))- (3.10)
As before,

«
Ukt1,0 =Ur U U Trt1,8, Ur = {iy 1 |in] <78} i= Ugo;
B=1
={t: |t+Te] < T}, where e = (0,...,0,1); Oy is an orthogonal mapping
transforming xy, o in 2o = rie. Setting Uy o = Ok, o Uk o, one has

(Us1.0 — Frs1,0)\ {0} C Apy1\By.
Due to (3.10), (Uk+1,a — Zk41,q) i a 2-net in Agyq. Therefore, by (3.1), for k > Tj

P(M(Ak) < cpVAdIn k) > qP(M(Up.a — #1.0)\{0}) < 0)

= qP(M(Uk’a,ﬂ — wH(ff?k,a)) < 0) = qP(M(Uk’a,ﬂ < wH(mk’a)).

As a result,

K’ K ng
3 nkP( (Ap) < ey vV4adIn ) >q Z 3 P(M(Upa-1) < wir(zr.a)) (3.11)

k=K k=K a=1
where K = [T] and K' = [T"].

Similarly to the proof of Proposition 2.1, we conclude that the right-hand part
of (3.11) is equal to ¢Ev(T,T"), where v(T,T") is the number of all records in the
following sequences:

M(Uk),wr(Tx41,1), - WH @ k410K +1))5 5 WH(TK )5+ WH (TR n(K7Y)-
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Let §(T,T’) be the maximum increment between adjacent elements of the se-

quence wH(xK,n(K))v wH(xK-‘rl,l)a RR) wH(xK+1,n(K+1)); ) wH('TK’J)a EERR
wH(xK’,n(K/))~ Then

M(Ux:) = M(Ux) < (T, T) + V)3T, T') < (W(T, ') + Dby + Rr, - (3.12)
where
Rr = (Us\Ux| + D)3(T, T)[§(T, T') > br).
Due to (3.10),

ERr < (|Uk \Uk| + 1)2 \Iﬂi}ngH(t)[wH(t) > br].

Setting by = V8dInTcy and T' — T = pT', we obtain
ERp < T2t . 772 — ¢, (3.13)

brEv(T,T') > EM(Ug') — EM(Ug) — by — ERr,
where, according to (3.2),

EM(Uk) = KFEM(AL)(1 + o(1)).

As a result,
brEv(T,T') > ¢(TH —VInT — 1) = ¢TH (1 4 o(1)). (3.14)
Keeping in mind that the right part of (3.11) is ¢Ev(T,T"), we have:
I
GEv(T'\T) < Y nkP(M(Ak) < cyvViadIn k) (3.15)
k=K

Due to the self-similarity of H-FBM,
. 1/H
P(M(Ak) <eVin k:) = P(M(Ap) < 1), k=k/ (cx/ln k) :

and therefore the probability term decreases as a function of k. Hence, (3.15)
implies

qEv(T',T) < |Up\Ur| P(M(AT/H) < e /AdIn(T" + 1))
< CTYP(M(Af) < 1), (3.16)
where
. 1/H . —\1/H
7= T'/(cH\/4d1nT’) o T = T(cH\/4d1nT) (1+0(1). (3.17)
Finally, by (3.14, 3.16),
bpleTH (14 0(1)) < Ev(T',T) < ¢ *CTP(M(Az) < 1).

Taking into account (3.17) and the relation 77 — T = pT', we get
—d/H

P(M(Az) < 1) > T (d—H) (\/ In T)
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Appendix

Example from Proposition 2.1. Consider H-FBM in domains Ar = T - Ay,
0 € OAq; then a suitable function pr(t), t € Ar can be chosen as follows:

er(t) = f(It| /(Tk)) = f(It]),
where f(z),z € R! is a finite smooth function such that f(¢) =1 for |z| < 1/2 and
f(t) =0 for |z| > 1. Here k is the diameter of A;.

By Molchan (1999), this can be seen as follows. Due to the spectral rep-
resentation of H-FBM, the Hilbert space Hy (A7) with the reproducing kernel
Ewg(t)wg(s), (t,s) € Ap x Ap (Lifshits, 2012), is the closure of smooth functions
©(t), p(0) = 0 relative to the norm

~ 2
Il = E 1Bl 11l = An / [ A an

Where ((t) is a finite function such that ¢(t) = ¢(t),t € Ar; P(N),\ € R?
is the Fourier transform of ¢(t). Obviously, we have @r(0) = 0, (1) = 1 for
te AT\Bla and

el < IFE1/TR) = FUEDN e < IFCE /TR g + £ 1 e
= (TR T+ DIl <20l -
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