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Abstract. Fractional Brownian motion of index 0 < H < 1, H-FBM, with d-
dimensional time is considered in a spherical domain that contains 0 at its boundary.
The main result: the log-asymptotics of the probability that H-FBM does not
exceed a fixed positive level is (H − d+ o(1)) log T , where T >> 1 is the radius of
the domain.

1. Introduction

Fractional Brownian motion of index H ∈ (0, 1), H-FBM, with multivariate time
t ∈ Rd is a centered Gaussian random process wH(t) with correlation function

EwH(t)wH(s) = 0.5(|t|2H + |s|2H − |t− s|2H).

H-FBM is H-self-similar (H-ss), isotropic, and has stationary increments (si), i.e.,

{wH(λUt+ t0)− wH(t0)}=̇{λHwH(t)}
holds in the sense of the equality of finite-dimensional distributions for any fixed
t0, λ > 0, and orthogonal mapping U : Rd → Rd.

The one-sided exit problem for a random process ξ(t) and its characteristics, the
so-called survival exponents:

θξ = lim
T→∞

− logP (ξ(t) < 1, t ∈ ∆T )/ψ(T ) (1.1)

are the subject of intensive analysis in applications. Here ∆T is an increasing se-
quence of domains of size T , and ψ(·) is a suitable slowly varying function, typically,
ψ(T ) = log T for ss-processes. The greatest progress in this area has been achieved
for processes with one-dimensional time. (See surveys by Bray et al., 2013 of the
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physics literature and by Aurzada and Simon, 2015 of the relevant mathematical
publications).

H-FBM was one of the first non-trivial examples of non-Markovian processes for
which the survival exponents have been found exactly (Molchan, 1999). Namely,
for ψ(T ) = log T , the survival exponents for H-FBM are

θwH
= 1−H, ∆T = (0, T ) and θwH

= d, ∆T = (−T, T )d. (1.2)

Recently, Aurzada et al. (2016) considerably refined the asymptotics of probability

pT = P (wH(t) < 1, t ∈ ∆T ), ∆T = (0, T ) (1.3)

and showed that the exponent θ = 1 − H is universal for a broad class of H-ss
processes with stationary increments. The ideas of this work have proved useful
in the analysis of the conjecture that θwH

= d − kH for wH(t) in ∆T = [0, T ]k ×
[−T, T ]d−k (Molchan, 2012).

The case k = 0 corresponds to the right part of (1.2). The case k = 1 is supported
by the result which we discuss below: θwH

= d−H for fractional Brownian motion
in ∆T = T∆1, where ∆1 is a unit ball that contains 0 at its boundary.

The main idea of the paper by Aurzada et al. (2016) is to show that for a broad
class of si-processes, ξ(t), ξ(0) = 0, with discrete time

|∆T |P (ξ(t) < 1, t ∈ ∆T ∩ Z1) ≈ Emax(ξ(t), t ∈ ∆T ∩ Z1), (1.4)

where ∆T = [0, T ], |∆T | = T , and ≈means up to a multiplicative term in T o(1). For
H-ss processes with continuous time, the right-hand part of (1.4) is proportional
to TH , and therefore the exponent for (1.3) is 1 − H. However, the result by
Aurzada et al. (2016) essentially uses the 1-D nature of time. Considering |∆T |
as the volume of ∆T , relation (1.4) is found to be in formal agreement with the
conjecture for k = 1, but not for k > 1; in addition, (1.4) is very crude for k = 0
(see (1.3)). This means that the analysis of the cases d > 1, k > 1 needs more ideas.

2. The lower bound

Proposition 2.1. Let ξ(t), ξ(0) = 0, t ∈ Rd be a centered isotropic random process
with stationary increments. Then

P (ξ(t) < −1, t ∈ ∆T , |t| > 1) ≤ cT−dEmax(ξ(t), t ∈ ∆T ),

where ∆T = T∆1 is a ball of radius T that contains 0 at its boundary.

Consequence 2.2. If ξ(t) is fractional Brownian motion of index H ∈ (0, 1) in ∆T ,
then the survival exponent has the lower bound θ−wH

≥ d−H.

Remark 2.3. Proposition 2.1 holds for ∆T = [0, T ]× [−T, T ]d−1 as well.

Proof : Let UT = {xk,α, α = 1, 2, ..., nk; k = 1, 2, ...} be a subset of ball BT of radius
T in Rd; UT consists of NT points such that

|xk,α| = rk, |xk,α − xm,β | > 1, NT > CT d, 1 < rk < rk+1 ≤ T. (2.1)

Consider the following increasing sequence of subsets of UT :

Uk+1,α = Uk ∪
α⋃
β=1

xk+1,β , Uk = {xi,γ : |xi,γ | ≤ rk}.
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Fix ∆T = {t : |t+ Te| ≤ T}, where e = (0, . . . , 0, 1). Let Ok,α be an orthogonal

mapping transforming xk,α in x̃k,α = rke. Setting Ũk,α = Ok,αUk,α, one has

(Ũk,α − x̃k,α)\{0} ⊂ ∆T \B1, (k, α) 6= (1, 1). (2.2)

Therefore, using the notation M(A) = sup(ξ(t), t ∈ A), we get

pT (−1) := P (ξ(t) < −1, t ∈ ∆T \B1) ≤ P (M((Ũk,α − x̃k,α)\{0}) < −1). (2.3)

By the si-property of ξ(t), we can continue

= P (M(Ũk,α\x̃k,α)− ξ(x̃k,α) < −1) = P (M(Uk,α−1) + 1 < ξ(xk,α)). (2.4)

The last equality holds because ξ(t) is rotation invariant.
The event {M(Uk,α−1) + 1 < ξ(xk,α)} is measurable relative to the sequence

ξ(x1,1), . . . , ξ(x1,n1
); . . . ; ξ(xk,1), . . . , ξ(xk,nk

); . . . (2.5)

This event take place when ξ(xk,α) is realized as a record in the sequence (2.5)
which exceeds the previous one by at least 1. Let νT be the number of such records
in (2.5). Then, by (2.3, 2.4),

(NT − 1)pT (−1) ≤
∑
k,α

P (M(Uk,α) + 1 < ξ(xk,α+1)) = EνT ≤ E(M(UT )− ξ(x1,1)),

where U1,1 = {x1,1}, Uk,nk
= Uk+1, xk,nk+1 = xk+1,1, (k, α) 6= (1, 1).

Finally, by (2.1),

pT (−1) ≤ E(M(UT ))/(NT − 1) < cT−dE(sup ξ(t), t ∈ ∆T ). (2.6)

Suppose that ξ(t) is fractional Brownian motion of index H ∈ (0, 1) in ∆T . By
the standard procedure, we can compare pT (−1) with

pT (1) = P (wH(t) < 1, t ∈ (∆T \B1)). (2.7)

For this purpose we can find a continuous function ϕT (t) such that

ϕT (t) = 1, |t| > 1, ‖ϕT ‖H,T < const, (2.8)

where ‖·‖H,T is the norm of the Hilbert space HH(∆T ) with the reproducing kernel

EwH(t)wH(s), (t, s) ∈ ∆T × ∆T (see for this fact Molchan, 1999 or Appendix).
Then

pT (−1) = P (wH(t) + 2ϕT (t) < 1, t ∈ (∆T \B1)).

According to Aurzada and Dereich (2013),∣∣∣√ln 1/pT (1)−
√

ln 1/pT (−1)
∣∣∣ ≤ ‖2ϕT ‖H,T /√2. (2.9)

From the self-similarity of H-FBM and (2.6) one has

pT (−1) ≤ cT−(d−H)EMwH
(∆1). (2.10)

Combining (2.8-2.10), one has

[ln 1/P (wH(t) < 1, t ∈ ∆T )]1/2/
√

lnT ≥
√
d−H +O(1/

√
lnT ), (2.11)

i.e., θwH
≥ d−H. �
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3. The upper bound

Below we use notation M(A) = sup(wH(t), t ∈ A) and |A| = #{t : t ∈ A}.

Proposition 3.1. Let wH(t) be H-FBM in ∆T = T∆1 ⊂ Rd where ∆1 is a bounded
domain and 0 ∈ ∆1. Consider a finite 1-net of ∆T , i.e. a subset UT = {xk, k =
1, ..., NT } ⊂ ∆T , {0} /∈ UT such that

c < NT /T
d < C and ∆T ⊂

NT⋃
r=1

B1(xr),

where B1(x) is a unit ball centered at x. Then there is a 0 < q < 1 such that for
all T > T0

P (M(∆T ) < cH
√

4d lnT ) ≥ qP (M(UT ) < 0). (3.1)

In addition,

EM(UT ) = EM(∆T )(1 + o(1)) = THEM(∆1)(1 + o(1)), T →∞. (3.2)

Proof : One has

P (M(UT ) < 0) ≤ P (M(UT ) < 0, AT ) + P (AcT ), (3.3)

where
AT = {max

k
max
t

(wH(t)− wH(xk), t ∈ B1(xk)) < bT }.

We can continue the previous inequality

≤ P (M(∆T ) < bT ) +
∑
k

P (max(wH(t)− wH(xk), t ∈ B1(xk)) > bT )

≤ P (M(∆T ) < bT ) +NTP (M(B1) > bT ) := p1,T + p2,T . (3.4)

Applying the Fernique (1975) inequality to wH(t), we have

P (M(B1) > rT cH) ≤ cd
∫ ∞
rT

e−u
2/2du, rT > (1 + 4d)1/2. (3.5)

Hence, setting bT =
√

2(2d+ ε) lnTcH , ε > 0, one has

p2,T < CT d · T−2d−ε/
√

lnT = CT−d−ε/
√

lnT . (3.6)

To show that p2,T = o(p1,T ), note that ∆T ⊂ BTD, where D is the diameter of ∆1.
Therefore

p1,T = P (M(∆T ) < bT ) ≥ P (M(BTD) < bT ) = P (M(BT ′) < 1), (3.7)

where T ′ = TD/b
1/H
T . By Molchan (1999),

P (M(BT ) < 1) > cT−d−ε.

Due to (3.6), (3.7), we have

p2,T /p1,T < c(lnT )−(1+d/H)/2 = o(1). (3.8)

Relations (3.3, 3.4) and (3.8) imply (3.1):

P (M(UT ) < 0) ≤ (1 + o(1))p1,T ≤ (1 + ε)P (M(∆T ) < bT ),

where bT =
√

4d lnTcH . To prove relation (3.2), note that

M(∆T ) ≤M(UT ) + max
k

max
t

(wH(t)− wH(xk), t ∈ B1(xk))

:= M(UT ) + δT .
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As above, using the event AT = {maxk maxt(wH(t)−wH(xk), t ∈ B1(xk)) < bT },
one has

EδT ≤ bT + EδT 1Ac
T
≤ bT +NTEM(B1)[M(B1) > bT ], (3.9)

where bT =
√

4d lnTcH and NT < CT d.
Therefore, the second term in (3.9) is o(1), because

(EM(B1)[M(B1) > bT ])2 ≤ EM2(B1)P (M(B1) > bT ) = O(T−2d/
√

lnT ).

Due to (3.9), the relation (3.2) follows from the inequality:

EM(UT ) ≥ EM(∆T )− EδT ≥ EM(∆T )− c
√

lnT + o(1)

= THEM(∆1)− c
√

lnT + o(1).

�

Proposition 3.2. Let wH(t), t ∈ ∆T be H-FBM, ∆T = T∆1 ⊂ Rd, where ∆1 is a
unit ball and 0 ∈ ∆1. Then

P (M(∆T ) < 1) ≥ cT−(d−H)(
√

lnT )−d/H ,

i.e., the survival exponent for H-FBM in ∆T has the upper bound θ+wH
≤ d−H.

Corollary 3.3. Due to Propositions 2.1, 3.2, the survival exponent for H-FBM in
∆T exists and equals d−H.

Proof : Proceeding as in the proof of Proposition 2.1, we consider again the subset
UT of the ball BT ⊂ Rd : UT = {xk,α, α = 1, 2, ..., nk; k = 1, 2, ...}, {0} /∈ UT . In
addition to the properties (2.1), we suppose that the elements of UT are enumerated
in such a way that

xk,α+1 ∈ B2(xk,α) and xk+1,1 ∈ B2(xk,n(k)). (3.10)

As before,

Uk+1,α = Uk ∪
α⋃
β=1

xk+1,β , Uk = {xi,γ : |xi,γ | ≤ rk} := Uk,0;

∆T = {t : |t+ Te| ≤ T}, where e = (0, ..., 0, 1); Ok,α is an orthogonal mapping

transforming xk,α in x̃k,α = rke. Setting Ũk,α = Ok,αUk,α, one has

(Ũk+1,α − x̃k+1,α)\{0} ⊂ ∆k+1\B1.

Due to (3.10), (Ũk+1,α− x̃k+1,α) is a 2-net in ∆k+1. Therefore, by (3.1), for k > T0

P
(
M(∆k) < cH

√
4d ln k

)
> qP (M(Ũk,α − x̃k,α)\{0}) < 0)

= qP (M(Ũk,α−1)− wH(x̃k,α)) < 0) = qP (M(Uk,α−1) < wH(xk,α)).

As a result,

K′∑
k=K

nkP
(
M(∆k) < cH

√
4d ln k

)
≥ q

K′∑
k=K

nk∑
α=1

P (M(Uk,α−1) < wH(xk,α)) (3.11)

where K = [T ] and K ′ = [T ′].
Similarly to the proof of Proposition 2.1, we conclude that the right-hand part

of (3.11) is equal to qEν(T, T ′), where ν(T, T ′) is the number of all records in the
following sequences:

M(UK), wH(xK+1,1), . . . , wH(xK+1,n(K+1)); . . . ;wH(xK′,1), . . . , wH(xK′,n(K′)).
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Let δ(T, T ′) be the maximum increment between adjacent elements of the se-
quence wH(xK,n(K)), wH(xK+1,1), . . . , wH(xK+1,n(K+1)); . . . ; wH(xK′,1), . . . ,
wH(xK′,n(K′)). Then

M(UK′)−M(UK) ≤ (ν(T, T ′) + 1)δ(T, T ′) ≤ (ν(T, T ′) + 1)bT +RT , (3.12)

where

RT = (|UK′\UK |+ 1)δ(T, T ′)[δ(T, T ′) > bT ].

Due to (3.10),

ERT < (|UK′\UK |+ 1)2 max
|t|<2

EwH(t)[wH(t) > bT ].

Setting bT =
√

8d lnTcH and T ′ − T = ρT , we obtain

ERT < cT 2d · T−2d = c. (3.13)

By (3.12),

bTEν(T, T ′) > EM(UK′)− EM(UK)− bT − ERT ,
where, according to (3.2),

EM(UK) = KHEM(∆1)(1 + o(1)).

As a result,

bTEν(T, T ′) > c(TH −
√

lnT − 1) = cTH(1 + o(1)). (3.14)

Keeping in mind that the right part of (3.11) is qEν(T, T ′), we have:

qEν(T ′, T ) ≤
K′∑
k=K

nkP
(
M(∆k) < cH

√
4d ln k

)
. (3.15)

Due to the self-similarity of H-FBM,

P
(
M(∆k) < c

√
ln k
)

= P (M(∆k̃) < 1), k̃ = k/
(
c
√

ln k
)1/H

,

and therefore the probability term decreases as a function of k. Hence, (3.15)
implies

qEν(T ′, T ) ≤ |UT ′\UT |P
(
M(∆T ′+1) < cH

√
4d ln(T ′ + 1)

)
≤ CT dP (M(∆T̃ ) < 1), (3.16)

where

T̃ = T ′/
(
cH
√

4d lnT ′
)1/H

or T ′ = T̃
(
cH

√
4d ln T̃

)1/H
(1 + o(1)). (3.17)

Finally, by (3.14, 3.16),

b−1T cTH(1 + o(1)) ≤ Eν(T ′, T ) ≤ q−1CT dP (M(∆T̃ ) < 1).

Taking into account (3.17) and the relation T ′ − T = ρT , we get

P (M(∆T̃ ) < 1) ≥ cT̃−(d−H)
(√

ln T̃
)−d/H

.

�
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Appendix

Example from Proposition 2.1. Consider H-FBM in domains ∆T = T · ∆1,
0 ∈ ∂∆1; then a suitable function ϕT (t), t ∈ ∆T can be chosen as follows:

ϕT (t) = f(|t| /(Tk))− f(|t|),
where f(x), x ∈ R1 is a finite smooth function such that f(t) = 1 for |x| < 1/2 and
f(t) = 0 for |x| > 1. Here k is the diameter of ∆1.

By Molchan (1999), this can be seen as follows. Due to the spectral rep-
resentation of H-FBM, the Hilbert space HH(∆T ) with the reproducing kernel
EwH(t)wH(s), (t, s) ∈ ∆T ×∆T (Lifshits, 2012), is the closure of smooth functions
ϕ(t), ϕ(0) = 0 relative to the norm

‖ϕ‖H,T = inf
ϕ̃
‖ϕ̃‖H , ‖ψ‖H = AH

∫ ∣∣∣ψ̂(λ)
∣∣∣2 |λ|d+2H

dλ,

Where ϕ̃(t) is a finite function such that ϕ̃(t) = ϕ(t), t ∈ ∆T ; ψ̂(λ), λ ∈ Rd

is the Fourier transform of ψ(t). Obviously, we have ϕT (0) = 0, ϕT (1) = 1 for
t ∈ ∆T \B1, and

‖ϕ‖H,T < ‖f(|t| /Tk)− f(|t|)‖H < ‖f(|t| /Tk)‖H + ‖f‖H
= ((Tk)−H + 1) ‖f‖H < 2 ‖f‖H .
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