ALEA, Lat. Am. J. Probab. Math. Stat. 14, 93-116 (2017) /Ayﬁlg%
DOL: 10.30757/ALEA.v14-06 )

Comparison Inequalities for Order Statistics
of Gaussian Arrays

K. Debicki, E. Hashorva, L. Ji and C. Ling

Mathematical Institute, University of Wroctaw
pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland.

E-mail address: Krzysztof .Debicki@math.uni.wroc.pl

Department of Actuarial Science, University of Lausanne
UNIL-Dorigny, 1015 Lausanne, Switzerland.

E-mail address: Enkelejd.Hashorva@unil.ch

Institute for Information and Communication Technologies,
HEIG-VD, University of Applied Sciences of Western Switzerland
Route de Cheseaux 1, 1401 Yverdon-les-Bains, Switzerland
E-mail address: lanpeng.ji@unil.ch

School of Mathematics and Statistics, Southwest University
Beibei District, 400715 Chongqing, China.

E-mail address: 1cx98@swu.edu.cn

Abstract. Normal comparison lemma and Slepian’s inequality are essential tools
for the analysis of extremes of Gaussian processes. In this paper we show that the
Normal comparison lemma for Gaussian vectors can be extended to order statistics
of Gaussian arrays. Our applications include the derivation of mixed Gumbel limit
laws for the order statistics of stationary Gaussian processes and the investigation
of lower tail behavior of order statistics of self-similar Gaussian processes.

1. Introduction

In the recent contributions of Debicki et al. (2015a, 2014b, 2015b) order sta-
tistics of Gaussian and stationary processes are studied. Given a random process
{X(t),t > 0} with almost surely (a.s.) continuous trajectories, and Xi,...,X,,n €
N independent copies of X we define X,.,,(t) generated by X as the rth lower or-
der statistics of X1(t),...,X,(t) for any fixed ¢ > 0, and thus Xi.,(t) < .-+ <
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X (t),t > 0. The calculation of the so-called r-th conjunction probability

Drp () = ]P’{ sup X,.n(t) > u} (1.1)
te[0,T]
for fixed r, T and large w is of both theoretical and applied interest; see e.g., Alodat
(2011); Alodat et al. (2010); Ling and Peng (2016); Worsley and Friston (2000).
Order statistics processes play a crucial role in various statistical applications,
for instance in models concerned with the analysis of the surface roughness during
all machinery processes and functional magnetic resonance imaging (FMRI) data.
Given the fact that p;.,(u) cannot be in general calculated explicitly, asymptotic
expansions as u — oo and the so-called Gumbel limit results (with u = up — oo as
T — o0) are derived in Debicki et al. (2015a,b). Indeed, such limit theorems have
been in the focus of many theoretical and applied contributions, see e.g., Aue et al.
(2009); Berman (1982, 1992); Piterbarg (1996, 2004) and the recent contributions
Debicki et al. (2015¢); Jaruskova (2015). The crucial tool for establishing Gumbel
limit theorems is the so-called Normal comparison lemma, which has been shown
to be one of the most important tools in the study of Gaussian processes and
random fields, see e.g., Berman (1982, 1992); Leadbetter et al. (1983); Li and Shao
(2002, 2004); Piterbarg (1996). The lack of a comparison lemma for order statistics
processes has already been noted in Debicki et al. (2015a); therein some results are
derived only for the minimum process.
In the simpler framework of two d-dimensional Gaussian distributions ®sa) and
®y,0) with N(0,1) marginal distributions, the normal comparison inequality gives
explicit bounds for the difference

A(u) = g0y (u) = Ppo(u), Vu=(u1,...,us) € R?

in terms of the covariance matrices L) = (J§;))dxd, k = 0,1. The derivation of
the bounds for A(u), by Slepian (1962), Berman (1964, 1992) and Piterbarg (1996,
2015) relies strongly on Plackett’s partial differential equation; see Plackett (1954).
The most elaborate version of the normal comparison inequality is due to Li and
Shao (2002). Specifically, Theorem 2.1 therein shows that

1 (1) . (0) uf +u? d
A(u) < o 1<;j<d (arcsm(al-j ) — arcsin(o;; ))+exp ) ) Yu € RY,

©

€]
i 71 <

where p;; = max(|a§?)|,|ai(;)|) and 4 = max(z,0). Clearly, if o ) < 0,71 <
1,7 < d, then

P00 (u) < Py (u),
which is the well-known Slepian’s inequality derived in Slepian (1962). Based on
the results of Liand Shao (2002), Yan (2009) showed that for W an N (0, 1) random

variable and u € (0, 00)?

(ugtuj)? . (0)

P 1 IR S— m — 2arcsin(o;;
1< ool (L > - m( : (Jl))>
Dy.0) (1) Vo 1gi<jng{(W+L2uJ)+} )

™ — 2arcsin(o;;

provided that 0 < og)) < og; ) < 1. Recent extensions of the normal comparison
inequalities are presented in Chernozhukov et al. (2015); Debicki et al. (2015a);
Harper (2013, 2017); Hashorva and Weng (2014); Lu and Wang (2014).
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Our principal goal of this paper is the derivation of comparison inequalities for
order statistics of Gaussian arrays, which are useful in several applications. In
order to fix the notation, we denote by X = (X;;)axn and Y = (Yij)axn two d x n
random arrays with N (0, 1) components and jomtly Gaussian (hereafter referred to

as standard Gaussian arrays), and let » = (o i )lk)and" and 2O = (O'(;))lk)dnxdn
be the covariance matrices of X and ), respectively, with 0( )k =K {X”Xlk} and
Ugi)lk = E{Y};Yi.}. Furthermore, define X () = (Xy(),..., Xg),1 <7 < nto
be the rth order statistics vector generated by X as follows
Xz(l) = 1I<I;1n X <-.- < Xz(r) <-- < 1glja<xn XU - Xz(n)7 1<i<d.

Similarly, we write Y () = (Y1¢, ..., Yq()) which is generated by Y. Clearly, in
the case of independent rows of Gaussian arrays, the study of X, reduces to
that of the component-wise order statistics X S for Gaussian random vector, see
Chernozhukov et al. (2015).  Our principal results, stated in Theorem 2.1 and
Theorem 2.4, derive bounds for the difference

Apy(u) =P{X, <u} -P{Y ) <u}, ueR® (1.2)

Two applications of those bounds are discussed in Section 3, including the study
of the mixed Gumbel limit theorems for order statistics of stationary Gaussian
processes and the lower tail probability of order statistics of self-similar Gaussian
processes.

We organize this paper as follows. In Section 2 we display our main results.
Section 3 is devoted to the applications. The proofs are relegated to Section 4 and
Appendix.

2. Main Results

This section is concerned with sharp bounds for A, (u) defined in (1.2), which
go in line with Li and Shao’s normal comparison inequality (see Li and Shao, 2002).
For notational simplicity we set below

Qijur = arcsin(ag,)lk) - arcsin(ag’)lk) (1)

. . 0
Q?_j,lk: = (arcsm(aij’lk) — arCSIH(O_l(j,)lk))"r'

Theorem 2.1. If X and Y are two standard d x n Gaussian arrays, then for any
1 <r <n we have

2
|A(T) (u)| < % Z ng ik €XP ( >

1
1<i<d +pz],zk
1<j<k<n

uf + “12 d
+ Z Qij.1k €Xp <2() , Vu e R, (2.1)

1 )
1<i<i<d + pijik)
1<j,k<n

where pij ik = max(|aw lk| |01(J1)lk\) If further

o =0 1<i<d 1<jk<n, (2.2)
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then
M <5 30 QF ( i+ ) vu € R (2.3)
(M%) = 57~ Gk €Xp | —s———— ], Vu ) .
27r1§i<l§d ! 2(1 + pijx)
1<j,k<n

Remark 2.2. For r = 1 and r = n the claims in (2.1) reduce to Lemma 11 in Debicki
et al. (2014a). Note that for 1 < 7 < n our results are derived using a different
technique. Furthermore, using in addition similar arguments as in Theorem 1.2
in Piterbarg (1996), one can establish for any [a,b] C [—oc,00]? the following
comparison inequality

IP{X () €[a,b]} —P{Y () € la,b]}|

1 U +Ul
< i,k €X itk X
s Z Qi p( 1+szk> Z Qisn p( (1‘1'9%”6))

1<i<d 1<i<i<d
1<j<k<n 1<j,k<n
with w; = min(Ja;], |b;]),1 <1 < d.
A direct consequence of Theorem 2.1 is the following Slepian’s inequality for
the order statistics of Gaussian arrays, which for » = 1 is, however, weaker than
Theorem 1.1 in Gordon (1985).

Corollary 2.3. Suppose that (2.2) is satisfied and 0( )lk > ofjl)lk holds for 1 <i <
1<d,1<j5,k<n. Then

IP’{ UL, { Xy > ui}} > P{ UL, {Yigy > u}} Vu € R (2.4)

Note that the bounds in Theorem 2.1 do not depend on r, which indicates that
in some cases they may not be sharp enough. Below we present a sharper result
which holds under the assumption that the columns of both X and ) are mutually
independent and identically distributed, i.e.,

ol =0 i =ky, 1<il<d1<jk<nr=0]1, (2.5)

with some O'i(f) €(-1,1),1 <i,l<d,sk =0,1, where I{-} stands for the indicator
function. This result is useful for establishing mixed Gumbel limit theorems; see
Section 3.
In order to simplify the presentation, we shall define
n!

_ _ (0) (1) .
Cnyr = ma 0<r<mn, pyg=max(loy’|,|o;’]), 1<4,1<d

and

(1)

oD (1 4 |hly2m-)

A — /(0) (1(_2l)(|2—r+1>/2 dh, 1<il<d, 1<r<n.
i

Theorem 2.4. Under the assumptions of Theorem 2.1, if further (2.5) is satisfied,
then for any u € (0,00)¢

A(T)(u) < Wu—ﬂn—r) Z (AE;“))+ exp (_<n_r+1)u> (2.6)

1 .
1<i<i<d T pi
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and

n(Cn-1,-1)° _gm_ ) (n—7r+1)u?
A < Mondr1 )7 —2(n-r) ‘A, ’ _norT o
| (T)(u)’ — (27.r)n—r+l u Z il exp 1+ pil
1<i<i<d

hold with w = mini<;<q u;.

As in Theorem 2.4 we also have the following bounds, without introducing u =
minlgigd Uj.

Proposition 2.5. Under the assumptions of Theorem 2.1, if further (2.5) is sat-
isfied, then for any u € (0,00)?

A(r)(’u) < 2(ﬁ)n—r+2 1§;§d (U1 + ul)nir
(n = r)(us + w)? + 2(u? + )
X exp (— W0+ pu) L ) ’ (2.7)

with
P (n—r)/2
(r) (14 |R[) P
) _ RSl bl VA 1<r<n.
B, /A?) TS EE dh, 1<i<i<d, 1<r<n

If additionally D;; = min(u; — piug, wp — piug) > 0 for all 1 <i <1<d, then

n(cp—1.,-1)> ~(r u; +u —(n=r)
Apy(u) < W > (A§l))+( 5 lDﬂ)

1<i<i<d
(n—7r+1)(u? +u?)
— L 2.8
XeXp ( 2(1+p1l) ) ( )
where
)
i [ (L) = ) .
Ay —/A?) (1 = Ry 2 dh, 1<i<lI<d, 1<r<n.

Motivated by, e.g., Li and Shao (2002); Lu and Wang (2014); Yan (2009), we
obtain next an upper bound for ©,)(u):=P {X(T) < u} /P {Y(T) < u}

Proposition 2.6. Under the assumptions of Theorem 2.1, if further (2.2) holds
and 0 < O'Z(JQ’)”C < Ul(;)lk <lfor1<i<l<d,1<jk<n, then for any u € [0, 00)?

Cij lke*(ui+ul)2/8

1
Vor 2 OV + G v w23 |

1<j,k<n

1 <O (u) <exp (2.9)

with W an N(0,1) random variable and

=2 arcsin(o£?7)lk)

Cij,lkIIl( >, 1<i<i<d,1<j,k<n.

=2 arcsin(ag)lk)
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3. Applications and Discussions

3.1. Limit theorems for stationary order statistics processes. When dealing with
supremum of Gaussian processes on large intervals, the so-called Gumbel limit
theorems are of interest for statistical applications.

Next, let {X,_rt1.n(t),t > 0} be the rth upper order statistics process generated
by a centered stationary Gaussian process {X (t),¢ > 0} with a.s. continuous sample
paths, unit variance and correlation function p(-) satisfying for some a € (0, 2]

p(t) =1—[t|* +o(|t|]*), t =0, and p(t) <1, Vt#0. (3.1)

From Theorem 1 in Debicki et al. (2015a) or Theorem 2.2 in Debicki et al. (2014Db),
we have for any T"> 0 and u — oo

2
]P’{ sup X, i1 (t) > u} ~ TAT’acn’r(Qw)_%ua_r exp <—MQL) , (3.2)

t€[0,T]

where A, , € (0,00) is given explicitly as a limit and ~ means asymptotic equiva-
lence. As a continuation of Debicki et al. (2015a) we establish below a limit theorem
for the rth upper order statistics process X, —,41:n-

Theorem 3.1. Let {X,—r11.,(t),t > 0} be the rth upper order statistics process
generated by X, a centered stationary Gaussian process with a.s. continuous sample
paths. Suppose that (3.1) holds and further lim;_, o p(t) Int =~ € [0, c0].

a) If y =0, then

lim sup
T—00 zcR

P {a,.j( sup X7L—r+1:n(t) — br,T) < Z‘} — exp (—671> = O,

te[0,T]

where, with D = ¢, p Ay o(r/2)7/27 1/ (2m)~7/2

2InT 1 1 T
=V2rIinT, b, = —— = |InlInT+InD ). 3.3
arr =V2rinT, b7 =1/ " +\/m<<a 2) nln7T +In > (3.3)

b) If v = oo, and a € (0,1], p(t) is convexr for t > 0 with lim; o p(t) = 0 and
further p(t)Int is monotone for large t, then with ® the df of an N(0,1) random
variable

lim sup =0.

T—00 zcR

P {pl(T)( sup Xp—rt1m(t) — /1 — p(T)bTVT) < x} — &(x)

t€[0,T]

¢) If v € (0,00), then, with W an N(0,1) random variable

lim sup
T—00 xR

P {ar,T( sup Xp—rg1:n(t) — br,T) < x}

t€[0,T)

-E {exp (—e(ﬁvmw))}' =0.

The proof of Theorem 3.1 is presented in Appendix.
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3.2. Lower tail probability for order statistics processes. The seminal contributions
Li and Shao (2004, 2005) show that the investigation of the lower tail probability
of Gaussian processes is of special interest in many applied fields, including the
study of real zeros of random polynomials, the study of Gaussian pursuit problem,
and the study of the first-passage time for the Slepian process. In this section, we
aim at generalizing some results in Li and Shao (2004, 2005), by considering order
statistics processes instead of Gaussian processes.

Our first result is concerned with extension of the celebrated Slepian inequality
for order statistics processes. Let {Y(¢),t > 0} and {Z(¢),t > 0} be two cen-
tered Gaussian processes with a.s. continuous sample paths, and {Y;..,,(t),¢ > 0},
{Z.n(t),t > 0} be the corresponding rth lower order statistics processes. Applying
the standard discrete-continuous approximation technique (cf. Adler and Taylor,
2007) to Corollary 2.3 one can easily verify the following proposition.

Proposition 3.2. If for all s,t >0
E{Y(t)*} =E{Z(t)*} and E{Y(s)Y ()} <E{Z(s)Z(t)},
then for any T > 0 and u € R we have
P sup Yrn(t) >up > P sup Zpn(t) >up.
te[0,T] te[0,T
Remark 3.3. In view of Proposition 3.2 for any « € R (cf. Li and Shao, 2004)
1 1
pr(z) ;= lim ln]P’{ sup Y., (t) < x} = sup lnP{ sup Y., (t) < :c}
T—oo T 0<t<T 7>0 T 0<t<T

exists and p,(z),z € R is left-continuous, provided that {Y'(¢),¢ > 0} is a centered
stationary Gaussian processes with E{Y (0)Y (¢)} > 0 for all ¢ > 0.

4. Proofs
Hereafter, we write 2 for equality of the distribution functions. A vector z =
(21, -, 2zan) will also be denoted by
z=(z1,...,24), with z; = (zi1,...,2in), 1<i<d,

where z;; = 2(;—1)n+5,1 <1 < d,1 < j < n. Note that for any p = (i — 1)n +j,q =
(l-Dn+k1<il<dl1<jk<n

{p<qy={i<l ori=1landj<k}

Denote
Z/Zz':(Zl,...,Zi_1,2i+1,...,zd), 1S1§d
Furthermore, for any * € R"™ we denote
IB/iL'1 = (xl,...,xi_1,$i+1,...,l’n),
dx .
= dxydzy---dri1dxiyy - -dx,, 1 <1< n,
dxi
and for 1 <i<j<n
_dx — daydzy - dayydais, - de;_qdz,y - de
dCEidlL'j 1—1 i+1 j—1 Jj+1 n-

Proof of Theorem 2.1: We shall first establish (2.1) by considering r = 1,
r =2 and 2 < r < n separately.
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Case r = 1. Note that X < — X for the standard Gaussian array X. It follows from
Theorem 2.1 in Lu and Wang (2014) that

1A (u)| = ‘IP{ Uy O (=Yg < —uit b = P{ U, i (=X < —ui}}'

2 2
< % > Qij ik €XP <—2(1f1++ 1%_1 ))
(i—D)n+j<(i—1)n+k Pij.lk
establishing (2.1) for r = 1.
Next, by a standard approximation procedure we may assume that both X(1)
and X are positive definite. Let further Z = (Zij)axn be a standard Gaussian
array with covariance matrix

Fh — hz(l) + (1 — h)Z(O) = ((Sl'hj’lk)dnxdn7

where by our notation 5?;‘,11@ =E{Z;;Z;;}. Clearly, I'" is also positive definite for
any h € [0,1]. Denote below by gp(z) the probability density function (pdf) of
Z. Tt is known that the Plackett’s partial differential equation holds as (see e.g.,
Leadbetter et al., 1983, p.82, or Lu and Wang, 2014)

Ogn(2) 329h(z)

= 1<l <d,1<j,k< i, ] I, k). 4.1
06T, = Dagdm SIS BLS DR SN A0 (4.1)
Case r = 2. Hereafter, we write A = —u and set
QZT") =P{Z(_1) > A} = gn(z)dz.  (4.2)
ﬂf=1U;j,:1;j¢j,{zi,j>/\,-,zi]v/>>\i}

Since X (g) 4 —X (n—1) we have

1 .Th
Aoy (u) = QZ;TY) — Q(£:T°) = / WAZTT) 4, (4.3)

T

Note that the quantities Q(Z;T") and g;,(z) depend on h only through the entries
52@',11@ of I'". Hence we have by (4.1)

Z.Th 361’1
@(Z;Fh) 5@( > ) g,k
oh o ool Oh
(i—-Dn+i<(-1)n+k ij,
1 0 .
= Z (O—Eja)lk - Uf]?lk)E’Ll(]a k)a (44)
(i—)n+ji<(—1)n+k
where
2
Eq(j, k) :=/ 9%gn(2) dz. (4.5)
NI e 12t > X020 > A} 0zj0zp,

Next, in order to establish (2.1) we shall show that
|Eil(jv k)| < (P()‘iv)‘l;(szhj,lk)a (ii 1)7L+j < (li 1)n+ka (46)
where (-, ;) is the pdf of (Z;;, Zix), given by
1 x? — 2(5%7lkxy + 12

w(xay;azhj,lk) = —hQCXP - P
2my /1 = (5ij,lk) 2 (1 - (6ij,lk) )

, z,y €R.
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We consider below two sub-cases: a) i =1 and b) ¢ < .
a) Proof of (4.6) for i = 1. Let

A; = mg:l;s;ﬁi UZt':l;t;ét' {Zst > >\s, Zstr > )‘s} (4-7)
= {z/z; e RO forany 1 < s(#14) <d,
there exist 1 < t,t' <n:zg > g, zser > As},
A = Ulporape{zie > Ny ziv > Ai} (4.8)
= {z; € R™: thereexist 1 <t,t' <n:zy > N,z > N}

We can rewrite E;;(j, k) as

// Pon(2) 4y 1<i<d 1<j<k<n (4.9)
Z’L j? , 621]az7lk b [ f— k) —‘7 - M M

Next, we decompose the integral region A; according to
al) {Zij > /\iazik > )\1} = {Zi e R™: Zij > /\iazik > )\i};
az) {zij > Niyzie < iy = {2z € R™ 1 25 > Ny zip < Ni}s
az) {zij < Niyzie > N} i={zi € R™ 1 25 < N\, zie > il
as) {zi; < Niyzie <N} ={z; € R" 1 z;; < A, zie < N}
For case a;) we have

2 .
/ P gnlz) dz; = / gn(zij = N, zik = Ni) &7 (4.10)
A Rn—2

iM{zi >Ni,za>Ni } azwazm dzijdzik

where g5(2zi; = A, zir = A;) denotes a function of dn — 2 variables formed from
gn(2z) by putting z;; = A, zir = A;. Similarly, for cases as) and a3)

/ Mdz._/ Pgn(2)
i = i
Ain{zij >N, zie <A } azwazzk Ain{zi;<Aiyzie>Ai} Bzijazik
dzi
= _/ gh(zij = Xis Zik = A;) Todan’ (4.11)
U g g k{2t >Ai } ZijAZik

where
Uitz kizit > Ai}
= {zi/(2ijzix) € R"?: it exists 1 < t(# j,k) < n such that z;; > \;}.

Finally, for case ay4)

/ 0°gn(2)
o, 5. =i
Ain{zij <Xi,zin<Ai} azijazik
dzi
dZijd/ZZ‘k7

/ an(zij = N, zik = \i)
U;tt/:ht,,‘/#ﬁk;t#y{Zit>>\i,zit/ >N}

where

U?,t’:l;t,t’;éj,k;t;ét’{zit > N, Zigr > )\z}

Z; , . .
= { ' eR" 2. there exist 1 < t, t'(# j,k) < n such that zy, z; > )\Z} .
ZijZik
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This together with (4.9)—(4.11) yields

L .77 / / h(zm = N\, 2 = /\z) dz
(/\ )\1,5” ik / Rn—2_ ur Litst, k{zlt>)\} (/\ )\z,éw zk) dz”dzzk

/,L \/U?l;t#j’k{zit>)\i}vat/Lt’t,#j’k;t#t,{Zit>)\i,2“1>)\i}

gh(zz] = >\27sz = /\z) dz

i) 1] ik

:]P){ s;éz{Z (n— 1)>>‘}Z”€{w21_

Zij = Zily = )\i}

7P{ﬂs¢z{zs(n 1) > As } Z/I S {wll <n le = OO} Zij = Zik = )\i}, (4.12)

with Z7 the (n — 2)-dimensional components of Z; obtained by deleting Z;; and
Zik, and wl, w given by
wiy = inf{t : 1 <t(# 5, k) < myzie > i}

4.13
wiy = inf{t : wiy <t(# 4, k) <n,zie > Ni} (4.13)

Hereafter we use the convention that inf{(}} = oo. For instance,

{w}y = 0o} = {zi/(zijzix) € R"? 1 z; < \; for all 1 < (£ j,k) < n}

{w) < n,wfy =oco} ={zi/(zijzix) ER" 2 it exists 1 <I(# j,k) <n

such that z; > \;, and z;; < \; for all 1 < (£ 4,k,1) < n}
Consequently, it follows thus from (4.12) that (4.6) holds for i = .
b) Proof of (4.6) for i <. Denote A} = ﬁle;s#,l Ub e =100 {zst > Agy 2500 >
Ao} € RA=27 parallel to (4.7) and recall A; in (4.8). We have

O gn(z
Eq(7, 4.14
! J /“ Al/ azzyazlk ( )

Next, we decompose the integral region A; according to {z; € R" : z;; > A;} and
{z; e R" : z;; < \;}. We have

0 0
/ 9 ( )dzﬁ—/ g ( )dzi
Aiﬁ{ziER":Zij>Ai} azijazlk' Aiﬁ{ziER":zijS)\i} 8Z'Uazlk
agh(zij = >\i) dz;

‘/UzL—l;t#j{Z“>)"}U;Lt/ 15t,t/ #5; t#t/{zi">>‘i’zit’>/\i} D21k dzij

=— / Ign(zij = Xi) dzi
{wilgn’w:'z:oo} azlk: dzlj

where w};, w}, are defined by (similar notation below for wy,,w;, with respect to k
instead of j)

wiy =inf{t: 1 <#(#7) <n,zie > N}

4.15
Wiy = nf{t 1 wjy <H(#j) <n, 2 > N} (415
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Using similar arguments for the integral with region A;, we have by (4.14)

dz
Ezl .]7 / / / 9h (Z’Lj =N, 2k = )\l) dod
o J{wi <n,wl,=oo} J{w); <n,wj,=occ} ZijAZ1k

= SD()\ia)\135¢j,1k)P{ms¢i,l{Zs(n—1) > st Zi € {wil < nvwiQ = 00},

Zj € {wiy < nywiy = 0o} [{Ziy = My Zu = A}, (4.16)

where Z; and Z] are the (n—1)-dimensional components of Z; and Z; obtained by
deleting Z;; and Zy, respectively. Consequently, by (4.12) and (4.16) the validity
of (4.6) follows.

Next, by combining (4.3)—(4.6), the claim in (2.1) for r» = 2 follows by the fact
that (see Li and Shao, 2002)

1 arcsin(o'?), ) — arcsin(o'”) A2 4+ )2
/ 0Ny s 80 ) dh < (93 ”j) - (350) (—+l> . (4.17)
0 ’ 27 ( 1(] )lk — Jl(] )lk 2(1+ pijx)

Case 2 < r < n. Letting @(Z;Fh) =P {Z(n7r+1) > )\} we have

1
Ay () = / dh S 0D OBk | (s

(i—1)n+j<(—-1)n+k

Eil(jv k) = /
nd_yn

s=1"t . tp=

where

?gn(2)
ey
Loty 12t > X020t > A0} ZijOZik

With the aid of (4.17), it suffices to show that
‘E‘l(]? k‘)‘ <N N30 0), (i—n+j<(—=Dn+k. (4.19)

Similarly as above, two sub-cases : a) i = [ and b) i < [ need to be considered
separately. B
a) Proof of (4.19) for ¢ = I. Similarly to E;;(j, k), we rewrite E;;(j, k) as

2
Bii(,k /// gzigzm ’ (4.20)
with
/Nli = ﬂle;sﬂ Upsto=1iti 48, 12/ %0 € RUD™ o > Agy oo 2, > As)s
Zi = ?1, ot 171;tl7ﬁt]‘{zi ER™: zigy > Niyeovy Zit, > N b

Next, we decompose the integral region A; according to the four cases aj)—ay) as
introduced for A; (see the lines right above (4.10)).
For case a;)

62 d i
/ L(Z) dz; = / gh(zij =\, ik = )\z) iv (421)
A {w//

~iﬂ{zij>>\i72ik>)\i} azwaz“‘f _ Sn} dZ”dek
where wy] is given by (4.13) and (notation: w;’, = w;)

wiy = nf{s:wi, <s(#4,k) <nyzis >N}, 2<t<r, 1<i<d
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Next, for cases as) and ag)

/ 0%gn(z) 7/ 0°gn(2)
_ T dz; = [ —Fdz;
Ainfzi> Az} 0%ij0%in Ain{zi; <hivzie>hi} 0% 0%ik

dzi
=- 9n(Zij = Xiy zik = Ni) 7———- 4.22
/{wi’r,lgn} ( ! )dedezk ( )
Finally, for case aq4)

0? dz;
/ Mdzi:/ gn(zij Z)\i,ZikZAi)i~
Ain{zij <Aizin<\i} 0202k, {w! <n} dz;jdz;p,
This together with (4.20)—(4.22) yields that

L ]7 / / gh(zz] = \i, 2, = /\z) dz
(/\ >\Za 5” ik ’ w” 7n,w/.’ =o0} ()\ il (S ) dzijdzik

ir—1 ) ij,ik

_/ / gn(zij = Nis zike = \i) dz
Ty, <naf=et PN A0l ) didzik

:]P){ 9751{Zs(n r+1) >)‘ } Z//G{wzr 2<nwzr 1_00}

Zij = Zik, = )\i}
_P{ sF#L {Z (n—r+1) > )‘ } ZN € {wzr 1 < n’wz/'l,'r = OO}}ZU = Lik — )‘l}
(4.23)

establishing (4.19) for i = [.
b) Proof of (4.19) for ¢ <. By A; as in (4.20) and

Nl = ms 13854, Utl, Ar=15t %L, {2/(ziz1) 25ty > Asy o 251, > Ashy

we have
a29h
E; (7, 4.24
! J /“ / /AL 82zyazlk ( )

By decomposing the integral regions Ai and Al according to z;; >, < A; and 2y, >
,< Ay in R™, respectively, we obtain by similar arguments as for E;;(j, k) that
Eil (.]7 k)
oA, Ai; 5&%)
= P{ ms;ﬁi,l {Zs(nfr%»l) > )\8}7 Z; € {'w;’,,,,l <n, w;r = OO},
7 € {wh,—y < mywf, = 00l Ziy = Zu = N}, (4.25)
where w}; is introduced in (4.15) and (similar notation for wj,)
wi, = inf{s : wg,t_l <s(#j)<nyzis >N}, 2<t<r 1<i<d.
It follows then from (4.25) that (4.19) holds. Consequently, the desired result (2.1)
follows for 2 < r < n.
Finally, in view of (2.2) we see that the indices over the sum in (4.4) and (4.18)
are simplified to 1 < i < S d,1 < j,k < n. Then the claim in (2.3) follows
1.17

immediately from (4.16), (4.17) and (4.25). This completes the proof of Theorem
2.1. ]
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Proof of Theorem 2.4: It is sufficient to prove (2.6) since it implies the second
result of Theorem 2.4. Note that (2.6) holds for » = 1 by the argument of Lemma
12 in Debicki et al. (2014a), and in view of (2.5), (4.3), (4.4) and (4.20), we have

o) - dh, =2
Biylu) = § " Epsiasdy o) U” My Eadh, r =2 (4.26)
nY<ici<a(; fo awdh, 2<r<n,

where By = Ey(1,1), Ey == Ey(1,1) with E;(1,1), Ey(1,1) given by (4.5) and
('1 16), respectively. Therefore, we shall present next the proofs of (2.6) for a)
= 2 and b) 2 < r < n, and assume in the following that a 7é a( ) for all
1 <i<l<d.
a) Proof of (2.6) for r = 2. It follows by (2.5) and (4.16) that, with &} := 5;‘1’11
(recall \; := —u;, 1 <i < d)

Ey
o(—ui, —ug; 61)
P{Z; € {wl, <n,wly =00}, Z) € {w); < n,wjy = oo}} (4.27)

IN

Note that hereafter w},,w}, and wj,,w}, are defined as in (4.15) with respect to
j=k=1

Next, let (Z;, Z;) be a bivariate standard normal random vector with correlation
|5m and u = minj<;<qu; > 0. It follows by Slepian’s inequality in Slepian (1962)
and Lemma 2.3 in Pickands (1969) that, for 1 < j,k <n

P{Zij < —ui, I < *ul} < P{ZZ < *Ui,Zl < *ul}

(1+ |6k])?

S]P’{—Z >u,—z >u} < 5 o(u, u;

i) (4.28)

u

implying thus

B{ 2} € {(wh,wly) = (2,50}, Z{ € {(wh, wh) = (2,50)}}

——
—=
~
— =
N
<.
AN
£
N
AN
|
S
——

= ]P’{Ziz > —u;, Zip > —yy
(1+|o3]) hpy )2
< (Sl 64)))
and

B{Z} € {(w)y why) = (3,00}, Z] € {(why, why) = (2,00)} }

n

= ]P{ZiQ < —Ug, L1 > —Ug, Lz > —Uy, 213 < —Uz} HP{Zij < —uy, 415 < —uz}

j=4
(1+ (0% ])? n—2
< (%w(%u; 6% )) :
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Similarly, we may consider all (n — 1)? cases in (4.27) for w}; = wj; and w}; # wj;.
Therefore, using further (4.6) in Li and Shao (2002) we have

1+ [0%])2 n—2
B < (=172 (S o 138)) " s, )

(n=1)* ooy (1434 (o)

< _
= @2m)t (1 — Jok2)—072 P\ T a0

Consequently, by (4.26) we have

1
Agw) < n Y (o) o) / E; dh
1<i<i<d 0
nin—1)% _,,_ 1 0
= WU A Z (o—i(l)_gz(l)>+
1<i<i<d
o (L20) [
Tron ) Jy Q=[R2
n(n —1)% —2(n—2) (2) (n — Du?
= o1 ¢ Z (Aj")+exp | — : .
(27T) 1<i<i<d 1+ py

1 _

The last step follows since p;; = max(|a§lo)\, |0£ll)|) > 0% and (recall 6% = h(oy;

o)+ o)

(1)

1 h1)2(n—2) o 2(n—2)
0 o

1— |0k [2)(n=1)/2 Uz(ll) _ Ul(lo) © (1= p2)(n-1/2 7"

b) Proof of (2.6) for 2 < r < n. Clearly, from (1.25) we have E; > 0. Further,
similar arguments as for E;; (consider the number of wj, = wj,, s,t < r) yield that

E;
—lh < ]P){Z; € {w: r—1 < nawér = OO},Z; € {w;rfl < nawl/r = OO}}
P(—ui, —w; 6;) ' '
1+ |65])? n—r
< (Cn—l,r—l)Q(#@(uau; o8 ))

Consequently, the claim in (2.6) for 2 < r < n follows, establishing the proof. O
We give next a result which extends Lemma 2.3 in Pickands (1969) needed for
the proof of Proposition 2.5.

Lemma 4.1. Let (X,Y) be a bivariate standard normal random vector with corre-
lation p € (=1,1). For any x,y > 0, if p < max(z/y,y/x), then

2(1+p)*(L—p)
(z +y) min(z — py,y — pz)

P{X>zY >y} < e, y: p). (4.30)
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Proof: The proof follows with similar arguments as in Pickands (1969). By a change
of variable 2’ = z +u/x,y’ =y + v/y, we have

P{X>uzY >y}= / / o' y's p) da'dy’

oz, y;p) / eXp( 1—py/w1)_+v(1—pw/y)>
Xexp( U/w —2p2(zil/w(v§y) (y/v)Q) dudy

so(ff;;s; P) /O°° /O‘X’ exp (_ (u/z)(x — py) + (:/y)(y — px))

L—p
X exp (—W) dudv

) w(x,y;p)J(
xy

IA

Ty, p)

Next, let s = ((u/z)(z — py) + (v/y)(y — pz)) /(1 = p*),t = (u/z —v/y)//1 = p?.

Clearly,

Os(u,v)  9s(u,v)

at?vxv) Btaﬁv)
ou ov

= - Ty . (4.31)

zy(1+p)y/1—p?

Further, since p < max(z/y,y/x), we have

1— 2
sl =) >24 s Vi—p2, —co<t< oo
y

min(z — py,y — pr) ~

Consequently, with m, , := min(x — py,y — pz)/y/1 — p?

IN

J(x,y,p)

y(1 V1=0p
+p —t /2/ e~ % dsdt
[t|ma,y

r+y

2zy(1+ p)/1—p
zy(1+7) exp(— mayt) dt

Tty

2zy(1 + p)y/1 - p? (1 — ®(may))
z+y (P(mz,y) ’

where p(z) and ®(x) are the pdf and df of the standard normal random variable,
respectively. Hence the well-known inequality

1-®(z) <op(x)/z, >0 (4.32)

establishes the proof. O
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Proof of Proposition 2.5: We adopt the same notation as in Theorem 2.4. It
follows by Slepian’s inequality and (4.32) that

P{Zij < —ug, Zi < *Ul} < { < —ui, 7 < *Ul}
Z +Zl u; + ug
\/2 (1+16%)) \/2 1+ [6%))

\/ 1+|5| Ui + ug (4.33)

Ui 2(1 + |0%])

<

Furthermore, we have by Lemma 4.1
P{Zw < —ug, L < —ul} <P {_Zz > Uy, —Zl > ul}

3 2(1+ [84)2(1 ~ [34)
= (uy +wy) min(u; — |68 ug, ug — |68 |u;

2(1 + |075])% (1 — |97;])
T (ug +wg) min(u; — paw, up — pat
Hence (2.7) and (2.8) are established by replacing (4.28) with (4.33) and (4.34),
respectively, and utilising similar arguments as in the proof of Theorem 2.4. O
Proof of Proposition 2.6: The lower bound follows directly from Corollary
2.3. Next we focus on the upper bound. We present below the proof for r = 2.

Hereafter, we adopt the same notation as in the proof of Theorem 2.1. Further,
define

)QO(Ui, Ul; |6ZD

1
f(h) =exp ——————Clhu |, helo1],
1§i§<:l§d H((uz +ul)/2) 3.k

1<j,k<n
where

=2 arcsin(ag),)lk)

)’ H(x) = Vare” PE{(W + ).},

ch. =In
itk (71' — 2aresin(df} ;)

with W an N(0,1) random variable. It suffices to show that Q(Z;T'")/f(h) is
non-increasing in h, i.e.,

OQ(Z:T")/0h _ 0f(h)/0h

QEE:Th () [0,1] (4.35)
We have
0f(h)/0h _ 2004500 = i) I
() (4.36)
f(h) 1<i<i<a (7 — 2arcsin(6f} ;,.)) /1 — (07 1.)? H ((u; 4+ u)/2)
1<j,k<n
and by (4.4)
oQ(z;1r .
% = Y Oy~ o) Eal ). (4.37)
1<i<i<d

1<j,k<n
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Therefore, by the assumption that 0 < US-))”C < O‘S)lk <lforl <i<lI<d1l<
j,k < mn, it is sufficient to show that

2Q(Z;Th) 1

Ei(j,k) < .
0 (7 — 2aresin(8h, ,)) /1 — (3% )2 H ((wi +w)/2)

(4.38)

From (4.16) we have (recall u = —A)
Eil(j7k)
@(Uiaul;5?j7lk)
<P {Nspii{ Zatn—1) > A} (23, Z)) € {wiy, wiy < n}|(Zig, Zik) = (N, \o) }

=P{Neri{Zs2y<us}, (2}, Z1) € {viy, vy < n}|(Zij, Zue) = (uiyw)} 5 (4.39)
where v}, v}, are defined by
vip =inf{t : 1 <t(#j) <nyzie <ui}, vy =inf{t:1<t(#k) <n,zip <u}.
Define next
(Zij — wi) = 03y 1 (Zuk — w) (i —w) = 6y (Zij — wa)

= (0 )° B L= (0f0)? |

Since (Z;j, Zix) is a bivariate Gaussian random vector with N(0,1) marginals and
correlation 8% ., we have

E{Ti;Zi;} = E{TwZi} =1, E{Ti;Zi} =E{T;; Zi.} = 0.

T =

Then it follows that the random vectors

Z: = (va - 51}}w,ij/ri' - 5ﬁw,lkﬂk7 I<w< TL)7 v # Z7l
Z7 = (Zi— 0}y Tyi — 6 Tn, 1 < t(#j) <)

Z;* = (th — 6l};7ijTij - (Sl};7lkﬂka 1< t(# k) < n)

are independent of (Z;;, Zj;,) and further independent of (T5;, Tjx). Thus, by (4.39)
and the fact that 0 < (52’7;-,lk<1,1 <i<l<d,1<j,k<n,he€]|0,1], we have as in
Lemma 2.1 in Yan (2009)

IP){TZJ < O,Ek < 0}
o(ui, s O 1))
< P{OS#J{Z:(Q) <ust, Z7 € {vly <n}, Z1" € {v; <n}, Ty <0,Ty < O}

Eil (.]a k)

< IP’{ Nesit {Zs(2) < ush, Z; € {vjy <n}, Z) € {v); <n}, Ziyj < wi, Zi < ul}
= Q(z;Th. (4.40)
Moreover, by Lemma 2.2 in Yan (2009)

P{T;, T, 7 — 2arcsin(8 :
{T;; <0, 2k<0}2 ) 1_(5sz)2H(u +ul>’
w(uhul;&i‘j’lk) 2 >

which together with (4.40) implies (4.38), hence the proof for r = 2 is complete.
For 2 < r < n, we need to show that (4.38) holds for E;;(j, k). This follows by
similar arguments as for r = 2, using the inequality (4.25) instead of (4.16). O
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5. Appendix

We give the detailed proof of Theorem 3.1, which is based on the two lemmas
below. For notational simplicity, we set ¢ = g(u) = u=2/*,u > 0 and write [z] for
the integer part of x € R.

Lemma 5.1. Under the assumptions of Theorem 3.1 with v =0, for any a,T >0
and any positive integer k < n we have

[ /P{ X (0)> )]
limsup Y. P {ka(aqj) > u‘Xk.:n(O) > u} 50, £10.(5.1)

YT = [T/(aq)]

Proof: By Lemma 2 in Debicki et al. (2015a) (see the proof of (3.5) therein), for
sufficiently large u

au(t) =P {Xn,,«ﬂm(t) > u‘Xn,rH:n(O) > u} < op {Xlzr(t) > u‘XlzT(O) > u} :

Since further X (t) — p(¢)X(0),¢ > 0 is independent of X (0), we have for some
constant K > 0 (below the value of K might change from line to line)

IN

au () 97t (IP’ {X(t) > X(0) > qu(O) > u})

IN

g1 (IP’ {X(t — p(H)X(0) > u(1 — p(t))‘X(O) > u})r

>
or+1 (1_(1) u 1_P(t)>>r
1+ p(t)

(1=l
= K ( (

where the last inequality follows by (4.32).
Next, let g be a positive function such that

Tim g(u) = o0, |o(g(w)| =
It follows from u=21In g(u) = o(1) that g(u) < exp(€'u?) for some 0 < € < r/2(1 —
lp(T))/ (1 + |p(T)]) and sufficiently large u (recall that |p(T)| < 1; see Leadbetter
et al. (1983), p.86). Next, we split the sum in (5.1) at agj = g(u). The first term
is

l9(w)/(aq)]

Z P {Xn—r-l-l:n(aqj) > U‘Xn—r—i-l:n(o) > ’LL}
J=[T/(aq)]

S1,{g<u>u_,.(1—p<T>|)7”/2%9( ru® 1= |p(T)| )

aq 1+ [p(T) 2 1+ [p(T)]

< Ku? " exp (euz—) -0, u— oo
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For the remaining term, it follows by Lemma 1 in Debicki et al. (2015a) and (5.2)
[e/P{Xn—rt1:n(0)>u}]
]P {Xn—r+1:n(aqj) > U‘Xn—r+1:n(0) > U}
j=lg(w)/(aq)]

<K € o f1=u? /2 ru?l —u?
u ex I e——
= P {Xn_rs1m(0) > u} 1+u2 P AT 2 T+

ru? (1 —u"?
< Keexp (_2 (1+u2 - 1))

< Ke, u— oo.

Therefore, the claim follows by letting € | 0. O
Next, with the notation as in (3.2) we set
r 2 TU2
T=T(u)= P (2m)2u" > exp <2> , u>0. (5.3)

Lemma 5.2. Let T = T(u) be defined as in (5.3) and a > 0,0 < XA < 1 be given
constants. Under the assumptions of Lemma 5.1 for any 0 < s1 < -+ <5, <11 <
o<ty infagj:j€Z,0<aqj <T} witht; — s, > NI, we have as u — 00

{0 X rin(si) < uh P (X an(t) < u})
PO (X rsin(s) < wb PO (X rpin(t) < b} = 0.(5.4)
Proof: Denote
Xij=X;(s){i <p}+ Xj(tip){p<i<p+p}, 1<i<p+p,1<j<n

and {Y;;,1 <i<p1<j<n} 4 {Xij,1 < i <p,1 <j < n}, independent of

(Vi p+1<i<p+p,1<j<n}L{Xy,p+1<i<p+p,1<j<n} Applying
Theorem 2.4 with

Xi(nfrJrl) = Xn7r+1:n(5i)]l{i S p} + Xn7r+1:n<tifp)]1{p <1 S p + p/}
and

Yvi(nfrJrl) = Yn—r—i—l:n(si)ﬂ{i S p} + Yn—r-l—l:n(ti—p)]l{p <1 S p + p/}7
it follows that, the left-hand side of (5.4) is bounded from above by

2 [p(tj—si)l 2(r—1)
Ku—Q(r—UZ Z exp ( ru ) / (1+ 1h|) dh
0

@ xr<i;—si<r L+ |p(t; — si)l (1 —h2)r/2
T ru’
< ry2rn L |p(ags)| exp () (5.5)
q AT%@ 1+ [p(agj)|

for sufficiently large u. Here K is some constant. The rest of the proof consists of
the similar arguments as that of Lemma 12.3.1 in Leadbetter et al. (1983). Indeed,
letting v(t) = sup{|p(s)|Ins : s > t},t > 1, we have that |p(t)] < v(¢t)/Int and
~(t) < M for some positive constant M and all sufficiently large ¢. Recalling (5.3),
we have

1-2/(ra) 2r
uQZgIHTJr <21) lnlnT+1n<<;) (CMATO‘)> (14 0(1)),
r

ro 2
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o (-0 (1 5i6m)
Kexp (—ru®) < KT~*(InT)" %/«

for all T large. Consequently, the right-hand side of (5.5) is bounded from above
by

which implies that

exp <_7““2 )
1+ |p(aqj)]

IA

IA

2
—2(r— r 1 : . 1 — r—2/a
Ku™ )() T O Iolaailin(e)) | sy
9 4 \rlagj<r

q . .
<Ko Y. lelagi)|In(agy),
AT<agj<T

which tends to 0 as T' — oo since p(t) Int = o(1). Hence the proof is complete. [

Below W denotes an N (0, 1) random variable which is independent of any other
random element involved.

Proof of Theorem 3.1: a) Note that (3.2) and Lemmas 5.1 and 5.2 hold for
the rth upper order statistics process {X,,—1+1.,(t),t > 0}. In view of Theorem 10
in Albin (1990) we have for T'= T'(u) defined as in (5.3)

lim IP’{ sup  Xp—rp1n(t) <u+ x} = exp (—e*w) , xzeR.
U—00 t€[0,T (u)] ru
Expressing u in terms of 7" using (5.3) we obtain the required claim for any =z € R,
with a,7,b. 7 given as in (3.3); the uniform convergence in x follows since all
functions (with respect to x) are continuous, bounded and increasing.

b) The proof follows from the main arguments of Theorem 3.1 in Mittal and
Ylvisaker (1975) by showing that, for any ¢ > 0 and z € R

Oz —¢) < LminfP {MX(T) < erbor + \/p(T):E}
— 00

lim sup P {MX(T) < erbrg + \/p(T)a:} <®(z+e), (5.6)

T—o0

IA

where

Mx(T) = sup Xp—ri1n(t), cr=+/1-p(T).

t€[0,T]
We start with the proof of the first inequality. Let p*(t),t > 0 be a correlation
function of a stationary Gaussian process such that p*(t) =1 — 2 [t|* + o(|t|") as
t — 0. There exists some ty > 0 such that for T" large

p ()t + p(T) < p(t), 0<t<to. (5.7)
Denote by {Y%(t),¢ > 0}, k € N independent centered stationary Gaussian processes
with a.s. continuous sample paths and common covariance function p*(-), and define
{Y(1),t > 0} by
Y(t) = Yit)[{t € [(k —1)to,kto)}, t>0. (5.8)
k=1
It follows from (5.7) that for T sufficiently large

E{X(s)X(1)} > E{(CTY(S) +/p(T)W) (erY (t) + \/p(T)W)} , s,t>0.
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Therefore, by Proposition 3.2
P {MX(T) < erbyr + \/p(T)x}

>P {CTMy(T) +Vp(TYW < erbyr + \/p(T)x}
T/to)4+1
>®(x—¢) <P{tes[lélz]ynr+1:n(t) < br,T+5m}> .

Noting that a = infoci<s, (1 — p*(£)) |t|* > 0, we have by Theorem 1.1 in Debicki
et al. (2015a) (see also (3.2))

P {SUPte[O,tO] Yo—ri1n(t) > brr + ey P(T)}
tocn b2 (1 — @(brr +ey/p(1)))"

Consequently, since v = co we have

lim
T— 00

=2 A, 4.

tE[O,to]

TII_IE;O([T/tO] + 1) IHP{ sup YnfrJrl:n(t) < br,T +e V p(T)}

T
= — lim ]P’{ sup Yo_ri1m(t) > bpr + sx/p(T)}

T—ooty | tefo,to]

2/a T

. 1

= — Jim Tep,2 12 Ay abyly (1= @by + e4/p(T)))

=0
establishing the first inequality in (5.6).
Next, we consider the last inequality in (5.6). Note that, by the convexity of
p(+), there exists a separable stationary Gaussian process {Y(t),¢ € [0,T]} with
correlation function given by (using the well-known Polya criteria, see e.g., Gneiting,
2001)

1—p(T) ~

We have the equality in distribution

t e [0,7). (5.9)

Mx(T) 4 er My (T) + /p(T)W

implying

=

{Mx(T) < erbyr + /p(T)e

e cr

p(T)

cr

= /oo P {My(T) <b.1+ (1) (x— u)} o(u) du
} (5.10)

<O(x+e)+P {MY(T) <b.r—c¢€
Consequently, we only need to prove that

lim IP’{MY(T) < by — s\/ﬁ} —0.

T—o0
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To this end, using again the convexity of p(-), we construct a separable stationary

Gaussian process {Z(t),t € [0, T]} with the correlation function (recall p(-) in (5.9))
o(t) = max (ﬁ(t),ﬁ(Texp (- lnT))), te0,7]. (5.11)
Again by Proposition 3.2, we have

P{My(T) < by —e/p(T) } <P{MZ(T) <bpr —=V/p(D)}.  (5.12)

Next, we construct a grid of intervals as follows. Let Iy,..., Ii7) be [T] consecutive
unit intervals with an interval of length § removed from the right-hand side of each
one with ¢ € (0,1) given, and

Gr = {k@WT)"¥ keN}n (U 1).
It follows from Theorem 10 in Albin (1990) and Theorem 1.1 in Debicki et al.
(2015a) that, sup,co, 7] Zn—r+1:n(t) and sup,eg,. Zn—rt1:n(t) have the same asymp-
totic distribution and thus we only need to show that

lim P { SUp Zn—r41:m(t) < brp — ey P(T)} = 0.

T—o0 tegr

Let {Z),_,11.,(t),t > 0} be generated by {Z'(t),t € [0,7]} which is again a sepa-
rable stationary process with the correlation function (recall o(-) in (5.11))

] a(t) —o(T)

t) = ——7——

70 =

Analogously to the derivation of (5.10) we obtain

t €10,T].

P { sup Zn—r+l:n(t) < bnT — € p(T)}

tegGr

= IP’{ 1 —o(T)max Z,_, 1.,t)+ Vo (T)W < bpp — ex/p(T)}

tegr
o))

+P {?Glg;( Z;z—'r'—‘,-l:n(t) S b7'7T +

br,TU(T) _ € p(T)
VI—o(T)(1+/1-0(T) 2/1—-0o(T) |’
which tends to 0 as T' — co. The proof of it is the same as that of Theorem 3.1 in
Mittal and Ylvisaker (1975), by using instead Theorem 1.1 in Debicki et al. (2015a)
and our Theorem 2.4. Consequently, the last inequality in (5.6) follows by (5.10)
and (5.12). We complete the proof for v = co.

c) Given ¢ € (0,1), take Iy,...,Ijr) as in b). For {Yi(t),t > 0}, k € N indepen-
dent copies of X define

Y(t) = iYk(t)]I{t elk—-1k)}, t>0
k=1

and

X (t) = /1= p(D)Y (£) + /pu (W, t €U T,
where p,(T) = «v/InT. The rest of the proof is similar to that as of Theorem 2.1
in Tan et al. (2012) by using our Theorem 2.4 instead of Berman’s inequality. We
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omit the details.
Combining all the arguments for the three cases above, we complete the proof of
Theorem 3.1. ([l
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