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Abstract. We consider an exactly solvable model of branching random walk with
random selection, which describes the evolution of a population with N individuals
on the real line. At each time step, every individual reproduces independently, and
its offspring are positioned around its current locations. Among all children, N in-
dividuals are sampled at random without replacement to form the next generation,
such that an individual at position x is chosen with probability proportional to eβx.
We compute the asymptotic speed and the genealogical behavior of the system.

1. Introduction

In a general sense, a branching-selection particle system is a Markovian process
of particles on the real line evolving through the repeated application of the two
steps:

Branching step: every individual currently alive in the system splits into
new particles, with positions (with respect to their birth place) given by
independent copies of a point process.

Selection step: some of the new-born individuals are selected to reproduce
at the next branching step, while the other particles are “killed”.
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We will often see the particles as individuals and their positions as their fitness,
that is, their score of adaptation to the environment. From a biological perspective,
branching-selection particle systems model the competition between individuals in
an environment with limited resources.
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Figure 1.1. One time step of a branching-selection particle system

These models are of physical interest (Brunet and Derrida, 1997; Brunet et al.,
2007) and can be related to reaction-diffusion phenomena and the F-KPP equation.
Different methods can be used to select the individuals. For example, one can
consider an absorbing barrier, below which particles are killed (Aı̈dékon and Jaffuel,
2011; Berestycki et al., 2013; Mallein, 2015a; Pain, 2016). Another example is the
case where only the N rightmost individuals are chosen to survive (Brunet and
Derrida, 1997; Brunet et al., 2007; Bérard and Gouéré, 2010; Durrett and Remenik,
2011), the so-called “N -branching random walk”. In this paper, we introduce
a new selection mechanism, in which the individuals are randomly selected with
probability depending on their positions.

Based on numerical simulations (Brunet and Derrida, 1997) and the study of
solvable models (Brunet et al., 2007), it has been predicted that the dynamical and
structural aspects of many branching selection particle systems satisfy universal
properties. For example, the cloud of particles travels at speed vN , which converges
to a limit v as the size of the population N diverges. It has been conjectured in
Brunet et al. (2007) that

vN − v = −ϕ (logN + 3 log logN + o(log logN))
−2

as N →∞,

for an explicit constant ϕ depending on the law of reproduction.
Some of these conjectures have been recently proved for the N -branching ran-

dom walk (Bérard and Maillard, 2014; Bérard and Gouéré, 2010; Couronné and
Gerin, 2014; Durrett and Remenik, 2011; Maillard, 2016; Mallein, 2015b). Bérard
and Gouéré (2010) prove that vN − v behaves like −ϕ(logN)−2. Nevertheless, sev-
eral conjectures about this process remain open, such as the asymptotic behavior
of the genealogy or the second-order expansion of the speed. Other examples in
which the finite-size correction to the speed of a branching-selection particle system
is explicitly computed can be found in Bérard and Maillard (2014); Comets and
Cortines (2015); Couronné and Gerin (2014); Durrett and Remenik (2011); Mallein
(2015b); Mueller et al. (2011).

To study the genealogical structure of such models we define the ancestral par-
tition process ΠN

n (t) of a population choosing n � N individuals from a given
generation T and tracing back their genealogical linages. That is, ΠN

n (t) is a pro-
cess in Pn the set of partitions (or equivalence classes) of [n] := {1, . . . , n} such
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that i and j belong to the same equivalence class if the individuals i and j have a
common ancestor t generations backwards in time. Notice that the direction of time
is the opposite of the direction of time for the natural evolution of the population,
that is, t = 0 is the current generation, t = 1 brings us one generation backward in
time and so on.

It has also been conjectured in Brunet et al. (2007) that the genealogical trees
of branching selection particle systems converge to those of a Bolthausen-Sznitman
coalescent and that the average coalescence times scale like a power of the logarithm
of the population size. These conjectures contrast with classical results in neutral
population models, such as Wright-Fisher and Moran’s models, that lay in the
Kingman coalescent universality class (Möhle and Sagitov, 2001). Mathematically,
these conjectures are difficult to be verified and they have only been proved for
some particular models, see Berestycki et al. (2013); Cortines (2016).

We define in this article a solvable model of branching selection particle system
evolving in discrete time, and compute its asymptotic speed as well as its genealog-
ical structure. Given N ∈ N and β > 1, it consists in a population with a fixed
number N of individuals. At each time step, the individuals die giving birth to off-
spring that are positioned according to independent Poisson point processes with
intensity e−xdx (that we write PPP(e−xdx) for short). Then, N individuals are
sampled (without replacement) to form the next generation, such that a child at
the position x is sampled with probability proportional to eβx.

We introduce the following notation. Let XN
0 (1), . . . , XN

0 (N) ∈ R be the initial
position of the particles and {Pt(j), j ≤ N, t ∈ N} be a family of i.i.d. PPP(e−xdx).
Given t ≥ 1 and XN

t−1(1), . . . , XN
t−1(N) the N positions at time t− 1, we define the

new positions as follows:

i. Each individual XN
t−1(j) gives birth to infinitely many children that are posi-

tioned according to the point process XN
t−1(j)+Pt(j). Let ∆t := (∆t(k); k ∈ N)

be the sequence obtained by all positions ranked decreasingly, that is

(∆t(k), k ∈ N) = Rank
({
XN
t−1(j) + p; p ∈ Pt(j), j ≤ N

})
.

ii. We sample successively N individuals XN
t (1), . . . , XN

t (N) composing the tth
generation from {∆t(1),∆t(2), . . .} such that for all i ∈ {1, 2, . . . , N}:

P
(
XN
t (i) = ∆t(j)

∣∣∆t, X
N
t (1), . . . , XN

t (i− 1)
)

=
eβ∆t(j)1{∆t(j)6∈{XNt (1),...XNt (i−1)}}∑+∞

k=1 eβ∆t(k) −
∑i−1
k=1 eβX

N
t (k)

. (1.1)

To keep track of the genealogy of the process we define

ANt (i) = j if XN
t (i) ∈

{
XN
t−1(j) + p, p ∈ Pt(j)

}
, (1.2)

that is, An(i) = j if XN
t (i) is an offspring of XN

t−1(j). We call this system the
(N, β)-branching random walk or (N, β)-BRW for short.

It can be checked that the sum in the denominator of (1.1) is finite if β ∈ (1,∞)
and that it diverges as β → 1 (see Proposition 1.3 below), thus the model is only
defined for β ∈ (1,∞). Notice that as β → ∞ the sum in the denominator is
dominated by the high values of ∆t. Precisely, it can be checked that the following
limits hold a.s.

limβ→∞ e−β∆t(1)
∑+∞
k=1 eβ∆t(k) = 1, limβ→∞ e−β∆t(2)

∑+∞
k=2 eβ∆t(k) = 1,
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and so on. Therefore, the case “β = ∞” is the “exponential model” from Brunet
and Derrida (1997, 2012); Brunet et al. (2007), in which the N rightmost individuals
are selected to form the next generation. In contrast with the examples already
treated in the literature, when β <∞ one does not necessarily select the rightmost
offspring. In this paper, we will take interest in the dynamical and genealogical
aspects of the (N, β)-BRW, showing that it travels at a deterministic speed and
that its genealogical trees converge in distribution. The next result concerns the
speed of the (N, β)-BRW.

Theorem 1.1. For all N ∈ N and β ∈ (1,∞], there exists vN,β such that

lim
t→+∞

maxj≤N X
N
t (j)

t
= lim
n→+∞

minj≤N X
N
t (j)

t
= vN,β a.s. (1.3)

moreover, vN,β = log logN + o(1) as N →∞.

The main result of the paper is the following theorem concerning the convergence
in law of the ancestral partition process

(
ΠN
n (t); t ∈ N

)
of the (N, β)-BRW.

Theorem 1.2. For all N ∈ N and β ∈ (1,∞], let cN be the probability that two
individuals uniformly chosen at random have a common ancestor one generation
backwards in time. Then, we have limN→∞ cN logN = 1 and the rescaled coales-
cent process

(
ΠN (bt/cNc), t ≥ 0

)
converges in distribution toward the Bolthausen-

Sznitman coalescent.

The Bolthausen-Sznitman coalescent in Theorem 1.2 can be roughly explained
by an individual going far ahead of the rest of the population, so that its offspring
are more likely to be selected and overrun the next generation. Based on precise
asymptotic of the coalescence time, Brunet et al. (2007) argue that the genealogi-
cal trees of the exponential model converge to the Bolthausen-Sznitman coalescent
and conjecture that this behavior should be expected for a large class of models.
The (N, β)-BRW can be though as a finite temperature version of the exponential
model from Brunet et al. (2007). In this sense, Theorem 1.2 attests for the robust-
ness of their conjectures showing that even under weaker selection constrains this
convergence occurs. It indicates that whenever the rightmost particles are likely to
be selected, then the Bolthausen-Sznitman coalescent is to be expected.

Different coalescent behavior should be expected when the selection mechanism
does not favor the rightmost particles, the classical example being the Wright-Fisher
model. Another example can be obtained modifying the selection mechanism of the
(N, β)-BRW. It can be checked using the techniques developed in this paper (see
for example Theorem 3.3) that if we systematically eliminate the first individual
sampled XN

1 (t), so that it does not reproduce in the next generation, then this new
branching-selection particle system lays in the Kingman’s coalescent universality
class. Notice that this new selection procedure no longer favors the rightmost par-
ticles (in this case, the rightmost particle), which justifies this change of behavior.
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Notation. In this article, we write

f(x) ∼ g(x) as x→ a if lim
x→a

f(x)

g(x)
= 1;

f(x) = o(g(x)) as x→ a if lim
x→a

f(x)

g(x)
= 0;

and f(x) = O(g(x)) as x→ a if lim sup
x→a

f(x)

g(x)
< +∞.

1.1. Preliminary results. In this section, we prove that the (N, β)-BRW is well
defined and provide elementary properties such as the existence of the speed vN,β .

Proposition 1.3. The (N, β)-BRW is well-defined for all N ∈ N and β ∈ (1,∞].

Moreover, setting XN
t (eq) := log

∑N
j=1 eX

N
t (j), the sequence(∑

k∈N
δ∆k(t+1)−XNt (eq) : t ∈ N

)
is an i.i.d. family of Poisson point processes with intensity measure e−xdx.

Proof : With N and β fixed, assume that the process has been constructed up to
time t with XN

t (1), . . . , XN
t (N) denoting the positions of the N particles. Thanks to

the invariance of superposition of independent PPP,
{
XN
t (j)+p; p ∈ Pt(j), j ≤ N

}
is also a PPP with intensity measure∑N

i=1 e−(x−Xt(i))dx = e−(x−XNt (eq))dx.

Therefore, with probability one: all points have multiplicity one and the sequence
(∆k(t + 1); k ∈ N) is uniquely defined. Since there are finitely many points
∆k(t + 1) that are positive and E

(∑
eβ∆k(t+1)1{∆k(t+1)<0}

)
< ∞ we have that∑

eβ∆k(t+1) <∞ a.s. As a consequence, the selection step is well-defined, proving
the first claim. Moreover, (∆k(t+1)−Xt(eq); k ∈ N) is a PPP(e−xdx) independent
from the t first steps of the (N, β)-BRW, proving the second claim. �

Remark 1.4. It is convenient to think XN
t (eq) as an “equivalent position” of the

front at time t, in the sense that the particles positions in the (t+1)th generation are
distributed as if they were generated by a unique individual positioned at XN

t (eq).

We use Proposition 1.3 to prove the existence of the speed vN,β , the study of its
asymptotic behavior is postponed to Section 4.

Lemma 1.5. With the notation of the previous proposition, (1.3) in Theorem 1.1
holds with

vN,β := E(XN
1 (eq)−XN

0 (eq)).

Proof : By Proposition 1.3,
(
XN
t+1(eq)−XN

t (eq) : t ∈ N
)

are i.i.d. random variables

with finite mean, therefore limt→+∞
XNt (eq)

t = vN,β a.s. by the law of large num-

bers. Notice that both
(

maxXN
t (j) − XN

t−1(eq)
)
t

and
(

minXN
t (j) − XN

t−1(eq)
)
t

are sequences of i.i.d. random variables with finite mean, which yields (1.3). �

In a similar way, we are able to obtain a simple structure for the genealogy of
the process, and describe its law conditionally on the position of the particles.
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Lemma 1.6. The sequence (ANt )t∈N defined in (1.2) is i.i.d. Moreover, it remains
independent conditionally on H = σ(XN

t (j), j ≤ N, t ≥ 0), with the conditional
probabilities

P
(
ANt+1 = k | H

)
= θNt (k1). . .θNt (kN ), where k = (k1, . . . , kN ) ∈ {1, . . . , N}N ;

and θNt (k) :=
eX

N
t (k)∑N

i=1 eX
N
t (i)

. (1.4)

Proof : To each point x ∈
∑
δ∆t+1(k)−XNt (eq) we associate the mark i if it is a point

coming fromXN
t (i)+Pt(i). The invariance under superposition of independent PPP

yields P
(
x ∈ XN

t (i) + Pt(i)
∣∣H) = e−(x−XNt (i))∑N

j=1 e−(x−XNt (j))
= eX

N
t (i)∑N

j=1 eX
N
t (j)

. By definition of

ANt (i), it is precisely the mark of XN
t+1(i), which yields (1.4). The independence

between the ANt can be easily checked using Proposition 1.3. �

Organization of the paper. In Section 2, we obtain some technical lemmas con-
cerning the Poisson-Dirichlet distributions. We focus in Section 3 on a class of
coalescent processes generated by Poisson Dirichlet distributions and we prove a
convergence criterion. Finally, in Section 4, we provide an alternative construction
of the (N, β)-BRW in terms of a Poisson-Dirichlet distribution, and we use the
results obtained in the previous sections to prove Theorems 1.1 and 1.2.

2. Poisson-Dirichlet distribution

In this section, we focus on the two-parameter Poisson-Dirichlet distribution
denoted as PD(α, θ) distribution.

Definition 2.1 (Definition 1 in Pitman and Yor, 1997). For α ∈ (0, 1) and θ > −α,
let (Yj : j ∈ N) be a family of independent r.v. such that Yj has Beta(1−α, θ+ jα)
distribution and write

V1 = Y1, and Vj =

j−1∏
i=1

(1− Yi)Yj , if j ≥ 2.

Let U1 ≥ U2 ≥ · · · be the ranked values of (Vn), we say that the sequence (Un) is
the Poisson-Dirichlet distribution with parameters (α, θ).

Notice that for any k ∈ N and n ∈ N, we have

P
(
Vn = Uk | (Uj , j ∈ N), V1, . . . , Vn−1

)
=

Uk1{Uk 6∈{V1,...Vn−1}}

1− V1 − V2 − · · · − Vn−1
,

for this reason we say that (Vn) follows the size-biased pick from a PD(α, θ). It
is well known that there exists a strong connexion between PD distributions and
PPP, we recall some of these results in the proposition below.

Proposition 2.2 (Proposition 10 in Pitman and Yor, 1997). Let x1 > x2 > . . .

be the points of a PPP(e−xdx) and write L =
∑+∞
j=1 eβxj and Uj = eβxj/L. Then

(Uj , j ≥ 1) has PD(β−1, 0) distribution and limn→+∞ nβUn = 1/L a.s.

Notice from Propositions 1.3 and 2.2 that (eβX
N
n (i)/

∑+∞
j=1 eβ∆n(j)) has the dis-

tribution of (Vi) the size-biased pick from PD(β−1, 0), which makes the model
solvable.
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Remark 2.3 (Change of parameter). If V1, V2, . . . is a size-biased pick of PD(α, θ),

then
(

V2

1−V1
, V3

1−V1
, . . .

)
has the distribution of a size-biased pick from a PD(α, α+θ).

Moreover, it is independent of V1. That is, the sequence obtained from V1, V2, . . .
after discarding the first sampled element V1 and re-normalizing is a size-biased
pick from a PD(α, α + θ). Therefore, ordering this new sequence one obtains a
PD(α, α+ θ) sequence.

In what follows, we fix α ∈ (0, 1) and θ > −α, and let c and C be positive
constants, that may change from line to line and implicitly depend on α and θ. We
will focus attention on the convergence and the concentration properties of

Σn :=

n∑
j=1

V αj =

n∑
j=1

Y αj

j−1∏
i=1

(1− Yi)α; n ∈ N. (2.1)

Lemma 2.4. Set Mn :=
∏n
i=1(1− Yi), then, there exists a positive r.v. M∞ such

that

lim
n→+∞

(
n

1−α
α Mn

)γ
= Mγ

∞ a.s. and in L1 for all γ > −(θ + α), (2.2)

with γ-moment verifying E(Mγ
∞) = Φθ,α(γ) := αγ

Γ(θ+1)Γ
(
θ+γ
α +1

)
Γ(θ+γ+1)Γ

(
θ
α+1

) . Moreover, if

0 < γ < θ + α, then there exists Cγ > 0 such that

P

(
inf
n≥0

n
1−α
α Mn ≤ y

)
≤ Cγyγ , for all n ≥ 1 and y ≥ 0. (2.3)

Notice that if γ > −θ, then Φθ,α(γ) = αγ
Γ(θ)Γ

(
θ+γ
α

)
Γ(θ+γ)Γ

(
θ
α

) .

Proof : Fix γ > −(θ + α), then
(
Mγ
n/E(Mγ

n )
)

is a non-negative martingale with
respect to its natural filtration and

E (Mγ
n ) =

Γ(θ + γ + nα)

Γ(θ + nα)

Γ
(
n+ θ

α

)
Γ
(
n+ θ+γ

α

) Γ(θ + 1)Γ
(
θ+γ
α + 1

)
Γ(θ + γ + 1)Γ

(
θ
α + 1

)
∼ Φθ,α(γ)n−γ

1−α
α , as n→ +∞.

Since limn→+∞E(M
γ/2
n ) E(Mγ

n )−1/2 > 0, Kakutani’s theorem yields Mγ
n/E(Mγ

n )

converges a.s. and in L1 as n→ +∞, implying (2.2) withM∞ = limn→+∞Mnn
1−α
α .

In particular, if 0 < γ < θ+α we obtain from Doob’s martingale inequality that

P

(
inf
n≥0

n
1−α
α Mn ≤ y

)
= P

(
sup
n≥0

M−γn n−γ
1−α
α ≥ y−γ

)
≤ P

(
sup
n≥0

M−γn
E(M−γn )

≥ y−γ/Cγ
)
,

with Cγ := supn∈N E[M−γn ]/nγ
1−α
α <∞, proving (2.3). �

We now focus on the convergence of the series
∑
Y αj j

α−1.

Lemma 2.5. Let Sn :=
∑n
j=1 Y

α
j j

α−1 and Ψα := α−αΓ(1 − α)−1, then, there
exists a random variable S∞ such that

lim
n→+∞

Sn −Ψα log n = S∞ a.s.
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Moreover, there exists C > 0 such that for all n ∈ N and y ≥ 0,

P (|Sn −E(Sn)| ≥ y) ≤ Ce−y
2−α

.

Proof : Since Yj has Beta(1− α, θ + jα) distribution, we have

E((jYj)
α) =

1

ααΓ(1− α)
+O(1/j)

and Var((jYj)
α) =

Γ(1 + α)Γ(1− α)− 1

α2αΓ(1− α)2
+O(1/j),

which implies that
∑

Var(Y α−1
j ) < +∞ and that E(Sn) = Ψα log n + CS + o(1)

with CS ∈ R. Thanks to Y αj −E(Y αj ) ∈ (−1, 1) a.s. we deduce from Kolmogorov’s
three-series theorem that Sn − E(Sn) and hence that Sn − Ψα log n converge a.s.
To bound P(Sn −E(Sn) ≥ y), notice that

P(Sn −E(Sn) ≥ y) ≤ e−λy E
[
eλ(Sn−E(Sn))

]
≤ e−λy

n∏
j=1

E
(

eλj
α−1(Y αj −E(Y αj ))

)
,

for all y ≥ 0 and λ > 0. Taking c > 0 such that ex ≤ 1 + x + cx2 for x ∈ (−1, 1),
we obtain

E
[
eλj

α−1(Y αj −E(Y αj ))
]
≤

{
eλj

α−1

if λjα−1 > 1;

1 + cλ2j2(α−1)Var(Y αj ) if λjα−1 ≤ 1.

Since
∑
j1−α≤λ j

α−1 < λ
1

1−α for all α ∈ (0, 1) and θ ≥ 0, there exists c = c(α, θ)
such that

P (Sn −E(Sn) ≥ y) ≤ e−λy
∏

j1−α≤λ

eλj
α−1

×
∏

j1−α>λ

(
1 + c

λ2

j2

)
≤ exp

(
−λy + λ

2−α
1−α + cλ2

)
, for all n ∈ N and y ≥ 0.

Let % := (2− α)/(1− α) > 2, then there exists C = C(α, θ) > 0 such that

P (Sn −E(Sn) ≥ y) ≤ C exp (−λy + Cλ%) , for all n ∈ N and y ≥ 0.

Optimizing in λ > 0 we obtain

P (Sn −E(Sn) ≥ y) ≤ C exp
(
−y%/(%−1)C1/(1−%)

(
%1/(1−%) − %%/(1−%)

))
,

with C1/(1−%) [%1/(1−%) − %%/(1−%)
]
> 0, as % > 1. The same argument, with the

obvious changes, holds for P(Sn−E(Sn) ≤ −y), therefore, there exists C > 0 such
that P (|Sn −E(Sn)| ≥ y) ≤ C exp

(
−y%/(%−1)/C

)
, proving the second statement.

�

With the above results, we obtain the convergence of Σn =
∑
V αj as well as its

tail probabilities.

Lemma 2.6. With the notation of Lemmas 2.4 and 2.5, we have

lim
n→+∞

Σn
log n

= ΨαM
α
∞ a.s. and in L1.

Moreover, for any 0 < γ < α + θ there exists Dγ such that for all n ≥ 1 large
enough and u > 0 we have

P (Σn ≤ u log n) ≤ Dγu
γ
α .
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Proof : Notice that Σn =
∑n
j=1(Sj − Sj−1)j1−αMα

j−1 (since S0 := 0) and that

lim
n→+∞

(
Mn(n+ 1)

1−α
α

)α
= Mα

∞ and lim
n→+∞

Sn
log n

= Ψα a.s.

by Lemmas 2.4 and 2.5 respectively. Then, Stolz-Cesàro theorem yields the a.s.

convergence of Σn/ log n to ΨαM
α
∞ as n→∞. Expanding

(
Σn
)2

we obtain

E
(
Σ2
n

)
=

n∑
j=1

E
(
V 2α
j

)
+ 2

n−1∑
i=1

n∑
j=i+1

E ((ViVj)
α)

=

n∑
j=1

E
(
M2α
j−1

)
E(Y 2α

j )

+ 2
n−1∑
i=1

E
(
M2α
i−1

)
E ((Yi(1− Yi))α)

n∑
j=i+1

E
(
Mα
j−1

Mα
i

)
E(Y αj )

≤C
n∑
j=1

j−2(1−α)j−2α + C

n−1∑
i=1

i−2(1−α)i−α
n∑

j=i+1

j−(1−α)

i−(1−α)
j−α ≤ C(log n)2.

Therefore, sup E
[
(Σn/ log n)2

]
< +∞ implying its L1 convergence. To obtain

bounds for P(Σn ≤ u log n), we study the two cases u ≥ 1/n and u ≤ 1/n separately.
Assume first that u ≥ 1/n, then

Σn =

n∑
j=1

(
(j − 1)

1−α
α Mj−1

)α (jYj)
α

j
≥
(

inf
j∈N

j
1−α
α Mj

)α
Sn.

For all γ′ < θ + α and t > 0 such that t < E[Sn] we have

P (Σn ≤ u log n) ≤ P (Sn ≤ t) + P
((

inf j
1−α
α Mj

)α
≤ (u log n)/t

)
≤ C exp

(
−C−1(E[Sn]− t)

%
(%−1)

)
+ Cγ′

(
u logn
t

)γ′/α
.

Let 0 < ε < 1/2 and set t = uε log n, since limn→+∞
E(Sn)
logn = Ψα, there exists

a constant c > 0 depending only on α such that uε log n ≤ E[Sn] for all u ≤ c.
Decreasing c if necessary, we can and will assume that

C−1(E[Sn]− uε log n) < a log n

and hence that

P (Σn ≤ u log n) ≤ C exp
(
−(a log n)%/(%−1)

)
+ Cγ′u

(1−ε)γ′/α, for all u ≤ c,

where a > 0 is to be chosen conveniently small. Observe that

C exp
(
−(a log n)%/(%−1)

)
< Cγ′u

(1−ε)γ′/α,

for all u ∈
[
C
Cγ′

exp
(
− α
γ′ (a log n)

%
(%−1)

)
, c
]

and that e
− α
γ′ (a logn)

%
%−1 � 1/n. There-

fore, taking γ = (1− ε)γ′ < α+ θ there exists Dγ such that

P (Σn ≤ u log n) ≤ Dγu
γ
α ,

for all n large enough and u ∈ [ 1
n ,+∞).
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On the other hand if u ≤ 1/n, let j∗ ∈ N be such that (1− α)j∗ > γ, then

P(Σn < u log n) = P

( n∑
j=1

V αj ≤ u log n

)
≤ P

(
V αj < u log n; for all 1 ≤ j ≤ j∗

)
.

Observe that if u < 1/n and V αj < u log n for all j ≤ j∗, we have

Y αj =
V αj

((1−Y1)(1−Y2)···(1−Yj−1))α ≤
u logn

(1−Y α1 )···(1−Y αj−1) .

We prove by recurrence that under the above hypothesis, Y αj ≤
u logn

(1− (j−1) logn
n )

. The

case j = 1 holds by the assumption Y α1 ≤ u log n. Assuming that the statement

holds for all i ≤ j − 1, that is Y αi ≤ u log n
/(

1− (i−1) logn
n

)
then

(1− Y α1 )(1− Y α2 ) · · · (1− Y αj−1) ≥
j−1∏
i=1

(
1−

logn
n

1− (i−1) logn
n

)

≥
j−1∏
i=1

1− i logn
n

1− (i−1) logn
n

= 1− (j − 1) log n

n
,

yielding Y αj ≤ log n
/(

1− (j−1) logn
n

)
. As a consequence, for all j ≤ j∗ and n suffi-

ciently large Y αj < 2u log n and hence P(Σn < u log n) ≤
∏j∗

j=1 P
(
Y αj < 2u log n

)
.

Using crude estimate for the probability distribution function of the Beta distri-
bution, we bound the product in the display by Cu

γ
α %
(
u(j∗(1−α)−γ(log n)j

∗(1−α)
)
,

with C an explicit constant. Since u < 1/n and j∗(1− α)− γ > 0, the term inside
the parentheses tends to zero uniformly in u. Therefore, increasing Dγ > 0 if nec-

essary, the upper-bound P (Σn < u log n) ≤ Dγu
γ
α holds for all n ≥ 1 and u ≥ 0

finishing the proof. �

In some cases, we are able to identify the random variable ΨαM
α
∞.

Corollary 2.7. Let (Un)n be a PD(α, 0), then ΨαM
α
∞ = L−α, where we have set

1/L = limn→+∞ n1/αUn.

Proof : By Proposition 2.2, L := limn→+∞ n−1/α/Un exists a.s. and by Lemma 2.6
we have that ΨαM

α
∞ ∼ 1

logn

∑n
j=1 V

α
j ≤ 1

logn

∑n
j=1 U

α
j ∼ L−α as n → +∞, thus

ΨαM
α
∞ ≤ L−α a.s. By Lemma 2.4, the pth moments of ΨαM

α
∞ are equal to

E [(ΨαM
α
∞)

p
] =

Γ(p+ 1)

Γ(pα+ 1)
Γ(1− α)−p, for all p > −1.

By Pitman and Yor (1997, Equation (30)), it matches with the pth moments of L−α,
which implies that the two random variables have the same distribution (the Mittag-
Leffler (α) distribution), and hence that ΨαM

α
∞ = L−α a.s. by monotonicity. �

3. Convergence of discrete exchangeable coalescent processes

In this section, we study a family of coalescent processes with dynamics driven by
PD-distributions and obtain a sufficient criterion for the convergence in distribution
of these processes. For the sake of completeness, we include a brief introduction
to coalescent theory with the main results we will use, for a detailed account we
recommend the paper Berestycki (2009) from where we borrow the approach.
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Let Pn be the set of partitions (or equivalence classes) of [n] := {1, . . . , n} and
P∞ the set of partitions of N = [∞]. A partition π ∈ Pn is represented by blocks
π(1), π(2), . . . listed in the increasing order of their least elements, that is, π(1) is
the block (class) containing 1, π(2) the block containing the smallest element not in
π(1) and so on. There is a natural action of the symmetric group Sn on Pn setting
πσ :=

{
{σ(j), j ∈ π(i)}, i ∈ [n]

}
for σ ∈ Sn. If m < n, one can define the projection

of Pn onto Pm by the restriction π|m = {π(j)∩ [m]}. For π, π′ ∈ Pn, we define the
coagulation of π by π′ to be the partition Coag(π, π′) =

{
∪i∈π′(j)π(i); j ∈ N

}
.

With this notation, a coalescent process Π(t) is a discrete (or continuous) time
Markov process in Pn such that for any s, t ≥ 0,

Π(t+ s) = Coag(Π(t), Π̃s), with Π̃s independent of Π(t).

We say that Π(t) is exchangeable if Πσ(t) and Π(t) have the same distribution for
all permutation σ.

An important class of continuous-time exchangeable coalescent processes in P∞
are the so-called Λ-coalescents (see Pitman, 1999), introduced independently by
Pitman and Sagitov. They are constructed as follows: let Πn(t) be the restriction
of Π(t) to [n], then (Πn(t); t ≥ 0) is a Markov jump process on Pn with the property
that whenever there are b blocks, each k-tuple (k ≥ 2) of blocks is merging to form
a single block at the rate

λb,k =

∫ 1

0

xk−2(1− x)b−kΛ(dx), where Λ is a finite measure on [0, 1].

Among such, we distinguish the Beta(2− λ, λ)-coalescents obtained from Λ(dx) =
x1−λ(1−x)λ−1

Γ(λ)Γ(2−λ) dx, where λ ∈ (0, 2), the case λ = 1 (uniform measure) being the

celebrated Bolthausen-Sznitman coalescent.
The set P∞ can be endowed with a topology making it a Polish space, therefore,

one can study the weak convergence of processes in D
(
[0,∞),P∞

)
, see Berestycki

(2009) for the definitions. Without going into details, we say that a process ΠN (t) ∈
P∞ converges in the Skorokhod sense (or in distribution) to Π(t), if for all n ∈ N
the projection ΠN (t)|n converges in distribution to Π(t)|n in D

(
[0,∞)Pn

)
.

3.1. Coalescent processes obtained from multinomial distributions. In this section,
we define a family of discrete-time coalescent processes (ΠN (t); t ∈ N) and prove
sufficient criteria for its convergence in distribution. Let (ηN1 , . . . η

N
N ) be an N -

dimensional random vector satisfying

1 ≥ ηN1 ≥ ηN2 ≥ · · · ≥ ηNN ≥ 0 and

N∑
j=1

ηNj = 1.

Conditionally on a realization of (ηNj ), let
{
ξj ; j ≤ N

}
be i.i.d. random variables

satisfying P(ξj = k|ηN ) = ηNk and define the partition

πN =
{
{j ≤ N : ξj = k}; k ≤ N

}
.

With (πt; t ∈ N) i.i.d. copies of πN , let ΠN (t) be the discrete time coalescent
such that

ΠN (0) = {{1}, {2}, . . . , {n}} and ΠN (t+ 1) = Coag
(
ΠN (t), πt+1

)
.
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The goal of this section is to obtain conditions under which ΠN (t) converges in
distribution. First, we assume that there exist a sequence LN and a function
f : (0, 1)→ R+ such that

lim
N→+∞

LN = +∞, lim
N→+∞

LNP
(
ηN1 > x

)
= f(x) and lim

N→+∞
LN E

(
ηN2
)

= 0.

(3.1)

Denote by cN =
∑N
j=1 E

[
(ηNj )2

]
, which corresponds to the probability that two

individuals have a common ancestor one generation backward in time.

Lemma 3.1. Assume that (3.1) holds and that∫ 1

0

x

(
sup
N∈N

LNP(ηN1 > x)

)
dx < +∞. (3.2)

Then, cN ∼N→∞ L−1
N

∫ 1

0
2xf(x)dx and the coalescent process

(
ΠN (t/cN ); t ∈ R+

)
,

properly rescaled, converges in distribution to the Λ-coalescent, with Λ satisfying∫ 1

x
Λ(dy)
y2 = f(x).

Proof : Denote by νk = #{j ≤ N : ξj = k}, then (ν1, . . . , νN ) has multinomial
distribution with N trials and (random) probabilities outcomes ηNi . By Möhle and
Sagitov (2001, Theorem 2.1), the convergence of finite dimensional distribution of
ΠN (t) is obtained from the convergence of the factorial moments of ν, that is

1

cN (N)b

N∑
i1,...,ia=1
all distinct

E
[
(νi1)b1 . . . (νia)ba

]
, with bi ≥ 2 and b = b1 + . . .+ ba,

where (n)a := n(n − 1) . . . (n − a + 1). Since (ν1, . . . , νN ) is multinomial dis-

tributed, we obtain that E [(νi1)b1 . . . (νia)ba ] = (N)b E
[
ηb1i1 . . . η

ba
ia

]
, see Cortines

(2016, Lemma 4.1) for a rigorous a proof. Therefore, we only have to show that for
all b and a ≥ 2

lim
N→+∞

c−1
N

N∑
i1=1

E
[
(ηNi1 )b

]
=

∫ 1

0

xb−2Λ(dx)

and lim
N→+∞

c−1
N

N∑
i1,...,ia=1
all distinct

E
[
(ηNi1 )b1 . . . (ηNia )ba

]
= 0.

We obtain by dominated convergence that

LN E
[(
ηN1
)2]

=

∫ 1

0

2xLNP
(
ηN1 > x

)
dx

→
∫ 1

0

2xf(x)dx =

∫ 1

0

Λ(dx) < +∞, as N →∞.

We also get E
[(
ηN2
)2

+ . . .+
(
ηNN
)2] ≤ E

[
ηN2 (1− η1)

]
, with LN E

(
ηN2
)

tending to

zero as N →∞, as (ηNi ) is ordered and sums up to 1. In particular, it implies that

LNcN = LN
∑

E[(ηNi )2] tends to
∫ 1

0
2xf(x)dx as N → ∞. A similar calculation

shows that for any b ≥ 2

lim
N→∞

LN

N∑
i=1

E
[
(ηNi )b

]
=

∫
bxb−1f(x)dx =

∫
xb−2Λ(dx) = λb,b,
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where λb,b is the rate at which b blocks merge into one given that there are b
blocks in total. The others λb,k can be easily obtained using the recursion formula
λb,k = λb+1,k + λb+1,k+1.

We now consider the case a = 2, cases a > 2 being treated in the same way. We
have

N∑
i1,i2=1
distinct

E
[(
ηNi1
)b1(

ηNi2
)b2]

≤E

[(
ηN1
)b1
ηN2
∑(

ηNi
)b2−1

]
+ E

[(
ηN1
)b2
ηN2
∑(

ηNi
)b1−1

]
+ E

[∑
i1 6=1

(
ηNi1
)b1
ηN2

∑
i2 6=1
i2 6=i1

(
ηNi2
)b2−1

]

≤3×E
[
ηN2
]
,

we recall that
(
ηN2
)b

+. . .+
(
ηNN
)b ≤ ηN2 +. . .+ηNN = 1−ηN1 < 1. Since LN E ηN2 → 0

as N → ∞, the right hand side of the inequality tends to zero, concluding the
proof. �

The next lemma gives sufficient conditions for the convergence to the Kingman’s
coalescent.

Lemma 3.2. Assume that (3.1) holds and that∫ 1

0

xf(x)dx = +∞ and ∃n ≥ 2 :

∫ 1

0

xn
(

sup
N∈N

LNP(ηN1 > x)

)
dx < +∞.

(3.3)
Then, limN→+∞ cNLN = +∞ and the process (ΠN

n (btc−1
N c); t ∈ R+) converges in

the Skorokhod sense to the Kingman’s coalescent restricted to Pn.

Proof : A similar argument to the one used in Lemma 3.1 shows that

LNcN ≥ LN E[η2
1 ] =

∫ 1

0

2xLNP(η1 > x)dx.

Thus, Fatou lemma and (3.3) yield lim infN→+∞ LNcN = +∞, proving the first
claim. By Berestycki (2009, Theorem 2.5), the convergence to the Kingman’s coa-
lescent follows from

limN→∞
∑N
i=1 E[(νi)3]

/
(N)3cN = 0.

We rewrite the sum in the display as c−1
N

∑N
i=1 E[(ηNi )3] and apply Hölder inequality

to obtain

E
[
(ηN1 )λ(ηN1 )3−λ] ≤ E

[
(ηN1 )2

]λ/2
E
[
(ηN1 )

2(3−λ)
2−λ

]1−λ/2
for all λ < 2.

Let λ ∈ (0, 2) be the unique solution of 2(3 − λ)
/

(2 − λ) = n + 4, then we obtain
from (3.3) that

E
[
(ηN1 )3

]
cN

≤
E
[
(ηN1 )3

]
E
[
(ηN1 )2

] ≤ (E
[
(ηN1 )n+1

]
E
[
(ηN1 )2

] )1−λ/2

−→
N→+∞

0.
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A similar argument to the one used in Lemma 3.1 shows that c−1
N

∑N
i=2 E[(ηNi )3]

tends to zero as N →∞, which proves the statement. �

3.2. The Poisson-Dirichlet distribution case. In this section, we construct a co-
alescent using the PD distribution and obtain a criterion for its convergence in
distribution. With (Vj , j ≥ 1) a size-biased pick from a PD(α, θ) partition, define

θNj :=
V αj∑N
i=1 V

α
i

and θN(1) ≥ θ
N
(2) ≥ · · · ≥ θ

N
(N), the order statistics of (θNj ).

In what follows, θN(i) will stand for the ηNi from Section 3.1 and (ΠN
n (t); t ∈ N)

for the coalescent with transition probabilities ΠN
n (t + 1) = Coag

(
ΠN
n (t), πnt

)
, as

defined there.

Theorem 3.3. With the above notation, set λ = 1 + θ/α and

LN = cα,θ(logN)λ, where cα,θ =
(

Γ(1− θ/α)Γ(1− α)θ/αΓ(1 + θ)
)−1

.

(1) If θ ∈ (−α, α), then cN ∼N→+∞ (1 − θ/α)/LN and (ΠN (t/cN ), t ≥ 0)
converges weakly to the Beta(2− λ, λ)-coalescent.

(2) Otherwise, limN→+∞ cNLN = +∞ and (ΠN (t/cN )) converges weakly to
the Kingman’s coalescent.

Before proving Theorem 3.3 we obtain a couple of technical results. The next
lemma studies the asymptotic behavior of θN1 .

Lemma 3.4. With the notations of Theorem 3.3, we have

lim
N→+∞

LNP
(
θN1 > x

)
=

1

λΓ(λ)Γ(2− λ)

(
1− x
x

)λ
=

∫ 1

x

Beta(2− λ, λ)(dy)

y2
.

Moreover, there exists C > 0 such that for all x ∈ (0, 1)

sup
N∈N

LNP
(
θN1 > x

)
≤ Cx−λ.

Proof : Let Σ′N :=
∑N
j=2

(
Vj

1−Y1

)α
, then Remark 2.3 says that Σ′N and Y1 are

independent and that Σ′N has the distribution of V ′1 + . . . V ′N−1 with V ′i a size-
biased pick from a PD(α, α+θ) distribution. By Lemma 2.6, for all ε ∈ (0, 1) there
exists C = C(ε) and N0 ∈ N such that

sup
N≥N0

P (Σ′N ≤ u logN) ≤ min
(
Cuλ+ε, 1

)
, for all u ≥ 0. (3.4)

Writing P
(
θN1 > x

)
in terms of Σ′N and V1 = Y1, we obtain

P
(
θN1 > x

)
= P (V α1 > x (V α1 + (1− V1)αΣ′N )) = P

(
V1

1−V1
>
(

x
1−xΣ′N

)1/α
)

=

∫ 1

0

P

(
1/y − 1 >

(
x

1−xΣ′N

)1/α
)

Γ(1 + θ)(1− y)−αyα+θ−1

Γ(1− α)Γ(α+ θ)
dy.
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Making the change of variables u = ( 1−x
x logN )(1/y − 1)α the display reads

P
(
θN1 > x

)
=

(
1− x
x logN

)λ
Γ(1 + θ)

αΓ(1− α)Γ(α+ θ)

∫ +∞

0

P (Σ′N < u logN)

u2−1/α

(
u1/α +

(
1−x
x logN

)1/α
)1+θ

du.

Then, we use (3.4) to bound the equation within the integral, obtaining

P (Σ′N < u logN)

u2−1/α

(
u1/α +

(
1−x
x logN

)1/α
)1+θ

≤ P(Σ′N ≤ u logN)

u2+θ/α
≤ min(Cuε−1, u−2),

for all N large enough . In particular, there exists C > 0 such that LNP
(
ηN1 > x

)
≤

Cx−λ for all N ∈ N. Moreover, by dominated convergence and Lemma 2.6, we
obtain

lim
N→+∞

(logN)λP
(
θN1 > x

)
=

(
1− x
x

)λ
Γ(1 + θ)

αΓ(1− α)Γ(α+ θ)

∫ +∞

0

P(Ψα(M ′∞)α < u)

u1+λ

=

(
1− x
x

)λ
Γ(1 + θ)

αλΓ(1− α)Γ(α+ θ)
E
(

(Ψα(M ′∞)α)
−λ
)

=

(
1− x
x

)λ
αα+θ−1Γ(1− α)θ/αΓ(1 + θ)

λΓ(α+ θ)
Φθ+α,α(−(θ + α)),

and hence lim
N→+∞

LNP
(
θN1 > x

)
=

(
1− x
x

)λ
1

λΓ(λ)Γ(2− λ)
, proving the state-

ment. �

This result is used to study the asymptotic behavior of θN(1) = maxj≤N θ
N
j .

Lemma 3.5. For all ε ∈ (0, 1), there exists C = C(ε) such that∣∣∣P(θN(1) > x
)
−P

(
θN1 > x

)∣∣∣ ≤ C(x logN)ε−2−θ/α,

for all x ∈ (0, 1) and N large enough.

Proof : Notice that P
(
θN1 > x

)
≤ P

(
θN(1) > x

)
and that θN(1) = θN1 if V1 > 1/2,

thanks to
∑
Vi ≡ 1. Therefore, splitting the events according to V1 > 1/2 and

V1 < 1/2 we obtain

P
(
θN(1) > x

)
−P

(
θN1 > x

)
=P

(
θN(1) > x;V1 ≤

1

2

)
−P

(
θN1 > x;V1 ≤

1

2

)
≤ P

(
θN(1) > x;≤ 1

2

)
.

Since 0 < Vj < 1 and V1 = Y1, we have

P
(
θN(1) > x, V1 ≤ 1/2

)
= P

(
maxj≤N V

α
j > x

∑N
j=1 V

α
j ;V1 ≤ 1/2

)
≤ P

(
x−1 > Y α1 + (1− Y1)αΣ′N , Y1 ≤ 1/2

)
≤ P (Σ′N < 2α/x) ,



132 A. Cortines and B. Mallein

where Σ′N =
∑
V αj /(1− Y1)α. By Lemma 2.6, we obtain that for all N sufficiently

large

P
(
θN(1) > x, V1 ≤ 1/2

)
≤ C(x logN)ε−1−α+θ

α ,

which finishes the proof. �

We now study the asymptotic behavior of the second maxima in {θN1 , . . . , θNN },
written θN(2).

Lemma 3.6. For all ε ∈ (0, 1], there exists C > 0 such that for any x ∈ (0, 1) and
N ∈ N,

P
(
θN(2) > x

)
< C(x logN)ε−2−θ/α.

Proof : We basically use the same method as in the previous lemma

P
(
θN(2) > x

)
= P

(
θN(2) > x, V1 ≤ 1/2

)
+ P

(
θN(2) > x, V1 > 1/2, V2 < 1/3

)
+ P

(
θN(2) > x, V1 > 1/2, V2 > 1/3

)
≤ P

(
θN(1) > x, V1 ≤ 1/2

)
+ P

(
θN(2) > x, V1 > 1/2, V2 < 1/3

)
+ P

(
θN2 > x

)
.

By Lemma 3.5, we have that P
(
θN(1) > x, V1 ≤ 1/2

)
≤ C(x logN)ε−2−θ/α, so the

same arguments used in Lemma 3.4 yield

P
(
θN2 > x

)
= P

(
V α2 (1− x)− xV α1 > x(1− V1 − V2)αΣ′′N

)
≤ C(x logN)ε−2−θ/α,

with Σ′′N := (1−V1−V2)−α
∑N
j=3 V

α
j . Moreover, Σ′′N is independent of (V1, V2) and

P
(
θN(2) > x, V1 > 1/2, V2 < 1/3

)
=P

(
max

2≤j≤N
V αj > x (V α1 + V α2 + (1− V1 − V2)αΣ′′N )

)
≤P (Σ′′N ≤ C/x) ≤ C(x logN)ε−2−θ/α,

concluding the proof. �

Proof of Theorem 3.3: Given ε > 0, Lemma 3.5 says that there exists C > 0 such
that

LNP
(
θN(1) > x

)
− LNP

(
θN1 > x

)
≤ C(logN)ε−1x−λ, for all x ∈ (0, 1).

Therefore, by Lemma 3.4 we have that

lim
N→+∞

LNP
(
θN(1) > x

)
=

1

λΓ(λ)Γ(2− λ)

(
1− x
x

)λ
and

sup
N∈N

LNP
(
θN(1) > x

)
≤ Cx−λ.

(3.5)

We obtain from Lemma 3.6 that

LN E
[
θN(2)

]
=

∫ 1

0

LNP
(
θN(2) > x

)
dx ≤ (logN)ε−1

∫ 1

0

xε−1−λdx −→
N→+∞

0, (3.6)

which implies that ΠN (t) satisfies (3.1).
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Assume now that θ ∈ (−α, α), so that λ ∈ (0, 2), then (3.5) yields∫ 1

0

x sup
N∈N

LNP
(
θN(1) > x

)
dx ≤ C

∫ 1

0

x1−λdx < +∞.

Therefore, the assumptions of Lemma 3.1 are satisfied implying that ΠN (t/cN )
converges in distribution to the Beta(2−λ, λ)-coalescent and that cNLN ∼ (1−θ/α)

as N →∞. On the other hand if θ ≥ α, we have that
∫ 1

0
x
(

1−x
x

)λ
dx = +∞. With

k ≥ λ, we obtain from (3.5) that∫ 1

0

xk sup
N∈N

LNP
(
θN(1) > x

)
dx ≤ C

∫ 1

0

xk−λdx < +∞.

We apply Lemma 3.2 to conclude that ΠN (t/cN ) converges weakly to the Kingman’s
coalescent. �

4. Poisson-Dirichlet representation of the (N, β)-branching random walk

We explore the relations between the (N, β)-BRW and the PD(β−1, 0) distribu-
tion to show Theorems 1.1 and 1.2 in the case where β < ∞. The case β = ∞ is
also studied, but using different methods.

Proposition 4.1. Let β ∈ (1,∞) and (Vn)n be its size-biased pick, and set (Un)n
be a PD(β−1, 0), L = limn→+∞ n−βU−1

n then(
XN

1 (j)−XN
0 (eq), j ≤ N

) (d)
=
(

1
β log Vj + 1

β logL
)
,

in particular, XN
1 (eq)−XN

0 (eq)
(d)
= log

∑N
j=1 V

1/β
j + 1

β logL.

Proof : By Proposition 1.3,

(xk, k ≥ 1) := Rank
({
XN

0 (j) + p−XN
0 (eq), p ∈ P1(j), j ≤ N

})
is the ordered points of a PPP(e−xdx). With L =

∑+∞
j=1 eβxj and Uj = eβxj/L,

we know from Proposition 2.2 that (Uj , j ≥ 1) is a PD(β−1, 0) and that

lim
n→+∞

nβUn = L−1.

By the definition of the (N, β)-BRW, Vj := eβ(XN1 (j)−XN0 (eq))/L is the jth particle
sampled in the size-biased pick from (Un)n. Inversing the equation, we conclude
that

XN
1 (j)−XN

0 (eq) = 1
β (log Vj + logL) ,

proving the first statement. The second comes from the definition of XN
1 (eq). �

To study the case β = +∞, we use the following representation of N rightmost
points of a PPP(e−xdx).

Proposition 4.2. Let x1 > x2 > . . . > xN be the N rightmost points of a
PPP(e−xdx), then

(x1, . . . , xN )
(d)
= Rank{ZN + e1, . . . , ZN + eN},

where (ej) are i.i.d exponential random variables with mean 1 and ZN is an inde-
pendent random variable satisfying P(ZN ∈ dx) = 1

N ! exp(−(N + 1)x− e−x)dx.
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Proof : It is an elementary result about PPP that∑+∞
j=1 δe−xj

(d)
= PPP(dx) on R+ and that e−xN+1

(d)
= Gamma(N + 1, 1),

moreover, conditionally on xN+1, (e−x1 , . . . e−xn) are the ranked values of N i.i.d.
uniform random variables on the interval [0, e−xN+1 ]. Setting ZN = xN+1 and
U1, . . . , UN i.i.d. uniform random variables

(e−x1 , . . . , e−xN )
(d)
= Rank{e−ZNU1, . . . , e

−ZNUN}.
It is straightforward that ZN and (x1, . . . , xN ) satisfy the desired properties. �

We first use these results to compute the asymptotic behavior of the speed of
the (N, β)-BRW.

Proof of Theorem 1.1: Lemma 1.5 says that (1.3) holds with

vN,β = E
(
XN

1 (eq)−XN
0 (eq)

)
.

Thus, if β <∞ Proposition 4.1 yields

vN,β = E
(
XN

1 (eq)−XN
0 (eq)

)
= E

log

 N∑
j=1

V
1/β
j

+
1

β
E (logL) .

By Lemma 2.6, (logN)−1
∑N
j=1 V

1/β
j converges to Ψβ−1M

1/β
∞ a.s. and in L1 as

N → ∞. Therefore, the logarithm of this quantity converges a.s. as well. We
notice from Lemma 2.6 that for all u > 0,

P

log

(logN)−1
N∑
j=1

V
1/β
j

 ≤ −u
 = P

 N∑
j=1

V
1/β
j ≤ e−u logN

 ≤ D2/βe−2u.

The L1 convergence of (logN)−1
∑N
j=1 V

1/β
j implies the existence of a constant K

such that for all u > 0,

P

log

(logN)−1
N∑
j=1

V
1/β
j

 ≥ u
 ≤ P

 N∑
j=1

V
1/β
j ≥ eu logN

 ≤ Ke−u.

In particular, (log
∑N
j=1 V

1/β
j − log logN) is uniformly integrable, which implies its

L1 convergence. We know from Corollary 2.7 that Ψβ−1M
1/β
∞ = L1/β , and hence

that

lim
N→∞

vN,β − log logN = lim
N→∞

E

[
log

∑N
j=1 V

1/β
j

logN

]
+

E [logL]

β

= E
[
log
(

Ψβ−1M1/β
∞

)]
+

E [logL]

β
= 0.

For β = ∞ we follow the ideas from Brunet et al. (2007) and use Laplace
methods to estimate the asymptotic mean of XN

1 (eq). Let (x1, . . . xN ) be the N
largest atoms of a PPP(e−xdx), and define for λ > 0

Λ(λ) := E

(
exp

(
−λ log

N∑
k=1

exk

))
= E

( N∑
k=1

exk

)−λ .
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By Proposition 4.2, we have Λ(λ) = E
(
e−λZ

)
E

((∑N
k=1 eek

)−λ)
, where (ek) are

i.i.d exponential random variables and exp(−ZN ) has Gamma(N+1, 1) distribution.

Notice that the following equalities hold: E
(
e−λZ

)
= Γ(N+1+λ)

Γ(N+1) and

E

( N∑
k=1

eek

)−λ =
1

Γ(λ)

∫ +∞

0

tλ−1 E
(

e−t
∑N
k=1 eek

)
dt

=
1

Γ(λ)

∫ +∞

0

tλ−1I0(t)Ndt, (4.1)

with I0(t) = E(e−te
e1

) the Laplace transform of ee1 . The function I0 can be repre-
sented using the exponential integral Ei we have I0(x) = xEi(−x)+e−x. Therefore,
there exists K > 0 such that

|I0(x)− 1− x log x| ≤ Kx, for any x ≥ 0.

In particular for x = t/(N logN) we have |I0(t/(N logN)) − 1 − t/N | ≤ Kt
N logN .

Thus, (4.1) yields∫ +∞

0

tλ−1I0(t)Ndt =
1

(N logN)λ

∫ +∞

0

tλ−1I0(t/(N logN))Ndt

≤ 1

(N logN)λ

∫ +∞

0

tλ−1e−t(1−
K

logN )dt

≤ Γ(λ)

(N logN)λ
(1− K

logN )−λ.

The same argument with the obvious change gives a similar lower bound, which
implies

Λ(λ) =
Γ(N + 1 + λ)

(N logN)λΓ(N + 1)
(1 +O((logN)−1)),

uniformly in λ ∈ [0, 1], therefore log Λ(λ) = λ log logN + O((logN)−1). As a
consequence

E

(
log

N∑
k=1

exk

)
= lim
λ→0

log Λ(λ)

λ
= log logN + o(1),

which concludes the proof. �

In a similar way, we obtain the genealogy of the (N, β)-branching random walk.

Proof of Theorem 1.2: If β ∈ (1,∞), then Lemma 1.6 and Proposition 4.1 say that
the genealogy of the (N, β)-BRW can be described by 1. in Theorem 3.3, with
α = 1

β and θ = 0. Therefore, it converges to the Bolthausen-Sznitman coalescent.

On the other hand if β =∞, the genealogy of the (N,∞)-BRW is again described
by a coalescent process obtained from multinomial random variables. In this case,
by Proposition 4.2 we can rewrite the coefficients ηNj as

ηNj =
eej∑N
i=1 eei

, with e1, . . . , eN i.i.d. exponential random variables.
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Thanks to P(eej ≥ x) = x−1, Cortines (2016, Theorem 1.2 (c)) says that the
genealogy of the (N,∞)-BRW converges to the Bolthausen-Sznitman coalescent
with cN ∼ N as N →∞. �
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