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Abstract. We prove existence and uniqueness of the reflected backward stochastic
differential equation’s (RBSDE) solution with a lower obstacle which is assumed to
be right upper-semicontinuous but not necessarily right-continuous in a filtration
that supports a Brownian motion W and an independent Poisson random measure
π. The result is established by using some tools from the general theory of pro-
cesses such as Mertens decomposition of optional strong (but not necessarily right
continuous) supermartingales and some tools from optimal stopping theory, as well
as an appropriate generalization of Itô’s formula due to Gal’čuk and Lenglart. Two
applications on dynamic risk measure and on optimal stopping will be given.

1. Introduction

The notion of Backward Stochastic Differential Equations (BSDEs in short) was
introduced by Bismut (1973, 1976) in the case of a linear driver. The nonlinear case
was developed by Pardoux and Peng (1990, 1992). BSDEs have found a number
of applications in finance, that is pricing and hedging of European options and
recursive utilities (for instance El Karoui et al., 1997b).

Reflected Backward Stochastic Differential Equations (RBSDEs in short) have
been introduced by El Karoui et al. (1997a) and were useful, for example, in the
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study of American option. The difference between the two types of equations (BS-
DEs and RBSDEs) is that the second can be seen as a variant of the first in which
the first component of the solution is constrained to remain greater than or equal to
a given process called obstacle or barrier, and there is an additional nondecreasing
predictable process which keeps the first component of the solution above the obsta-
cle. The work of El Karoui et al. (1997a) considers the case of a Brownian filtration
and a continuous obstacle. After there have been several extensions of this work
to the case of a discontinuous obstacle, for example, Hamadène (2002), Hamadène
and Ouknine (2003, 2016), Essaky (2008) and Crépey and Matoussi (2008) etc.

The right continuity of the obstacle is the difference between these extensions
and the paper of Grigorova et al. (2015). In this work, the authors present a further
extension of the theory of RBSDEs to the case where the obstacle is not necessarily
right-continuous in a Brownian filtration.

In the present paper, we generalize the result of uniqueness and existence of
the RBSDE’s solution in Grigorova et al. (2015) to the case of a larger stochastic
basis, i.e. in a filtration that supports a Brownian motion W and an independent
Poisson random measure π, we establish existence and uniqueness of solutions, in
appropriate Banach spaces, to the following RBSDE:

Yτ = ξT +

∫ T

τ

f(s, Ys, Zs, ψs)ds−
∫ T

τ

ZsdWs−
∫ T

τ

∫
U
ψs(u)π̃(du, ds)−

∫ T

τ

dMs

+AT −Aτ + CT− − Cτ− for all τ ∈ T0,T . (1.1)

The solution is given by (Y,Z, ψ,M,A,C), where M is an orthogonal local mar-
tingale. We assume that the function f is Lipschitz with respect to y, z and ψ.
To prove our results we use tools from the general theory of processes such as
Mertens decomposition of strong optional (but not necessarily right-continuous)
supermartingales (generalizing Doob-Meyer decomposition) and some tools from
optimal stopping theory, as well as a generalization of Itô’s formula to the case
of strong optional (but not necessarily right-continuous) semimartingales due to
Gal’čuk (1980) and Lenglart (1980).

We recover these natural differential equations by studying the limit of a system
of reflected BSDEs Y nτ = ξT +

∫ T
τ
f(s, Y ns , Z

n
s , ψ

n
s )ds+Kn

T −Kn
τ −

∫ T
τ
Zns dWs

−
∫ T
τ

∫
U ψ

n
s (u)π̃(du, ds)−

∫ T
τ
dMn

s

Y nτ ≥ ξτ

where Kn
t = n

∫ t
0
(Y ns − ξs)−ds. Essaky (2008) proved, by a monotonic limit theo-

rem, that (Y n, Zn,Kn, ψn,Mn) has, in some sense, a limit (Y, Z,K,ψ,M) which
satisfies a reflected BSDE with ξ a càdlàg barrier (see also Peng, 1999 for the case
of filtration generated only by a Brownian motion).

It is well known that if ξ is a càdlàg barrier then Y is also a càdlàg process
(Theorem 3.1 in Essaky, 2008 for filtration generated by a Brownian motion and
Poisson point process, and Lemma 2.2 in Peng, 1999 for the Brownian filtration).
But if the barrier ξ is only optional the limit Y of Y n is Ef -super-martingale, then
Y has left and right limits (see Dellacherie and Meyer, 1980, Theorem 4 page 408).

In this sense, we know that (Y n, Zn, ψn,Mn) converge to (Y,Z, ψ,M) and the

limit K of Kn
t = n

∫ t
0
(Y ns − ξs)

−ds is a làdlàg process that can be written as
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K = A + C− where A an increasing càdlàg predictable process satisfying A0 = 0,
E(AT ) <∞, and C an increasing càdlàg optional process and E(CT ) <∞.

The paper is decomposed as follows: in the second section, we give the math-
ematical setting (preliminary, definitions and properties). In subsection 2.1 we
recall the change of variables formula for optional semimartingales which are not
necessarily right continuous (Gal’čuk-Lenglart decomposition for strong optional
semimartingales). In the third section, we define our RBSDE and we prove exis-
tence and uniqueness of the solution in a general filtration. In the last section, we
give two applications of reflected BSDEs where the right-continuity of the obsta-
cle is not necessarily used: application on dynamic risk measure and on optimal
stopping.

2. Preliminaries

Let T > 0 be a fixed positive real number. Let us consider a filtered probability
space (Ω,F ,P,F = {Ft, t ≥ 0}). The filtration is assumed to be complete, right
continuous and quasi-left continuous, which means that for every sequence (τn) of F-
stopping times such that τn ↗ τ for some stopping time τ we have

∨
n∈Z+

Fτn = Fτ .

We assume that (Ω,F ,P,F = {Ft, t ≥ 0}) supports a k-dimensional Brownian
motion W and a Poisson random measure π with intensity µ(du)dt on the space
U ⊂ Rm \ {0}. The measure µ is σ-finite on U such that∫

U
(1 ∧ |u|2)µ(du) < +∞. (2.1)

The compensated Poisson random measure π: π̃(du, dt) = π(du, dt)− µ(du)dt is a
martingale w.r.t. the filtration F.

In this paper for a given T > 0, we denote:

• Tt,T is the set of all stopping times τ such that P(t ≤ τ ≤ T ) = 1. More
generally, for a given stopping time ν in T0,T , we denote by Tν,T the set of
all stopping times τ such that P(ν ≤ τ ≤ T ) = 1.
• P is the predictable σ-field on Ω× [0, T ] and

P̃ = P ⊗ B(U)

where B(U) is the Borelian σ-field on U .
• L2(FT ) is the set of random variables which are FT -measurable and square-

integrable.

• On Ω̃ = Ω×[0, T ]×U , a function that is P̃-measurable, is called predictable.

• Gloc(π) is the set of P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0
a.s. ∫ t

0

∫
U

(|ψs(u)|2 ∧ |ψs(u)|)µ(du) < +∞.

• H2,T is the set of real-valued predictable processes φ such that

‖φ‖2H2,T = E
[∫ T

0

|φt|2dt
]
<∞.

• Mloc is the set of càdlàg local martingales orthogonal to W and π̃: if
M ∈Mloc then

[M,W i]t = 0, 1 ≤ i ≤ k, [M, π̃(A)]t = 0
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for all A ∈ B(U).
• M is the subspace of Mloc of martingales.

As explained above, the filtration F supports the Brownian motion W and the
Poisson random measure π. We have the following lemma that we can find in
Jacod and Shiryaev (2003, Chapter III, Lemma 4.24):

Lemma 2.1. Every local martingale N has a decomposition

Nt =

∫ t

0

ZsdWs +

∫ t

0

∫
U
ψs(u)π̃(du, ds) +Mt (2.2)

where M ∈Mloc, Z ∈ H2,T and ψ ∈ Gloc(µ).

Now to define the solution of our reflected backward stochastic differential equa-
tion (RBSDE), let us introduce the following spaces:

• S2,T is the set of real-valued optional processes φ such that:

‖|φ‖|2S2,T = E
[
ess sup

τ∈T0,T
|φτ |2

]
<∞.

• M2 is the subspace of M of all martingales such that:

‖M‖2M2 = E([M,M ]T ) = E([M ]T ) < +∞.
• L2

π(0, T ) = L2
π(Ω × (0, T ) × U) is the set of all processes ψ ∈ Gloc(µ) such

that:

‖ψ‖2L2
π

= E
[∫ T

0

∫
U
|ψs(u)|2µ(du)ds

]
< +∞.

• L2
µ(0, T ) = L2(U , µ;Rd) is the set of all measurable functions ψ : U −→ Rd

such that:

‖ψ‖2Lpµ =

∫
U
|ψ(u)|2µ(du) < +∞.

• E2(0, T ) = S2,T ×H2,T × L2
π(0, T )×M2 × S2,T × S2,T .

The random variable ξ is FT -measurable with values in Rd (d ≥ 1) and f :
Ω× [0, T ]×Rd ×Rd×k × L2

µ −→ Rd is a random function measurable with respect

to Prog×B(Rd)×B(Rd×k)×B(L2
µ) where Prog denotes the σ-field of progressive

subsets of Ω× [0, T ].
In the following we denote the spaces H2,T and S2,T by H2 and S2, as well as the
norms ‖ . ‖H2,T and ‖| . ‖|S2,T by ‖ . ‖H2 and ‖| . ‖|S2 .

Definition 2.2. A function f is said to be a driver if:

• f : Ω× [0, T ]× R2 × L2
µ −→ R

(ω, t, y, z, ψ) 7−→ f(ω, t, y, z, ψ) is P ⊗ B(R2)⊗ B(L2
µ)-measurable.

• E[
∫ T
0
| f(t, 0, 0, 0) |2 dt] <∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0
such that P⊗ dt-a.s., for each (y1, z1, ψ1) and (y2, z2, ψ2)∣∣∣f(ω, t, y1, z1, ψ1)−f(ω, t, y2, z2, ψ2)

∣∣∣ ≤ K(|y1−y2|+|z1−z2|+‖ψ1−ψ2‖L2
µ

)
. (2.3)

For a làdlàg process φ, we denote by φt+ and φt− the right-hand and left-hand
limit of φ at t. We denote by ∆+φt = φt+ − φt the size of the right jump of φ at t,
and by ∆φt = φt − φt− the size of the left jump of φ at t.

We give a useful property of the space S2:
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Proposition 2.3. The space S2 endowed with the norm ‖| . ‖|S2 is a Banach space.

Proof : The proof is given in Grigorova et al. (2015, Proposition 2.1). �

The following proposition can be found in Nikeghbali (2006, Theorem 3.2.).

Proposition 2.4. Let (Xt) and (Yt) be two optional processes. If for every finite
stopping time τ one has, Xτ = Yτ , then the processes (Xt) and (Yt) are indistin-
guishable.

Let β > 0. We will also use the following notation:

For φ ∈ H2, ‖φ‖2β := E[
∫ T
0
eβsφ2sds]. We note that on the space H2 the norms

‖.‖β and ‖.‖H2 are equivalent.
For φ ∈ S2, we define ‖|φ‖|2β := E[ess supτ∈T0,T e

βτ |φτ |2]. We note that ‖|.|‖β is

a norm on S2 equivalent to the norm ‖|.|‖S2 .

For φ ∈ L2
π, the defined norm ‖φ‖L2,β

π
=
√
E[
∫ T
0
eβs
∫
U |φs(u)|2µ(du)ds] is equiv-

alent to the norm ‖φ‖L2
π

on L2
π.

For M ∈M2, we have the equivalence between ‖M‖M2
β

=
√
E[
∫ T
0
eβsd[M ]s] and

‖M‖M2 on M2.

2.1. Gal’čuk-Lenglart decomposition for strong optional semimartingales. In this
section, we recall the change of variables formula for optional semimartingales which
are not necessarily cad. The result can be seen as a generalization of the classical
Itô formula and can be found in Gal’čuk (1980, Theorem 8.2) and Lenglart (1980,
Section 3, page 538). We recall the result in our framework in which the underlying
filtered probability space satisfies the usual conditions.

Theorem 2.5. (Gal’čuk-Lenglart) Let n ∈ Z+. Let X be an n-dimensional
optional semimartingale, i.e. X = (X1, ..., Xn) is an n-dimensional optional process
with decomposition Xk

t = Xk
0 +Nk

t +Akt +Bkt , for all k ∈ {1, ..., n} where Nk
t is a

(càdlàg) local martingale, Akt is a right-continuous process of finite variation such
that A0 = 0 and Bkt is a left-continuous process of finite variation which is purely
discontinuous and such that B0− = 0. Let F be a twice continuously differentiable
function on Rn. Then, almost surely, for all t ≥ 0,

F (Xt) = F (X0) +

n∑
k=1

∫
]0,t]

DkF (Xs−)d(Nk +Ak)s

+
1

2

n∑
k,l=1

∫
]0,t]

DkDlF (Xs−)d < Nkc, N lc >s

+
∑

0<s≤t

[
F (Xs)− F (Xs−)−

n∑
k=1

DkF (Xs−)∆Xk
s

]
+

n∑
k=1

∫
[0,t[

DkF (Xs)d(Bk)s+

+
∑

0≤s<t

[
F (Xs+)− F (Xs)−

n∑
k=1

DkF (Xs)∆+X
k
s

]
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where Dk denotes the differentiation operator with respect to the k-th coordinate,
and Nkc denotes the continuous part of Nk.

Corollary 2.6. Let Y be a one-dimensional optional semimartingale with decom-
position Yt = Y0 + Nt + At + Bt, where N , A and B are as in the above theorem.
Let β > 0. Then, almost surely, for all t in [0, T ],

eβtY 2
t = Y 2

0 +

∫ t

0

βeβsY 2
s ds+ 2

∫ t

0

eβsYs−d(A+N)s

+

∫ t

0

eβsd < N c, N c >s

+
∑

0<s≤t

eβs(Ys − Ys−)2 + 2

∫ t

0

eβsYsd(B)s+ +
∑

0≤s<t

eβs(Ys+ − Ys)2.

Proof : For the corollary demonstration, it suffices to apply the change of variables
formula from Theorem 2.5 with n = 2, F (x, y) = xy2, X1

t = eβt and X2
t = Yt.

Indeed, by applying Theorem 2.5 and by noting that the local martingale part and
the purely discontinuous part of X1 are both equal to 0, we obtain

eβtY 2
t = Y 2

0 +

∫ t

0

βeβsY 2
s ds+ 2

∫ t

0

eβsYs−d(A+N)s

+

∫ t

0

eβsd < N c, N c >s

+
∑

0<s≤t

eβs(Y 2
s − Y 2

s− − 2Ys−(Ys − Ys−)) + 2

∫ t

0

eβsYsd(B)s+

+
∑

0≤s<t

eβs(Y 2
s+ − Y 2

s − 2Ys(Ys+ − Ys)).

The desired expression follows as (Ys − Ys−)2 = Y 2
s − Y 2

s− − 2Ys−(Ys − Ys−) and
(Ys+ − Ys)2 = Y 2

s+ − Y 2
s − 2Ys(Ys+ − Ys). �

3. RBSDEs whose obstacles are not càdlàg in a general filtration.

Let T > 0 be a fixed terminal time. Let f be a driver. Let ξ = (ξt)t∈[0,T ] be a

left-limited process in S2. We suppose moreover that the process ξ is right upper-
semicontinuous (r.u.s.c. for short). A process ξ satisfying the previous properties
will be called a barrier, or an obstacle.

Definition 3.1. A process (Y,Z, ψ,M,A,C) is said to be a solution to the re-
flected BSDE with parameters (f, ξ), where f is a driver and ξ is an obstacle, if
(Y,Z, ψ,M,A,C) ∈ E2(0, T ) and

Yτ = ξT +

∫ T

τ

f(s, Ys, Zs, ψs)ds−
∫ T

τ

ZsdWs−
∫ T

τ

∫
U
ψs(u)π̃(du, ds)−

∫ T

τ

dMs

+AT −Aτ + CT− − Cτ− for all τ ∈ T0,T (3.1)

Y ≥ ξ (up to an evanescent set) a.s. (3.2)

M ∈Mloc and M0 = 0. (3.3)



RBSDEs when the obstacle is not RC in a general filtration 207

In the above, the process A is a nondecreasing right-continuous predictable process
with A0 = 0, E(AT ) <∞ such that:∫ T

0

1{Yt>ξt}dA
c
t = 0 a.s. and (Yτ− − ξτ−)(Adτ −Adτ−) = 0 (3.4)

a.s. ∀ (predictable) τ ∈ T0,T and the process C is a nondecreasing right-continuous
adapted purely discontinuous process with C0− = 0, E(CT ) <∞ such that:

(Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. ∀τ ∈ T0,T (3.5)

Here Ac denotes the continuous part of the nondecreasing process A and Ad its
discontinuous part.

Remark 3.2. We note that a process (Y,Z, ψ,M,A,C) ∈ E2(0, T ) satisfies equation
(3.1) in the above definition if and only if ∀t ∈ [0, T ], a.s.

Yt = ξT +

∫ T

t

f(s, Ys, Zs, ψs)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
U
ψs(u)π̃(du, ds)

−
∫ T

τ

dMs +AT −At + CT− − Ct−.

Remark 3.3. If (Y,Z, ψ,M,A,C) ∈ E2(0, T ) satisfies the above definition, then
the process Y has left and right limits. Moreover, the process given by (Yt +∫ t
0
f(s, Ys, Zs, ψs)ds)t∈[0,T ] is a strong supermartingale.

The proof of the existence and uniqueness of the reflected BSDE solution defined
above is based on a useful result (following lemma) in the case of f depends only
on s and ω (i.e. f(s, y, z, ψ) = f(s, ω)), the corollary 2.6 and the lemma 2.1. To
this purpose, we first prove a lemma which will be used in the sequel.

Lemma 3.4. Let (Y 1, Z1, ψ1,M1, A1, C1) ∈ E2(0, T ) (resp. (Y 2, Z2, ψ2,M2, A1,
C2) ∈ E2(0, T ).) be a solution to the RBSDE associated with driver f1(s, ω)
(resp.f2(s, ω)) and with obstacle ξ. There exists c > 0 such that for all ε > 0,
for all β > 1

ε2 we have

‖Z1 − Z2‖2β + ‖M1 −M2‖2M2
β

+ ‖ψ1 − ψ2‖2L2,β
π
≤ ε2‖f1 − f2‖2β (3.6)

and
‖|Y 1 − Y 2|‖2β ≤ 4ε2(1 + 4c2)‖f1 − f2‖2β . (3.7)

Proof : Let β > 0 and ε > 0 be such that β ≥ 1
ε2 . We set Ỹ := Y 1 − Y 2, Z̃ :=

Z1 − Z2, ψ̃ := ψ1 − ψ2, M̃ := M1 − M2, Ã := A1 − A2, C̃ := C1 − C2 and

f̃(ω, t) := f1(ω, t)− f2(ω, t). We note that ỸT := ξT − ξT = 0. Moreover,

Ỹτ =

∫ T

τ

f̃(s)ds−
∫ T

τ

Z̃sdWs −
∫ T

τ

∫
U
ψ̃s(u)π̃(du, ds)− M̃T + M̃τ + ÃT − Ãτ

+ C̃T− − C̃τ− a.s. ∀τ ∈ T0,T , (3.8)

i.e.

Ỹτ = Ỹ0 −
∫ τ

0

f̃(s)ds+

∫ τ

0

Z̃sdWs +

∫ τ

0

∫
U
ψ̃s(u)π̃(du, ds) + M̃τ − Ãτ − C̃τ−

a.s. ∀τ ∈ T0,T , since M̃0 = M1
0 − M2

0 = 0, Ã0 = A1
0 − A2

0 = 0 and C̃0− =

C1
0− − C2

0− = 0. Thus we see that Ỹ is an optional (strong) semimartingale with
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decomposition Ỹt = Ỹ0+Nt+At+Bt, where Nt =
∫ t
0
Z̃sdWs+

∫ t
0

∫
U ψ̃s(u)π̃(du, ds)+

M̃t, At = −
∫ t
0
f̃(s)ds−Ãt and Bt = −C̃t− (the notation is that of (2.5)). Applying

Corollary 2.6 to Ỹ gives: almost surely, for all t ∈ [0, T ],

eβtỸ 2
t = −

∫ t

0

βeβsỸ 2
s ds+ 2

∫ t

0

eβsỸs−d(A+N)s

−
∫ t

0

eβsd < N c, N c >s

−
∑

0<s≤t

eβs(Ỹs − Ỹs−)2 −
∫ t

0

2eβsỸsd(B)s+ −
∑

0≤s<t

eβs(Ỹs+ − Ỹs)2.

Using the expressions of N , A and B and the fact that ỸT = 0, we get: almost
surely, for all t ∈ [0, T ],

eβtỸ 2
t +

∫ T

t

eβsd < N c, N c >s = −
∫ T

t

βeβsỸ 2
s ds+ 2

∫ T

t

eβsỸs−f̃(s)ds

+ 2

∫ T

t

eβsỸs−dÃ− 2

∫ T

t

eβsỸs−Z̃sdWs

− 2

∫ T

t

eβsỸs−

∫
U
ψ̃s(u)π̃(du, ds)− 2

∫ T

t

eβsỸs−dM̃s

−
∑

t<s≤T

eβs(Ỹs − Ỹs−)2 +

∫ T

t

2eβsỸsd(C̃)s

−
∑

t≤s<T

eβs(Ỹs+ − Ỹs)2.

Then

eβtỸ 2
t +

∫ T

t

eβsZ̃2
sds +

∫ T

t

eβs
∫
U
|ψ̃s(u)|2µ(du)ds+

∫ T

t

eβsd < M̃ c, M̃ c >s=

−
∫ T

t

βeβsỸ 2
s ds+ 2

∫ T

t

eβsỸs−f̃(s)ds

+ 2

∫ T

t

eβsỸs−dÃ− 2

∫ T

t

eβsỸs−Z̃sdWs

− 2

∫ T

t

eβsỸs−

∫
U
ψ̃s(u)π̃(du, ds)− 2

∫ T

t

eβsỸs−dM̃s

−
∑

t<s≤T

eβs(Ỹs − Ỹs−)2 +

∫ T

t

2eβsỸsd(C̃)s

−
∑

t≤s<T

eβs(Ỹs+ − Ỹs)2.

It is clear that for all t ∈ [0, T ] −
∑
t<s≤T e

βs(Ỹs−Ỹs−)2−
∑
t≤s<T e

βs(Ỹs+−Ỹs)2 ≤
0. By applying the inequality 2ab ≤ (aε )2 + ε2b2, valid for all (a, b) in R2, we get:
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a.e. for all t ∈ [0, T ]

−
∫ T

t

βeβsỸ 2
s ds+ 2

∫ T

t

eβsỸs−f̃(s)ds ≤ −
∫ T

t

βeβsỸ 2
s ds+

1

ε2

∫ T

t

eβsỸ 2
s−ds

+ ε2
∫ T

t

eβsf̃(s)2ds

= (
1

ε2
− β)

∫ T

t

eβsỸ 2
s−ds+ ε2

∫ T

t

eβsf̃(s)2ds.

As β ≥ 1
ε2 , we have ( 1

ε2 − β)
∫ T
t
eβsỸ 2

s−ds ≤ 0 for all t ∈ [0, T ] a.s.

Next, we have also that the term
∫ T
t
eβsỸsdC̃s is non-positive. Indeed a.s. for

all t ∈ [0, T ], ∫ T

t

eβsỸsdC̃s =
∑

t≤s<T

eβsỸs 4 C̃s

and a.s. for all t ∈ [0, T ]

Ỹt 4 C̃t = (Y 1
t − Y 2

t )4 C1
t − (Y 1

t − Y 2
t )4 C2

t . (3.9)

We use property (3.5) of C1 and the fact that Y 2 ≥ ξ to obtain: a.s. for all
t ∈ [0, T ]

(Y 1
t − Y 2

t )4 C1
t = (Y 1

t − ξt)4 C1
t − (Y 2

t − ξt)4 C1
t = 0− (Y 2

t − ξt)4 C1
t ≤ 0

Similarly, we obtain: a.s. for all t ∈ [0, T ],

(Y 1
t − Y 2

t )4 C2
t = (Y 1

t − ξt)4 C2
t − (Y 2

t − ξt)4 C2
t = (Y 1

t − ξt)4 C2
t − 0 ≥ 0.

We also show that
∫ T
t
eβsỸs−dÃ is non-positive by using property (3.4) of the

definition of the RBSDE and the fact that Y i ≥ ξ for i = 1, 2 and that Ai =
Ai,c +Ai,d (see also Quenez and Sulem, 2014). Then

eβtỸ 2
t +

∫ T

t

eβsZ̃2
sds+

∫ T

t

eβsd < M̃ c, M̃ c >s +

∫ T

t

eβs
∫
U
|ψ̃s(u)|2µ(du)ds ≤

ε2
∫ T

t

eβsf̃2(s)ds− 2

∫ T

t

eβsỸs−Z̃sdWs

− 2

∫ T

t

∫
U
eβsỸs−ψ̃s(u)π̃(du, ds)− 2

∫ T

t

eβsỸs−dM̃s ∀ a.s. t ∈ [0, T ]. (3.10)

We now show that the term
∫ T
0
eβsỸs−Z̃sdWs has zero expectation. To this purpose,

we show that E[
√∫ T

0
e2βsỸ 2

s−Z̃
2
sds] < ∞, in the same way that in the proof of

Lemma 3.2 (A priori estimates) in Grigorova et al. (2015). By using the left-

continuity of a.e. trajectory of the process (Ỹs−), we have

(Ỹs−)2(ω) ≤ sup
t∈Q

(Ỹt−)2(ω) for all s ∈ (0, T ], for a.s. ω ∈ Ω. (3.11)

On the other hand, for all t ∈ (0, T ], a.s., (Ỹt−)2 ≤ ess supτ∈T0,T (Ỹτ )2. Then

sup
t∈Q

(Ỹt−)2 ≤ ess sup
τ∈T0,T

(Ỹτ )2 a.s. (3.12)
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According to (3.11) and (3.12) we obtain∫ T

0

e2βsỸ 2
s−Z̃

2
sds ≤

∫ T

0

e2βs sup
t∈Q

Ỹ 2
t−Z̃

2
sds ≤

∫ T

0

e2βsess sup
τ∈T0,T

Ỹ 2
τ Z̃

2
sds. (3.13)

Using (3.13), together with Cauchy-Schwarz inequality, gives

E
[√∫ T

0

e2βsỸ 2
s−Z̃

2
sds
]
≤ E

[√
ess sup

τ∈T0,T
Ỹ 2
τ

√∫ T

0

e2βsZ̃2
sds
]
.

Then

E
[√∫ T

0

e2βsỸ 2
s−Z̃

2
sds
]
≤ ‖|Ỹ ‖|S2‖Z̃‖2β . (3.14)

We conclude that E
[√∫ T

0
e2βsỸ 2

s−Z̃
2
sds
]
< ∞, whence, E[

∫ T
0
eβsỸs−Z̃sdWs] = 0.

Next we show that E
[∫ T

0

∫
U e

βsỸs−ψ̃s(u)π̃(du, ds)
]

= 0. For this purpose, we first

prove that E[
√∫ T

0

∫
U e

2βsỸ 2
s−ψ̃

2
s(u)µ(du)ds] <∞. According to (3.11) and (3.12),

we have∫ T

0

∫
U
e2βsỸ 2

s−ψ̃
2
s(u)µ(du)ds ≤

∫ T

0

∫
U
e2βs sup

t∈Q
Ỹ 2
t−ψ̃

2
s(u)µ(du)ds

≤
∫ T

0

∫
U
e2βsess sup

τ∈T0,T
Ỹ 2
τ ψ̃

2
s(u)µ(du)ds. (3.15)

Using (3.15) and Cauchy-Schwarz inequality, gives

E
[√∫ T

0

∫
U
e2βsỸ 2

s−ψ̃
2
s(u)µ(du)ds

]
≤ E

[√
ess sup

τ∈T0,T
Ỹ 2
τ

√∫ T

0

e2βs
∫
U
ψ̃2
s(u)µ(du)ds

]
.

Thus

E
[√∫ T

0

∫
U
e2βsỸ 2

s−ψ̃
2
s(u)µ(du)ds

]
≤ ‖|Ỹ ‖|S2‖ψ̃‖L2,2β

π
<∞. (3.16)

Then E
[∫ T

0

∫
U e

βsỸs−ψ̃s(u)π̃(du, ds)
]

= 0. Finally the same result holds for the

martingale
∫ t
0
eβsỸs−dM̃s, since:

E
[√∫ T

0

e2βsỸ 2
s−d[M̃ ]s

]
≤ ‖|Ỹ ‖|S2‖M̃‖M2

2β
<∞. (3.17)

By taking expectations on both sides of (3.10) with t = 0, we obtain:

Ỹ 2
0 + E

[ ∫ T

0

eβsZ̃2
sds
]

+ E
[ ∫ T

0

eβsd < M̃ >s

]
+ E

[ ∫ T

0

eβs
∫
U
|ψ̃s(u)|2µ(du)ds

]
≤ ε2‖f̃(s)‖2β .

Hence, with the fact that E[
∫ T
0
eβsd < M̃ >s] = E[

∫ T
0
eβsd[M̃ ]s], we have

‖Z̃‖2β + ‖M̃‖2M2
β

+ ‖ψ̃‖2L2,β
π
≤ ε2‖f̃(s)‖2β . (3.18)
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This therefore shows the first inequality of the lemma. From (3.10) we also get,
for all τ ∈ T0,T

eβτ Ỹ 2
τ ≤ ε2

∫ T

0

eβsf̃2(s)ds−2

∫ T

τ

eβsỸs−Z̃sdWs−2

∫ T

τ

∫
U
eβsỸs−ψ̃s(u)π̃(du, ds)

− 2

∫ T

τ

eβsỸs−dM̃s a.s. (3.19)

By taking first the essential supremum over τ ∈ T0,T , and then the expectation on
both sides of the inequality (3.19), we obtain:

E
[
ess sup

τ∈T0,T
eβτ Ỹ 2

τ

]
≤ ε2‖f̃(s)‖2β + 2E

[
ess sup

τ∈T0,T
|
∫ τ

0

eβsỸs−Z̃sdWs|
]

+ 2E
[
ess sup

τ∈T0,T
|
∫ τ

0

∫
U
eβsỸs−ψ̃s(u)π̃(du, ds)|

]
+ 2E

[
ess sup

τ∈T0,T
|
∫ τ

0

eβsỸs−dM̃s|
]
. (3.20)

By using the continuity of a.e. trajectory of the process (
∫ t
0
eβsỸs−Z̃sdWs)t∈[0,T ]

(Grigorova et al., 2015, Prop. A.3) and Burkholder-Davis-Gundy inequalities (Prot-
ter, 1990, Theorem 48, page 193. Applied with p = 1), we get

E
[
ess sup

τ∈T0,T
|
∫ τ

0

eβsỸs−Z̃sdWs|
]

= E
[

sup
t∈[0,T ]

|
∫ t

0

eβsỸs−Z̃sdWs|
]

≤ cE
[√∫ T

0

e2βsỸ 2
s−Z̃

2
sds

]
(3.21)

where c is a positive ”universal” constant (which does not depend on the other
parameters). The same reasoning as that used to obtain equation (3.13) leads to√∫ T

0

e2βsỸ 2
s−Z̃

2
sds ≤

√
ess sup

τ∈T0,T
eβτ Ỹ 2

τ

∫ T

0

eβsZ̃2
sds p.s. (3.22)

From the inequalities (3.21), (3.22) and ab ≤ 1
4a

2 + b2, we have

2E
[
ess sup

τ∈T0,T
|
∫ τ

0

eβsỸs−Z̃sds|
]
≤ 1

4
E
[
ess sup

τ∈T0,T
eβτ Ỹ 2

τ

]
+ 4c2E

[∫ T

0

eβsZ̃2
sds
]
.

(3.23)
By the same arguments, we have

2E
[
ess sup

τ∈T0,T
|
∫ τ

0

eβsỸs−ψ̃s(u)π̃(du, ds)|
]
≤ 2cE

[√
|
∫ T

0

∫
U
e2βsỸ 2

s−ψ̃
2
s(u)µ(du)ds|

]
≤ 1

4
E
[
ess sup

τ∈T0,T
eβτ Ỹ 2

τ

]
+ 4c2E

[∫ T

0

∫
U
eβsψ̃2

s(u)µ(du)ds
]

(3.24)
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and

2E
[
ess sup

τ∈T0,T
|
∫ τ

0

eβsỸs−dM̃s|
]
≤ 2cE

[√
|
∫ T

0

e2βsỸ 2
s−d[M̃ ]s|

]
≤ 1

4
E
[
ess sup

τ∈T0,T
eβτ Ỹ 2

τ

]
+ 4c2E

[∫ T

0

eβsd[M̃ ]s

]
(3.25)

where c is a positive constant which does not depend on the other parameters.
From (3.21), (3.23), (3.24) and (3.25), we get

1

4
‖|Ỹ |‖2β ≤ ε2‖f̃(s)‖2β + 4c2‖Z̃‖2β + 4c2‖M̃‖2M2

β
+ 4c2‖ψ̃‖2L2,β

π
.

This inequality, combined with (3.18), gives

‖|Ỹ |‖2β ≤ 4ε2(1 + 4c2)‖f̃(s)‖2β .
�

In the following lemma, we prove existence and uniqueness of the solution to the
RBSDE from Definition 3.1 in the case where the driver f depends only on s and
ω, i.e. f(ω, s, y, z, ψ) := f(ω, s).

Lemma 3.5. Suppose that f does not depend on y, z, ψ that is f(ω, s, y, z, ψ) :=
f(ω, s), where f is a process in H2. Let ξ be an obstacle. Then, the RBSDE from
Definition 3.1 admits a unique solution (Y, Z, ψ,M,A,C) ∈ E2(0, T ), and for each
S ∈ T0,T , we have

YS = ess sup
τ∈TS,T

E
[
ξτ +

∫ τ

S

f(t)dt|FS
]

a.s. (3.26)

Proof : For all S ∈ T0,T , we define Y (S) by:

Y (S) = ess sup
τ∈TS,T

E
[
ξτ +

∫ τ

S

f(t)dt|FS
]

, Y (T ) = ξT . (3.27)

And Y (S) by:

Y (S) = Y (S) +

∫ S

0

f(t)dt = ess sup
τ∈TS,T

E
[
ξτ +

∫ τ

0

f(t)dt|FS
]
. (3.28)

We note that the process (ξt +
∫ t
0
f(s)ds)t∈[0,T ] is progressive. Therefore, the fam-

ily (Y (S))S∈T0,T is a supermartingale family (see Kobylanski and Quenez, 2012,
Remark 1.2 with Prop.1.5), and with remark (b) in (Dellacherie and Meyer, 1980,
page 435), gives the existence of a strong optional supermartingale (which we de-

note again by Y ) such that Y S = Y (S) a.s. for all S ∈ T0,T . Thus, we have

Y (S) = Y (S) −
∫ S
0
f(t)dt = Y S −

∫ S
0
f(t)dt a.s. for all S ∈ T0,T (see Dellacherie

and Meyer, 1980). On the other hand, we know that almost all trajectories of the

strong optional supermartingale Y are làdlàg. Thus, we get that the làdlàg optional

process (Y t)t∈[0,T ] = (Y t −
∫ t
0
f(s)ds)t∈[0,T ] aggregates the family (Y (S))ST0,T .

To prove the lemma 3.5, it must be shown, as a first step, that Y ∈ S2 by
giving an estimate of ‖|Y |‖2

S2
in terms of ‖|ξ|‖2

S2
and ‖f‖2

H2 . In the second step, we

exhibit processes Z, ψ, M , A and C such that (Y , Z, ψ,M,A,C) is a solution to the
RBSDE with parameters (f, ξ). In the third step, we prove that A × C ∈ S2 × S2



RBSDEs when the obstacle is not RC in a general filtration 213

and we give an estimate of ‖|A|‖2
S2

and ‖|C|‖2
S2

. In the fourth step, we show that
Z ∈ H2, ψ ∈ L2

π and M ∈M2, and finally we show the uniqueness of the solution.
Step 1. By using the definition of Y (3.27), Jensen’s inequality and the triangular
inequality, we get

|Y S | ≤ ess sup
τ∈TS,T

E
[
|ξτ |+ |

∫ τ

S

f(t)dt||FS
]
≤ E

[
ess sup

τ∈TS,T
|ξτ |+

∫ T

0

|f(t)|dt|FS
]

Thus, we obtain

|Y S | ≤ E
[
X|FS

]
(3.29)

with

X =

∫ T

0

|f(t)|dt+ ess sup
τ∈T0,T

|ξτ |. (3.30)

Applying Cauchy-Schwarz inequality gives

E[X2] ≤ cT‖f‖2H2 + c‖|ξ|‖2S2 <∞. (3.31)

where c is a positive constant. Now, inequality (3.29) leads to |Y S |2 ≤ |E[X|FS ]|2.
By taking the essential supremum over S ∈ T0,T we get ess supS∈T0,T |Y S |

2 ≤
ess supS∈T0,T |E[X|FS ]|2. By using Proposition A.3 in Grigorova et al. (2015), we

get ess supS∈T0,T |Y S |
2 ≤ supt∈[0,T ] |E[X|Ft]|2. By using this inequality and Doob’s

martingale inequalities, we obtain

E
[
ess sup

S∈T0,T
|Y S |2

]
≤ E

[
sup
t∈[0,T ]

|E[X|Ft]|2
]
≤ cE[X2] (3.32)

where c is a positive constant that changes from line to line. Finally, combining
inequalities (3.31) and (3.32) gives

E
[
ess sup

S∈T0,T
|Y S |2

]
≤ cT‖f‖2H2 + c‖|ξ|‖2S2 <∞. (3.33)

Then Y S ∈ S2.
Step 2. Due to the previous step and to the assumption f ∈ H2, the strong optional

supermartingale Y is of class (D). Applying Mertens decomposition (Grigorova
et al., 2015, Theorem A.1) and a result from optimal stopping theory (see more in
El Karoui, 1981, Prop. 2.34. page 131 or Kobylanski and Quenez, 2012), gives the
following

Y τ = Nτ −Aτ − Cτ− ∀τ ∈ T0,T

Y τ = −
∫ τ

0

f(t)dt+Nτ −Aτ − Cτ− a.s. ∀τ ∈ T0,T (3.34)

where N is a (càdlàg) uniformly integrable martingale such that N0 = 0, A is a
nondecreasing right-continuous predictable process such that A0 = 0, E(AT ) <∞
and satisfying (3.4), and C is a nondecreasing right-continuous adapted purely
discontinuous process such that C0− = 0, E(CT ) <∞ and satisfying (3.5). By the
martingale representation theorem (Lemma 2.1), there exists a unique predictable
process Z, a unique process ψ and a unique (càdlàg) local martingales orthogonal
M such that

Nt =

∫ t

0

ZsdWs +

∫ t

0

∫
U
ψs(u)π̃(du, ds) +Mt.

Moreover, we have Y T = ξT a.s. by definition of Y . Combining this with equation
(3.34). gives equation (3.1). Also by definition of Y , we have Y S ≥ ξS a.s. for
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all S ∈ T0,T , which, along with Proposition A.4 in Grigorova et al. (2015) (or

Theorem 3.2. in Nikeghbali, 2006), shows that Y satisfies inequality (3.2). Finally,
to conclude that the process (Y , Z, ψ,M,A,C) is a solution to the RBSDE with
parameters (f, ξ), it remains to show that Z×ψ×M×A×C ∈ H2×L2

π×M2×S2×S2.
Step 3. Let us show that A× C ∈ S2 × S2.

Let us define the process At = At +Ct− where the processes A and C are given by
(3.34). By arguments similar to those used in the proof of inequality (3.29), we

see that |Y S | ≤ E[X|FS ] with

X =

∫ T

0

|f(t)|dt+ ess sup
τ∈TS,T

|ξτ |.

Then, the Corollary A.1 in Grigorova et al. (2015) ensures the existence of a constant

c > 0 such that E[(AT )2] ≤ cE[X2]. By combining this inequality with inequality
(3.31), we obtain

E[(AT )2] ≤ cT‖f‖2H2 + c‖|ξ|‖2S2 (3.35)

where we have again allowed the positive constant c to vary from line to line. We

conclude that A ∈ L2. And with the nondecreasingness of A, then (Aτ )2 ≤ (AT )2

for all τ ∈ T0,T thus

E
[
ess sup

τ∈T0,T
(Aτ )2

]
≤ E

[
(AT )2

]
i.e. A ∈ S2 then A ∈ S2 and C ∈ S2.
Step 4. Let us now prove that Z × ψ ×M ∈ H2 × L2

π ×M2. We have from step 3∫ T

0

ZsdWs +

∫ T

0

∫
U
ψs(u)π̃(du, ds) +MT = Y T +

∫ T

0

f(t)dt+AT − Y 0

where A is the process from Step 3. Since AT ∈ L2, Y T ∈ L2, Y 0 ∈ L2 and f ∈ H2.

Hence,
∫ T
0
ZsdWs ∈ L2,

∫ T
0

∫
U ψs(u)π̃(du, ds) ∈ L2 and MT ∈ L2 and consequently

Z × ψ ×M ∈ H2 × L2
π ×M2.

For the uniqueness of the solution, suppose that (Y, Z, ψ,M,A,C) is a solution
of the RBSDE with driver f and obstacle ξ. Then, by the previous inequality 3.7
in the Lemma 3.4 (applied with f1 = f2 = f) we obtain Y = Y in S2, where
Y is given by (3.27). The uniqueness of A, C, Z, ψ and M follows from the
uniqueness of Mertens decomposition of strong optional supermartingales and from
the uniqueness of the martingale representation (Lemma 2.1). �

Remark 3.6. (1) We note that the uniqueness of Z, ψ and M can be obtained
also by applying (3.6) in the previous Lemma 3.4.

(2) Let β > 0. For φ ∈ S2, we have the inequality E[
∫ T
0
eβt|φt|2dt] ≤

TE[ess supτ∈T0,T e
βτ |φτ |2]. Indeed, by applying Fubini’s theorem, we get

E[

∫ T

0

eβt|φt|2dt] =

∫ T

0

E[eβt|φt|2]dt ≤
∫ T

0

E[ess sup
τ∈T0,T

eβτ |φτ |2]ds =

TE[ess sup
τ∈T0,T

eβτ |φτ |2]. (3.36)
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In the following theorem, we prove existence and uniqueness of the solution to
the RBSDE from Definition 3.1 in the case of a general Lipschitz driver f by using
a fixed-point theorem and by using (2) in the Remark 3.6 .

Theorem 3.7. Let ξ be a left-limited and r.u.s.c. process in S2 and let f be a
Lipschitz driver. The RBSDE with parameters (f, ξ) from Definition 3.1 admits a
unique solution (Y,Z, ψ,M,A,C) ∈ E2(0, T ).

Proof : We note by Eβf the space S2×H2×L2
π(0, T ) which we equip with the norm

‖.‖Eβf defined by

‖(Y,Z, ψ)‖2Eβf = ‖|Y |‖2β + ‖Z‖2β + ‖ψ‖2L2,β
π

for all (Y, Z, ψ) ∈ S2 ×H2 ×L2
π(0, T ). After, we define an application Φ : Eβf → E

β
f

as follows: for a given (y, z, ϕ) ∈ Eβf , we let (Y,Z, ψ) = Φ(y, z, ϕ) where (Y,Z, ψ)
the first three components of the solution to the RBSDE associated with driver
f := f(t, yt, zt, ϕt) and with obstacle ξt. Let (A,C) be the associated Mertens
process, constructed as in lemma 3.5. The mapping Φ is well-defined by Lemma 3.5.

Let (y, z, ϕ) and (y′, z′, ϕ′) be two elements of Eβf . We set (Y, Z, ψ) = Φ(y, z, ϕ)

and (Y ′, Z ′, ψ′) = Φ(y′, z′, ϕ′). We also set Ỹ = Y − Y ′, Z̃ = Z − Z ′, ψ̃ = ψ − ψ′,
ỹ = y − y′, z̃ = z − z′ and ϕ̃ = ϕ− ϕ′.

By the same argument that in the proof of Theorem 3.4 in Grigorova et al.
(2015), in the Brownian filtration case. Let us prove that for a suitable choice of

the parameter β > 0, the mapping Φ is a contraction from the Banach space Eβf into

itself. Indeed, By applying Lemma 3.4, we have, for all ε > 0 and for all β ≥ 1
ε2 :

‖|Ỹ |‖2β + ‖Z̃‖2β + ‖ψ̃‖2L2,β
π

≤ ‖|Ỹ |‖2β + ‖Z̃‖2β + ‖M̃‖2M2
β

+ ‖ψ̃‖2L2,β
π

≤ ε2(5 + 16c2)‖f(t, y, z, ϕ)− f(t, y′, z′, ϕ′)‖2β .

By using the Lipschitz property of f and the fact that (a+ b)2 ≤ 2a2 + 2b2, for all
(a, b) ∈ R2, we obtain

‖f(t, y, z, ϕ)− f(t, y′, z′, ϕ′)‖2β ≤ CK(‖ỹ‖2β + ‖z̃‖2β + ‖ϕ̃‖2L2,β
π

)

where CK is a positive constant depending on the Lipschitz constant K only. Thus,
for all ε > 0 and for all β ≥ 1

ε2 we have:

‖|Ỹ |‖2β + ‖Z̃‖2β + ‖ψ̃‖2L2,β
π
≤ ε2CK(5 + 16c2)

(
‖ỹ‖2β + ‖z̃‖2β + ‖ϕ̃‖2L2,β

π

)
.

The previous inequality, combined with (2) in Remark 3.6, gives

‖|Ỹ |‖2β + ‖Z̃‖2β + ‖ψ̃‖2L2,β
π
≤ ε2CK(5 + 16c2)(T + 1)

(
‖|ỹ|‖2β + ‖z̃‖2β + ‖ϕ̃‖2L2,β

π

)
.

Thus, for ε > 0 such that ε2CK(5 + 16c2)(T + 1) < 1 and β > 0 such that β ≥ 1
ε2 ,

the mapping Φ is a contraction. By the Banach fixed-point theorem, we get that Φ

has a unique fixed point in Eβf . We thus have the existence and uniqueness of the
solution to the RBSDE. �
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4. Application on dynamic risk measure and optimal stopping.

4.1. On dynamic risk measure. In this subsection, we give an application of re-
flected BSDEs in dynamic risk measure. Indeed, define the following functional:
for each stopping time τ ∈ T0,T and ξ ∈ S2. Set

v(S) = −ess sup
τ∈TS,T

EfS,τ (ξτ ) (4.1)

where S ∈ T0,T , v is the dynamic risk measure, ξT ′ (T ′ ∈ [0, T ]) is the gain of the

position at time T ′ and −Eft,T ′(ξT ′) is the f -conditional expectation of ξτ modelling

the risk at time t where t ∈ [0, T ]. We can show that the minimal risk measure v
defined by (4.1) coincides with −Y , where Y is (the first component of) the solution
to the reflected BSDE associated with driver f and obstacle ξ. For this purpose,
we can extend the results in Proposition A.5 and Theorem 4.2 in Grigorova et al.
(2015) to our setting (see Aazizi and Ouknine, 2016 for more details).

4.2. On optimal stopping. We note also that we can show the existence of an ε-
optimal stopping time, and that of the existence of an optimal stopping time under
suitable assumptions on the barrier ξ i.e. without right continuity of ξ, by extending
the results of the second part of Grigorova et al. (2015) to our setting.

Let (Y,Z, ψ,M,A,C) be the solution of the reflected BSDE with parameters
(f, ξ) as in definition 3.1, we have

YS = ess sup
τ∈TS,T

EfS,τ (ξτ ) (4.2)

For each S ∈ T0,T and ε > 0, the stopping time τεS = inf{t ≥ S, Yt ≤ ξt + ε} is
a (Cε)-optimal for 4.2 where C is a constant which depends only on T and the
Lipschitz constant K of f :

YS ≤ EfS,τεS (ξτεS ) + Cε, a.s.

Under our assumption on ξ and f , we can prove that for each S ∈ T0,T and τ̂ ∈ TS,T ,
the stopping time τ̂ is S-optimal. i.e.

Yτ̂ = EfS,τ̂ (ξτ̂ ), a.s.

(see Theorem 4.2 and Proposition 4.3 in Grigorova et al., 2015).
Finally, under an additional assumption of left-upper semicontinuity (l.u.s.c) of

ξ in S2, the first time when the value process Y hits ξ is optimal: if τ∗S = inf{u ≥
S, Yu = ξu}, ξ is r.u.s.c and l.u.s.c in S2 and (Y,Z, ψ,M,A,C) is the solution of the
reflected BSDE of definition 3.1, the stopping time τ∗S is optimal that is

YS = EfS,τ∗S (ξτ∗S ), a.s.

(see Proposition 4.2 in Grigorova et al., 2015).
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