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Abstract. We introduce a continuous time autoregressive moving average process
with random Lévy coefficients, termed RC-CARMA(p,q) process, of order p and
q < p via a subclass of multivariate generalized Ornstein-Uhlenbeck processes. Suf-
ficient conditions for the existence of a strictly stationary solution and the existence
of moments are obtained. We further investigate second order stationarity proper-
ties, calculate the autocovariance function and spectral density, and give sufficient
conditions for their existence.

1. Introduction

Let q < p be non-negative integers and L = (Lt)t∈R a Lévy process, i.e. a process
with stationary and independent increments, càdlàg sample paths and L0 = 0
almost surely, which is continuous in probability. A CARMA(p,q) process S =
(St)t∈R driven by L is defined via

St = b′Xt, t ∈ R, (1.1)

with X = (Xt)t∈R a Cp-valued process which is a solution to the stochastic differ-
ential equation (SDE)

dXt = AXt dt+ e dLt, t ∈ R, (1.2)
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where

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

 , e =


0
0
...
0
1

 , and b =


b0
b1
...

bp−2

bp−1


with a1, . . . , ap, b0, . . . , bp−1 ∈ C such that bq 6= 0 and bj = 0 for j > q. For p = 1
the matrix A is interpreted as A = (−a1).

It is well-known that the solution of (1.2) is unique for any X0 and given by

Xt = eAt

(
X0 +

∫
(0,t]

e−Ase dLs

)
, t ≥ 0.

Processes of this kind were first considered for L being a Gaussian process by
Doob (1944). Brockwell (2001b) gave the now commonly used definition with L
being a Lévy process.

A CARMA process S = (St)t∈R as defined in (1.1) and (1.2) can be interpreted
as a solution of the pth-order linear differential equation

a(D)St = b(D)DLt,

where a(z) = zp+a1z
p−1 + · · ·+ap, b(z) = b0 + b1z+ · · ·+ bp−1z

p−1 and D denotes
the differentiation operator. In this sense, CARMA processes are a natural contin-
uous time analog of discrete time ARMA processes. Similar to ARMA processes,
CARMA processes provide a tractable but rich class of stochastic processes. Their
possible autocovariance functions h 7→ Cov(St, St+h) are linear combinations of
(complex) exponentials and thus provide a wide variety of possible models when
modeling empirical data.

In discrete time, ARMA processes with random coefficients (RC-ARMA) have
attracted a lot of interest recently, in particular, AR processes with random coef-
ficients, see e.g. Nicholls and Quinn (1982). They have applications as non-linear
models for various processes, e.g. bilinear GARCH processes introduced by Storti
and Vitale (2003). RC-ARMA processes also arise as a special case of conditional
heteroscedastic ARMA (CHARMA) models proposed by Tsay (1987) and are used
for financial volatility processes, see e.g. He and Teräsvirta (1999), to name just a
few.

As CARMA processes constitute the natural continuous time analog of ARMA
processes, it is, therefore, natural to ask for CARMA processes with random co-
efficients. The CARMA(1, 0) process with random (Lévy) coefficients has already
been studied. It is known as the generalized Ornstein-Uhlenbeck (GOU) process,
which is obtained as the solution to the SDE

dXt = Xt− dξt + dLt, t ≥ 0,

where (ξ, L) = (ξt, Lt)t≥0 is a bivariate Lévy process. It has been shown by
de Haan and Karandikar (1989) that GOU processes arise as the natural contin-
uous time analog of the AR(1) process with random i.i.d. coefficients. By choos-
ing (ξt)t≥0 = (−a1t)t≥0, the GOU process reduces to the classical Lévy-driven
Ornstein-Uhlenbeck process, which is a CAR(1), i.e. CARMA(1,0) process.
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Both the Ornstein-Uhlenbeck process as well as the generalized Ornstein-Uhlen-
beck process have various applications in insurance and financial mathematics, see
e.g. Barndorff-Nielsen and Shephard (2001) and Klüppelberg et al. (2004).

The aim of the present paper is to introduce CARMA processes with random
Lévy autoregressive coefficients of higher orders, p ≥ 1, and to study stationarity
and other natural properties. The definition of our process is done in such a way that
it includes the generalized Ornstein-Uhlenbeck process for order (1, 0) as a special
case and that it reduces to the usual CARMA process when the autoregressive
Lévy coefficients are chosen to be deterministic Lévy processes, i.e. pure drift and
henceforth linear functions.

The paper is organized as follows. In Section 2 we give some preparative results
regarding multivariate stochastic integration, the multivariate stochastic exponen-
tial, and multivariate generalized Ornstein-Uhlenbeck processes. In Section 3 we
define a CARMA process with random coefficients (RC-CARMA) and present some
basic properties as well as sufficient conditions for the existence of a strictly sta-
tionary solution. Similar to Brockwell and Lindner (2015) for CARMA processes,
we further show that the RC-CARMA(p, 0) process satisfies an integral-differential
equation and examine its path properties. Section 4 is concerned with the exis-
tence of moments, the autocovariance function, and the spectral density, whereby
it turns out that the latter two have an interesting connection to those of CARMA
processes. We end Section 4 by investigating an RC-CARMA(2, 1) process in more
detail. Conclusively, in Section 5 we present some simulations.

2. Preliminaries

Throughout, we will always assume as given a complete probability space
(Ω,F , P ) together with a filtration F = (Ft)t≥0. By a filtration we mean a family
of σ-algebras (Ft)t≥0 that is increasing, i.e. Fs ⊂ Ft for all s ≤ t. Our filtration
satisfies, if not stated otherwise, the usual hypotheses, i.e. F0 contains all P -null
sets of F , and the filtration is right-continuous.

GL(R,m) denotes the general linear group of order m, i.e. the set of all m×m
invertible matrices associated with the ordinary matrix multiplication. If A ∈
GL(R,m), we denote with A′ its transpose and with A−1 its inverse.

For càdlàg processes X = (Xt)t≥0 we denote with Xt− and ∆Xt := Xt − Xt−
the left-limit and the jump at time t, respectively. A d-dimensional Lévy processes
L = (Lt)t≥0 can be identified by its characteristic exponent (AL, γL,ΠL) due to
the Lévy-Khintchine formula, i.e. if µ denotes the distribution of L1, then its
characteristic function is, for z ∈ Rd, given by

µ̂(z) = exp

[
−1

2
〈z,ALz〉+ i〈γL, z〉+

∫
Rd

(ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1}(x)) ΠL(dx)

]
.

Here, AL is the Gaussian covariance matrix which is in one dimension denoted by
σ2
L, ΠL a measure on Rd which satisfies ΠL({0}) = 0 and

∫
Rd(|x|2∧1) ΠL(dx) <∞,

called the Lévy measure, and γL ∈ Rd a constant. Further, |x| denotes the Euclidean
norm of x.

For a detailed account of Lévy processes we refer to the book of Sato (2013).

Stochastic Integration



222 Dirk-Philip Brandes

A matrix-valued stochastic process X = (Xt)t≥0 is called an F-semimartingale

or simply a semimartingale if every component (X
(i,j)
t )t≥0 is a semimartingale with

respect to the filtration F.
For a semimartingale X ∈ Rm×n, and H ∈ Rl×m and G ∈ Rn×p two locally

bounded predictable processes, the Rl×p-valued stochastic integral J =
∫
HdXG

is defined by its components via

J (i,j) =

n∑
k=1

m∑
h=1

∫
H(i,h)G(k,j) dX(h,k).

It can easily be seen that also in the multivariate case the stochastic integra-
tion preserves the semimartingale property as stated, for example, in the one-
dimensional case in Protter (2005).

For two semimartingales X ∈ Rl×m and Y ∈ Rm×n the Rl×n-valued quadratic
covariation [X,Y ] is defined by its components via

[X,Y ](i,j) =

m∑
k=1

[X(i,k), Y (k,j)], (2.1)

and similar its continuous part [X,Y ]c. Then

[X,Y ]t = [X,Y ]ct +X0Y0 +
∑

0<s≤t

∆Xs∆Ys, t ≥ 0 (2.2)

is true also for matrix-valued semimartingales.
Finally, as stated in Karandikar (1991), for two semimartingales X,Y ∈ Rm×m

the integration by parts formula takes the form

(XY )t =

∫ t

0+

Xs− dYs +

∫ t

0+

dXsYs− + [X·, Y·]t, t ≥ 0.

The Multivariate Stochastic Exponential

Let X = (Xt)t≥0 be a semimartingale in Rm×m with X0 = 0. Then its left sto-

chastic exponential
←
E (X)t is defined as the unique Rm×m-valued, adapted, càdlàg

solution (Zt)t≥0 of the integral equation

Zt = I +

∫
(0,t]

Zs− dXs, t ≥ 0,

where I ∈ Rm×m denotes the identity matrix. The right stochastic exponential

of X, denoted as
→
E (X)t, is defined as the unique Rm×m-valued, adapted, càdlàg

solution (Zt)t≥0 of the integral equation

Zt = I +

∫
(0,t]

dXsZs−, t ≥ 0.

It can be shown that both the left and the right stochastic exponential are semi-

martingales and that for its transpose it holds
←
E (X)

′
t =

→
E (X ′)t. As observed by

Karandikar (1991), the right and the left stochastic exponentials of a semimartin-
gale X are invertible at all times t ≥ 0 if and only if

det(I + ∆Xt) 6= 0 ∀ t ≥ 0. (2.3)

We also need the following result of Karandikar (1991).
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Proposition 2.1. (Inverse of the Stochastic Exponential)
Let X = (Xt)t≥0 be a semimartingale with X0 = 0 such that (2.3) holds. Define
the semimartingale

Ut := −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)

−1 − I + ∆Xs

)
, t ≥ 0. (2.4)

Then

←
E (X)

−1
t =

[
←
E (U ′)t

]′
=
→
E (U)t ∀ t ≥ 0, (2.5)

and

Ut = −Xt − [X,U ]t ∀ t ≥ 0. (2.6)

Further,

det(I + ∆Ut) 6= 0 ∀ t ≥ 0,

and X can be represented by

Xt = −Ut + [U,U ]ct +
∑

0<s≤t

(
(I + ∆Us)

−1 − I + ∆Us
)
, t ≥ 0. (2.7)

Proof : For (2.5) and (2.6) see Karandikar (1991), Theorem 1. For the remaining as-
sertions, observe that ∆Ut = (I + ∆Xt)

−1− I from (2.4), so that det(I + ∆Ut) 6= 0
for all t ≥ 0. Further, from (2.4) we obtain [U,U ]ct = [X,X]ct . Inserting this,
∆Ut = (I + ∆Xt)

−1 − I, and the form of Ut from (2.4) into the right-hand side of
(2.7) gives Xt so that (2.7) is true. �

Multivariate Generalized Ornstein-Uhlenbeck processes

We give a short overview of results regarding multivariate generalized Ornstein-
Uhlenbeck (MGOU) processes which are used throughout. MGOU processes were
introduced by Behme and Lindner (2012) and further investigated in Behme (2012).

Definition 2.2. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process in Rm×m × Rm such
that X satisfies (2.3), and let V0 be a random variable in Rm. Then the Rm-valued
process V = (Vt)t≥0 given by

Vt =
←
E (X)

−1
t

(
V0 +

∫
(0,t]

←
E (X)s− dYs

)
, t ≥ 0,

is called a multivariate generalized Ornstein-Uhlenbeck (MGOU) process driven by
(X,Y ). The underlying filtration F = (Ft)t≥0 is such that it satisfies the usual
hypotheses and such that (X,Y ) is a semimartingale.

The MGOU process will be called causal or non-anticipative, if V0 is independent
of (X,Y ), and strictly non-causal if Vt is independent of (Xs, Ys)0≤s<t for all t ≥ 0.

Remark 2.3. It follows from Behme and Lindner (2012), Theorem 3.4, that an
MGOU process V = (Vt)t≥0 with an F0-measurable V0 solves the SDE

dVt = dUtVt− + dZt, t ≥ 0, (2.8)
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where U = (Ut)t≥0 is another Rm×m-valued Lévy process defined by (2.4) so that
←
E (X)

−1
t =

→
E (U)t, and Z = (Zt)t≥0 is a Lévy process in Rm given by

Zt = Yt +
∑

0<s≤t

(
(I + ∆Xs)

−1 − I
)

∆Ys − [X,Y ]ct , t ≥ 0.

With these U and Z the MGOU process can also be written as

Vt =
→
E (U)t

(
V0 +

∫
(0,t]

→
E (U)

−1
s− dYs

)
, t ≥ 0. (2.9)

Conversely, if (U,Z) = (Ut, Zt)t≥0 is a Lévy process in Rm×m × Rm such that it
holds det(I + ∆Ut) 6= 0 for all t ≥ 0, then for every F0-measurable random vector
V0 the solution to (2.8) is an MGOU process driven by (X,Y ), where X is given
by (2.7) and Yt = Zt + [X,Z]t.

Convention 2.4. Observe that an MGOU process and similarly the process given
by (2.9) is well-defined for any starting random vector V0, regardless if it is F0-
measurable or not. We shall hence speak of (2.9) as a solution to (2.8), regardless
if V0 is F0-measurable or not. Observe that if V0 is chosen to be independent of
(U,Z) or equivalently (X,Y ), then the natural augmented filtration of (U,Z) may
be enlarged by σ(V0) such that (U,Z) still remains a semimartingale, see Protter
(2005) Theorem VI.2. With this enlarged filtration, V0 is measurable.

To investigate the strict stationarity property of RC-CARMA processes later,
we introduce the property of irreducibility of a class of MGOU processes as it has
been done in Section 4 of Behme and Lindner (2012).

Definition 2.5. Suppose that (X,Y ) = (Xt, Yt)t≥0 is a Lévy process in Rm×m×Rm
such that X satisfies (2.3). Then an affine subspace H of Rm is called invariant
for the class of MGOU processes V = (Vt)t≥0 driven by (X,Y ) if for all x ∈ H the
choice V0 = x implies Vt ∈ H a.s. for all t ≥ 0.

If there exists no proper affine subspace H such that, for all x ∈ H, V0 = x
implies Vt ∈ H a.s. for all t ≥ 0, we call the class of MGOU processes irreducible.

Irreducibility is thus a property of the considered model. By abuse of language,
we will call an MGOU process irreducible if the corresponding class satisfies Defi-
nition 2.5.

3. The RC-CARMA process

Let p ∈ N and C = (Ct)t≥0 = (M
(1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in

Rp+1 with ΠM(1)({1}) = 0. Let b0, . . . , bp−1 ∈ R. Let U = (Ut)t≥0 be Rp×p-valued
defined by

Ut :=


0 t 0 . . . 0
0 0 t . . . 0
...

...
...

. . .
...

0 0 0 . . . t

−M (p)
t −M (p−1)

t −M (p−2)
t . . . −M (1)

t

 , b :=


b0
b1
...

bp−2

bp−1

 , (3.1)

e := [0, . . . , 0, 1]′ the pth unit vector, and q := max{j ∈ {0, . . . , p− 1} : bj 6= 0}.
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Then we call any process R = (Rt)t≥0 which satisfies

Rt = b′Vt, t ≥ 0, (3.2)

where V = (Vt)t≥0 is a solution to the SDE

dVt = dUtVt− + e dLt, t ≥ 0, (3.3)

an RC-CARMA(p,q) process, i.e. a CARMA process with random Lévy coefficients.
We speak of C and b as the parameters of the RC-CARMA process.

As will be seen in Proposition 3.4 below, the assumption ΠM(1)({1}) = 0 implies
det(I + ∆Ut) 6= 0 for all t ≥ 0, so that V is an MGOU process as in (2.8) and,
as in Convention 2.4, by a solution of (3.3) we mean a process of the form (2.9)
with starting random variable V0 not necessarily F0-measurable. We shall call the
process V a state vector process of the RC-CARMA process R.

Observe that we get a classical CARMA(p,q) process (St)t≥0 = (b′Vt)t≥0, al-

though on the positive real line, by choosing (M
(1)
t , . . . ,M

(p)
t ) = (a1, . . . , ap)t with

a1, . . . , ap ∈ R. Further, we recognize that there is less sense in choosing the co-
efficients of the moving average side to be random since they are just defining the
weights of the components of V to form S.

Recall that a CARMA(p,q) process S = (St)t∈R satisfies the formal pth-order
linear differential equation

a(D)St = b(D)DLt, (3.4)

where a(z) = zp+a1z
p−1 + · · ·+ap, b(z) = b0 +b1z+ · · ·+bp−1z

p−1, and D denotes
the differentiation with respect to t. When we consider an RC-CARMA(p,0) process
(Rt)t≥0 = (b0V

1
t )t≥0 for (Vt)t≥0 = (V 1

t , . . . , V
p
t )t≥0 solving (3.3), we formally find

that

aM (D)Rt = aM (D)b′Vt = aM (D)b0V
1
t = b0DLt = b(D)DLt, (3.5)

where

aM (z) = zp +
dM

(1)
t

dt
zp−1 + · · ·+ dM

(p)
t

dt
z0.

Observe that
dM

(i)
t

dt is not defined in a rigorous way but just an intuitive way of
writing.

Thus, it is possible to interpret also the RC-CARMA(p,0) process as a solution
to a formal pth-order linear differential equation with random coefficients.

To justify (3.5), look at the first p− 1 components of V

dV it = V i+1
t dt ⇔ dV it

dt
= V i+1

t ⇔ DiV 1
t = V i+1

t , i = 1, . . . , p− 1. (3.6)
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Formal division by dt yields for the pth component

dV pt = −V 1
t dM

(p)
t − · · · − V pt dM

(1)
t + dLt

“⇔ ”
dV pt
dt

= −V 1
t

dM
(p)
t

dt
− · · · − V pt

dM
(1)
t

dt
+

dLt
dt

(3.6)⇔ DV pt = −V 1
t

dM
(p)
t

dt
− · · · −Dp−1V 1

t

dM
(1)
t

dt
+DLt

⇔ DLt = DpV 1
t +

dM
(1)
t

dt
Dp−1V 1

t + · · ·+ dM
(p)
t

dt
V 1
t

⇔ DLt = aM (D)V 1
t .

Brockwell and Lindner (2015) gave a rigorous interpretation of (3.4) by showing
that a CARMA(p,q) process (St = b′Xt)t∈R driven by a Lévy process L satisfies
the integral equation

a(D)JpSt = b(D)Jp−1(Lt) + a(D)Jp(b′eAtX0), t ∈ R,

where a(z) and b(z) are as before, and J denotes the integration operator which
associates with any càdlàg function f = (ft)t∈R : R→ C, t 7→ ft, the function J(f)
defined by

J(f)t :=

∫ t

0

fs ds.

Similarly, we give a rigorous interpretation of (3.5) as an integral-differential
equation and show that the RC-CARMA(p, 0) process solves this equation, hence
making the formal deviation of (3.5) above thoroughly.

We call a function g : [0,∞) → R differentiable with càdlàg derivative Dg, if g
is continuous and there exists a càdlàg function Dg such that g is at every point
t ∈ R right- and left-differentiable with right-derivative Dgt and left-derivative
Dgt− = limε↓0,ε 6=0Dgt−ε, respectively. In other words, g is absolutely continuous
and has càdlàg density Dg (see the discussion in Brockwell and Lindner, 2015 at
the beginning of Section 2).

We call a function g : [0,∞)→ R p-times continuously differentiable with càdlàg
derivative Dpg, if g is p− 1-times differentiable in the usual sense and the (p− 1)st

derivative D(p−1)g is differentiable with càdlàg derivative Dpg = D(Dp−1g) as
defined above.

Theorem 3.1. Let C = (Ct)t≥0 = (M
(1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in

Rp+1 and an F-semimartingale with ΠM(1)({1}) = 0. Let b′ = [b0, . . . , bp−1] ∈ Rp
with b0 6= 0 and b1 = · · · = bp−1 = 0, and consider the RC-CARMA(p, 0) process
R = (Rt)t≥0 defined by (3.2) and (3.3), where V = (Vt)t≥0 is the state vector
process (with V0 not necessarily F0-measurable). Denote by Dp−1 the set of all F-
adapted, R-valued processes G = (Gt)t≥0 which are p − 1 times differentiable with
càdlàg derivative Dp−1G.
(a) Define W = (Wt)t≥0 by

Wt := Rt − b′
→
E (U)t V0, t ≥ 0.
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Then W ∈ Dp−1, it is an RC-CARMA process with parameters C, b, and initial
state vector 0, and it satisfies the integral-differential equation

Dp−1Wt +

(
p∑
i=1

∫
(0,t]

Di−1Ws− dM (p−i+1)
s

)
= b0Lt, t ≥ 0. (3.7)

If V0 is additionally F0-measurable, then also R ∈ Dp−1 and there exists an F0-
measurable random variable Z0 such that

Dp−1Rt +

(
p∑
i=1

∫
(0,t]

Di−1Rs− dM (p−i+1)
s

)
= b0Lt + Z0, t ≥ 0. (3.8)

(b) Conversely, if R̃ = (R̃t)t≥0 ∈ Dp−1 satisfies

Dp−1R̃t +

(
p∑
i=1

∫
(0,t]

Di−1R̃s− dM (p−i+1)
s

)
= b0Lt + Z0 (3.9)

for some F0-measurable Z0, then R̃ is an RC-CARMA process with parameters

C, b, and state vector process Ṽ = (Ṽt)t≥0 := (b−1
0 (R̃t, DR̃t, . . . , D

p−1R̃t))t≥0.

Especially, Ṽ0 is F0-measurable.

Proof : (a) As already observed (and to be shown in Proposition 3.4 (a) below), the
condition ΠM(1)({1}) = 0 implies that V is an MGOU process. So

Vt =
→
E (U)t

(
V0 +

∫
(0,t]

→
E (U)

−1
s− dYs

)

for some Lévy process Y as specified in Remark 2.3. Hence, (Vt −
→
E (U)t V0)t≥0 is

adapted and consequently so is (Rt − b′
→
E (U)t V0)t≥0, and it is obviously an RC-

CARMA process with initial state vector 0. Hence, for the proof of (3.7) it suffices
to assume that V0 = 0.

Denote V = (Vt)t≥0 = (V 1
t , . . . , V

p
t )t≥0. By (3.6), we have DiV 1

t = V i+1
t ,

i = 1, . . . , p − 1. Hence, V 1
t is p − 1-times differentiable with (p − 1)st càdlàg

derivative V pt . By the defining SDE of the RC-CARMA process (3.3) and the form
of the matrix U = (Ut)t≥0 given in (3.1), we also have

V pt = V p0 −
p∑
i=1

∫
(0,t]

V is− dM (p−i+1)
s + Lt, (3.10)

and, since V0 = 0, that

Lt = Dp−1V 1
t +

p∑
i=1

∫
(0,t]

Di−1V 1
s− dM (p−i+1)

s . (3.11)

Multiplying (3.11) by b0 gives (3.7) when V0 = 0 and hence (3.7) in general.
For (3.8) let

Kt = (K1
t , . . . ,K

p
t )′ :=

→
E (U)t V0.

When we consider the SDE which defines the right stochastic exponential d
→
E (U)t =

dUt
→
E (U)t−, we obtain

dKt = dUtKt− with K0 = V0, (3.12)
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and, due to the form of the process U ,

dKi
t = Ki+1

t dt ⇔ dKi
t

dt
= Ki+1

t ⇔ DiK1
t = Ki+1

t , i = 1, . . . , p− 1.

Further, from the last component of (3.12)

Kp
t = Dp−1K1

t = V p0 −
∫

(0,t]

K1
s− dMp

s − · · · −
∫

(0,t]

Kp
s− dM1

s

= V p0 −
p∑
i=1

∫
(0,t]

Di−1K1
s− dM (p−i+1)

s .

Hence,

Dp−1K1
t +

p∑
i=1

∫
(0,t]

Di−1K1
s− dM (p−i+1)

s = V p0 ,

where V p0 is F0-measurable such that we obtain (3.8) via Rt = Wt + b′Kt, where
Wt satisfies (3.7).

(b) For the converse, let R̃ ∈ Dp−1 satisfy (3.9), and denote Ṽt = (Ṽ 1
t , . . . , Ṽ

p
t ) =

(b−1
0 (R̃t, DR̃t, . . . , D

p−1R̃t)), t ≥ 0. By the fundamental theorem of calculus

Ṽ it = Ṽ i0 +

∫
(0,t]

Ṽ i+1
s ds, i = 1, . . . , p− 1, (3.13)

and from (3.9) we obtain

Ṽ pt = b−1
0 Z0 −

p∑
i=1

∫
(0,t]

Di−1Ṽ 1
s−dM (p−i+1)

s + Lt

= b−1
0 Z0 −

p∑
i=1

∫
(0,t]

Ṽ is−dM (p−i+1)
s + Lt, t ≥ 0. (3.14)

But (3.13) and (3.14) mean that Ṽ p0 = b−1
0 Z0 and that Ṽ = (Ṽt)t≥0 satisfies

Ṽt = Ṽ0 +

∫
(0,t]

dUsṼs− + eLt.

Since obviously b′Ṽt = b0b
−1
0 R̃t = R̃t, it follows that R̃ is an RC-CARMA(p, 0)

process with parameters C, b, and state vector process Ṽ . �

Remark 3.2. Differentiating (3.8) formally gives

DpRt +

p∑
i=1

Di−1Rs−DM
(p−i+1)
s = b0DLt,

hence (3.5), and the RC-CARMA(p, 0) process can be interpreted as a solution to
a formal pth-order linear differential equation with random coefficients. To obtain
a similar equation and hence interpretation for RC-CARMA(p, q) processes with
q > 0 seems not so easy since it is in general not possible to interchange the
stochastic integration with the differentiation operator D.

Remark 3.3. Similar as in case of CARMA(p,q) processes, we easily see for an
RC-CARMA(p,q) process R = (Rt)t≥0 with q < p, bq 6= 0, and bj = 0 for j > q
with

Rt = b′Vt = b0V
1
t + · · ·+ bqV

q+1
t
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that, by (3.6), R is (p−q−1)-times differentiable with (p−q−1)st càdlàg derivative

Dp−q−1Rt = b0D
p−q−1V 1

t + · · ·+ bqD
p−q−1V q+1

t = b0V
p−q
t + · · ·+ bqV

p
t .

The following proposition shows that the state vector process V = (Vt)t≥0 is an
MGOU process and gives its specific driving Lévy process (X,Y ). Further, V is an
irreducible MGOU process if we assume that U is independent of L and L is not
deterministic.

Proposition 3.4. Let C = (Ct)t≥0 = (M
(1)
t , . . . ,M

(p)
t , Lt)t≥0 be an Rp+1-valued

Lévy process and an F-semimartingale. Let ΠM(1) denote the Lévy measure of M (1)

and let U be defined as in (3.1).

(a) Then
←
E (U)t ∈ GL(R, p) for all t ≥ 0 if and only if ΠM(1)({1}) = 0. In this

case, for any starting random vector V0 the solution to

dVt = dUtVt− + e dLt

is an MGOU process driven by (X,Y ), i.e. V = (Vt)t≥0 takes the form

Vt =
←
E (X)

−1
t

(
V0 +

∫
(0,t]

←
E (X)s− dYs

)
=
→
E (U)t

(
V0 +

∫
(0,t]

→
E (U)

−1
s− dYs

)

for t ≥ 0. Here, (X,Y ) = (Xt, Yt)t≥0 is a Lévy process defined by

Xt =


0 −t 0 . . . 0
0 0 −t . . . 0
...

...
...

. . .
...

0 0 0 . . . −t
N

(p)
t N

(p−1)
t N

(p−2)
t . . . N

(1)
t


with

N
(i)
t = M

(i)
t + t σM(1),M(i) +

∑
0<s≤t

∆M
(i)
s ∆M

(1)
s

1−∆M
(1)
s

, i = 1, . . . , p,

where σM(1),M(i) denotes the Gaussian covariance of M (1) and M (i). X satisfies

det(I + ∆Xt) 6= 0 for all t ≥ 0, and Yt = eỸt with

Ỹt = Lt + tσM(1), L +
∑

0<s≤t

∆M
(1)
s ∆Ls

1−∆M
(1)
s

.

(b) Denote M = (Mt)t≥0 = (M
(1)
t , . . . ,M

(p)
t )t≥0. Assume that M is independent of

L and L not deterministic. Then the MGOU process V obtained in (a) is irreducible.

Proof : (a) Since C is a Lévy process and a semimartingale with respect to F, it is

clear that also U as defined in (3.1) is a semimartingale and therefore also
←
E (U)

is a semimartingale with respect to F. Since
←
E (U)t is non-singular for all t ≥ 0 if
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and only if det(I + ∆Ut) 6= 0 for all t ≥ 0, we calculate

det(I + ∆Ut) = det


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

−∆M
(p)
t −∆M

(p−1)
t . . . −∆M

(2)
t 1−∆M

(1)
t


= (1−∆M

(1)
t ) (3.15)

which shows that
←
E (U)t is non-singular if and only if ∆M

(1)
t 6= 1 for all t ≥ 0.

Since M (1) is a Lévy process, the latter is equivalent to ΠM(1)({1}) = 0.
By Remark 2.3, V is an MGOU process driven by (X,Y ), where X is given by

(2.7) and satisfies det(I + ∆Xt) 6= 0 for all t ≥ 0, and Yt = eLt + [X, eL]t.
From (2.1) we obtain for the components of [U,U ]c due to the form of U in (3.1)

([U,U ]ct)
(i,j) =

p∑
k=1

[U (i,k), U (k,j)]c =

{
0, i = 1, . . . , p− 1,

tσM(1),M(p−j+1) , i = p.

The form of I + ∆Ut is implicitly given in (3.15) such that

(I + ∆Ut)
−1 =



1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
∆M

(p)
t

1−∆M
(1)
t

∆M
(p−1)
t

1−∆M
(1)
t

. . .
∆M

(2)
t

1−∆M
(1)
t

1

1−∆M
(1)
t


which is well-defined since ΠM(1)({1}) = 0. Summing up the terms according to

(2.7) leads to the stated form of the processes (N
(1)
t , . . . , N

(p)
t )t≥0 and X.

For Yt = eLt + [X, eL]t we obtain with (2.1) componentwise

[X, eL]
(i)
t =

p∑
k=1

[X(i,k), (eL)(k)]t = [X(i,p), L]t =

{
0, i = 1, . . . , p− 1,

[N (1), L]t, i = p.

Since

∆N
(1)
t =

∆M
(1)
t

1−∆M
(1)
t

,

and [N (1), L]ct = [M (1), L]ct = tσM(1), L we get the stated form of Y by (2.2).

(b) Suppose that V = (Vt)t≥0 = (V 1
t , . . . , V

p
t )t≥0 is not irreducible. Hence, there

exists an invariant affine subspace H with dimH ∈ {0, . . . , p − 1}. Then for all
x ∈ H it holds P (Vt ∈ H|V0 = x) = 1 for all t ≥ 0. Since V is càdlàg, we obtain
P (Vt ∈ H ∀ t ≥ 0|V0 = x) = 1. Further, if H ′ ⊃ H with dimH ′ = p− 1, then

P (Vt ∈ H ′ ∀ t ≥ 0 |V0 = x) = 1 ∀x ∈ H. (3.16)

We shall show that P (Vt ∈ H ′ ∀ t ≥ 0 |V0 = x) < 1 for all x ∈ Rp, hence contradict-
ing (3.16). So assume w.l.o.g. that dimH = p − 1. Since then H is a hyperplane,
there exists λ ∈ Rp with λ 6= 0 and a ∈ R such that H = {y ∈ Rp : λ′y = a}.

Let V0 = x ∈ H. Let i1, . . . , ik ∈ {1, . . . , p} with in 6= im for all n 6= m, λin 6= 0
for all n ∈ {1, . . . , k} and λj = 0 for j ∈ {1, . . . , p} \ {i1, . . . , ik}. W.l.o.g. assume
i1 < i2 < · · · < ik. By the existence of an invariant affine subspace, this yields
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λi1V
i1
t + · · ·+ λikV

ik
t = a. This is, since Din−i1V i1t = V int , n = 1, . . . , k, equivalent

to

λi1V
i1
t + λi2D

i2−i1V i1t + · · ·+ λikD
ik−i1V i1t = a. (3.17)

But (3.17) is an inhomogeneous ordinary linear differential equation of order ik−i1.

Hence, V i1t is a smooth deterministic function in t and so are V jt for all j ∈ {1, . . . , p}
since V jt = Dj−1V 1

t . When we consider the last component of V , we obtain by
(3.10) with V p0 = xp

Lt = V pt +

p∑
k=1

∫
(0,t]

V ks−dM (p−k+1)
s − xp. (3.18)

But under the assumption that M and L are independent and L is not deterministic,
(3.18) cannot hold (observe that Vt is deterministic by (3.17) when V0 = x). This
gives the wanted contradiction and therefore that V is irreducible. �

Remark 3.5. We can write (3.18) using partial integration as

Lt = V pt +

p∑
k=1

V kt M
(p−k+1)
t −

p∑
k=1

∫
(0,t]

M
(p−k+1)
s− dV ks − xp,

hence Lt is a functional of M . It would therefore be enough assuming that L is not
measurable with respect to the filtration generated by M to ensure irreducibility
of the state vector process V .

Remark 3.6. When the components M (1), . . . ,M (p), L of the Lévy process C in
Proposition 3.4 (a) are additionally independent, then the components do not jump
together almost surely and the Gaussian covariances vanish for different components
so that the formulas for N (1), . . . , N (p) simplify to

N
(1)
t = M

(1)
t + t σ2

M
(1)
t

+
∑

0<s≤t

(∆M
(1)
s )2

1−∆M
(1)
s

and N
(i)
t = M

(i)
t a.s. for i = 2, . . . , p.

Further, Yt = eLt and X are independent in that case (the latter is already true
when just L is independent of (M (1), . . . ,M (p))).

Recall that a process is strictly stationary if its finite-dimensional distributions
are shift-invariant. As in the case of the MGOU process, we can find sufficient
conditions for the existence of a strictly stationary solution of the RC-CARMA SDE
(3.3) and therefore a strictly stationary RC-CARMA process. Assume throughout
that the used norm ‖·‖ on Rp×p is submultiplicative.

Theorem 3.7. Let C = (Ct)t≥0 = (M
(1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in

Rp+1 with ΠM(1)({1}) = 0 and a semimartingale with respect to the given filtration
F. Let b′ := [b0, . . . , bp−1] ∈ Rp, q := max{j ∈ {0, . . . , p − 1} : bj 6= 0} and U =

(Ut)t≥0 be given as in (3.1). Assume that E
[
log+ ‖U1‖

]
<∞ and E

[
log+ |L1|

]
<

∞.
(a) Suppose there exists a t0 > 0 such that

E

[
log

∥∥∥∥←E (U)t0

∥∥∥∥] < 0. (3.19)
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Then
←
E (U)t converges a.s. to 0 as t → ∞, and the integral

∫
(0,t]

←
E (U)s− e dLs

converges a.s. to a finite random vector as t → ∞, denoted by
∫∞

0

←
E (U)s− e dLs.

Further, (3.3) admits a strictly stationary solution which is causal and unique in
distribution, and is achieved by choosing V0 to be independent of C and such that

V0
d
=
∫∞

0

←
E (U)s− e dLs.

(b) Conversely, if V0 can be chosen independent of C such that V is strictly

stationary, M = (M
(1)
t , . . . ,M

(p)
t )t≥0 is independent of L and L not deterministic,

then there exists a t0 > 0 such that (3.19) holds.
In both cases with this choice of V0, the RC-CARMA process given by Rt = b′Vt,

t ≥ 0, is strictly stationary, too.

Proof : (a) The assertions regarding V follow from Theorem 5.4 with Remark 5.5
(b) and Theorem 5.2 (a) in Behme and Lindner (2012).
(b) Under the assumptions made, V is irreducible by Proposition 3.4 (b). Therefore
Theorem 5.4 of Behme and Lindner (2012) applies.

That R is strictly stationary if V is, is obvious. �

4. Existence of moments and second order properties

In this section, we calculate the autocovariance function (ACVF) of an RC-
CARMA process and give a connection to the autocovariance function of a specific
CARMA process obtained by choosing A = E[U1]. Further, we give sufficient
conditions for the existence of the ACVF and the spectral density. We end this
section with an exemplary investigation of the RC-CARMA(2, 1) process. But we
start with a result which guarantees the existence of higher moments. Assume that
the used norm ‖·‖ on Rp×p is submultiplicative.

Proposition 4.1. Let R = (Rt)t≥0 be an RC-CARMA(p, q) process with parame-

ters C = (Ct)t≥0 = (M
(1)
t , . . . ,M

(p)
t , Lt)t≥0, b and strictly stationary state vector

process V = (Vt)t≥0 with V0 independent of C and C a semimartingale with respect
to the given filtration F. Assume that for κ > 0 we have for some t0 > 0

E ‖C1‖max{κ,1}
<∞ and E

∥∥∥∥←E (U)t0

∥∥∥∥κ < 1. (4.1)

Then E|R0|κ <∞, and if (4.1) holds for κ = 1,

E[R0] = b0
E[L1]

E[M
(p)
1 ]

.

Remark 4.2. The assumption (4.1) in the previous proposition actually already
implies the existence of a strictly stationary state vector process V = (Vt)t≥0, that is

unique in distribution, since E ‖C1‖max{κ,1}
<∞ obviously implies E[log+ ‖U1‖] <

∞ and E[log+ |L1|] <∞, and by Jensen’s inequality and (4.1) we further have

κE

[
log

∥∥∥∥←E (U)t0

∥∥∥∥] ≤ log E

∥∥∥∥←E (U)t0

∥∥∥∥κ < 0.

Then Theorem 3.7 applies.

Proof of Proposition 4.1: By Remark 4.2 the strictly stationary state vector process
V is unique in distribution. By Proposition 3.3 in Behme (2012) we then have
E ‖V0‖κ <∞ and hence E|R0|κ <∞.
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Now let κ = 1. Again from Behme (2012), Proposition 3.3, we know that E[U1]
is invertible and

E[V0] = −E[U1]−1e E[L1].

Observe that E[U1] is a companion matrix and it is well-known that the inverse of
this is of the form

E[U1]−1 =


−E[M

(p−1)
1 ]

E[M
(p)
1 ]

−E[M
(p−2)
1 ]

E[M
(p)
1 ]

. . . −E[M
(1)
1 ]

E[M
(p)
1 ]

− 1

E[M
(p)
1 ]

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 (4.2)

such that

E[V0] = e1
E[L1]

E[M
(p)
1 ]

,

where e1 denotes the first unit vector in Rp, and

E[R0] = E[b′V0] = b′e1
E[L1]

E[M
(p)
1 ]

= b0
E[L1]

E[M
(p)
1 ]

.

�

The following proposition gives sufficient conditions for the existence of the au-
tocovariance function of an RC-CARMA process and states its form. We denote
with ⊗ the Kronecker product and by vec the vectorizing operator which maps a
matrix H form Rp×m into Rpm stacking its columns one under another. vec−1(H)
means the inverse operation and yields H.

Proposition 4.3. Let R = (Rt)t≥0 be an RC-CARMA(p, q) process with parame-
ters C = (Ct)t≥0, b and state vector process V = (Vt)t≥0 with V0 independent of
C and C a semimartingale with respect to the given filtration F. Suppose it holds
E ‖C1‖2 <∞ and E ‖Vs‖2 <∞, then, for t ≥ 0, we have

Cov(Rt+h, Rt) = b′ehE[U1] Cov(Vt)b ∀h ≥ 0,

where Cov(Vt) = E[VtV
′
t ]−E[Vt]E[V ′t ] denotes the covariance matrix of Vt.

In particular, if V is strictly stationary, (4.1) holds for κ = 2 and we denote

D = E[U1]⊗ I + I ⊗E[U1] + E[U1 ⊗ U1]−E[U1]⊗E[U1], (4.3)

then all eigenvalues of D have strictly negative real parts and the matrix

F =

∫ ∞
0

∫ s

0

euD(e(s−u)(E[U1]⊗I) + e(s−u)(I⊗E[U1])) duds

is finite. Further, if E[L1] = 0, we obtain

Cov(Rt+h, Rt) = b′ehE[U1] vec−1(−D−1ep2) E(L2
1)b,

where ep2 denotes the (p2)th-unit vector in Rp2 , and if M = (M
(1)
t , . . . ,M

(p)
t )t≥0

and L are independent, we obtain

Cov(Rt+h, Rt)

= b′ehE[U1]

(
vec−1

(
−D−1ep2Var(L1) + Fep2(E[L1])2

)
− e1e

′
1

(
E[L1]

E[M
(p)
1 ]

)2
)

b.
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Proof : This follows immediately from Proposition 3.4 and the subsequent remark
in Behme (2012), by observing that

vec−1((E[U1]⊗E[U1])−1vec(E[eL1]E[eL1]′)) = E[U1]−1E[eL1]E[eL1]′(E[U1]−1)′

= e1e
′
1

(
E[L1]

E[M
(p)
1 ]

)2

is obtained by (4.2), and the properties of the vectorizing and the Kronecker prod-
uct operations. �

The following is Remark 3.5 (a) in Behme (2012) for our purposes.

Remark 4.4. Let C = (Ct)t≥0 = (M
(1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in Rp+1

with E ‖C1‖2 < ∞ satisfying ΠM(1)({1}) = 0 and U = (Ut)t≥0 a Lévy process in
Rp×p of the form (3.1). Let D be as in (4.3). Then

E

∥∥∥∥←E (U)t0

∥∥∥∥2

< 1 for some t0 > 0

if and only if

all eigenvalues of D have strictly negative real parts.

Therefore, that condition (4.1) holds for κ = 2 can be replaced by

E ‖C1‖2 <∞ and all eigenvalues of D have strictly negative real parts. (4.4)

Let R = (Rt)t≥0 be an RC-CARMA process with parameters b and C =

(M (1), . . . ,M (p), L). If E|M (1)|, . . . ,E|M (p)| <∞, we can associate to R and each
vector X0 a CARMA process S = (St)t≥0, given by (1.1) and (1.2) with A = E[U1].

Each of these processes, i.e. when X0 varies over all random variables, will be
called a CARMA process associated with the given RC-CARMA process with state
vector process (Xt)t≥0. It is then interesting to compare the autocovariance func-
tion of R with that of S provided both are strictly stationary with finite variance.

We denote with ⊕ the Kronecker sum, i.e. A⊕A = A⊗ I + I ⊗A.

Theorem 4.5. Let R = (Rt)t≥0 be an RC-CARMA(p, q) process with parameters
C = (Ct)t≥0, b and strictly stationary state vector process V = (Vt)t≥0 with V0

independent of C, and C a semimartingale with respect to the given filtration F.

Assume that (4.1) holds for κ = 2, that E[L1] = 0 and denote D̃ := E[U1]⊕E[U1].

Then E[U1] and D̃ have only eigenvalues with strictly negative real parts. Further,
X0 can be chosen independent of C and unique in distribution such that the state
vector process (Xt)t≥0 of the associated CARMA process S = (St)t≥0 becomes
strictly stationary with finite variance. Its autocovariance function can be expressed
for all t ≥ 0 as

Cov(St+h, St) = b′ehE[U1] vec−1(−D̃−1ep2) E(L2
1)b ∀h ≥ 0. (4.5)

Then the autocovariance function of S and R differ only by a multiplicative con-
stant. More precisely,

Cov(Rt+h, Rt) = Cov(St+h, St) · %RC ∀ t, h ≥ 0, (4.6)

where

%RC = 1 + e′p2BD̃
−1ep2 (4.7)
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with B = E[U1 ⊗ U1]− E[U1]⊗ E[U1]. Furthermore, if Var(R0) > 0, the autocor-
relation functions of both R and S agree, i.e.

Corr[St+h, St] = Corr[Rt+h, Rt] ∀ t, h ≥ 0. (4.8)

Proof : That E[U1] has only eigenvalues with strictly negative real parts follows
since (4.1), by Jensen’s inequality, implies∥∥∥∥E[

←
E (U)t0 ]

∥∥∥∥ ≤ E

∥∥∥∥←E (U)t0

∥∥∥∥ ≤
(

E

∥∥∥∥←E (U)t0

∥∥∥∥2
)1/2

< 1.

Hence, since E[
→
E (U)t0 ] = et0E[U1] by Proposition 3.1 in Behme (2012) we obtain

by the submultiplicativity of the norm∥∥∥ent0E[U1]
∥∥∥ ≤ ∥∥∥et0E[U1]

∥∥∥n ≤ (E

∥∥∥∥→E (U)t0

∥∥∥∥2)n/2
→ 0, n→∞,

so that all eigenvalues of E[U1] have strictly negative real parts (e.g. Proposition

11.8.2 in Bernstein, 2009). That then also D̃ has only eigenvalues with strictly
negative real parts follows by Fact 11.17.11 of Bernstein (2009).

That X admits a strictly stationary solution which is unique in distribution with
finite variance and X0 independent of C under the given conditions, is well-known
(e.g. Brockwell, 2001a) or follows alternatively from Remark 4.2. (4.5) follows from
Proposition 4.3. (4.8) is clearly true as long as (4.6) holds and Var(R0) 6= 0.

To show that (4.6) is indeed true, we recognize first that the covariance of the
CARMA process S and the RC-CARMA process R differ only in the matrices D

as defined in (4.3) and D̃. So, it is enough to show that

x%RC = x̃

where x := D−1ep2 and x̃ := D̃−1ep2 and %RC is defined by (4.7).

Since both D and D̃, under the assumptions made, are invertible, x and x̃ are
well-defined. Further, we have that

D = D̃ + E[U1 ⊗ U1]−E[U1]⊗E[U1] =: D̃ +B,

where the matrix B = (bi,j)i,j=1,...,p2 does only have values different from zero in
the last row. The latter can be seen due to the form of the matrix U1 by

E[U1 ⊗ U1]=


0p E[U1] 0p . . . 0p
0p 0p E[U1] . . . 0p
...

...
...

. . .
...

0p 0p 0p . . . E[U1]

−E[M
(p)
1 U1] −E[M

(p−1)
1 U1] −E[M

(p−2)
1 U1] . . . −E[M

(1)
1 U1]

,
and

E[U1]⊗E[U1] =
0p E[U1] 0p . . . 0p
0p 0p E[U1] . . . 0p
...

...
...

. . .
...

0p 0p 0p . . . E[U1]

−E[M
(p)
1 ]E[U1] −E[M

(p−1)
1 ]E[U1] −E[M

(p−2)
1 ]E[U1] . . . −E[M

(1)
1 ]E[U1]

.
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Then

ep2 = D̃x̃ = (D −B)x̃ = Dx̃−
p2∑
i=1

bp2,ix̃iep2

such that

Dx̃ =

1 +

p2∑
i=1

bp2,ix̃i

 ep2 = (1 + (e′p2B)D̃−1ep2)ep2 = %RCep2 .

Hence, x̃ = %RCD
−1ep2 = %RCx. �

The following two propositions give handy sufficient conditions for (4.4) and
therefore also for the existence of a strictly stationary solution by Remark 4.2.

Proposition 4.6. Suppose that E ‖C1‖2 <∞ and that E[U1] has only eigenvalues

with strictly negative real parts. Denote D̃ := E[U1]⊕E[U1], and B := E[U1⊗U1]−
E[U1]⊗E[U1] = (bi,j)i,j=1,...,p2 with bi,j = 0 for all i 6= p2 and all j = 1, . . . , p2 and

bp2,p(k−1)+j = Cov(M
(p−k+1)
1 ,M

(p−j+1)
1 ) for k, j = 1, . . . , p. Then the minimal

singular value σmin(D̃ ⊕ D̃), which is the square root of the minimal eigenvalue of

(D̃ ⊕ D̃)(D̃ ⊕ D̃)′, is strictly positive, and if
p∑

i,j=1

[Cov(M
(i)
1 ,M

(j)
1 )]2 <

1

4
σmin(D̃ ⊕ D̃)2, (4.9)

then (4.4) applies.

Proof : Assume that E[U1] has only eigenvalues with strictly negative real parts.

Then so does D̃ = E[U1] ⊕ E[U1] by Fact 11.17.11 of Bernstein (2009) and hence

also D̃ ⊕ D̃. In particular, D̃ ⊕ D̃ is invertible so that its minimal singular value

is strictly positive. By Fact 11.18.17 of Bernstein (2009), the sum D = D̃ +B has

only eigenvalues with strictly negative real parts if ‖B‖F < 1/2σmin(D̃⊕ D̃), where
‖·‖F denotes the Frobenius norm. Due to the form of B, we see immediately that

‖B‖2F =
∑p2

j=1 b
2
p2,j , hence (4.9). �

Let us denote with ‖A‖1 the column sum and with ‖A‖∞ the row sum norm of a

matrix A, respectively. Further, κ1(A) =‖A‖1
∥∥A−1

∥∥
1

and κ∞(A) =‖A‖∞
∥∥A−1

∥∥
∞

denote the condition number of an invertible A with respect to ‖·‖1 and ‖·‖∞,
respectively.

Proposition 4.7. Suppose that E ‖C1‖2 < ∞ and that E[U1] has only pairwise
distinct eigenvalues with strictly negative real parts, which we denote by µ1, . . . , µp.

Let D̃ and B be as in Proposition 4.6, denote

S :=


1 . . . 1
µ1 . . . µp
...

. . .
...

µp−1
1 . . . µp−1

p

 , Λ := diag(µ1, . . . , µp),

and by spec(D̃) the set of all eigenvalues of D̃. Then E[U1] and D̃ are diagonaliz-

able, more precisely S−1E[U1]S = Λ and (S−1 ⊗ S−1)D̃(S ⊗ S) = Λ⊕ Λ. Further,
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if

(a) κ1(S)2 · max
i,j=1,...,p

|Cov(M
(i)
1 ,M

(j)
1 )| < min

λ∈spec(D̃)
|Re(λ)|, or

(b) κ∞(S)2 ·
p∑

i,j=1

|Cov(M
(i)
1 ,M

(j)
1 )| < min

λ∈spec(D̃)
|Re(λ)|,

then (4.4) applies.

Proof : That E[U1] is diagonalizable and that S−1E[U1]S = Λ under the assumption
of pairwise distinct eigenvalues, is well-known, see, for example, Fact 5.16.4 in
Bernstein (2009). Then

(S−1 ⊗ S−1)D̃(S ⊗ S) = (S−1 ⊗ S−1)(E[U1]⊗ I + I ⊗E[U1])(S ⊗ S)

= S−1E[U1]S ⊗ S−1S + S−1S ⊗ S−1E[U1]S

= Λ⊗ I + I ⊗ Λ = Λ⊕ Λ,

so that D̃ is diagonalizable and has only eigenvalues with strictly negative real
parts. Let r ∈ {1,∞}. By the Theorem of Bauer-Fike (see Theorem 7.2.2 in

Golub and Van Loan, 1996) we have for µ being an eigenvalue of D = D̃ +B that
minλ∈spec(D̃) |λ− µ| ≤ κr(S ⊗ S) ‖B‖r. In particular, if

κr(S ⊗ S) ‖B‖r < min
λ∈spec(D̃)

|Reλ|,

then D can only have eigenvalues with strictly negative real parts. Observe that
by Fact 9.9.61 in Bernstein (2009) it holds κr(S ⊗ S) = ‖S ⊗ S‖r

∥∥S−1 ⊗ S−1
∥∥
r

=

‖S‖2r
∥∥S−1

∥∥2

r
= κr(S)2 so that the statement follows. �

Remark 4.8. (a) Proposition 4.7 can also be formulated for other natural matrix
norms corresponding to the r-norms with r ∈ [1,∞], i.e.

‖A‖r = sup
x6=0

‖Ax‖r
‖x‖r

.

(b) For r = ∞ observe that Theorem 1 in Gautschi (1962) gives estimates for
the condition number κ∞(S) when S has the form as in Proposition 4.7 which then
gives feasible conditions for (4.4) to hold.

(c) Both Proposition 4.6 and 4.7 state that, if a strictly stationary CARMA
process with finite second moments and matrix A whose eigenvalues have only
strictly negative real parts is given, then an RC-CARMA process with E[U1] = A
can be chosen to be strictly stationary with finite second moments, provided the
variances of the M (i) are sufficiently small. In other words, the CARMA matrix
may be slightly perturbed and still give a strictly stationary RC-CARMA process
with finite second moments.

Example 4.9. Consider an RC-CARMA(2, 1) process under the assumption of
Proposition 4.7. Denote with λ1 6= λ2 the eigenvalues of E[U1] with strictly nega-
tive real parts. If

κ · max
i,j=1,2

|Cov(M
(i)
1 ,M

(j)
1 )| < min

λ∈spec(D̃)
|Re(λ)|,
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where

κ =

(
(1 + max{|λ1|, |λ2|}) ·max{2, |λ1|+ |λ2|}

|λ2 − λ1|

)2

,

then D̃ +B has only eigenvalues with strictly negative real parts.

Proof : Since E[U1] is a companion matrix, we have

S =

[
1 1
λ1 λ2

]
and S−1 =

[
λ2

λ2−λ1
− 1
λ2−λ1

− λ1

λ2−λ1

1
λ2−λ1

]
.

Hence, straightforward calculations yield

κ1(S) =
(1 + max{|λ1|, |λ2|}) ·max{2, |λ1|+ |λ2|}

|λ2 − λ1|
.

Observe that κ∞(S) = κ1(S) such that Proposition 4.7 (b) gives a weaker sufficient
condition. �

Let X = (Xt)t∈R be a weakly stationary real-valued stochastic process with
E|Xt|2 < ∞ for each t ∈ R, then the autocovariance function of X with lag h is
defined by

γX(h) := Cov(Xt+h, Xt) = E[(Xt+h −E[Xt+h])(Xt −E[Xt])], h ∈ R.

and the autocorrelation function of X is

ρX(h) :=
γX(h)

γX(0)
= Corr(Xt+h, Xt), h ∈ R.

If γX : R→ R is the autocovariance function of such a process X = (Xt)t∈R with∫
R |γX(h)|dh <∞, then its Fourier transform

fX(ω) :=
1

2π

∫ ∞
−∞

e−iωhγX(h) dh, ω ∈ R,

is called the spectral density if the integral exists.
It is well-known (e.g. Brockwell, 2001a) that the spectral density of a CARMA

(p,q)-process S = (St)t≥0 of order q < p is given by

fS(ω) =
σ2

2π

|b(iω)|2

|a(iω)|2
, ω ∈ R,

with σ2 being the variance of the driving Lévy process. Under the stated conditions
of Theorem 4.5 we see that the spectral density of an RC-CARMA(p,q) process
R = (Rt)t≥0 with parameters C and b is given by

fR(ω) = fS(ω)%RC , ω ∈ R,

where fS(ω) denotes the autocovariance function of the associated CARMA process
with A = E[U1] as in Theorem 4.5 and the constant %RC is as in (4.7).

Remark 4.10. It is well-known that if S = (St)t∈R is a weakly stationary CARMA
(p, q) process, then the equidistantly sampled process S∆ = (Sn∆)n∈N0

, ∆ > 0, is a
weak ARMA(p, q′) process for some q′ < p, see e.g. Section 3 in Brockwell (2009).

Since under the conditions of Theorem 4.5 the autocovariance function of an RC-
CARMA(p, q) process R = (Rt)t≥0 differs from that of the associated CARMA(p, q)
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process only by a multiplicative constant, it follows immediately that also R∆ =
(R∆n)n∈N0

is a weakly stationary ARMA(p, q′) process for some q′ < p.

Next, we evaluate exemplarily the covariance structure of an RC-CARMA(2, 1)
process under the assumption E[L1] = 0.

Example 4.11. (Covariance of RC-CARMA(2,1))
Let R = (Rt)t≥0 be an RC-CARMA(2, 1) process with parameters C = (Ct)t≥0 =

(M
(1)
t ,M

(2)
t , Lt)t≥0, b and strictly stationary state vector process V = (Vt)t≥0. Let

V0 be independent of C and C a semimartingale with respect to the given filtration
F. Assume that E[L1] = 0, that (4.1) holds for κ = 2, and denote with S = (St)t≥0

the associated CARMA process characterized by Theorem 4.5. Then, for all t ≥ 0,

Cov(Rt+h, Rt) = Cov(St+h, St)%RC = b′ehE[U1]

[
b0

E[M
(2)
1 ]

b1

]
E[L2

1]

2E[M
(1)
1 ]

%RC (4.10)

for all h ≥ 0, where

%RC =
2E[M

(1)
1 ]E[M

(2)
1 ]

(2E[M
(1)
1 ]−Var[M

(1)
1 ])E[M

(2)
1 ]−Var[M

(2)
1 ]

.

Proof : Under the assumptions made, an application of Theorem 4.5 yields an as-
sociated CARMA process S and the first equality in (4.10). Clearly,

E[U1] =

[
0 1

−E[M
(2)
1 ] −E[M

(1)
1 ]

]
,

and the general form of Cov(Rt+h, Rt) is obtained from Proposition 4.3, i.e.

Cov(Rt+h, Rt) = b′ehE[U1] vec−1(−D−1e4) E(L2
1)b. (4.11)

Easy calculations show that

D =


0 1 1 0

−E[M
(2)
1 ] −E[M

(1)
1 ] 0 1

−E[M
(2)
1 ] 0 −E[M

(1)
1 ] 1

Var[M
(2)
1 ] η η Var[M

(1)
1 ]− 2E[M

(1)
1 ]

 ,
where η := Cov[M

(2)
1 ,M

(1)
1 ]−E[M

(2)
1 ]. Let

% =
1

(2E[M
(1)
1 ]−Var[M

(1)
1 ])E[M

(2)
1 ]−Var[M

(2)
1 ]

,

and denote y =
[
−% 0 0 −%E[M

(2)
1 ]
]′

. Then Dy = e4 such that

vec−1(−D−1e4) = vec−1

−


−%
0
0

−%E[M
(2)
1 ]


 =

[
1 0

0 E[M
(2)
1 ]

]
%.
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Summarizing,

vec−1(−D−1e4)b =

[
1

E[M
(2)
1 ]

0

0 1

] [
b0
b1

]
2E[M

(1)
1 ]E[M

(2)
1 ]

2E[M
(1)
1 ]

%

=

[
b0

E[M
(2)
1 ]

b1

]
1

2E[M
(1)
1 ]

%RC ,

and with (4.11) we get the stated shape of (4.10). �

Observe that for M (1) and M (2) being deterministic, %RC = 1, hence dividing
(4.10) by %RC gives the autocovariance function of a CARMA(2, 1) process.

Example 4.12. (Covariance of RC-CARMA(3,2))
Let R = (Rt)t≥0 be an RC-CARMA(3, 2) process with parameters C = (Ct)t≥0,
b and strictly stationary state vector process V = (Vt)t≥0. Let V0 be independent
of C and C a semimartingale with respect to the given filtration F. Assume that
E[L1] = 0 and (4.1) hold for κ = 2. Then, for all t, h ≥ 0,

Cov(Rt+h, Rt) = b′ehE[U1]


E[M

(1)
1 ]

E[M
(2)
1 ]

b0 − b2
b1

E[M
(2)
1 ]b2 − b0

 E[L2
1]

2(E[M
(1)
1 ]E[M

(2)
1 ]−E[M

(3)
1 ])

· %RC ,

where

%RC =
2(E[M

(1)
1 ]E[M

(2)
1 ]−E[M

(3)
1 ])

ξ + 2(Cov(M
(3)
1 ,M

(1)
1 )−E[M

(3)
1 ])− E[M

(1)
1 ]

E[M
(3)
1 ]

Var[M
(3)
1 ]

with ξ = (2E[M
(1)
1 ]−Var[M

(1)
1 ])E[M

(2)
1 ]−Var[M

(2)
1 ].

The proof follows by similar calculations as in Example 4.11 and is left to the
reader.

5. Simulations

We compare in this section two simulations of an RC-CARMA(2, 1) process, one
when E[U1] has only real strictly negative eigenvalues and the other when E[U1]
has complex eigenvalues with strictly negative real parts.

For our simulations we have chosen as random coefficient processes M (1), M (2)

two independent compound poisson processes, i.e. with depiction

M
(1)
t =

N
(1)
t∑
i=1

X
(1)
i and M

(2)
t =

N
(2)
t∑
i=1

X
(2)
i , t ≥ 0.

In the case of real eigenvalues we have chosen E[N
(1)
1 ] = 1.5, E[N

(2)
1 ] = 2, X

(1)
i ∼

N (1, 0.32), and X
(2)
i ∼ N (0.25, 0.22), and as driving process a standard Brownian

motion B = (Bt)t≥0. Hence, for D̃ = E[U1] ⊕ E[U1] and D = D̃ + E[U1 ⊗ U1] −
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E[U1]⊗E[U1] we have

E[U1] =

[
0 1
−1/2 −3/2

]
, D̃ =


0 1 1 0
−1/2 −3/2 0 1
−1/2 0 −3/2 1

0 −1/2 −1/2 −3

 , and

D =


0 1 1 0
−1/2 −3/2 0 1
−1/2 0 −3/2 1
0.205 −1/2 −1/2 −1.365

 .
Consequently, we have for E[U1] the eigenvalues µ1 = −1/2 and µ2 = −1, and
for D the eigenvalues λ1 ≈ −0.29, λ2 ≈ −1.29 + 1.28i, λ3 = −1.29 − 1.28i, and
λ4 = −1.5. Since all eigenvalues of D have strictly negative real parts, we obtain
the existence of a strictly stationary solution by Remark 4.2 and Remark 4.4.

Nevertheless, observe that

Var(M
(1)
1 ) + Var(M

(2)
1 ) = 1.84 6< 1

4
σmin(D̃ ⊕ D̃)2 ≈ 0.0799

showing that the condition in Proposition 4.6 is not necessary. Moreover,

κ =

(
(1 + max{|λ1|, |λ2|}) ·max{2, |λ1|+ |λ2|}

|λ2 − λ1|

)2

= 25

so that
κ · max

i=1,2
|Var(M

(i)
1 )| = 40.875 6< min

λ∈spec(D̃)
|Re(λ)| = 1,

showing that also the condition in Example 4.11 and hence in Proposition 4.7 is
not necessary.

In case of complex eigenvalues we have chosen E[N
(1)
1 ] = 2, E[N

(2)
1 ] = 7.5,

X
(1)
i ∼ N (0.5, 0.12), and X

(2)
i ∼ N (0.4, 0.052), and have left the driving process

unchanged. Then

E[U1] =

[
0 1
−3 −1

]
gives two complex-valued eigenvalues µ̃1 ≈ −0.5 + 1.66i and µ̃2 = −0.5 − 1.66i.
Also, D has just eigenvalues with strictly negative real parts. Furthermore, an
observation similar to the one above can be made showing non-necessity of the
conditions in Proposition 4.6 and 4.7.

For both the complex and the real eigenvalues case, we have simulated 10, 000, 000
observations with a mesh size k = 0.01, i.e. R0.01, R0.02, . . . , R100,000. In Figure
5.1(a) and (c) we see the corresponding plots until time 300. Plots 5.1(b) and (d)
show the corresponding autocovariance functions (ACVF).

The solid line corresponds to the model autocovariance function, the dashed one
to the sampled ACVF based on the data R0.01, . . . , R100,000, and the dotted shows
the model ACVF of the corresponding CARMA(2, 1) process. The dashed-dotted
line shows the sample ACVF based on R0.01, . . . , R100.

We see that using 10, 000, 000 observations to calculate the sample autocovari-
ance function, it nearly agrees in both cases with the model autocovariance func-
tion. Plot 1(d) shows a sinusoidal oscillation which is also in the CARMA case
characteristic for allowing complex eigenvalues and visualizes the variety of possi-
ble autocovariance functions.



242 Dirk-Philip Brandes

0 50 100 150 200 250 300

Time

-4

-3

-2

-1

0

1

2

3

4

5

6

R
C

-C
A

R
M

A
(2

,1
)

(a) Simulation with eigenvalues of E [U1] cho-

sen to be µ1 = − 1
2

and µ2 = −1.

0 2 4 6 8 10 12

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
C

V
F

model ACVF of RC-CARMA
sample ACVF based on R(0.01),...,R(100,000)
sample ACVF based on R(0.01),...,R(100)
model ACVF of CARMA

(b) ACVFs with eigenvalues of E [U1] chosen

to be µ1 = − 1
2

and µ2 = −1.

0 50 100 150 200 250 300

Time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

R
C

-C
A

R
M

A
(2

,1
)

(c) Simulation with eigenvalues of E [U1] cho-

sen to be µ̃1 ≈ −0.5 + 1.66i and µ̃2 = −0.5 −
1.66i.

0 2 4 6 8 10 12

Lag

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
A

C
V

F

model ACVF of RC-CARMA
sample ACVF based on R(0.01),...,R(100,000)
sample ACVF based on R(0.01),...,R(100)
model ACVF of CARMA

(d) ACVFs with eigenvalues of E [U1] chosen

to be µ̃1 ≈ −0.5+1.66i and µ̃2 = −0.5−1.66i.

Figure 5.1. Simulated RC-CARMA(2,1) process and ACVFs.

Figure 5.2(a) shows all simulated observations of the RC-CARMA(2, 1) process
where E[U1] has real eigenvalues. On the other hand, Figure 5.2(b) shows an
equally sized simulation of the associated CARMA(2, 1) process, i.e. with the
choice A = E[U1]. It can be seen that the RC-CARMA(2, 1) process provides larger
outliers around the between −5 and 5 concentrated band than the CARMA(2, 1)
process around its band. This may indicate possible heavy tails of RC-CARMA
processes.

We justify these observations intuitively in the following remark recalling results
on random recurrence equations.

Remark 5.1. Observe that a stationary CARMA process driven by a Brownian
motion has a normal marginal stationary distribution, in particular, it has light
tails.
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(a) Simulation of RC-CARMA(2, 1) with
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(b) Simulation of associated CARMA(2, 1)
with A = E [U1].

Figure 5.2. Simulated RC-CARMA(2,1) and CARMA(2,1) processes.

On the other hand, as a consequence of results of Kesten (1973) and Goldie
(1991), it is known that a generalized Ornstein-Uhlenbeck process and so an RC-
CARMA(1, 0) process will have Pareto tails under wide conditions, even if the
driving process is a Brownian motion, see e.g. Lindner and Maller (2005) (Theorem
4.5) or Behme (2011) (Theorem 4.1).

We henceforth expect using the multivariate results of Kesten (1973) that un-
der wide conditions the RC-CARMA process will also have Pareto tails for higher
orders. However, we leave a thorough investigation of this for forthcoming research.
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P. J. Brockwell. Lévy-driven continuous-time ARMA processes. In T. G. Andersen,
R. A. Davis, J.-P. Kreiss and T. V. Mikosch, editors, Handbook Fin. Time Series,
pages 457–480. Springer, Berin (2009).

P. J. Brockwell and A. Lindner. CARMA processes as solutions of integral equa-
tions. Statist. Probab. Lett. 107, 221–227 (2015). MR3412780.

J. L. Doob. The elementary Gaussian processes. Ann. Math. Statistics 15, 229–282
(1944). MR0010931.

W. Gautschi. On inverses of Vandermonde and confluent Vandermonde matrices.
Numer. Math. 4, 117–123 (1962). MR0139627.

C. M. Goldie. Implicit renewal theory and tails of solutions of random equations.
Ann. Appl. Probab. 1 (1), 126–166 (1991). MR1097468.

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD,
third edition (1996). MR1417720.

L. de Haan and R. L. Karandikar. Embedding a stochastic difference equation
into a continuous-time process. Stochastic Process. Appl. 32 (2), 225–235 (1989).
MR1014451.
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