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Abstract. The longest increasing subsequence of a random walk with mean zero
and finite variance is known to be of length n1/2+o(1). We show that this is not
universal for symmetric random walks. In particular, the symmetric Ultra-fat tailed
random walk has a longest increasing subsequence that is asymptotically at least
n0.690 and at most n0.815. An exponent strictly greater than 1/2 is also shown for
the symmetric stable-α distribution when α is sufficiently small.

1. Introduction

It is well known that the longest increasing subsequence (LIS) of a sequence of
n IID non-atomic random variables has length (2 + o(1))

√
n with high probability.

(see Veršik and Kerov 1977; Logan and Shepp 1977). A different model was con-
sidered by Angel et al. (2012). Let Sn :=

∑n
k=1Xk be the partial sums of random

walk with mean zero and finite variance. Angel et al. show that the LIS of the
partial sum sequence (S1, . . . , Sn) has length n1/2+o(1). They do not shed any light
on what happens when the finite variance hypothesis is removed. When the second
moment, and possibly the first, are undefined, it makes sense to consider other ways
to keep the walk from having a drift. Here we consider random walk trajectories
whose increments are symmetric about zero. We show that random walks whose
increments have fat tails will have a longer LIS than do those with finite variance.

The cleanest model in which this occurs is the so-called Ultra-fat tailed distri-
bution, which is a distribution not on R but on a non-archimedean totally ordered
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space S described in Section 2 below. There, we are able to show that the LIS
has length at least n0.69; see Theorem 2.1 below. However, the result also holds
for real random walks with fat tails, such as the symmetric stable-α when α is
sufficiently small. We also show that the LIS has length at most n0.82. Neither of
these exponents is believed to be sharp, however empirical studies suggest that the
LIS exponent for the Ultra-fat tailed distribution is roughly 0.72, so nearer to our
lower bound. Numerical evidence also suggests that for stable laws, the exponent
varies, interpolating between this and 1/2.

The organization of the rest of the paper is as follows. The next section contains
definitions, notation and preliminary facts. Section 4 proves the nβ0+o(1) lower
bound with an explicit constant β0 slightly larger than 0.69. Section 5 proves the
nβ1+o(1) upper bound, with an explicit constant β1 slightly less than 0.9. Section 6
extends the lower bound from the Ultra-fat tail case to actual fat-tailed distribu-
tions. We conclude with some further remarks and questions.

2. Definitions and results

2.1. Ultra-fat tailed distribution. We begin by defining the state space S, which is
a free Z-module with one generator x for each x ∈ (0, 1). In other words, elements
of S are finite formal linear combinations of the symbols {x : 0 < x < 1} with
coefficients in Z. There should be no confusion between the formal symbol x and
the real number x as coefficients take only integer values and are always written on
the left.

Endow S with the lexicographic order. Formally, if α =
∑
x∈F axx and β =∑

x∈G bxx, we may define this order relation by induction on the minimum length
m ∧ n of α and β as follows. For α =

∑
x∈F axx ∈ S, define its degree by |α| :=

sup{t : at 6= 0}. By convention |0| = 0. We define comparisons to 0 by α > 0 if
and only if |F | > 0 and a|α| > 0 and α < 0 if and only if −α > 0. For elements
α =

∑
x∈F axx and β =

∑
x∈G bxx, assuming |F |, |G| > 0, inductively define α > β

if and only if one of the following conditions holds.

(i) |α| = t > |β| and at > 0;
(ii) |β| = t > |α| and bt < 0;
(iii) |α| = t = |β| and at > bt;
(iv) |α| = t = |β| and at = bt and α− att > β − btt.

This defines a total order on S consistent with addition: α > β and γ ≥ δ implies
α+ γ ≥ β + δ.

2.2. Ultra-fat tailed random walk. Define F : (−1, 1)→ S by F (0) = 0 and F (x) =
sgn (x)|x| for x 6= 0. Let {Un : n ≥ 1} be an IID collection of real random variables
uniform on (−1, 1). The law of F (U1) is called the Ultra-fat tailed distribution.
Let Xn := F (Un) and Sn :=

∑n
k=1Xk, with S0 := 0. The sequence {Sn : n ≥ 0} is

called the so-called Ultra-fat tailed random walk. A sequence n1 < · · · < nk is
an increasing subsequence if Sni < Snj for all 1 ≤ i < j ≤ k. The Ultra-fat tailed
distribution has been used elsewhere, without a formal definition; see, e.g., Limic
and Pemantle (2004). The following theorem is the main result of this note.

2.3. Main result. Let {Sn} be a random walk on S with increments from the Ultra-
fat tailed distribution. Let L(t) denote the length of the LIS of (S1, . . . , St). We
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remark that, by convention, we have not allowed S0 to be an element of the LIS,
hence the increment X1 will play no role.

Theorem 2.1. There are numbers 1/2 < γ < δ < 1 such that as t→∞,

P(tγ ≤ L(t) ≤ tδ)→ 1 .

In particular, one can take γ = 0.690 and δ = 0.815.

Remark. It can be shown (see Section 7) that neither exponent is sharp.

3. Preliminary results

We look at the growth rate of various deterministic random functions going
between the time variable for the random walk and the length variable for the
corresponding LIS. Because of the proliferation of notation, we will organize by
using t and nearby letters when possible for quantities in the time domain and `
and nearby letters for quantities in the length domain. As usual, we use upper case
letters such as L and T for random quantities.

The random variables {L(t) : t ≥ 1} have already been introduced and follow
this notational scheme. For ` ≥ 1 let T (`) := inf{t : L(t) ≥ `} denote the random
time that the LIS first reaches length `. Thus L(T (`)) = ` and T (L(t)) ≤ t.

The magnitudes of the steps are the values |U1|, |U2|, . . .. Trivially, the order
type of the first t of these is uniform on all t! possible orders and independent
of the sign vector, which is also uniform on {±1}t. This allows for the usual
conditioning identities. For example, if the variable of the greatest magnitude is Uσ
then the order types of (|U1|, . . . , |Uσ−1|) and (|Uσ+1|, . . . , |Ut|) are independent and
uniform. Also immediate is the following Markov property. Construct the random
variables {Un} as the coordinate functions on the canonical space Ω := [−1, 1]∞

with normalized Lebesgue measure. Let θ : Ω→ Ω be the shift (U1, U2, U3, . . .) 7→
(U2, U3, . . .). Let Ft := σ(U1, . . . , Ut) and let τ be a stopping time with respect to
the filtration {Ft}. Then conditionally on Fτ , the sequence {Xτ+n} is distributed
as the unconditional sequence {Xn}.

This is all pretty trivial but it allows us to state two important relationships,
one sub-additive and super-additive:

L(s+ t) ≤ L(s) + L(t) ◦ θs ; (3.1)

T (`+m) ≥ T (`) + T (m) ◦ θT (`) . (3.2)

Intuitively, the first of these holds because any increasing subsequence of (S1, . . . ,
Ss+t) has at most L(s) entries in [s] and L(t) ◦ θs elements in {s + 1, . . . , s + t}.
The second holds because to get an increasing subsequence of length `+m one first
needs one of length `, and must then find one of length m among the remainder of
the sequence. These properties do not rely on the Ultra-fat tailed distribution and
hold for the LIS of any random walk.

Definition 3.1 (NBU). Say that a random variable X is new better than used
(NBU) if for every pair of positive integers a and b,

P(X ≥ a+ b) ≤ P(X ≥ a)P(X ≥ b) .

The terminology comes from reliability theory Barlow et al. (1963) and Barlow and
Proschan (1965), where the inequality rewritten as P(X ≥ a+b|X ≥ a) ≤ P(X ≥ b)
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says that a new light bulb has a better chance of surviving b units of time, than
does a light bulb that has been used for a units of time.

We recall a basic property of NBU variables.

Lemma 3.2. If the random variable X is NBU and P(X < q) = ε, then E[X] ≤ q/ε.

Proof : The NBU assumption implies that P(X ≥ kq) ≤ (1−ε)k, so X/q is stochas-
tically dominated by a Geometric Variable of mean 1/ε− 1. �

Proposition 3.3. For LIS of any random walk, each random variable L(t) is NBU.

Proof : This follows from (3.1) and (3.2). The event {L(t) ≥ a+b} is the intersection
of the events {T (a) ≤ t} and {T (b) ◦ θT (a) ≤ t − T (a)}. Because T (b) ◦ θT (a) is
independent of FT (a),

P
(
L(t) ≥ a+ b

)
= P(T (a) ≤ t) · P

(
T (b) ◦ θT (a) ≤ t− T (a)

)
≤ P(L(t) ≥ a) · P(L(t) ≥ b) .

�

Proposition 3.4. Let X be NBU with mean µ and let Y be geometric started from
zero with mean µ (that is, one less than a geometric of mean µ+ 1). Denote

an := P(X ≥ n)

An :=

∞∑
k=n

ak

gn := P(Y ≥ n) =

(
µ

1 + µ

)n
Gn :=

∞∑
k=n

gk = G0gn

where G0 = 1 + µ. Then for all n we have An ≤ Gn.

Proof : Let t be the least integer such that at < gt. Then t is at least 1 because
a0 = g0 = 1. Also t is finite unless X and Y have the same distribution because

∞∑
n=0

an =

∞∑
n=0

gn = 1 + µ .

Suppose first that n ≤ t. Then

An = 1 + µ−
n−1∑
k=0

ak ≤ 1 + µ−
n−1∑
k=0

gk = Gn .

Now suppose that n > t and assume for induction that Am ≤ Gm for all m < n.
Then using the NBU property and induction,

An =
∑
k≥n

ak ≤ at
∑
k≥n−t

ak = atAn−t ≤ gtGn−t = Gn ,

completing the induction. �
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Corollary 3.5. Let X be NBU and Y be geometric started from zero with the same
mean. Then for any convex function φ,

Eφ(X) ≤ Eφ(Y ) .

Remark: An equivalent conclusion is that X has the distribution of some condi-
tional expectation of Y .

Proof : As before, let an and An be tail probabilities for X and their tail sums.
Letting ∆h(n) denote h(n+ 1)− h(n), we sum by parts twice to obtain

Eφ(X) = φ(0) +

∞∑
n=1

∆φ(n− 1)an = φ(0) + ∆φ(0)A1 +

∞∑
n=2

∆∆φ(n− 2)An .

Similarly,

Eφ(Y ) = φ(0) + ∆φ(0)G1 +

∞∑
n=2

∆∆φ(n− 2)Gn .

Because φ is convex, ∆∆φ(k) ≥ 0 for k ≥ 0. Together with Ak ≤ Gk for all k and
A1 = G1 = µ, this proves the corollary. �

4. Proof of the lower bound

In this section we prove the lower bound in Theorem 2.1. In terms of universality,
this direction is the more interesting, as it shows the Ultra-fat tailed walk to be in
a different LIS-universality class from mean zero finite variance walks.

For 1 ≤ m < n, let L(m,n) := L(n−m)◦θm, in other words, it is the length of the
LIS of (Sm, . . . , Sn) (recall that, by convention, the LIS cannot include the initial
element, Sm). Of course L(m,n) has the same distribution as L(n−m). Define σ(n)
to be the almost surely unique k ∈ [n]\{1} such that |Uk| = max2≤j≤n |Uj |. In other
words, σ(n) is the time at which the random walk completed its largest magnitude
step among those occuring after time 1 and before time n. Let upn := {Uσ(n) >
0} denote the event that this greatest magnitude increment was positive. The
complementary event is denoted downn. On upn, one has the inequality Sj > Si
whenever j ≥ σ(n) > i. Therefore, the increasing subsequences of [n] are precisely
the unions A ∪ B where A is an increasing subsequence of [σ(n) − 1] and B is an
increasing subsequence of [n] \ [σ(n) − 1]. It follows that L(n) = L(σ(n) − 1) +
L(σ(n) − 1, n) On downn, one has Sj < Si whenever j ≥ σ(n) > i, hence the
increasing subsequences of [n] are precisely the sets that are either an increasing
subsequence of [σ(n)− 1] or of [n] \ [σ(n)− 1]. We have therefore proved:

Proposition 4.1. The sequence of random variables {L(n)} satisfies the recursion

L(n) = 1up
n

[L(σ(n)− 1) + L(σ(n)− 1, n)]

+ 1downn
max {L(σ(n)− 1), L(σ(n)− 1, n)} .

�

We will prove the lower bound in Theorem 2.1 by using the recursion to obtain
the following lower bound on EL(n).

Lemma 4.2. Let β0 be the positive solution to x + 2−1−x = 1, whose decimal
expansion begins 0.690069. Then EL(n) ≥ nβ0−o(1).
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Proof : Let an = EL(n). Note that, conditional on σ(n), the three random variables
L(σ(n)−1), L(σ(n)−1, n) and 1up

n
are all independent and distributed respectively

as L(k−1), L(n−k+1) and Bernoulli(1/2), where k = σ(n). Next, use Emax{L(k−
1), L(k − 1, n)} ≥ max{EL(k − 1),EL(k − 1, n)} = max{ak−1, an−k+1} =
amax{k−1,n−k+1} because {an} is nondecreasing. This gives

an =
1

2(n− 1)

n∑
k=2

(ak−1 + an−k+1) +
1

2(n− 1)

n∑
k=2

Emax{L(k − 1), L(n− k + 1}

≥ 1

n− 1

n−1∑
k=1

ak +
1

n− 1

n−1∑
k=dn/2e

ak

(
1− 1

2
δk,n/2

)
. (4.1)

The key observation is that for β < β0 and sufficiently large n,

nβ ≤ 1

n− 1

n−1∑
k=1

kβ +
1

n− 1

n−1∑
k=dn/2e

kβ
(

1− 1

2
δk,n/2

)
. (4.2)

Indeed, dividing (4.2) through by nβ , the right-hand side is a Riemann sum ap-
proximation for

cβ :=

∫ 1

0

xβ dx+

∫ 1

1/2

xβ dx

which evaluates to
1

β + 1

(
2− 2−β−1

)
.

As a function of β, the quantity cβ decreases as β varies over [0, 1], passing through
the value 1 at β = β0. Therefore, for β < β0, we have

1

n− 1

n−1∑
k=1

kβ +
2

n− 1

n−1∑
k=dn/2e

kβ
(

1− 1

2
δk,n/2

)
= nβ [cβ − o(1)] > nβ

provided that n > N(β), where N(β) is sufficiently large so that the o(1) term is
less than cβ − 1.

The rest is easy. Fixing β < β0, we may pick C = C(β) such that an ≥ Cnβ for
all n ≤ N(β). We claim, by induction, that this is true for all n > N(β) as well.
Indeed, assuming it to be true for n − 1, we see that the right-hand side of (4.1),
which is a lower bound for an, is at least C(β) times the right-hand side of (4.2).
Because n > N(β), we see from (4.2) that this is at least Cnβ , proving the claim.

We have shown that for all β < β0 there exists a C such that EL(n) ≥ Cnβ for
all n. This completes the proof of Lemma 4.2. �

Proof of lower bound in Theorem 2.1: Fix γ < β < β0. The preceding lemma gives
EL(n) ≥ Cnβ . By Lemma 3.2, we have P[L(n) < nγ ] ≤ nγ−β → 0. �

5. Proof of upper bound

The proof of the upper bound in Theorem 2.1 is analogous to the proof Lemma 4.2
but in the reverse direction. It reduces to the following result.

Lemma 5.1. Let β1 be the positive solution to

2

1 + β
−
∫ 1/2

0

xβ(1− x)β

xβ + (1− x)β
= 1 ,
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whose decimal expansion begins 0.814834. Then ELn ≤ nβ1+o(1).

Before proving this, we record the following lemma.

Lemma 5.2. Let X1 and X2 be independent random variables both of which are
NBU. Let a := EX1 ≤ b := EX2. Then

E(X1 ∧X2) ≥ ab

a+ b+ 1
.

Proof : Let Y1 and Y2 be independent geometric random variables (taking values
0, 1, 2, . . .) with respective means a and b. Corollary 3.5 applied to −(X1∧s) shows
that E(X1 ∧ s) ≥ E(Y1 ∧ s) for each fixed s. It follows that

E(X1 ∧X2 |X2) ≥ E(Y1 ∧X2 |X2)

and hence that E(X1 ∧ X2) ≥ E(Y1 ∧ X2). Similar reasoning shows that E(Y1 ∧
X2) ≥ E(Y1 ∧ Y2). This last quantity may be computed exactly. This is one
less than the minimum of two geometrics (started from 1) with respective success
probabilities 1/(a+ 1) and 1/(b+ 1), which means a combined success probability
of (a + b + 1)/(ab + a + b + 1). One less than the mean is ab/(a + b + 1), proving
the lemma. �

Proof of Lemma 5.1: Again let an denote EL(n). Fix n and again let σ = σ(n) de-
note the time of the largest magnitude step up to time n. The identity max{a, b} =
a+ b−min{a, b} gives

L(n) = L(σ − 1) + L(σ − 1, n)− 1downn
min{L(σ − 1), L(σ − 1, n)} . (5.1)

The random variables 1downn
, L(σ− 1) and L(σ− 1, n) are conditionally indepen-

dent given σ. Now use Lemma 5.2 with X = L(k) and Y = L(n − k) where k is
the minimum of σ − 1 and n− σ + 1. This gives

E
[
1downn

min{L(σ)− 1, L(σ − 1, n)}
]
≥ 1− o(1)

2

EL(k) · EL(n− k)

E[L(k) + L(n− k)]

where the o(1) term is uniform in k as n→∞, coming from the ratio of a+ b+ 1
and a+ b when a = EL(k) and b = EL(n−k). Plugging this in to (5.1) after taking
expectations gives

an ≤
2

n− 1

n∑
k=2

ak −
2

n− 1

bn/2c∑
k=2

1− o(1)

2

EL(k) · EL(n− k)

E[L(k) + L(n− k)]
. (5.2)

Again we play the trick of replacing ak by kβ and approximating the sum by an
integral. Pulling out a factor of nβ , the right hand side becomes

nβ

[
2

∫ 1

0

xβ dx−
∫ 1/2

0

xβ(1− x)β

xβ + (1− x)β

]
dx+ o(1) . (5.3)

The expression (5.3) is decreasing on [0, 1] and passes through the value 1 at β1.
Now fix β > β1, let N(β) be large enough so that (5.3) is less than nβ for all
n ≥ N(β). Choosing C so that an ≤ Cnβ for n ≤ N(β), the integral approximation
then shows by induction that an ≤ Cnβ for all n, finishing the proof of Lemma 5.1.
Invoking Markov’s inequality then ayields the upper bound in Theorem 2.1. �
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6. Real random walks

For whose who don’t accept the Ultra-fat tailed distribution as a true random
walk, we include the following result.

Theorem 6.1. For any γ < β0 there are real α,C > 0 such that the length L(n)
of the LIS up to time n of the symmetric stable walk with index α has expectation
at least Cnγ .

We begin with a lemma.

Lemma 6.2. Fix any index α ∈ (0, 2). Let ˆ̀(n) = ˆ̀
α(n) denote the median of L(n)

for the symmetric stable walk of index α. Then the family {L(n)/ˆ̀(n) : n ≥ 1} is
uniformly integrable. In particular,

E

[
L(n)

ˆ̀(n)
1A

]
≤ h(P(A))

for some function h with limε↓0 h(ε) = 0.

Proof : It suffices to show that L(n)/(ˆ̀(n) + 1) has uniform exponential tails. Sub-
additivity (3.1) holds for any random walk, implying for any integer k the inequality

P(L(n)/(ˆ̀(n) + 1) ≥ k) ≤ P(L(n) ≥ ˆ̀(n) + 1)k ≤ (1/2)k. �

Proof of Theorem 6.1: Let Wn := max{|Xk| : 1 ≤ k ≤ n}, let σn be the almost
surely unique argmax , i.e., Wn = |Xσn |, and let Zn :=

∑n
k=1 |Xk|. Let up′n be the

event that upn occurs and Wn > Zn−Wn. On up′n, the recursion in Proposition 4.1
is satisfied at n. �

Lemma 6.3.
Wn

Zn
→ 1 as α ↓ 0, uniformly in n . (6.1)

Consequently, P(upn \ up′n)→ 0 as α→ 0, uniformly in n.

Proof of Theorem 6.1 from Lemma 6.3: On downn, the inequality is favorable: we
can still choose to use only the longer segment, hence EL(n) ≥ EL[ max{σ(n) −
1, n− σ(n) + 1} ]. On upn the inequality goes the wrong way, but the difference is
bounded above by (L(σ(n)−1)+L(σ(n)−1, n))(1up

n
−1up′

n
). Taking expectations,

ELn ≥
1

n− 1

n−1∑
k=1

ELk +
1

n− 1

n−1∑
k=dn/2e

ELk

− E
(
L(σ(n)− 1) + L(σ(n)− 1, n)

)
(1up

n
− 1up′

n
) .

The subtracted term E
(
L(σ(n) − 1) + L(σ(n) − 1, n)

)
(1up

n
− 1up′

n
) is o(ˆ̀(n))

by (6.1) and Lemma 6.2. The approximation by Riemann sum and the resulting
inequality then finish the proof as before. �

Remark. This lemma is the only place we use specific properties of the step dis-
tribution, other than symmetry. The conclusion of the theorem will therefore hold
for any symmetric distribution satisfying (6.1). There are many more extreme dis-
tributions, such as Z = ReX where X is Cauchy and R is Rademacher, for which
the ratio of the greatest of n picks to the sum of the magnitudes of the other n− 1
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goes to infinity in probability. For such distributions, the conclusion holds for all
γ < β0.

Proof of Lemma 6.3: It will be convenient to construct random walk steps {X(α)
n }

simultaneously for all n ≥ 1 and α ∈ (0, 1), such that for fixed α, the collection

{X(α)
n } is IID symmetric stable-α. To do so, let B denote the Borel sets of R and

choose a probability space (Ω,F ,P) supporting an IID sequence of Poisson point
processes Nn : Ω×B → Z+ with intensity |x|−2. Mapping each point x to its signed
1/α power x(1/α) := sgn (x)·|x|1/α produces a Poisson process of intensity c|x|−1−α.
Recall (see, e.g., Durrett 2010, Chapter 3, Section 7) that the sum

∫
x dN(ω, ·)(x)

of ordinates of a Poisson process with intensity |x|−1−α is a.s. absolutely convergent
for α ∈ (0, 1) and has the law of a symmetric stable-α. Therefore, the construction
is completed by defining

X(α)
n :=

∫
x(1/α) dNn(ω, ·)(x) . (6.2)

Let Mn denote the maximum magnitude of a point in the support of the random

measure Ξn :=
∑n
k=1Nk. The most that either W

(α)
n or Z

(α)
n can differ from M

1/α
n

is the sum of the 1/α powers of all other magnitudes of points in Ξn. Thus,∣∣∣∣∣W (α)
n

M
1/α
n

− 1

∣∣∣∣∣ ≤
∫ (

|x|
Mn

)1/α

dΞ∗n(x) (6.3)

∣∣∣∣∣ Z(α)
n

M
1/α
n

− 1

∣∣∣∣∣ ≤
∫ (

|x|
Mn

)1/α

dΞ∗n(x) (6.4)

where Ξ∗n is Ξn without the atom at ±Mn. The point process Ξn is a scaled copy
of the process Ξ1 and the same is true of Ξ∗n and Ξ∗1. It follows that the law of the
self-scaled point process M−1n Ξn is the same for all n. Consequently, the law of the
random integral on the right-hand side of (6.3) and (6.4) does not depend on n.

For fixed sample point ω and fixed α ∈ (0, 1), the atoms x of Ξ∗n(ω, ·) are ab-
solutely summable and each has maximum modulus less than Mn. Hence, each
(|x|/Mn)1/α goes to zero as α ↓ 0. By dominated convergence, the common right-
hand side of (6.3) and (6.4) goes to zero. Pointwise convergence implies convergence
in probability; because the law of the right-hand side of (6.3) and (6.4) is indepen-

dent of n, the convergence is uniform in n. Thus, uniformly in n, both Z
(α)
n /M

1/α
n

and W
(α)
n /M1/α converge in probability to 1, implying (6.1). �

7. Further remarks and questions

One natural question is to prove that the exponent lim logL(n)/ log n exists.
Another is whether we can obtain better bounds on the exponent by finding a

functional form for the distribution which yield an inequality when passed through
the recursion.

Neither exponent β0 nor β1 is sharp. The proof of

lim inf
logEL(n)

log n
≥ β0

in fact computes the correct exponent, namely β0, for the length of the greedy
increasing subsequence. The GIS is defined by splitting the sequence at the location
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σ of the maximum step, and, if the step is a downward step, throwing away the
smaller interval rather than the interval with the shorter LIS. The length Zn of the
greedy increasing subsequence obeys the recursion of Proposition 4.1 but with the
max taken on the inside. This seems likely to give an exponent not too far from
the correct exponent, but it gives up a non-negligible amount in the recursion and
cannot be sharp.

The proof of

lim sup
logEL(n)

log n
≤ β1

does not, as far as we know compute anything natural. This bound could be
improved by finding the correct function φ(n, k) that computes a better lower bound
on Emin{L(k), L(n − k)}. Lemma 5.2 is best possible assuming only the NBU
property, as the geometric random variable is the extreme case. However, we know
more about L(k). For example, when j and k/j are integers then

P(L(k) < εEL(k)) ≤ P(L(k/j) < εEL(k))j .

If EL(j) = jβ+o(1) then taking choosing j so that ε = cj−β makes P(L(k/j) <
εEL(k)) < 1/2 and results in

P(L(k) < εEL(k)) ≤ 2−ε
(1+o(1))/β

.

The lower tails on L(k) are thus expected to be very small; this ought to lead to
a better lower bound on EL(k) ∧ L(n− k), hence a better exponent in Lemma 5.1
and in Theorem 2.1.

References

O. Angel, R. Balka and Y. Peres. Increasing subsequences of random walks. ArXiv
Mathematics e-prints (2012). arXiv: 1407.2860.

R. E. Barlow, A. W. Marshall and F. Proschan. Properties of probability distri-
butions with monotone hazard rate. Ann. Math. Statist. 34, 375–389 (1963).
MR0171328.

R. E. Barlow and F. Proschan. Mathematical theory of reliability. With contribu-
tions by Larry C. Hunter. The SIAM Series in Applied Mathematics. John Wiley
& Sons, Inc., New York-London-Sydney (1965). MR0195566.

R. Durrett. Probability: theory and examples, volume 31 of Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
fourth edition (2010). ISBN 978-0-521-76539-8. MR2722836.

V. Limic and R. Pemantle. More rigorous results on the Kauffman-Levin model of
evolution. Ann. Probab. 32 (3A), 2149–2178 (2004). MR2073188.

B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux.
Advances in Math. 26 (2), 206–222 (1977). MR1417317.
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