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Abstract. We consider the approximation of a convolution of possibly different
probability measures by (compound) Poisson distributions and also by related
signed measures of higher order. We present new total variation bounds having
a better structure than those from the literature. A numerical example illustrates
the usefulness of the bounds, and an application in the Poisson process approxi-
mation is given. The proofs use arguments from Kerstan (1964) and Roos (1999b)
in combination with new smoothness inequalities, which could be of independent
interest.

1. Introduction

1.1. Aim of the paper. Nowadays, there are numerous results in the (compound)
Poisson approximation of convolutions of probability distributions (cf. Arak and
Zăıtsev, 1986; Barbour et al., 1992). However, it turned out that the investigation
in the multidimensional case is somewhat difficult. Even in the simple case of
Poisson approximation of the generalized multinomial distribution, the correct order
of approximation is not exactly known. Indeed, to the best of our knowledge, the
literature does not contain any lower and upper total variation bounds differing
only by an absolute constant factor. The problem here is that not only the number
of convolution factors but also the dimension can be arbitrarily large. But there
are useful approximation results, see, e.g., Franken (1963), U. Herrmann (1965b),
Deheuvels and Pfeifer (1988), Roos (1999b), Barbour (2005). In this paper, we
show how some bounds from Roos (1999b) can be further substantially improved.
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We also indicate how these improved bounds in combination with ideas in Roos
(2007) can be useful in the compound Poisson approximation.

The paper is organized as follows. In the next three subsections, we explain the
notation, comment on the method used, give a review of some results from the
literature and discuss the benefits of some result of the present paper. Sections 2
and 3 are devoted to the main results and an application in the Poisson process
approximation. In Section 4, we present some auxiliary norm estimates including
smoothness inequalities as well as the proofs of the results.

1.2. Notation. In what follows, let (X,+,A) be a measurable Abelian semigroup
with zero element, that is, (X,+) is a commutative semigroup with identity el-
ement 0 and A is a σ-algebra of subsets of X such that the mapping X × X 3
(x, y) 7→ x + y ∈ X from (X × X,A ⊗ A) to (X,A) is measurable. In particular
this implies that, for arbitrary y ∈ X, the mapping X 3 x 7→ x + y ∈ X is measur-
able as well. The approach used in this paper requires a measure theoretic setting.
Random variables are rarely needed or used. Let F (resp. M) be the set of all
probability distributions (resp. finite signed measures) on (X,A). Products and
powers of finite signed measures inM are defined in the convolution sense, that is,
for V,W ∈M and A ∈ A, we write

VW (A) =

∫
X

V ({y ∈ X |x+ y ∈ A}) dW (x).

Empty products and powers of signed measures in M are defined to be δ0, where
δx is the Dirac measure at point x ∈ X. Let V = V +−V − denote the Hahn-Jordan
decomposition of V ∈ M and let |V | = V + + V − be its total variation measure.
The total variation norm of V is defined by ‖V ‖ = |V |(X). We note that the
total variation distance between two finite signed measures V,W ∈ M is usually
defined by dTV(V,W ) = supA∈A|V (A) −W (A)|. However, this distance is rarely
needed or used here, since dTV(V,W ) = 1

2‖V −W‖ provided that V (X) = W (X),
which in concrete situations is often the case. With the usual operations of real
scalar multiplication, addition, together with convolution and the total variation
norm, M is a real commutative Banach algebra with unity δ0, see for example
Section 2 in Liese (1987). For V ∈ M and a power series g(z) =

∑∞
m=0 amz

m

with am ∈ R converging absolutely for each complex z ∈ C with |z| 6 ‖V ‖, we set
g(V ) =

∑∞
m=0 amV

m ∈ M. The exponential of V ∈ M is defined by the finite
signed measure

eV = exp(V ) =

∞∑
m=0

V m

m!
∈M.

In particular, CPo(t, F ) := exp(t(F−δ0)) is the compound Poisson distribution with
parameters t ∈ [0,∞), F ∈ F . In other words, this is the distribution of the random

sum
∑N
j=1Xj , where N , Xj , (j ∈ N) are independent random variables, N has

values in Z+ := {0, 1, 2, . . . } and has Poisson distribution Po(t) := exp(t(δ1−δ0)) =
CPo(t, δ1) with mean t, whereas the X-valued Xj are identically distributed with
distribution F . We denote the counting density of Po(t) by po(·, t) : Z −→ [0, 1],

where Z is the set of integers, po(m, t) = e−t t
m

m! for m ∈ Z+ and po(m, t) = 0
otherwise. If F and G are non-negative measures on (X,A) and F is absolutely
continuous with respect to G, we write F � G. For a set A, let 1A(x) = 1 if x ∈ A
and 1A(x) = 0 otherwise. Set 0 = ∅ and n = {1, . . . , n} for n ∈ N = {1, 2, . . . };
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further, for n ∈ Z+, set n0 = {0, . . . , n}. For a finite set J , let |J | be the number of

its elements. Always, let 00 = 1, 1
0 = ∞ and, for k ∈ Z,

∑k−1
m=k = 0 be the empty

sum. For k ∈ N, let kk6= = {(`1, . . . , `k) ∈ kk | `i 6= `j for all i, j ∈ k with i 6= j} be
the set of all permutations on the set k. We use the standard multi-index notation:

For d ∈ N, z = (z1, . . . , zd) ∈ Cd and m = (m1, . . . ,md) ∈ Zd+, set zm =
∏d
r=1 z

mr
r ,

|m| =
∑d
r=1mr and m! =

∏d
r=1mr!.

1.3. On the method used. In our proofs, we make use of the fact that M is a real
commutative Banach algebra with unity. In the (compound) Poisson approxima-
tion such an approach has already been used by various authors. For example,
Le Cam (1960), Chen (1975a), Chen and Roos (1995), Borisov (2003) considered
measures on a general measurable Abelian group. Other authors also used Banach
algebra properties under other assumptions, see, for instance, Kerstan (1964) us-
ing a complex variable approach, Deheuvels and Pfeifer (1986) using an operator
semigroup framework, and Witte (1990) for a unification of these methods.

Our proofs are based on ideas of Kerstan (1964) in combination with arguments
given in Roos (1999b) as well as new auxiliary norm estimates. For further papers
using Kerstan’s method, see H. Herrmann (1965a), U. Herrmann (1965b), Kruopis
and Čekanavičius (2014), Upadhye and Vellaisamy (2014), and also some of the
references cited therein.

The main idea of Kerstan (1964) was to expand the difference of two univari-
ate distributions in a certain way and to estimate the norm terms involved using
the Cauchy integral formula. In Roos (1999b), the corresponding multidimensional
generalization was studied, which made it necessary to slightly modify the expan-
sion. The norm terms have been estimated using the Cauchy-Schwarz inequality
without using integrals. In the present paper, we use a different expansion (see
formulas (4.6) and (4.7) below) and use new norm term estimates using Charlier
polynomials and the Cauchy-Schwarz inequality (see Subsection 4.1).

We note that in this paper it suffices to consider measures on a measurable
Abelian semigroup with zero element rather than a measurable Abelian group. This
makes it possible to use our results in the Poisson point process approximation, see
Section 3.

1.4. Review of some known results. Let us consider some important results for
discrete distributions on (X,+,A) = (Rd,+,Bd) for d ∈ N, where Bd is the Borel
σ-Algebra over Rd. During this subsection, let n ∈ N and, for j ∈ n and r ∈ d,

pj , qj,r ∈ [0, 1] with

d∑
r=1

qj,r = 1 and λr =

n∑
j=1

pjqj,r > 0, λ =

n∑
j=1

pj =

d∑
r=1

λr,

Ur = δer , Qj =

d∑
r=1

qj,rUr, Fj = δ0 + pj(Qj − δ0),

Q =
1

λ

n∑
j=1

pjQj =
1

λ

d∑
r=1

λrUr, F =

n∏
j=1

Fj , G = CPo(λ,Q) = exp(λ(Q− δ0)).

Here, er ∈ Rd is the unit vector with 1 at position r and 0 otherwise. In what
follows, we discuss some bounds in the approximation of the distribution F by G.
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1.4.1. The one-dimensional case d = 1. Here, we have Q1 = · · · = Qn = Q = δ1,
such that F =

∏n
j=1(δ0 + pj(δ1 − δ0)) is a so-called Bernoulli convolution and

G = Po(λ) is the Poisson distribution with mean λ. In this situation, one of the
most remarkable results is the following:

1

7
min

{ 1

λ
, 1
} n∑
j=1

p2j 6 ‖F −G‖ 6 2
1− e−λ

λ

n∑
j=1

p2j 6 2 min
{ 1

λ
, 1
} n∑
j=1

p2j . (1.1)

The upper bounds of ‖F − G‖ are due to Barbour and Hall (1984, Theorem 1),
who used Stein’s method to improve results of Le Cam (1960, Theorem 2), Ker-
stan (1964, formula (1) on page 174) and Chen (1975b, formula (4.23)). In their
Theorem 2, they also showed a comparable lower bound with constant 1

16 instead

of 1
7 . The lower bound with the better constant was mentioned in Remark 3.2.2

of Barbour et al. (1992). The estimates in (1.1) depend on the behavior of the so-
called magic factor 1

λ (cf. Introduction in Barbour et al., 1992) and on the smallness

of all pj , j ∈ n, which is reflected by
∑n
j=1 p

2
j . It is easily seen that the leading

constant 2 in front of θ := 1
λ

∑n
j=1 p

2
j , resp. in front of λθ, in the upper bound (1.1)

is optimal. However, formula (32) in Roos (1999a) implies that∣∣∣‖F −G‖ −√ 2

πe
θ
∣∣∣ 6 C θ min

{
1,

1√
λ

+ θ
}
, (1.2)

where C denotes an absolute constant. In particular, this implies that ‖F −G‖ ∼√
2
πe θ as θ → 0 and λ→∞. Here, ∼ means that the quotient of both sides tends

to one. We note that the bound (1.2) is a generalization, resp. refinement, of results
of Prohorov (1953, Theorem 2) and Deheuvels and Pfeifer (1986, Theorem 1.2); see
also Barbour et al. (1992, page 2). In Čekanavičius and Roos (2006, formula (30)),
it was shown that, in the case θ < 1,

‖F −G‖ 6 3θ

2e(1−
√
θ)3/2

, (1.3)

which is an improvement of formula (10) in Roos (2001). The more general Theo-
rem 1, resp. Corollary 1, of the latter paper implies the sharpness of the constant
3
2e . In fact, we have

lim
t↓0

(
sup

1

θ
‖F −G‖

)
=

3

2e
, (1.4)

where the sup is taken over all n ∈ N, p1, . . . , pn ∈ [0, 1] such that λ =
∑n
j=1 pj > 0

and θ = 1
λ

∑n
j=1 p

2
j 6 t (or, alternatively, such that maxj∈n pj 6 t).

1.4.2. The multi-dimensional case d ∈ N. Here

F =

n∏
j=1

(
δ0 + pj

d∑
r=1

qj,r(δer − δ0)
)

is a generalized multinomial distribution, which we wish to approximate by a prod-
uct of Poisson distributions

G = CPo(λ,Q) = exp
( d∑
r=1

λr(δer − δ0)
)

=

d⊗
r=1

exp(λr(δ1 − δ0)) =

d⊗
r=1

Po(λr),
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i.e. G is a multivariate Poisson distribution with mean vector (λ1, . . . , λd). In
this context, there are two papers by Franken (1963) and U. Herrmann (1965b),
which unfortunately have been largely overlooked in subsequent publications. Both
papers considered more general convolution factors. Under our assumptions, some
of the results are as follows. Franken (1963, formula (1) on page 102) used direct
calculations to show a multivariate version of Proposition 1 of Le Cam (1960). His
inequality reads as

‖F −G‖ 6 2

n∑
j=1

p2j (1.5)

and was later rediscovered by McDonald (1980, Theorem 1) using coupling argu-
ments. We note that Franken (1963, formulas (2) and (3) on page 102) also proved
two bounds for the point metric; one of these however can, under the present as-
sumptions, be replaced by a bound of a better order, cf. Roos (1998, Theorem 2).
U. Herrmann (1965b, formula (0) on page 18) proved a bound containing a magic
factor by using the method of Kerstan (1964): If maxj∈n pj 6 1

4 , then

‖F −G‖ 6 9

n∑
j=1

p2j

( d∑
r=1

qj,r√
λr

)2
. (1.6)

Consequently, in view of (1.1), we see that, in order to obtain a new bound, which
is of the right order in the case d = 1, one could simply take the minimum of
the right-hand sides of (1.5) and (1.6). But, as is shown below, it is possible to
get bounds having a better structure concerning the minimum term. Indeed, the
following interesting bound containing a magic factor was shown by Barbour (1988,
Theorem 1) using Stein’s method:

‖F −G‖ 6 2

n∑
j=1

p2j min
{
cλ

d∑
r=1

q2j,r
λr

, 1
}
, (1.7)

where cλ = 1
2 + max{log(2λ), 0}. Unfortunately, the term cλ is logarithmically

increasing in λ and therefore the upper bound in (1.7) does not have the correct
order in the case d = 1, see (1.1).

An improvement of (1.7) without logarithmic factor was shown in Roos (1999b,
Theorem 1) using some modifications in the method of Kerstan (1964). Let

g(z) =
2ez

z2
(e−z − 1 + z) = 2

∞∑
m=2

m− 1

m!
zm−2, (z ∈ C), (1.8)

α0 =

n∑
j=1

g(2pj)p
2
j min

{ 1

23/2

d∑
r=1

q2j,r
λr

, 1
}
, β0 =

n∑
j=1

p2j min
{ d∑
r=1

q2j,r
λr

, 1
}
. (1.9)

We note that

1 6 g(x) 6 ex (x ∈ [0,∞)), max
j∈n

g(2pj) 6 g(2) 6 4.195. (1.10)

If α0 <
1
2 e , then

‖F −G‖ 6 2α0

1− 2α0 e
. (1.11)
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The following estimate is valid without any restrictions:

‖F −G‖ 6 17.6β0. (1.12)

It is clear that (1.11) or (1.12) should be preferred over (1.6), because of the term∑d
r=1

q2j,r
λr

in the representations of α0 and β0. Indeed, if qj,r = 1
d for all j ∈ n and

r ∈ d, then λ1 = · · · = λd and hence (
∑d
r=1

qj,r√
λr

)2 = 1
λ1

= d
∑d
r=1

q2j,r
λr

, so that the

difference in the order is the factor d, if we consider the first entry in the minimum
terms in (1.9). On the other hand, for a precise comparison of (1.11) with (1.6),

let us assume that maxj∈n pj 6 1
4 and that γ :=

∑n
j=1 p

2
j (
∑d
r=1

qj,r√
λr

)2 < 2
9 , such

that the right-hand side of (1.6) is smaller than the trivial bound 2. If we now use
the crude estimate 2α0 6 g( 1

2 ) γ√
2
, then, since γ 6 2

9 , (1.11) implies the bound 5
2γ,

which is better than the one in (1.6).
In the present paper, among other results, we show the following further im-

provement of (1.11) and (1.12).

Theorem 1.1. Let the function g be defined as in (1.8). Write

α1 =

n∑
j=1

g(2pj)p
2
j

d∑
r=1

qj,r min
{ qj,r

23/2λr
, 2
}
, β1 =

n∑
j=1

p2j

d∑
r=1

qj,r min
{qj,r
λr

, 1
}
.

(1.13)

If α1 <
1

23/2
, then

‖F −G‖ 6 2α1

1− 23/2α1
. (1.14)

Without any restrictions, we have

‖F −G‖ 6 15.6β1. (1.15)

Remark 1.2.

(a) Let us explain the bounds in Theorem 1.1 with the help of random vari-
ables. We assume the notation as given above. Furthermore, for j ∈ n,
let Xj = (Xj,1, . . . , Xj,d) be d-dimensional independent Bernoulli random
vectors with P (Xj = (0, . . . , 0)) = 1−pj and P (Xj = er) = pjqj,r for r ∈ d.
Let T = (T1, . . . , Td), where Tr, (r ∈ d) are independent one-dimensional
Poisson Po(λr) distributed random variables. Let PSn and PT denote the
distribution of Sn = (Sn,1, . . . , Sn,d) =

∑n
j=1Xj and T , respectively. Then

F = PSn , G = PT and

dTV(PSn , PT ) 6
α1

1− 23/2α1
, if α1 <

1

23/2
; dTV(PSn , PT ) 6 7.8β1.

(b) The structure of the term β1 is better than that of β0, since we always have
β1 6 β0 and there are examples in which β1 is significantly smaller than
β0 (see Example 2.5). In particular, (1.15) is always better than (1.12). It
should be mentioned that, if q1,r = · · · = qn,r for all r ∈ d, then λr = q1,rλ
for all r ∈ d and β1 = min{ 1λ , 1}

∑n
j=1 p

2
j = β0. Similarly, the structure

of α1 is better than that of α0. However, α1 is not always smaller than or
equal to α0, since α1 contains an additional factor 2 in the second entry of
the minimum term.

(c) In practical applications, (1.14) often leads to smaller values than (1.15).
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(d) Generally, an inequality ‖F −G‖ 6 C dcβ′1 with

β′1 =

n∑
j=1

p2j

d∑
r=1

q2j,r min
{ 1

λr
, 1
}

and absolute constants C ∈ (0,∞) and c ∈ [0, 1) cannot hold, see the
remark after Corollary 1 in Roos (1998). Consequently, there is no hope of
a bound of order β′1.

(e) In view of (1.8), we see that, if j ∈ n and pj is small, then g(2pj) ≈ 1.
Hence, if α1 and maxj∈n pj are small, then

‖F −G‖ 6 c
n∑
j=1

p2j

d∑
r=1

qj,r min
{ qj,r

23/2λr
, 2
}

with c ≈ 2. In (1.15), the factor 15.6 cannot be replaced by a constant
smaller than 2, which follows from the remark after (1.1). Relation (1.4)
implies that (1.14) cannot generally hold when the factor 1

23/2
in the rep-

resentation of α1 (see (1.13)) is replaced by a constant smaller than 3
4e .

(f) All upper bounds in (1.1), (1.3), (1.5), (1.6), (1.7), (1.11), (1.12), (1.14)
and (1.15) remain valid, if, in the definition of F and G, we generalize Ur
to Ur ∈ F for r ∈ d, which follows from the definition of the total variation
norm, see, e.g., Le Cam (1965, page 187) or Michel (1987, page 167).

The next proposition provides lower bounds in the multi-dimensional case.

Proposition 1.3. Let J ⊆ d, yj =
∑
r∈J qj,r, p̃j = pjyj for all j ∈ n and λ̃ =∑n

j=1 p̃j. Then

‖F −G‖ >
∥∥∥ n∏
j=1

(δ0 + p̃j(δ1 − δ0))− Po(λ̃)
∥∥∥ > 1

7
min

{ 1

λ̃
, 1
} n∑
j=1

p̃2j . (1.16)

In particular,

‖F −G‖ > 1

7
min

{ 1

λ
, 1
} n∑
j=1

p2j (1.17)

and

‖F −G‖ > 1

7
max
r∈d

(
min

{ 1

λr
, 1
} n∑
j=1

p2jq
2
j,r

)
. (1.18)

The second inequality in (1.16) is taken from (1.1). In the case J = d, the first
lower bound in (1.16) is the same as the one in Deheuvels and Pfeifer (1988, Remark
2.5), who used a maximal coupling for a proof. The generalization with arbitrary
J ⊆ d is shown analogously. However, in order to keep the paper self-contained,
we give a further simple proof, which avoids the coupling method, see Section 4.2.
The bounds in (1.17) and (1.18) follow from (1.16) with J = d and J = {r} for
all r ∈ d, respectively. Consequently, the lower bound in (1.1) still holds in the
multi-dimensional case. The bound in (1.18) is a slight improvement of the first
inequality in Corollary 1 of Roos (1998).

Let us compare the bounds in (1.15), (1.17) and (1.18).
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Remark 1.4. (a) Suppose that, for all r ∈ d, ar, br ∈ (0, 1] exist, such that ar 6
qj,r 6 br for all j ∈ n. Then min{ 1λ , 1}

∑n
j=1 p

2
j >

β1

η with η = maxr∈d
br
ar

.

Here, the bounds in (1.15) and (1.17) differ at most by a constant multiple
of 1

η . If q1,r = · · · = qn,r = ar = br for all r ∈ d, then η = 1. We note that,

in this case, (1.18) is worse than (1.17).
(b) Assume now that c ∈ (0, 1), κ ∈ [0,∞), d = n, pj = c

jκ , qj,r = 1{j}(r) for

all j, r ∈ n.
Let us first assume that κ = 1. Then (1.18) implies that ‖F − G‖ >

1
7 maxj∈n p

2
j = c2

7 , whereas (1.15) gives ‖F−G‖ 6 15.6
∑n
j=1 p

2
j 6 15.6π

2

6 c
2.

Hence, in this case, (1.15) and (1.18) have the same order as c → 0. The

bound (1.17) gives ‖F−G‖ > c2

7 min{ 1
c
∑n
j=1 1/j , 1}

∑n
j=1

1
j2 , which is worse

than (1.18) as n → ∞ if c is fixed. This together with (a) shows that the
bounds in (1.17) and (1.18) are not comparable in general.

Let us now consider the case κ = 0. Then (1.17) and (1.18) imply that

‖F −G‖ > 1
7 min{ 1

nc , 1}nc
2 and ‖F −G‖ > c2

7 , respectively, whereas (1.15)

gives ‖F −G‖ 6 15.6nc2, having a different order as n→∞ if c is fixed.

2. Main results

Theorem 2.1. Let d, n ∈ N and ` ∈ n0. For j ∈ n and r ∈ d, let

pj , qj,r ∈ [0, 1] with

d∑
r=1

qj,r = 1 and λr =

n∑
j=1

pjqj,r > 0, λ =

n∑
j=1

pj , Ur ∈ F ,

Qj =

d∑
r=1

qj,rUr, Q =
1

λ

n∑
j=1

pjQj , Rj = pj(Qj − δ0), Fj = δ0 +Rj ,

Vj = Fje
−Rj − δ0, F =

n∏
j=1

Fj .

For k ∈ n0, let

Mk =
∑

J⊆n: |J|=k

∏
j∈J

Vj , Hk = Mk exp(λ(Q− δ0))

and set G` =
∑`
k=0Hk. Let the function g be defined as in (1.8). Write

α1 =

n∑
j=1

g(2pj)p
2
j

d∑
r=1

qj,r min
{ qj,r

23/2λr
, 2
}
.

If α1 <
1

23/2
, then

‖F −G`‖ 6
√

(2(`+ 1))!

(`+ 1)!
2(`+1)/2 α`+1

1

1− 23/2α1
. (2.1)

Remark 2.2. Consider the assumptions of Theorem 2.1. In order to give an al-
ternative formula for G` for the first few ` ∈ n0, let Γk =

∑n
j=1 V

k
j for k ∈ N.

Then M0 = δ0 and, for k ∈ n, Newton’s identity (see Bourbaki (1990, A.IV.70,
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Lemma 4)) gives

Mk =
1

k

k∑
j=1

(−1)j−1Mk−jΓj .

In particular, if n > 3,

M1 = Γ1, M2 =
1

2
(Γ2

1 − Γ2), M3 =
1

6
(Γ3

1 − 3Γ1Γ2 + 2Γ3)

and consequently

G0 = exp(λ(Q− δ0)), G1 = (δ0 + Γ1) exp(λ(Q− δ0)),

G2 =
(
δ0 + Γ1 +

1

2
(Γ2

1 − Γ2)
)

exp(λ(Q− δ0)),

G3 =
(
δ0 + Γ1 +

1

2
(Γ2

1 − Γ2) +
1

6
(Γ3

1 − 3Γ1Γ2 + 2Γ3)
)

exp(λ(Q− δ0)).

We note that, in Roos (1999b, formulas (10), (28)), the signed measure(
δ0 −

1

2

n∑
j=1

R2
j

)
exp(λ(Q− δ0)) (2.2)

as approximation of F was used. The corresponding total variation bound has a
somewhat complicated form and is of worse order than β2

0 , the definition of which
can be found in (1.9). In comparison, our signed measure

G1 =
(
δ0 +

n∑
j=1

(Fje
−Rj − δ0)

)
exp(λ(Q− δ0))

is slightly more complicated than (2.2), but gives a total variation bound of order α2
1.

In the following result, we present approximation bounds without a singularity as
in (2.1).

Theorem 2.3. Let the notation of Theorem 2.1 be valid. Let D′1 = 3.11 and

D′k = Dk( g(2)2 )k for k ∈ N \ {1}, where Dk is defined as in Corollary 4.5 below (see

Table 2). Let h1(x) = h1,`(x) =
∑∞
k=`+1D

′
kx

k, h2(x) = h2,`(x) = 2 +
∑`
k=1D

′
kx

k

for x ∈ [0,∞). Write

β1 =

n∑
j=1

p2j

d∑
r=1

qj,r min
{qj,r
λr

, 1
}
.

Without any restrictions, we have

‖F −G`‖ 6 c` β`+1
1 , (2.3)

where c` = h2(x`)

x`+1
`

and x` ∈ (0,∞) is the unique positive solution of the equation

h1(x`) = h2(x`). In particular, we have c0 6 15.6, c1 6 113.0, c2 6 633.8, c3 6
3204.8, c4 6 15945.6.

Remark 2.4. Theorem 1.1 is a direct consequence of Theorems 2.1 and 2.3 for ` = 0.

Example 2.5. In order to compare the bounds in a numerical example, let us con-

sider the assumptions of Theorem 2.1, 2.3 with d = n = 1000 and pj,r = 10−4

|j−r|1/2+0.1
,

pj =
∑d
r=1 pj,r and qj,r =

pj,r
pj

for j, r ∈ n. This implies that β0 = 0.081578 . . . ,
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β1 = 0.022183 . . . , α0 = 0.044626 . . . , α1 = 0.023037 . . . , λ = 9.01 . . . , maxj∈n pj =
0.009521 . . . . Here α0 and β0 are as in (1.9). Table 1 below shows that, in the
approximation of F by G0 = exp(λ(Q − δ0)), the bound in (1.14) is the smallest
one. In the approximation of F by the signed measure G` for ` ∈ 4, we expect that
the accuracy increases as ` increases. Indeed, this is reflected in the bounds as well.
Furthermore, we see that here (2.1) is better than (2.3).

Table 1: Numerical comparison of the bounds in Example 2.5
Approximation by exp(λ(Q− δ0)) Approximation by signed meas. G`, (` ∈ 4)
number of formula upper bound number of formula ` upper bound

(1.5) 0.163157 (2.1) 1 0.002782
(1.6) 81.3 (2.3) 1 0.055608
(1.7) 0.163157 (2.1) 2 0.000166
(1.11) 0.117843 (2.3) 2 0.006919
(1.12) 1.435779 (2.1) 3 0.000011
(1.14) 0.049286 (2.3) 3 0.000777
(1.15) 0.346060 (2.1) 4 6.24× 10−7

(2.3) 4 0.000086

We note that the value of the bound in (1.6) exceeds by far the trivial bound 2,
which however depends on the kind of example. The lower bounds in (1.17) and
(1.18) give 0.001292 and 1.60× 10−7, respectively.

Remark 2.6. Let the notation of Theorems 2.1, 2.3 be valid and assume that there
exist pairwise disjoint sets A1, . . . , Ad ∈ A with Ur(X \ Ar) = 0 for all r ∈ d.
Let 1Ar : X −→ X be the indicator function of Ar. Then, for j ∈ n, fj :=∑d
r=1

λ
λr
qj,r1Ar is a Q-density of Qj , since, for B ∈ A, we have∫
B

fj dQ =

d∑
r=1

∫
B∩Ar

λ

λr
qj,r d

(λr
λ
Ur

)
=

d∑
r=1

qj,rUr(B) = Qj(B).

Furthermore, for c ∈ (0,∞),

d∑
r=1

qj,r min
{
c
qj,r
λr

, 1
}

=

d∑
r=1

∫
Ar

λ

λr
qj,r min

{
c
qj,r
λr

, 1
}

dQ =

∫
fj min

{
c
fj
λ
, 1
}

dQ,

such that

α1 =

n∑
j=1

g(2pj)p
2
j

∫
fj min

{ fj
23/2λ

, 2
}

dQ, β1 =

n∑
j=1

p2j

∫
fj min

{fj
λ
, 1
}

dQ.

The next result shows that Theorems 2.1 and 2.3 can be generalized using the
ideas of Remark 2.6. In fact, the Qj , (j ∈ n) are now general probability measures
and the Ur for r ∈ d are no longer needed.

Corollary 2.7. Let n ∈ N, ` ∈ n0. For j ∈ n, let pj ∈ (0, 1], Qj ∈ F , Rj =
pj(Qj − δ0), Fj = δ0 +Rj and Vj = Fje

−Rj − δ0. Set λ =
∑n
j=1 pj, F =

∏n
j=1 Fj,

Q = 1
λ

∑n
j=1 pjQj. For j ∈ n, let fj be a Radon-Nikodým density of Qj with respect

to Q, which exists since Qj � Q. For k ∈ n0, let

Mk =
∑

J⊆n: |J|=k

∏
j∈J

Vj , Hk = Mk exp(λ(Q− δ0))
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and set G` =
∑`
k=0Hk. Let the function g be defined as in (1.8). Set

α̃1 =

n∑
j=1

g(2pj)p
2
j

∫
fj min

{ fj
23/2λ

, 2
}

dQ, β̃1 =

n∑
j=1

p2j

∫
fj min

{fj
λ
, 1
}

dQ.

If α̃1 <
1

23/2
, then

‖F −G`‖ 6
√

(2(`+ 1))!

(`+ 1)!
2(`+1)/2 α̃`+1

1

1− 23/2α̃1
. (2.4)

The following bound is generally valid:

‖F −G`‖ 6 c` β̃`+1
1 , (2.5)

where the constant c` is the same as in Theorem 2.3.

Remark 2.8.

(a) Let us explain the bounds of Corollary 2.7 in the case ` = 0 with the help of
random variables. We assume the notation as in that corollary. Let {0} ∈ A
and Sn =

∑n
j=1Xj be the sum of independent X-valued random variables

X1, . . . , Xn with P (Xj 6= 0) = pj > 0 and Qj = P (Xj ∈ · |Xj 6= 0). Let

T =
∑N
m=1 Ym, where N,Ym, (m ∈ N) are independent random variables,

N is Z+-valued and has Poisson distribution Po(λ), whereas the X-valued
Ym are identically distributed with distribution Q. Then we have

dTV(PSn , PT ) 6
α̃1

1− 23/2α̃1
, if α̃1 <

1

23/2
; dTV(PSn , PT ) 6 7.8 β̃1.

(b) For ` = 0, (2.4) and (2.5) are refinements of (10) and (11) in Roos (2007).
(c) Let the assumptions of Corollary 2.7 hold. Further suppose that Qj � µ

for all j ∈ n, where µ is a σ-finite measure on (X,A). Let f̃j be a Radon-

Nikodým density of Qj with respect to µ. Then f̃ := 1
λ

∑n
j=1 pj f̃j is a µ-

density of Q. For j ∈ n, we get a Q-density of Qj by defining fj(x) =
f̃j(x)

f̃(x)

for x ∈ {f̃ > 0} and fj(x) = 0 otherwise. This gives the possibility to

evaluate α̃1 and β̃1 by using f̃j for j ∈ n, f̃ and µ. In fact,

α̃1 =

n∑
j=1

g(2pj)p
2
j

∫
{f̃>0}

f̃j min
{ f̃j

23/2λf̃
, 2
}

dµ,

β̃1 =

n∑
j=1

p2j

∫
{f̃>0}

f̃j min
{ f̃j
λf̃
, 1
}

dµ.

If, for example, (X,+,A) = (R1,+,B1), µ = �1 is the Lebesgue measure

on (R1,B1) and Qj is the exponential distribution with �1-density f̃j(x) =
tje
−tjx1(0,∞)(x) for x ∈ R, j ∈ n, tj ∈ (0,∞), then we obtain

α̃1 =

n∑
j=1

g(2pj)p
2
j

∫
(0,∞)

tje
−tjx min

{ tje
−tjx

23/2
∑n
i=1 pitie

−tix
, 2
}

d�1(x)

and a similar formula for β̃1.
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3. Application in the Poisson point process approximation

Let (S,S) be a measurable space and X = X(S,S) be the set of all point measures
of the form µ =

∑
i∈I δxi , where I ⊆ N and xi ∈ S for all i ∈ I. Further, let

A = σ((πB |B ∈ S)) be the smallest σ-algebra over X such that all the evaluation
maps πB : X −→ Z+∪{∞} =: Z+, µ 7→ µ(B) forB ∈ S are measurable with respect

to the power set 2Z+ of Z+, see e.g. Reiss (1993). The mapping s : X × X −→ X,
(µ, ν) 7→ µ + ν is measurable with respect to A ⊗ A and A. Indeed, for B ∈ S
and k ∈ Z+, we have s−1(π−1B ({k})) =

⋃
j∈k0

(π−1B ({j}) × π−1B ({k − j})) ∈ A ⊗ A
and s−1(π−1B ({∞})) = (π−1B ({∞}) × X) ∪ (X × π−1B ({∞})) ∈ A ⊗ A. Therefore,

s−1(π−1B (C)) ∈ A ⊗ A for all C ⊆ Z+. Consequently, (X,+,A) is a measurable
Abelian semigroup, where the zero element is the zero measure 0.

Let n ∈ N be fixed and Nj , Xj , Xj,k, Zj , (j ∈ n, k ∈ N) be independent random
variables, where the Xj , Xj,k are S-valued with distributions PXj = PXj,k , the Zj
are Bernoulli random variables with P (Zj = 1) = 1− P (Zj = 0) = pj ∈ (0, 1] and
theNj are Poisson Po(pj) distributed. Suppose that, for all j ∈ n, PXj has a density

h̃j with respect to a σ-finite measure ν on (S,S). Set Qj = P δXj for j ∈ n and let

λ =
∑n
j=1 pj , Q = 1

λ

∑n
j=1 pjQj , η = 1

λ

∑n
j=1 pjP

Xj and h̃ = 1
λ

∑n
j=1 pj h̃j . Then

the point process ξ =
∑n
j=1 ZjδXj has distribution F =

∏n
j=1(δ0+pj(Qj−δ0)). The

approximating G = exp(λ(Q− δ0)) is the distribution of the Poisson point process

ζ =
∑n
j=1

∑Nj
k=1 δXj,k with intensity measure Eζ = Eξ = λη with ν-density λh̃.

Proposition 3.1. Under the assumptions above, we have

dTV(P ξ, P ζ) 6
α̃1

1− 23/2α̃1
, if α̃1 <

1

23/2
; dTV(P ξ, P ζ) 6 7.8 β̃1, (3.1)

where

α̃1 =

n∑
j=1

g(2pj)p
2
j

∫
{h̃>0}

h̃j min
{ h̃j

23/2λh̃
, 2
}

dν,

β̃1 =

n∑
j=1

p2j

∫
{h̃>0}

h̃j min
{ h̃j
λh̃
, 1
}

dν,

and g is defined as in (1.8).

Remark 3.2. In the literature, there are two inequalities, which are comparable
with those of Proposition 3.1. The simple one is the Le Cam type bound

dTV(P ξ, P ζ) 6
n∑
j=1

p2j (3.2)

and is comparable to (1.5). A proof can, for example, be found in Matthes et al.
(1978, 1.11.2 on p. 81).

A more interesting bound is given in Theorem 2 of Barbour (1988), which reads
in our notation as

dTV(P ξ, P ζ) 6
cλ
λ

n∑
j=1

p2jϕ
2
j (3.3)
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with cλ = 1
2 + max{log(2λ), 0} and

ϕj = sup
C∈S: η(C)>0

P (Xj ∈ C)

η(C)
, (j ∈ n).

We note that the change of the notation is justified by Reiss (1993, Theorem 1.4.1,
p. 29). In fact, for j ∈ n, Barbour’s term δYj (· ∩ B) can be replaced with ZjδXj
where PZj = δ0 + P (Yj ∈ B)(δ1 − δ0) and PXj = P (Yj ∈ · |Yj ∈ B).

For a comparison of the bounds in (3.2) and (3.3) with those of Proposition 3.1,
we note that

h̃j 6 ϕj h̃ ν-almost everywhere for all j ∈ n. (3.4)

Indeed, if C ∈ S with η(C) > 0 then
∫
C
h̃j dν = P (Xj ∈ C) =

∫
C
P (Xj∈C)
η(C) h̃dν 6∫

C
ϕj h̃dν; on the other hand, if η(C) = 0, then

∫
C
h̃j dν = P (Xj ∈ C) = 0 =∫

C
ϕj h̃dν. Now, (3.4) follows from 3.17 in Hoffmann-Jørgensen (1994). Therefore,∫

{h̃>0}
h̃2
j

h̃
dν 6 ϕj 6 ϕ2

j . Consequently, if λ is large and the h̃j for j ∈ n are not

too different, then the bounds in (3.1) are preferable to the ones in (3.2) and (3.3).
Further results in the Poisson process approximation can, for example, be found

in Barbour et al. (1992, Chapter 10) and Reiss (1993) and in the works cited there.

4. Proofs

4.1. Auxiliary norm estimates. The proofs of the theorems require some upper
bounds of certain norm terms, which measure the smoothness of compound Poisson
distributions. In fact, in the simplest case terms like ‖(U−δ0)k exp(λ(U−δ0))‖ have
to be considered for U ∈ F and k ∈ N. For some properties of such norm terms,
see, e.g., Čekanavičius (1995), Roos (1999a, Proposition 4), Roos (2001, Lemma 3),
Čekanavičius and Roos (2006, Lemmata 3.4, 3.12) and the references cited therein.
In the following lemma, we present preliminary norm estimates, which will be used
in the proof of Lemma 4.4. A related bound can be found in Roos (2003, Lemma 2).

Lemma 4.1. Let d, k ∈ N, pj,r ∈ R for j ∈ k and r ∈ d, Λ = (λ1, . . . , λd) ∈ (0,∞)d.

For r ∈ d, let Ur ∈ F , Wr = Ur − δ0. Set Rj =
∑d
r=1 pj,rWr for j ∈ k and

G = exp(
∑d
r=1 λrWr). Then, we have∥∥∥( k∏

j=1

Rj

)
G
∥∥∥ 6 ( 1

k!

∑
r∈dk

(∑
`∈kk6=

k∏
j=1

pj,r`(j)√
λr`(j)

)2)1/2
6
√
k!

k∏
j=1

( d∑
r=1

p2j,r
λr

)1/2
. (4.1)

Proof : We need some preparations. For j ∈ N, m ∈ Z and t ∈ [0,∞), let
∆jpo(m, t) = ∆j−1po(m− 1, t)−∆j−1po(m, t), ∆0po(m, t) = po(m, t). It is well-
known that ∆jpo(m, t) = 1

tj po(m, t) Ch(j,m, t), (j,m ∈ Z+, t ∈ (0,∞)) (cf. Roos
(1999a)), where

Ch(j, x, t) =

j∑
i=0

(
j

i

)(
x

i

)
i! (−t)j−i, (j ∈ Z+, t, x ∈ R)

denotes the Charlier polynomial of degree j and
(
x
i

)
=
∏i
j=1

x−j+1
j for i ∈ Z+

and x ∈ R. Further, the Charlier polynomials are orthogonal with respect to the
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Poisson distribution (see, e.g., Chihara, 1978, formula (1.14), page 4), that is

∞∑
m=0

po(m, t) Ch(i,m, t) Ch(j,m, t) = 1{i}(j) i! t
i, (i, j ∈ Z+, t ∈ (0,∞)). (4.2)

It is easily shown that, for j ∈ Z+ and r ∈ d, we have

W j
r exp(λrWr) =

∞∑
m=0

∆jpo(m,λr)U
m
r .

For r ∈ dk and s ∈ d, let vs(r) =
∑k
j=1 1{s}(rj) and set v(r) = (v1(r), . . . , vd(r)) ∈

Zd+. Clearly, |v(r)| = k. For r ∈ dk, we obtain

k∏
j=1

Wrj =

k∏
j=1

( d∏
s=1

W
1{s}(rj)
s

)
=

d∏
s=1

W vs(r)
s

and similarly
∏k
j=1 λrj = Λv(r). Therefore, letting po(m,Λ) =

∏d
r=1 po(mr, λr) for

m ∈ Zd+, we get

∥∥∥( k∏
j=1

Rj

)
G
∥∥∥ =

∥∥∥∑
r∈dk

( k∏
j=1

pj,rj

) d∏
s=1

(W vs(r)
s exp(λsWs))

∥∥∥
=
∥∥∥∑
r∈dk

( k∏
j=1

pj,rj

) ∞∑
m∈Zd+

( d∏
s=1

(∆vs(r)po(ms, λs)U
ms
s )

)∥∥∥
=
∥∥∥ ∑
m∈Zd+

po(m,Λ)
∑
r∈dk

1

Λv(r)

( k∏
j=1

pj,rj

) d∏
s=1

(Ch(vs(r),ms, λs)U
ms
s )

∥∥∥
6
∑
m∈Zd+

po(m,Λ)
∣∣∣∑
r∈dk

1

Λv(r)

( k∏
j=1

pj,rj

) d∏
s=1

Ch(vs(r),ms, λs)
∣∣∣.

For j ∈ k and r ∈ d, set aj,r =
pj,r√
λr

. Hence, using the Cauchy-Schwarz inequality,

we obtain

∥∥∥( k∏
j=1

Rj

)
G
∥∥∥2 6 ∑

m∈Zd+

po(m,Λ)
(∑
r∈dk

1

Λv(r)

( k∏
j=1

pj,rj

) d∏
s=1

Ch(vs(r),ms, λs)
)2

=
∑
r∈dk

∑
r̃∈dk

1

Λv(r)+v(r̃)

k∏
j=1

(pj,rjpj,r̃j )

×
d∏
s=1

( ∞∑
ms=0

po(ms, λs)Ch(vs(r),ms, λs)Ch(vs(r̃),ms, λs)
)
.
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The application of (4.2) now gives

∥∥∥( k∏
j=1

Rj

)
G
∥∥∥2 6 ∑

r∈dk

∑
r̃∈dk: v(r)=v(r̃)

1

Λv(r)+v(r̃)

( k∏
j=1

(pj,rjpj,r̃j )
) d∏
s=1

(
vs(r)!λ

vs(r)
s

)

=
∑

m∈Zd+: |m|=k

m!
∑

r∈dk: v(r)=m

∑
r̃∈dk: v(r̃)=m

k∏
j=1

(aj,rjaj,r̃j )

=
∑

m∈Zd+: |m|=k

m!
( ∑
r∈dk: v(r)=m

k∏
j=1

aj,rj

)2
.

For z ∈ Cd, we have∑
m∈Zd+: |m|=k

( ∑
s∈dk: v(s)=m

1
)
zm =

∑
s∈dk

∑
m∈Zd+:m=v(s)

zv(s)

=
∑
s∈dk

k∏
j=1

zsj =
( d∑
s=1

zs

)k
=

∑
m∈Zd+: |m|=k

k!

m!
zm,

which implies that, for m ∈ Zd+ with |m| = k,∑
s∈dk: v(s)=m

1 =
k!

m!
. (4.3)

Consequently

∥∥∥( k∏
j=1

Rj

)
G
∥∥∥2 6 ∑

m∈Zd+: |m|=k

m!
( ∑
r∈dk: v(r)=m

k∏
j=1

aj,rj

)2

=
1

k!

∑
m∈Zd+: |m|=k

∑
s∈dk: v(s)=m

(v(s)!)2
( ∑
r∈dk: v(r)=v(s)

k∏
j=1

aj,rj

)2

=
1

k!

∑
s∈dk

(
v(s)!

∑
r∈dk: v(r)=v(s)

k∏
j=1

aj,rj

)2
.

For m ∈ Zd+ and r, s ∈ dk with v(r) = v(s) = m, it easily follows from the definition
of v(r) that

∑
`∈kk6=

1{r}(s`(1), . . . , s`(k)) = m!. However, a more explicit proof is

as follows: Since the left-hand side clearly only depends on m, we obtain by using
(4.3) that ∑

`∈kk6=

1{r}(s`(1), . . . , s`(k)) =
m!

k!

∑
r̃∈dk: v(r̃)=m

∑
`∈kk6=

1{r}(s`(1), . . . , s`(k))

=
m!

k!

∑
`∈kk6=

∑
r̃∈dk: v(r̃)=m

1{r̃}(s`(1), . . . , s`(k)) =
m!

k!

∑
`∈kk6=

1 = m!.
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Hence, for s ∈ dk,

v(s)!
∑

r∈dk: v(r)=v(s)

k∏
j=1

aj,rj =
∑

r∈dk: v(r)=v(s)

∑
`∈kk6=

1{r}(s`(1), . . . , s`(k))
k∏
j=1

aj,rj

=
∑
`∈kk6=

( ∑
r∈dk: v(r)=v(s)

1{r}(s`(1), . . . , s`(k))
) k∏
j=1

aj,s`(j) =
∑
`∈kk6=

k∏
j=1

aj,s`(j) .

Using the Cauchy-Schwarz inequality again,∥∥∥( k∏
j=1

Rj

)
G
∥∥∥2 6 1

k!

∑
r∈dk

(∑
`∈kk6=

k∏
j=1

aj,r`(j)

)2
=

1

k!

∑
`∈kk6=

∑
˜̀∈kk6=

∑
r∈dk

k∏
j=1

(aj,r`(j)aj,r ˜̀(j))

6
1

k!

∑
`∈kk6=

∑
˜̀∈kk6=

(∑
r∈dk

k∏
j=1

a2j,r`(j)

)1/2(∑
r∈dk

k∏
j=1

a2j,r ˜̀(j)
)1/2

=
1

k!

∑
`∈kk6=

∑
˜̀∈kk6=

k∏
j=1

(( d∑
r`(j)=1

a2j,r`(j)

)( d∑
r ˜̀(j)=1

a2j,r ˜̀(j)
))1/2

= k!

k∏
j=1

( d∑
r=1

a2j,r

)
,

which proves (4.1). �

Corollary 4.2. Under the assumptions of Lemma 4.1, we obtain, for k = 1, resp.
k = 2, that

‖R1G‖ 6
( d∑
r=1

p21,r
λr

)1/2
, (4.4)

‖R1R2G‖ 6
(1

2

∑
(r,s)∈d2

(p1,rp2,s + p1,sp2,r)
2

λrλs

)1/2
6
√

2

2∏
j=1

( d∑
r=1

p2j,r
λr

)1/2
. (4.5)

We note that (4.4) was shown in Roos (1999b, formula (18)), whereas (4.5) is a
generalization of one part of (19) of that paper. The next lemma is needed in the
proof of Lemma 4.4 below.

Lemma 4.3. Let k ∈ N, m ∈ Z2
+ with |m| 6 k. Then

(2m1 +m2)! 6 ((2k)!)m1/k((2k − 1)!)m2/(2k),

where equality holds in the case k = 1.

Proof : For ` ∈ N, we have (`!)`+1

((`+1)!)`
= `!

(`+1)`
6 1 and ((2`−1)!)`+1

((2`+1)!)`
= (2`−1)!

(2`(2`+1))`
6 1.

Therefore (`!)1/` and ((2` − 1)!)1/` are both increasing in ` ∈ N. Hence we may
assume that m2 > 1 and |m| = k. Using that `! 6 ``−1 for ` ∈ N, we get

((2m1 +m2)!)2k

((2k)!)2m1((2k − 1)!)m2
= ((2k −m2)!)m2

( (2k −m2)!

(2k)!

)2k−2m2
( (2k −m2)!

(2k − 1)!

)m2

6
(2k −m2)m2(2k−m2−1)

(2k −m2)m2(2k−2m2)(2k −m2)m2(m2−1)
= 1,

which implies the assertion. �
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Lemma 4.4. Let the assumptions of Lemma 4.1 hold and let pj =
∑d
r=1|pj,r| for

j ∈ k. Set ck = ((2k)!)1/(2k) and c′k = ((2k − 1)!)1/(4k). Then, for all u ∈ [0, 12 ]k,

v, w ∈ (0,∞)k, we have

∥∥∥( k∏
j=1

R2
j

)
G
∥∥∥ 6 k∏

j=1

(
Cj

d∑
r=1

|pj,r| min
{ |pj,r|

λr
,

4

wj
pj

})
,

where Cj = max{ck + c′k
uj
vj
, (2(1 − uj) + c′kujvj)wj} for j ∈ k. In particular, for

u = 0 and wj = ck
2 for j ∈ k, we obtain

∥∥∥( k∏
j=1

R2
j

)
G
∥∥∥ 6√(2k)!

k∏
j=1

( d∑
r=1

|pj,r| min
{ |pj,r|

λr
,

8

ck
pj

})
.

We note that ck > 8, if k > 10.

Proof : We may assume that pj > 0 for all j ∈ k; further, set

Ij =
{
r ∈ d

∣∣∣ |pj,r|
λr
6

4

wj
pj

}
, Icj = d \ Ij ,

aj =
∑
r∈Ij

p2j,r
λr

=
∑
r∈Ij

|pj,r| min
{ |pj,r|

λr
,

4

wj
pj

}
,

bj = 2
∑
r∈Icj

|pj,r| =
wj
2pj

∑
r∈Icj

|pj,r|min
{ |pj,r|

λr
,

4

wj
pj

}
,

R′j =
∑
r∈Ij

pj,rWr =

d∑
r=1

1Ij (r)pj,rWr, R′′j =
∑
r∈Icj

pj,rWr,

Yj = 2(1− uj)R′jR′′j + (R′′j )2.

In particular, we have

bj 6 2pj , aj +
2pj
wj

bj =

d∑
r=1

|pj,r| min
{ |pj,r|

λr
,

4

wj
pj

}
,

‖R′j‖ 6 2pj − bj , ‖R′′j ‖ 6 bj , ‖Yj‖ 6 2(1− uj)(2pj − bj)bj + b2j 6 4(1− uj)pjbj .

Further, for J1, J2 ⊆ k with J1∩J2 = ∅, |J1| = m1, |J2| = m2, we have m1+m2 6 k
and Lemmata 4.1 and 4.3 imply that∥∥∥(∏

j∈J1

(R′j)
2
)(∏

j∈J2

R′j

)
G
∥∥∥ 6√(2m1 +m2)!

(∏
j∈J1

aj

) ∏
j∈J2

√
aj

6
(∏
j∈J1

(ckaj)
) ∏
j∈J2

(c′k
√
aj).
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Therefore

∥∥∥( k∏
j=1

R2
j

)
G
∥∥∥ =

∥∥∥( k∏
j=1

((R′j)
2 + 2ujR

′
jR
′′
j + Yj)

)
G
∥∥∥

=
∥∥∥ ∑
m∈Z2

+: |m|6k

∑
J1⊆k: |J1|=m1

∑
J2⊆k\J1: |J2|=m2

(∏
j∈J1

(R′j)
2
)

×
(∏
j∈J2

(2ujR
′
jR
′′
j )
)( ∏

j∈k\(J1∪J2)

Yj

)
G
∥∥∥

6
∑

m∈Z2
+: |m|6k

∑
J1⊆k: |J1|=m1

∑
J2⊆k\J1: |J2|=m2

∥∥∥(∏
j∈J1

(R′j)
2
)(∏

j∈J2

R′j

)
G
∥∥∥

×
(∏
j∈J2

(2uj‖R′′j ‖)
) ∏
j∈k\(J1∪J2)

‖Yj‖

6
∑

m∈Z2
+: |m|6k

∑
J1⊆k: |J1|=m1

∑
J2⊆k\J1: |J2|=m2

(∏
j∈J1

(ckaj)
)

×
(∏
j∈J2

(2c′kuj
√
aj bj)

) ∏
j∈k\(J1∪J2)

(4(1− uj)pjbj),

giving

∥∥∥( k∏
j=1

R2
j

)
G
∥∥∥ 6 d∏

j=1

(
ckaj + 2c′kuj

√
aj
vj
b2jvj + 4(1− uj)pjbj

)
.

Using that 2
√
xy 6 x+ y for x, y ∈ [0,∞), we obtain, for j ∈ d,

ckaj + 2c′kuj

√
aj
vj
b2jvj + 4(1− uj)pjbj

6
(
ck + c′k

uj
vj

)
aj + (2(1− uj) + c′kujvj)2pjbj

6 max
{
ck + c′k

uj
vj
, (2(1− uj) + c′kujvj)wj

}(
aj +

2pj
wj

bj

)
= Cj

d∑
r=1

|pj,r| min
{ |pj,r|

λr
,

4

wj
pj

}
,

which implies the assertion. �

Corollary 4.5. Under the assumptions of Lemma 4.4, we have

∥∥∥( k∏
j=1

R2
j

)
G
∥∥∥ 6 Dk k!

k∏
j=1

( d∑
r=1

|pj,r| min
{ |pj,r|

λr
, pj

})
,

where wj = 4, (j ∈ k), if k ∈ 9, and the values of uj, vj, Dk are given in Table 2
below.
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Table 2: Explicit values of the constants Dk in Corollary 4.5
k 1 2 3 4 5

uj 0.5000 0.5000 0.5000 0.5000 0.4500
vj 0.1708 0.2574 0.3589 0.4666 0.5192
Dk 4.342 10.784 21.721 40.687 74.672

k 6 7 8 9 > 10

uj 0.3000 0.1996 0.1500 0.0500 0
vj 0.4414 0.4099 0.5002 0.4560 1

Dk 125.448 186.872 253.020 305.314

√
(2k)!

k!

Lemma 4.6. Let d ∈ N. For r ∈ d, let pr ∈ [0, 1], λr ∈ (0,∞) with λr > pr,

Ur ∈ F . We assume that p :=
∑d
r=1 pr 6 1. Let R =

∑d
r=1 pr(Ur − δ0), G =

exp(
∑d
r=1 λr(Ur − δ0)). Let u ∈ [0, 12 ], v, w ∈ (0,∞) and w0 ∈ (1,∞) be the unique

solution of f(w0) = 2
w , where f(x) = x log(1 + 1

x−1 )−1 =
∫ 1

0
t

x−t dt for x ∈ (1,∞).

Then, letting C = max{(
√

2 + u
v ) 2

w , 4(1− u) + 2uv},

‖((δ0 +R)e−R − δ0)G‖ 6 C
d∑
r=1

pr min
{
w0

pr
λr
, p
}
.

In particular, if u = 1
2 , v = 0.47248 and w = 2, then C 6 2.473 and w0 6 1.256,

giving

‖((δ0 +R)e−R − δ0)G‖ 6 3.11

d∑
r=1

pr min
{ pr
λr
, p
}
.

Proof : We may assume that pr > 0 for all r ∈ d. It is easily shown that

((δ0 +R)e−R − δ0)G = −
∫ 1

0

tR2 exp(−tR)Gdt,

where the equality holds setwise. From Lemma 4.4, we obtain for t ∈ (0, 1) that

‖R2 exp(−tR)G‖ 6 Cw
2

d∑
r=1

pr min
{ pr
λr − tpr

,
4

w
p
}
.

Consequently

‖((δ0 +R)e−R − δ0)G‖ 6 Cw
2

∫ 1

0

t

d∑
r=1

pr min
{ pr
λr − tpr

,
4

w
p
}

dt

6 C
d∑
r=1

pr min
{w

2
f
(λr
pr

)
, p
}
.

Let r ∈ d. If w
2 f(λrpr ) 6 p, then f(λrpr ) 6 2

w = f(w0), giving λr
pr
> w0, since f

is decreasing. Further, xf(x) =
∫ 1

0
t

1−t/x dt is decreasing in x ∈ (1,∞), giving
w
2 f(λrpr ) 6 w

2
pr
λr
w0f(w0) = w0

pr
λr

. On the other hand, if p 6 w
2 f(λrpr ), then f(w0) =

2
w 6

1
pf(λrpr ) 6 f(pλrpr ) and so pλrpr 6 w0, which implies that p 6 w0

pr
λr

. Therefore,

in any case min{w2 f(λrpr ), p} 6 min{w0
pr
λr
, p}. Together with the above, we obtain

the assertion. �
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4.2. Remaining proofs.

Proof of the first inequality in Proposition 1.3: Let the notation of Remark 1.2(a)
be valid. Then P (

∑
r∈J Xj,r = 1) = 1 − P (

∑
r∈J Xj,r = 0) = p̃j for j ∈ n

and
∑
r∈J λr = λ̃. Consequently

∑
r∈J Sn,r and

∑
r∈J Tr have the distributions∏n

j=1(δ0 + p̃j(δ1 − δ0)) and Po(λ̃), respectively, and hence

‖F −G‖ = 2 sup
A⊆Zd+

|P (Sn ∈ A)− P (T ∈ A)|

> 2 sup
B⊆Z+

∣∣∣P(∑
r∈J

Sn,r ∈ B
)
− P

(∑
r∈J

Tr ∈ B
)∣∣∣

= ‖P
∑
r∈J Sn,r − P

∑
r∈J Tr‖ =

∥∥∥ n∏
j=1

(δ0 + p̃j(δ1 − δ0))− Po(λ̃)
∥∥∥,

which implies the first inequality in Proposition 1.3. �

Proof of Theorem 2.1: We first note that

F =

n∏
j=1

Fj =

n∏
j=1

((Vj + δ0)eRj ) =

n∑
k=0

Hk = Gn, (4.6)

which implies that F −G` =
∑n
k=`+1Hk. For j ∈ n, we have Vj = Fje

−Rj − δ0 =

− g(−Rj)2 R2
j . Hence, for k ∈ n0,

Hk = (−1)k
∑

J⊆n: |J|=k

(∏
j∈J

g(−Rj)
2

)(∏
j∈J

R2
j

)
exp(λ(Q− δ0)). (4.7)

If k ∈ n, J ⊆ n with |J | = k, then Lemma 4.4 with u = 0, wj = 1√
2

for j ∈ J

implies that∥∥∥(∏
j∈J

R2
j

)
exp(λ(Q− δ0))

∥∥∥ 6√(2k)!
∏
j∈J

( d∑
r=1

pjqj,r min
{pjqj,r

λr
, 25/2pj

})
, (4.8)

since ((2k)!)1/(2k) >
√

2. On the other hand, for j ∈ n, ‖Rj‖ 6 2pj and therefore

‖g(−Rj)‖ =
∥∥∥2

∞∑
m=2

m− 1

m!
(−Rj)m−2

∥∥∥ 6 2

∞∑
m=2

m− 1

m!
‖Rj‖m−2 6 g(2pj). (4.9)

By (4.7), (4.8), (4.9) and the polynomial theorem, we derive for k ∈ n,

‖Hk‖ 6
∑

J⊆n: |J|=k

(∏
j∈J

‖g(−Rj)‖
2

)∥∥∥(∏
j∈J

R2
j

)
exp(λ(Q− δ0))

∥∥∥
6

√
(2k)!

2k

∑
J⊆n: |J|=k

∏
j∈J

(
g(2pj)p

2
j

d∑
r=1

qj,r min
{qj,r
λr

, 25/2
})

6

√
(2k)!

k! 2k

( n∑
j=1

g(2pj)p
2
j

d∑
r=1

qj,r min
{qj,r
λr

, 25/2
})k

=

√
(2k)!

k! 2k
(23/2 α1)k.
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It is easily shown that

√
(2k)!

k! 2k
is decreasing in k ∈ Z+. Consequently, if α1 <

1
23/2

,
then

‖F −G`‖ 6
n∑

k=`+1

‖Hk‖ 6
n∑

k=`+1

√
(2k)!

k! 2k
(23/2 α1)k

6

√
(2(`+ 1))!

(`+ 1)! 2`+1
23(`+1)/2 α`+1

1

1− 23/2α1
,

which proves (2.1). �

Proof of Theorem 2.3: We need a further bound for ‖Hk‖, (k ∈ n) in terms of β1.
Lemma 4.6 gives

‖H1‖ =
∥∥∥ n∑
j=1

((δ0 +Rj)e
−Rj − δ0) exp(λ(Q− δ0))

)∥∥∥ 6 D′1β1.
For k ∈ n \ {1}, Corollary 4.5 and the polynomial theorem imply that

‖Hk‖ 6
∑

J⊆n: |J|=k

(∏
j∈J

g(2pj)

2

)∥∥∥(∏
j∈J

R2
j

)
exp(λ(Q− δ0))

∥∥∥
6 Dk

(g(2)

2

)k
k!

∑
J⊆n: |J|=k

∏
j∈J

(
p2j

d∑
r=1

qj,r min
{qj,r
λr

, 1
})
6 D′kβ

k
1 .

Hence

‖F −G`‖ 6
∞∑

k=`+1

D′kβ
k
1 = h1(β1)

and, alternatively,

‖F −G`‖ 6 ‖F‖+ ‖G`‖ 6 2 +
∑̀
k=1

‖Hk‖ 6 2 +
∑̀
k=1

D′kβ
k
1 = h2(β1).

By the definition of D′k for k > 10, we know that h1(x) <∞ for x ∈ [0, 1
g(2) ). Fur-

ther, it is easily seen that h1(x)
h2(x)

is increasing in x ∈ [0, 1
g(2) ) with limx↑1/g(2)

h1(x)
h2(x)

=

∞. Therefore, for all ` ∈ n0, there exists a unique x` ∈ (0,∞) with h1(x`) = h2(x`).

If β1 6 x` then ‖F − G`‖ 6 h1(β1)

β`+1
1

β`+1
1 6 h1(x`)

x`+1
`

β`+1
1 = c`β

`+1
1 . If β1 > x`,

then ‖F − G`‖ 6 h2(β1)

β`+1
1

β`+1
1 6 c`β

`+1
1 . Hence, generally we have ‖F − G`‖ 6

c`β
`+1
1 . In particular, x0 ∈ (0.128316, 0.128317), x1 ∈ (0.147522, 0.147523), x2 ∈

(0.189075, 0.189076), x3 ∈ (0.215065, 0.215066), x4 ∈ (0.226773, 0.226774), which
implies the remaining part of the assertion. �

Proof of Corollary 2.7: The proof follows arguments very similar to those used in
the proofs of Theorems 1 and 2 in Roos (2007), where a comparable result was
shown, generalizing (1.11) and (1.12). The idea here is a standard approximation

procedure: In the first step, construct a new set of distributions Q̃1, . . . , Q̃n of the

form used in Theorems 2.1 and 2.3, such that all the norms ‖Qj − Q̃j‖, (j ∈ n) are

small. This also leads to corresponding new (signed) measures F̃ and G̃`. In the
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second step, use the properties of the total variation distance to show that ‖F − F̃‖
and ‖G̃` − G`‖ are both small. Finally, use Theorems 2.1 and 2.3 to estimate

‖F̃ − G̃`‖ and prove that the resulting bounds are close to the bounds in (2.4) and
(2.5). We omit the details. �

Proof of Proposition 3.1: Under the assumptions of Section 3, let τ : S −→ X,
x 7→ δx. For arbitrary B ∈ S, we then have πB ◦ τ = 1B and B = τ−1(π−1B ({1})),
and hence {τ−1(A) |A ∈ A} = S. In particular, τ is S-A-measurable. Let µ =
ντ be the image measure of ν under τ defined on (X,A). For B ∈ S, we have
{δx |x ∈ B} = π−1B ({1}) ∩ π−1S\B({0}) ∈ A and µ({δx |x ∈ B}) = ν(B). This shows

that, since ν is σ-finite, this holds for µ as well. If A ∈ A with µ(A) = 0, then
ν(τ−1(A)) = 0, and in turn 0 = PXj (τ−1(A)) = P ((τ ◦ Xj)

−1(A)) = Qj(A) and

hence Qj � µ for all j ∈ n. Let f̃j be a Radon-Nikodým density of Qj with respect

to µ and set f̃ = 1
λ

∑n
j=1 pj f̃j . As has been observed in Remark 2.8(c), for j ∈ n,

fj =
f̃j

f̃
1{f̃>0} is a Radon-Nikodým density of Qj with respect to Q. From the

above, we get that, for each B ∈ S, a set A ∈ A exists such that B = {τ ∈ A} and
hence ∫

B

f̃j ◦ τ dν =

∫
A

f̃j dµ = Qj(A) = PXj (B) =

∫
B

h̃j dν.

Therefore f̃j ◦ τ = h̃j , f̃ ◦ τ = h̃ and fj ◦ τ =
f̃j◦τ
f̃◦τ

1{f̃◦τ>0} =
h̃j

h̃
1{h̃>0} ν-almost

everywhere. The assertion now follows from Corollary 2.7 and Remark 2.8(c) using
that

β̃1 =

n∑
j=1

p2j

∫
{f̃>0}

f̃j min
{ f̃j
λf̃
, 1
}

dµ =

n∑
j=1

p2j

∫
{h̃>0}

h̃j min
{ h̃j
λh̃
, 1
}

dν

and a similar calculation for α̃1. �
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T. V. Arak and A. Yu. Zăıtsev. Uniform limit theorems for sums of independent
random variables. Trudy Mat. Inst. Steklov. 174, 214 (1986). ISSN 0371-9685.
MR871856. English translation in Proc. Steklov Inst. Math. 1(174), viii+222 pp.
(1988).

A. D. Barbour. Stein’s method and Poisson process convergence. J. Appl.
Probab. (Special Vol. 25A), 175–184 (1988). MR974580.

A. D. Barbour. Multivariate Poisson-binomial approximation using Stein’s method.
In Stein’s method and applications, volume 5 of Lect. Notes Ser. Inst. Math. Sci.
Natl. Univ. Singap., pages 131–142. Singapore Univ. Press, Singapore (2005).
MR2205332.

A. D. Barbour and P. Hall. On the rate of Poisson convergence. Math. Proc.
Cambridge Philos. Soc. 95 (3), 473–480 (1984). MR755837.

http://www.ams.org/mathscinet-getitem?mr=MR871856
http://www.ams.org/mathscinet-getitem?mr=MR974580
http://www.ams.org/mathscinet-getitem?mr=MR2205332
http://www.ams.org/mathscinet-getitem?mr=MR755837


Multivariate and compound Poisson approximation 359

A. D. Barbour, L. Holst and S. Janson. Poisson approximation, volume 2 of Oxford
Studies in Probability. The Clarendon Press, Oxford University Press, New York
(1992). ISBN 0-19-852235-5. MR1163825.

I. S. Borisov. A remark on a theorem of R. L. Dobrushin, and couplings in the
Poisson approximation in Abelian groups. Teor. Veroyatnost. i Primenen. 48 (3),
576–583 (2003). MR2141351. English translation in Theory Probab. Appl. 48 (3),
521–528 (2004).

N. Bourbaki. Algebra. II. Chapters 4–7. Elements of Mathematics. Springer-Verlag,
Berlin (1990). ISBN 3-540-19375-8. MR1080964.

V. Čekanavičius. On the smoothing properties of generalized Poisson distributions.
Liet. Mat. Rink. 35 (2), 152–170 (1995). MR1368759. English translation in
Lithuanian Math. J. 35 (2), 121–135 (1995).
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