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Abstract. For any N ≥ 2 and α = (α1, · · · , αN+1) ∈ (0,∞)N+1, let µ
(N)
α be the

corresponding Dirichlet distribution on ∆(N) :=
{
x = (xi)1≤i≤N ∈ [0, 1]N : |x|1 :=∑

1≤i≤N xi ≤ 1
}
. We prove the Poincaré inequality

µ(N)
α (f2) ≤ 1

αN+1

∫
∆(N)

{(
1− |x|1

) N∑
n=1

xn(∂nf)2
}
µ(N)
α (dx) + µ(N)

α (f)2,

for f ∈ C1(∆(N)), and show that the constant 1
αN+1

is sharp. Consequently, the

associated diffusion process on ∆(N) converges to µ
(N)
α in L2(µ

(N)
α ) at the expo-

nentially rate αN+1. The whole spectrum of the generator is also characterized.
Moreover, the sharp Poincaré inequality is extended to the infinite-dimensional
setting, and the spectral gap of the corresponding discrete model is derived.
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1. Introduction

Let N denote the set of natural numbers. For N ∈ N and any α = (α1, · · · , αN+1)

∈ (0,∞)N+1, the Dirichlet distribution µ
(N)
α with parameter α is a probability

measure on the set

∆(N) :=
{
x = (xi)1≤i≤N ∈ [0, 1]N : |x|1 ≤ 1

}
with the density function

ρ(x1, · · · , xN ) :=
Γ(|α|1)∏

1≤i≤N+1 Γ(αi)
(1− |x|1)αN+1−1

∏
1≤i≤N

xαi−1
i , x ∈ ∆(N),

where |x|1 :=
∑

1≤i≤N |xi| for x ∈ RN . Obviously, µ
(N)
α corresponds to the distri-

bution
µ̃(N+1)
α (dx,dy) := µ(N)

α (dx)δ1−|x|1(dy)

on the space

∇(N+1) :=
{

(x, y) ∈ [0, 1]N+1 : y + |x|1 = 1
}
.

The Dirichlet distribution and its infinite-dimensional generalization arise nat-
urally in Bayesian inference as conjugate priors for categorical distribution and
infinite non-parametric discrete distributions respectively. They also arise in pop-
ulation genetics describing the distribution of allelic frequencies (see for instance
Connor and Mosimann, 1969; Johnson, 1960; Mosimann, 1962). In particular, for
a population with N + 1 allelic types, xi(1 ≤ i ≤ N + 1) stands for the relative
frequency of the i-th allele among N + 1 ones.

The Dirichlet distribution possesses many nice properties. We will use the fol-

lowing partition (or aggregation) property of µ̃
(N+1)
α for α ∈ (0,∞)N+1. Let

(X1, . . . , XN+1) have law µ̃
(N+1)
α , let A1, A2, . . . , Ak+1 be a partition of the set

{1, 2, . . . , N + 1}, and set

Yj =
∑
r∈Aj

Xr, βj =
∑
r∈Aj

αr, j = 1, . . . , k + 1.

Then (Y1, . . . , Yk+1) has law µ̃
(k+1)
β with parameters β := (β1, . . . , βk+1)∈(0,∞)k+1.

We would also like to recall the neutral property of the Dirichlet distribution. For

(X1, · · · , XN ) having law µ
(N)
α , we define

U1 = X1, Ui =
Xi

1−X1 − . . .−Xi−1
, 2 ≤ i ≤ N.

Then Ui is a beta random variable with parameters (αi, αi+1 + . . . + αN+1) and
U1, . . . , UN are independent. This leads to the following representation of the ran-

dom variable with law µ
(N)
α :

(X1, X2, . . . , XN ) =
(
U1, U2(1− U1), . . . , UN

N−1∏
i=1

(1− Ui)
)
.

A well known construction of the Dirichlet distribution is through a Pólya urn
scheme (cf. Blackwell and MacQueen, 1973). More specifically, consider an urn
containing N+1 balls of different colors labelled by 1, 2, . . . , N+1. The initial mass
of the i-colored ball is αi. Balls are drawn from the urn sequentially. The chance of a
particular colored ball being selected is proportional to the total mass of that colored
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balls inside the urn. After each selection, the ball is returned with an additional
ball of same color and mass one. The relative weight of different colored balls inside
the urn will eventually converge to a Dirichlet vector (X1, X2, . . . , XN+1).

Several diffusion processes have been proposed and studied where the stationary
distribution is the Dirichlet distribution.

Exploring the property of right neutrality, a GEM diffusion is introduced in
Feng and Wang (2007) and studied further in Feng and Wang (2016). This is
a reversible diffusion with Dirichlet distribution as the reversible measure. The
infinite-dimensional generalization of the model is also reversible and the reversible
measure is the GEM distribution (see Ewens, 2004).

The most studied diffusion model is the Wright-Fisher diffusion (see Epstein and
Mazzeo, 2010; Miclo, 2003a,b; Stannat, 2000). This is a diffusion approximation
to the Wright-Fisher Markov chain model in population genetics. The Markov
chain models the evolution of a population of individuals of finite number of dif-
ferent types. The evolution is driven by mutation (deterministic component) and
genetic drift or random sampling (random component). Each individual follows
a deterministic path of mutation. The random sampling involves the exchange of
types of any pair of individuals in the population. The involvement of every pair in
the sampling process resulted in a lot of randomness in the system. The diffusion
arises as the population size increases while the mutation and sampling rates are
scaled appropriately. It is reversible with respect to the Dirichlet distribution. Ex-
ploring the exchangeable structure embedded in the system, one is able to obtain
the Infinite-dimensional generalizations of this model including the infinitely-many-
neutral-alleles model (Ethier and Kurtz, 1981) and the Fleming-Viot process with
parent independent mutation (Fleming and Viot, 1979; Ethier and Kurtz, 1993).

In this paper, we focus on a diffusion process introduced in Jacobsen (2001,
(2.44)) (see also Bakosi and Ristorcelli, 2013), which solves the following SDE on
∆(N):

dXi(t) =
{
αi(1−|X(t)|)−αN+1Xi(t)

}
dt+

√
2(1− |X(t)|1)Xi(t) dBi(t), 1 ≤ i ≤ N,

(1.1)
where B(t) := (B1(t), · · · , BN (t)) is the d-dimensional Brownian motion.

The evolution in this model also contains a deterministic component and a ran-
dom component. For N = 1, the model is the same as the Wright-Fisher diffusion.
For N ≥ 2, the deterministic part is very similar to the mutation in the Wright-
Fisher model. But the random sampling does not involve all individual pairs.
Instead each sampling is between one individual and one fixed individual. This
clearly reduces the randomness in the system. But it will turn out that the model
possesses many features of the Wright-Fisher diffusion.

More specifically, we will show that the Markov semigroup Pαt associated to (1.1)

is symmetric in L2(µ
(N)
α ); that is,∫

∆(N)

fL(N)
α gdµ(N)

α =

∫
∆(N)

gL(N)
α fdµ(N)

α , f, g ∈ C2(RN ) (1.2)

holds for

L(N)
α (x) :=

∑
1≤n≤N

(
xn(1− |x|1)∂2

n +
{
αn(1− |x|1)− αN+1xn

}
∂n

)
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being the generator of Pαt , where ∂n := ∂
∂xn

. So, (L
(N)
α , C2(∆(N))) is closable in

L2(µ
(N)
α ) and its closure (L

(N)
α ,D(Lα)) is a negative definite self-adjoint operator.

Moreover, since

L(N)
α (fg)(x) = (fL(N)

α g + gL(N)
α f)(x) + 2(1− |x|1)

N∑
n=1

xn{(∂nf)(∂ng)}(x),

(1.2) implies the integration by parts formula

−
∫

∆(N)

fL(N)
α gdµ(N)

α =

∫
∆(N)

{
(1− |x|1)

N∑
n=1

xn{(∂nf)(∂ng)}(x)
}
µ(N)
α (dx)

=: E(N)
α (f, g), f, g ∈ C2(∆(N)).

(1.3)

Therefore, (E(N)
α , C2(∆(N))) is closable in L2(µ

(N)
α ) whose closure (E(N)

α ,D(E(N)
α ))

is a symmetric Dirichlet form on L2(µ
(N)
α ), and it is easy to see that this Dirichlet

form is associated to the Markov semigroup Pαt .

Finally, the spectral gap of L
(N)
α is characterized as

gap(L(N)
α ) = inf

{
E(N)
α (f, f) : f ∈ D(E(N)

α ), µ(N)
α (f) = 0, µ(N)

α (f2) = 1
}
.

It is known that when N = 1 we have gap(L
(N)
α ) = α1 +α2, see e.g. Stannat (2000).

So, in the following we only consider N ≥ 2.
Let K be the set of elements of the form k := (k1, k2, ..., kr, kr+1) ∈ Zr+1

+ , where
r ∈ Z+ and 0 ≤ k1 < k2 < · · · < kr < kr+1. Define mappings K,D : K → [0,∞) as
follows: ∀k := (k1, k2, ..., kr, kr+1) ∈ K,

K(k) := 2(k1 + · · · kr) + rα̃+ kr+1αN+1,

D(k) :=
∑

1≤l≤r

C(N, kl) +
∑

1≤l≤kr+1−1,l/∈{k1,k2,...,kr}

{
C(N, l + 1)− C(N, l)

}
.

Then our first result provides a complete characterization of the spectrum Λ for

−L(N)
α , in particular, the spectral gap is given.

Theorem 1.1. Let N ≥ 2. Then Pαt is symmetric in L2(µ
(N)
α ) and the spectrum

of −L(N)
α is

Λ = {K(k)[D(k)] : k ∈ K},

where λ[m] means that λ is an eigenvalue having multiplicity m. Consequently,

gap(L
(N)
α ) = αN+1, so that Pαt converge to µ

(N)
α exponentially fast in L2(µ

(N)
α ) :

‖Pαt − µ(N)
α ‖

L2(µ
(N)
α )
≤ e−αN+1t, t ≥ 0,

and the sharp Poincaré inequality for (E(N)
α ,D(E(N)

α )) is

µ(N)
α (f2) ≤ 1

αN+1
E(N)
α (f, f), f ∈ D(E(N)

α ), µ(N)
α (f) = 0.
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Remark 1.1. (1) One may wonder if there holds stronger functional inequalities or
not, for instance, the log-Sobolev inequality, or more generally the super Poincaré
inequality introduced in Wang (2000a). When N = 1, it is easy to see that when

α1, α2 ≥ 1
4 and α1 + α2 >

1
2 , the Bakry and Émery (1984) criterion holds so that

the log-Sobolev inequality is valid. Indeed, Stannat (2000, Lemma 2.7) has proved
the following log-Sobolev inequality for N = 1 and any α1, α2 > 0:

µ(1)
α (f2 log f2) ≤ 320

α1 ∧ α2

∫ 1

0

x(1− x)f ′(x)2µ(1)
α (dx), f ∈ C1

b (0, 1).

This result was extended in Feng and Wang (2007) to the infinite-dimensional GEM
distribution on

∆∞ :=
{
x ∈ [0, 1]N :

∞∑
i=1

xi = 1
}
.

However, for the present model the log-Sobolev inequality is unknown for N ≥ 2.

On the other hand, since the spectrum of L
(N)
α is discrete due to Theorem 1.1, by

Wang (2000b, Theorem 3.1), the super Poincaré inequality

µ(N)
α (f2) ≤ rE(N)

α (f, f) + β(r)µ(N)
α (|f |)2, r > 0, f ∈ D(E(N)

α )

holds for some β : (0,∞)→ (0,∞). But in the moment we do not have any estimate
on the rate function β. Note that the log-Sobolev inequality holds if and only if

β(r) in the super Poincaré inequality satisfies β(r) ≤ e−cr
−1

for some constant c > 0
and small r > 0, see Wang (2000a, Corollary 3.3).

(2) The operator L
(N)
α we considered is a special case of the following general

operator on Rn+ × Rm investigated in Epstein and Mazzeo (2013):

L =

n∑
i=1

aiixi∂
2
xi +

∑
1≤i 6=j≤n

xixjaij∂
2
xixj +

n∑
i=1

m∑
j=1

xibik∂
2
xiyk

+

m∑
k,l=1

ckl∂
2
ykyl

+ V,

where (aij) and (ckl) are symmetric matrices, V is a vector field. Integral type
Hölder/derivative estimates in both time and space variables are presented in Ep-
stein and Mazzeo (2013) for the heat kernel.

Next, we extend Theorem 1.1 to the infinite-dimensional setting. Consider the
infinite-dimensional simplex

∆(∞) :=
{
x ∈ [0, 1]N : |x|1 =

∞∑
i=1

xi ≤ 1
}
,

which is equipped with the L1-metric |x − y|1. Let α ∈ (0,∞)N with |α|1 =∑∞
i=1 αi < ∞, and let α∞ > 0 which refers to αN+1 in the finite-dimensional

case as N →∞. Let

α(n) =
(
α1, · · · , αn−1,

∑
i≥n

αi, α∞

)
∈ (0,∞)n+1, n ≥ 1.

Then for any n ≥ 1,

µ(n)
α,α∞(dx) := µ

(n)

α(n)(dx1, · · · ,dxn)

∞∏
i=n+1

δ0(dxi)
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is a probability measure on ∆(∞). We will prove that when n→∞ these measures

converges weakly to a probability measure µ
(∞)
α,α∞ on ∆(∞), which is the infinite-

dimensional generalization of Dirichlet distribution with parameters (α, α∞).
The following result extends Theorem 1.1 to the infinite-dimensional setting, for

which we introduce the class of Cp-cylindrical functions for p ≥ 1:

FCp :=
{

∆(∞) 3 x := (xi)i≥1 7→ f(x1, · · · , xn) : n ≥ 1, f ∈ Cp(Rn)
}
.

Theorem 1.2. Let α ∈ (0,∞)N with |α|1 <∞ and let α∞ > 0.

(1) The sequence {µ(n)
α,α∞}n≥1 converges weakly to a probability measure µ

(∞)
α,α∞ on

∆(∞).
(2) The form

E(∞)
α,α∞(f, g) :=

∫
∆(∞)

{
(1− |x|1)

∞∑
n=1

xn(∂nf)∂ng
}

(x)µ(∞)
α,α∞(dx), f, g ∈ FC1

is closable in L2(µ
(∞)
α,α∞) whose closure is a symmetric Dirichlet form. The

generator (L
(∞)
α,α∞ ,D(L

(∞)
α,α∞)) of the Dirichlet form satisfies FC2 ⊂ D(L

(∞)
α,α∞)

and

L(∞)
α,α∞f(x) =

∞∑
n=1

(
xn(1− |x|1)∂2

nf(x) +
{
αn(1− |x|1)−α∞xn

}
∂nf(x)

)
, f ∈ FC2.

(3) The generator L
(∞)
α,α∞ has spectral gap gap(L

(∞)
α,α∞) = α∞. Consequently, the

associated Markov semigroup Pα,α∞t converges to µ
(∞)
α,α∞ exponentially fast in

L2(µ
(∞)
α,α∞) :

‖Pα,α∞t − µ(∞)
α,α∞‖L2(µ

(∞)
α,α∞ )

≤ e−α∞t, t ≥ 0,

and the sharp Poincaré inequality is

µ(∞)
α,α∞(f2) ≤ 1

α∞
E(∞)
α,α∞(f, f), f ∈ FC1, µ(∞)

α,α∞(f) = 0.

Finally, the next result shows that the diffusion process generated by L
(∞)
α,α∞ is

the weak limit of the L
(n)
α,α∞-diffusion process as n→∞, where

L(n)
α,α∞ :=

n∑
i=1

{[
αi

(
1−

n∑
i=1

xi

)
− α∞xi

]
∂i + 2

(
1−

n∑
i=1

xi

)
xi∂

2
i

}
.

For any x ∈ ∆(∞) and T > 0, let P
(n)
x,T be the distribution of the diffusion process

generated by L
(n)
α,α∞ with initial point x(n) :=

(
x1, · · · , xn−1,

∑
j≥n xj

)
. Embedding

∆(n) into ∆(∞) by setting zi = 0 for z ∈ ∆(n) and i ≥ n + 1, we regard P
(n)
x,T as

a probability measure on ΩT := C([0, T ]; ∆∞) equipped with the uniform norm
‖ξ‖1,∞ := supt∈[0,T ] |ξ(t)|1.

Theorem 1.3. For any x ∈ ∆(∞) and T > 0, P
(n)
x,T converges weakly to a probability

measure P
(∞)
x,T on ΩT . Moreover, P

(∞)
x,T solves the martingale problem of L

(∞)
α,α∞ : for

any f ∈ FC2, the coordinate process X(t)(ω) := ω(t) and the natural filtration
Ft := σ(ωs : s ∈ [0, t]),

f(X(t))−
∫ t

0

L(∞)
α,α∞f(X(s))ds, t ∈ [0, T ]
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is a martingale under P
(∞)
x,T .

The spectral gap of L
(N)
α is obtained in Section 2 by a straightforward calculation

linking the gap to the eigenvalue of a matrix. Exploring this link further, we are

able to identify the whole spectrum of L
(N)
α and to prove Theorem 1.1 in Section 3 .

Even though the spectral gap of L
(N)
α can be obtained as part of the whole spectrum,

we present the separate proof in Section 2 due to its own interests. The proofs of
Theorems 1.2 and 1.3 are presented in Section 4. Finally, to better understand the
biological context of the study, we introduce in Section 5 a discrete model involving
immigration, emigration and sampling, which approximates the diffusion process
solving (1.1).

2. The spectral gap of L
(N)
α

We first prove (1.2) which implies the symmetry of Pαt in L2(µ
(N)
α ). Since smooth

functions on ∆(N) are uniformly approximated by polynomials up to second order
derivatives, it suffices to consider f, g ∈ P∞, the set of all polynomials on ∆(N).
Let

A(n)
α = xn(1− |x|1)∂2

n +
{
αn(1− |x|1)− αN+1xn

}
∂n, 1 ≤ n ≤ N.

Then (1.2) follows from∫
∆(N)

( ∏
1≤i≤N

xpii

)
A(n)
α

( ∏
1≤i≤N

xqii

)
µ(N)
α (dx) (2.1)

=

∫
∆(N)

( ∏
1≤i≤N

xqii

)
A(n)
α

( ∏
1≤i≤N

xpii

)
µ(N)
α (dx)

for pi, qi ∈ Z+, 1 ≤ i ≤ N. Letting pN+1 = qN+1 = 0 and C = Γ(|α|1)∏
1≤i≤N+1 Γ(αi)

, and

simply denote xN+1 = 1− |x|1, we have∫
∆(N)

( ∏
1≤i≤N

xpii

)
A(n)
α

( ∏
1≤i≤N

xqii

)
µ(N)
α (dx)

= C

∫
∆(N)

( ∏
1≤i 6=n≤N+1

xpi+qi+αi−1
i

)
xpn+αn−1
n A(n)

α xqnn dx

= Cqn

{
(qn + αn − 1)

∫
∆(N)

( ∏
1≤i 6=n≤N+1

xpi+qi+αi−1
i

)
xN+1x

pn+qn+αn−2
n dx

− αN+1

∫
∆(N)

( ∏
1≤i≤N+1

xpi+qi+αi−1
i

)
dx

}

=
Cqn

∏
1≤i6=n≤N+1 Γ(αi + pi + qi)

Γ(
∑

1≤i≤N+1(αi + pi + qi))

×
(

(qn + αn − 1)Γ(αN+1 + 1)Γ(pn + qn + αn − 1)

− αN+1Γ(αN+1)Γ(pn + qn + αn)
)

= −
CΓ(αN+1 + 1)

∏
1≤i 6=n≤N+1 Γ(αi + pi + qi)

Γ(
∑

1≤i≤N+1(αi + pi + qi))
pnqnΓ(pn + qn + αn − 1),
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where the last step is due to the identity Γ(s + 1) = sΓ(s), s > 0. Since the result
is symmetric in (pn, qn), it implies (2.1).

For any d ∈ N, let Pd be the space of all polynomials in P∞ whose total degrees

are less than or equal to d. Let P0,d = {f ∈ Pd : µ
(N)
α (f) = 0}. It is well known

that P∞ := ∪d≥1Pd is dense in C1
b (∆(N)), so that P0,∞ := ∪d≥1P0,d is dense in

D0 := {f ∈ D(E(N)
α ) : µ(N)

α (f) = 0}

under the Sobolev norm ‖f‖1,2 :=

√
µ

(N)
α (f2) + E(N)

α (f, f) .

To characterize the gap(L
(N)
α ), we decompose the spectrum of L

(N)
α in terms of

the degree of polynomials. Obviously, every P0,d is an invariant space of L
(N)
α . Let

Q1 = P0,1 and

Qd =
{
f ∈ P0,d : µ(N)

α (fg) = 0 for all g ∈ Pd−1

}
, d ≥ 2.

Then, by the symmetry of L
(N)
α in L2(µ

(N)
α ), every Qd is an invariant space of L

(N)
α

as well. Thus, letting πd : P∞ → Pd be the orthogonal projection with respect to

the inner product in L2(µ
(N)
α ), we have

L(N)
α πdf = πdL

(N)
α f, d ≥ 1, f ∈ P∞. (2.2)

Therefore, to characterize the spectrum of L
(N)
α it suffices to consider that of

L
(N)
α |Qi , the restriction of L

(N)
α on Qi, for every i ≥ 1.

Let d ≥ 2. To characterize the spectrum of L
(N)
α |Qd , let

Kd =
{
k = (k1, · · · , kN ) ∈ ZN+ :

∑
1≤i≤N

ki = d
}
.

For any k ∈ Kd, let xk =
∏

1≤i≤N x
ki
i . Then

Qd =

{ ∑
k∈Kd

ckx
k − πd−1

∑
k∈Kd

ckx
k : c := (ck)k∈Kd ∈ RKd

}
. (2.3)

We define the Kd ×Kd-matrix Md by letting

Md(k, k
′) =


dαN+1 +

∑
1≤n≤N (kn + αn − 1)kn, if k = k′,

(kn + αn)(kn + 1), if k′ = k + en − em, 1 ≤ n 6= m ≤ N,
0, otherwise,

where {en}1≤n≤N is the canonical orthonormal basis on RN . We first identify

eigenvalues of L
(N)
α |Qd with those of Md.

Lemma 2.1. For any d ≥ 2, λ is an eigenvalue of −L(N)
α |Qd if and only if it is

an eigenvalue of Md. Consequently, −L(N)
α |Qd ≥ (dαN+1)IQd , where IQd is the

identity operator on Qd.

Proof : (1) Let λ be an eigenvalue of −L(N)
α on Qd. By (2.3) and (2.2), there exists

0 6= c ∈ RKd such that∑
k∈Kd

ck(L(N)
α xk − πd−1L

(N)
α xk) = −λ

∑
k∈Kd

ck(xk − πd−1x
k). (2.4)
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Obviously,

L(N)
α xk −

∑
1≤n≤N

(xn∂
2
n + αn∂n)xk

= −
( ∑

1≤n,m≤N

xnxm∂
2
nx

k +
∑

1≤n,m≤N

xmαn∂nx
k + αN+1

∑
1≤n≤N

xn∂nx
k

)

= −
( ∑
n,m≤N

kn(kn − 1)xk−en+em +
∑

1≤n,m≤N

αnknx
k−en+em + αN+1

∑
1≤n≤N

knx
k

)

= −
( ∑

1≤n,m≤N

kn(kn − 1)xk−en+em +
∑

1≤n,m≤N

αnknx
k−en+em + dαN+1x

k

)
.

By the change of variables k′ := k − en + em, we obtain∑
k∈Kd

ck
∑

1≤n,m≤N

αnknx
k−en+em

=
∑
k∈Kd

ck
∑

1≤n 6=m≤N

αnknx
k−en+em +

∑
k∈Kd

ck
∑

1≤n≤N

αnknx
k

=
∑
k∈Kd

∑
1≤n 6=m≤N

ck′+en−emαn(k′ + en − em)(n)xk
′
+
∑
k∈Kd

ck
∑

1≤n≤N

αnknx
k

=
∑
k∈Kd

∑
1≤n 6=m≤N

αn(kn + 1)ck+en−emx
k +

∑
k∈Kd

∑
1≤n≤N

αnknckx
k.

Similarly,∑
k∈Kd

ck
∑

1≤n,m≤N

kn(kn − 1)xk−en+em

=
∑
k∈Kd

∑
1≤n6=m≤N

kn(kn + 1)ck+en−emx
k +

∑
k∈Kd

ck
∑

1≤n≤N

kn(kn − 1)xk.

Combining these together leads to∑
k∈Kd

ckL
(N)
α xk =

∑
k∈Kd

ck
∑

1≤n≤N

(xn∂
2
n + δn∂n)xk −

∑
k,k′∈Kd

Md(k, k
′)ck′x

k. (2.5)

Substituting this into (2.4), we arrive at∑
k∈Kd

(Mdc)kx
k = λ

∑
k∈Kd

ckx
k + pd−1(x)

for some pd−1 ∈ Pd−1. Therefore, Mdc = λc, i.e. λ is an eigenvalue of Md.
(2) On the other hand, if λ is an eigenvalue of Md, then there exists c ∈ RKd \{0}

such that Mdc = λc. Let

f(x) =
∑
k∈Kd

ckx
k − πd−1

∑
k∈Kd

ckx
k.

It follows from Mdc = λc and (2.5) that

L(N)
α f = p̃d−1 − λf

holds for some p̃d−1 ∈ Pd−1. Since f ∈ Qd which is orthogonal to Pd−1, this and
(2.2) implies

L(N)
α f = (1− πd−1)L(N)

α f = −λ(1− πd−1)f = −λf.
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So, λ is an eigenvalue of L
(N)
α on Qd.

(3) Finally, since eigenvalues of −L(N)
α are nonnegative, (2) implies that eigen-

values of M̃d := Md − dαN+1IKd×Kd is larger than or equal to −dαN+1. On the

other hand, from the definition of Md we see that M̃d does not depend on αN+1.

So, letting αN+1 ↓ 0 and noting that Md ≥ 0, we conclude that eigenvalues of M̃d

are non-negative. Therefore, eigenvalues of Md are larger than or equal to dαN+1.

Combining this with (1) we obtain −L(N)
α |Qd ≥ (dαN+1)IQd . �

Proposition 2.2. For N ≥ 2, gap(L
(N)
α ) = αN+1.

Proof : By Lemma 2.1, it suffices to prove that the smallest eigenvalue of −L(N)
α |Q1

is αN+1. To this end, we take θi = (θij)1≤j≤N ∈ RN (1 ≤ i ≤ N − 1) such that

N∑
k=1

θikαk = 0,
N∑
k=1

θikθjkαk = δij , 1 ≤ i, j ≤ N − 1.

So, {θi}N−1
i=1 is a basis of RN−1. Let

ui(x) =

N∑
j=1

θijxj , 1 ≤ i ≤ N − 1;

uN (x) =

N∑
k=1

xk −
α̃

|α|1
, α̃ := |α|1 − αN+1 =

N∑
k=1

αk.

We intend to prove that {ui}1≤i≤N is an orthogonal basis of Q1 with respect to

the inner product 〈f, g〉(N)
α := µ

(N)
α (fg) =

∫
∆(N) fgdµ

(N)
α , and L

(N)
α uN = −|α|1uN

while L
(N)
α ui = −αN+1ui for 1 ≤ i ≤ N − 1. Thus, the smallest eigenvalue of

−L(N)
α |Q1 is αN+1.
It is easy to see that

µ(N)
α (xi) :=

∫
∆(N)

xiµ
(N)
α (dx) =

Γ(ᾱ)Γ(αi + 1)

Γ(|α|1 + 1)Γ(αi)
=

αi
|α|1

,

µ(N)
α (x2

i ) =
Γ(ᾱ)Γ(αi + 2)

Γ(|α|1 + 2)Γ(αi)
=

αi(αi + 1)

|α|1(|α|1 + 1)
, 1 ≤ i ≤ N − 1;

µ(N)
α (xixj) =

Γ(ᾱ)Γ(αi + 1)Γ(αj + 1)

Γ(|α|1 + 2)Γ(αi)Γ(αj)
=

αiαj
|α|1(|α|1 + 1)

, 1 ≤ i 6= j ≤ N − 1.

Then

µ(N)
α (ui) =

1

|α|1

N∑
k=1

θikαk = 0, 1 ≤ i ≤ N − 1;

µ
(N)
α,λ (uN ) =

N∑
i=1

αi
|α|1
− α̃

|α|1
= 0.

So, {ui}1≤i≤N ⊂ Q1. Moreover, for 1 ≤ i 6= j ≤ N − 1,

µ(N)
α (uiuj) =

1

|α|1(|α|1 + 1)

( ∑
1≤k≤N

θikθjkαk(αk + 1) +
∑

1≤k 6=l≤N

θikθjlαkαl

)

=
1

|α|1(|α|1 + 1)

{( ∑
1≤k≤N

θikαk

) ∑
1≤l≤N

θjlαl +
∑

1≤k≤N

θikθjkαk

}
= 0,



Poincaré Inequality for Dirichlet Distributions 371

and for any 1 ≤ i ≤ N − 1,

µ(N)
α (uiuN ) =

∑
1≤k,j≤N

θijµ(xjxk)

=
1

|α|1(|α|1 + 1)

∑
1≤j≤N

θijαj(αj + 1) +
1

|α|1(|α|1 + 1)

∑
1≤k 6=j≤N

θijαjαk

=
1

|α|1(|α|1 + 1)

∑
1≤k,j≤N

θijαjαk +
1

|α|1(|α|1 + 1)

∑
1≤j≤N

θijαj = 0.

Since {θi}N−1
i=1 is a basis of RN−1, we have

dim span{ui : 1 ≤ i ≤ n− 1} = N − 1 = dimQ1.

In conclusion, {ui}1≤i≤N is an orthogonal basis of Q1.
Finally, we have

L(N)
α ui(x) =

N∑
j=1

(αjxN+1 − αN+1xj)θij = −αN+1ui, 1 ≤ i ≤ N − 1,

and

L(N)
α uN (x) =

N∑
j=1

(αjxN+1 − αN+1xj) = −|α|1
N∑
j=1

xj +

N∑
j=1

αj = −|α|1uN (x).

Therefore, the proof is finished. �

3. Proof of Theorem 1.1: the whole spectrum of L
(N)
α

For d ∈ Z+, let Hd be the space of homogeneous polynomials of total degree d
in the variables x1, ..., xN . Denote by π̃d the natural projection from P∞ to Hd
which only keeps the d-homogeneous part of a polynomial. Let L̄

(N)
α,d = (π̃dL

(N)
α )|Hd

be the restriction of the operator π̃dL
(N)
α to Hd and −Λd denote its spectrum, seen

as a multi-set (namely with multiplicities). From the above considerations, the

spectrum Λ of −L(N)
α is equal to ∪d∈Z+

Λd, as a multi-set. We can write

L̄
(N)
α,d = −| · |1L̃(N)

α,d − αN+1L̂
(N)
α,d ,

where L̃
(N)
α,d : Hd → Hd−1 and L̂

(N)
α,d : Hd → Hd are respectively the restriction to

Hd of the operators

L̃(N)
α :=

∑
1≤n≤N

(
xn∂

2
n + αn∂n

)
, L̂(N)

α :=
∑

1≤n≤N

xn∂n

under the projection π̃d. The crucial point of the previous decomposition is that

L̂
(N)
α,d = dIHd . Denote by Λ̃d the spectrum of | · |1L̃(N)

α,d , we thus have

Λd = Λ̃d + dαN+1.

Note that Λ0 = Λ̃0 = {0}. The next result enables to compute by iteration Λ̃d for
all d ∈ Z+.
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Proposition 3.1. Let α̃ =
∑N
i=1 αi. For any d ∈ Z+, we have

Λ̃d+1 = (2d+ α̃+ Λ̃d) ∪ {0[C(N, d+ 1)− C(N, d)]},
where {0[l]} is the multi-set with 0 repeated l times, for l ∈ Z+ (more generally [l]
will stand for the multiplicity l), and where C(N, d) is the dimension of Hd, namely

C(N, d) =

(
d+N − 1

d

)
.

Proof : Consider λ ∈ Λ̃d+1 and let ϕ ∈ Hd+1 be an associated eigenvector (non-
zero). We have

| · |1L̃(N)
α,d+1ϕ = λϕ.

Since L̃
(N)
α,d+1ϕ ∈ Hd, there are two possibilities: either λ = 0, or ϕ = | · |1ψ for some

ψ ∈ Hd such that

L̃
(N)
α,d+1(| · |1ψ) = λψ. (3.1)

We consider the latter situation, since the former case leads to the multi-set
{0[C(N, d+ 1)− C(N, d)]}.

We compute at point x that

L̃
(N)
α,d+1(| · |1ψ) = |x|1L̃(N)

α ψ + ψL̃(N)
α | · |1 + 2

∑
1≤n≤N

xn∂nψ

= |x|1L̃(N)
α,d ψ + ψ

∑
1≤n≤N

αn + 2
∑

1≤n≤N

xn∂nψ

= |x|1L̃(N)
α,d ψ + (α̃+ 2d)ψ.

(3.2)

So, it follows from (3.1) that λ− α̃− 2d is an eigenvalue of the operator | · |1L̃(N)
α,d ,

namely belongs to Λ̃d. Thus,

Λ̃d+1 ⊂ (2d+ α̃+ Λ̃d) ∪ {0[C(N, d+ 1)− C(N, d)]}.

On the other hand, if λ′ ∈ Λ̃d then | · |1L̃(N)
α,d ψ = λ′ψ for some 0 6= ψ ∈ Hd. Then

(3.2) implies

L̃
(N)
α,d+1(| · |1ψ) = | · |1L̃(N)

α,d ψ + (α̃+ 2d)ψ = (λ′ + α̃+ 2d)ψ.

Therefore, λ′ + α̃ + 2d ∈ Λ̃d+1; that is, Λ̃d+1 ⊃ (2d + α̃ + Λ̃d). Then the proof is
finished. �

Proof of Theorem 1.1: The previous arguments amount to an iterative construction

of the eigenvectors: for any d ∈ Z+, let F̃d be the set of eigenvectors of | · |1L̃(N)
α,d

and Gd be the kernel of L̃
(N)
α,d . Then we have

∀d ∈ Z+, F̃d+1 = Gd+1 ∪ (| · |1F̃d).

Indeed, in the above proof, functions ϕ ∈ F̃d+1 of the form | · |1ψ with ψ ∈ F̃d are

associated to eigenvalues of the form α̃+ 2d+ λ, where λ ∈ Λ̃d. From Lemma 2.1,
we know that λ ≥ 0, so that α̃ + 2d + λ > 0 and ϕ does not belong to the kernel

of L̃
(N)
d+1. Conversely, we have seen that all the other eigenvectors belong to the

kernel of L̃
(N)
d+1. Thus we get the following characterization of the kernel of L̃

(N)
α,d : it

consists exactly into the eigenvectors of L̃
(N)
α,d which don’t admit | · |1 as a factor.



Poincaré Inequality for Dirichlet Distributions 373

Note that F̃d is also the set of eigenvectors of L
(N)
α,d . To get the eigenvectors of

our initial operator L
(N)
α , we construct by iteration on d ∈ Z+ the following subsets

Fd of Pd. First we take F0 := F̃0 = P0. Next, if Fd has been constructed, then for
any f ∈ F̃d+1, there exists a unique gf ∈ Pd such that f + gf is orthogonal to Pd
in Λ2(µ). Then we define

Fd+1 := {f + gf : f ∈ F̃d+1}.

The set of eigenvectors of L
(N)
α is ∪d∈Z+

Fd.
From Proposition 3.1, K : K → Λ is surjective. It is truly one-to-one, if and only

if 1, α̃ and αN+1 are independent when R is seen as a vector space over Q. Let us
call this situation generical over the choice of the parameters α := (αn)1≤n≤N+1.
Moreover, the multiplicity of an eigenvalue λ ∈ Λ is given by∑

k∈K−1(λ)

D(k).

Therefore, Λ = {K(k)[D(k)] : k ∈ K}. �

4. Proofs of Theorems 1.2 and 1.3

To prove the first assertion, let W be the L1-Wasserstein distance induced by
ρ(x, y) := |x− y|1 on P(∆(∞)), the set of all probability measures on ∆(∞). That
is, for any µ, ν ∈ P(∆(∞)),

W (µ, ν) := inf
π∈C(µ,ν)

∫
∆(∞)×∆(∞)

|x− y|1π(dx, dy),

where C(µ, ν) is the set of all couplings for µ and ν; i.e. π ∈ C(µ, ν) if and only if
it is a probability measure on ∆(∞) ×∆(∞) such that

π(dx×∆(∞)) = µ(dx), π(∆(∞) × dy) = ν(dy).

It is well known that the metric W is complete and induces the weak topology on
P(∆(∞)), see e.g. Chen (1992, Theorems 5.4 and 5.6). So, for the proof of Theorem

1.2 we only need to show that {µ(n)
α,α∞}n≥1 is W -Cauchy sequence.

Proof of Theorem 1.2: Let L{ξ} denote the law of a random variable ξ.

(1) To prove that {µ(n)
α,α∞}n≥1 is a W -Cauchy sequence, we use the partition

property of the Dirichlet distribution mentioned in Section 1. For any n > m ≥
1, let (X

(n)
1 , · · · , X(n)

n+1) have law µ̃
(n+1)

α(n) . By the partition property, µ̃
(m+1)

α(m) =

L
{(
X

(n)
1 , · · · , X(n)

m−1,
∑n
i=mX

(n)
i , X

(n)
n+1

)}
. So,

µ
(m)

α(m) = L
{(
X

(n)
1 , · · · , X(n)

m−1,

n∑
i=m

X
(n)
i

)}
, µ

(n)

α(n) = L
{

(X
(n)
1 , · · · , X(n)

n )
}
.

Thus,

µ(m)
α,α∞ = L

{(
X

(n)
1 , · · · , X(n)

m−1,

n∑
i=m

X
(n)
i , 0, 0, · · ·

)}
,

µ(n)
α,α∞ = L

{
(X

(n)
1 , · · · , X(n)

n , 0, 0, · · · )
}
.
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Then, by the definition of W and noting that |α|1 <∞, we have

lim sup
m→∞

sup
n≥m+1

W (µ(m)
α,α∞ , µ

(n)
α,α∞) ≤ 2 lim sup

m→∞
sup

n≥m+1

n∑
i=m+1

E|X(n)
i |

≤ lim sup
m→∞

2
∑∞
i=m+1 αi

α∞ + ‖α‖1
= 0.

Therefore, {µ(n)
α,α∞}n≥1 is a W -Cauchy sequence and the proof of the first assertion

is finished.
(2) It suffices to prove

E(∞)
α,α∞(f, g) = −

∫
∆(∞)

(fL(∞)
α,α∞g) dµ(∞)

α,α∞ , f, g ∈ FC2. (4.1)

For any f, g ∈ FC2, there exist m ∈ N and fm, gm ∈ C2(Rm) such that

f(x) = fm(x1, · · · , xm), g(x) = gm(x1, · · · , xm), x ∈ ∆(∞).

So, by the definition of µ
(n)
α,α∞ and using (1.3), we have

−
∫

∆(∞)

(fL
(n)

α(n)g)dµ(n)
α,α∞ =

∫
∆(∞)

{(
1− |x|1

) m∑
i=1

xi(∂if)(∂ig)

}
dµ(n)

α,α∞ . (4.2)

Since µ
(n)
α,α∞ → µ

(∞)
α,α∞ weakly, and it is easy to see that

lim
n→∞

sup
x∈∆(∞)

|fL(n)

α(n)g − fLα,α∞g|(x) = 0,

lim
n→∞

sup
x∈∆(∞)

∣∣∣∣(1− |x|1
) m∑
i=1

xi(∂if)(∂ig)−
(

1−
∞∑
i=1

xi

) m∑
i=1

xi(∂if)(∂ig)

∣∣∣∣ = 0,

by letting n→∞ in (4.2) we prove (4.1).
(3) Finally, as was shown in (2) that the desired Poincaré inequality follows by

applying Theorem 1.1 to µ
(n)

α(n) on ∆(n) then letting n→∞. So, gap(L
(∞)
α,α∞) ≥ α∞.

On the other hand, let

u(x) = α2x1 − α1x2, x ∈ ∆(∞).

We have

L(∞)
α,α∞u(x) =

{
α1(1− |x|1)− α∞x1

}
α2 −

{
α2(1− |x|1)− α∞x2

}
α1

= −α∞u(x), for x ∈ ∆(∞).

This implies gap(L
(∞)
α,α∞) ≤ α∞. In conclusion, we have gap(L

(∞)
α,α∞) = α∞. �

Proof of Theorem 1.3: (a) For the first assertion, we only need to prove that

{P (n)
x,T }n≥1 is a Cauchy sequence with respect to the L1-Wasserstein distance

WT (P, P ′) := inf
Π∈C(P,P ′)

∫
ΩT×ΩT

‖ξ − η‖1,∞Π(dξ,dη).

To this end, for any n > m ≥ 2, we construct a coupling of P
(n)
x,T and P

(m)
x,T as

follows.
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Firstly, let (X
(n)
i (t))1≤i≤n solve the following SDE with X

(n)
0 = x(n):

dX
(n)
i (t) =

[
αi
(
1− |X(n)(t)|1

)
− α∞X(n)

i (t)
]
dt

+

√
2(1− |X(n)(t)|1)X

(n)
i (t) dBi(t), 1 ≤ i ≤ n− 1;

dX(n)
n (t) =

[ ∞∑
j=n

αj
(
1− |X(n)(t)|1

)
− α∞X(n)

n (t)
]
dt

+

√
2(1− |x(n)(t)|1)X

(n)
n (t) dBn(t), t ∈ [0, T ],

(4.3)

where (Bi(t)1≤i≤n are independent one-dimensional Brownian motions. Then P
(n)
x,T

is the distribution of (X(n)(t))t∈[0,T ].
Next, let

X
(m)
i (t) = X

(n)
i (t) for 1 ≤ i ≤ m− 1, and X(m)

m (t) =
∑
j=mn

X
(n)
j (t), t ∈ [0, T ].

(4.4)
Then X(m)(0) = x(m) and by (4.3),

dX
(m)
i (t) =

[
αi
(
1− |X(m)(t)|1

)
− α∞X(m)

i (t)
]
dt

+

√
2(1− |x(m)(t)|1)X

(m)
i (t) dBi(t), 1 ≤ i ≤ m− 1;

dX(m)
m (t) =

[ ∞∑
j=m

αj
(
1− |X(m)(t)|1

)
− α∞X(m)

m (t)
]
dt

+

√
2(1− |x(m)(t)|1)X

(m)
m (t) dB̃m(t), t ∈ [0, T ],

where dB̃m(t) := 1√
X

(m)
m (t)

∑n
i=m

√
X

(n)
i (t) dBi(t) is a one-dimensional Brownian

motion independent of (Bi(t))1≤i≤m−1. Therefore, (X(m)(t))t∈[0,T ] has law P
(m)
x,T .

Now, by (4.4) and the definition of WT , we have

WT (P
(n)
x,T , P

(m)
x,T ) ≤ E sup

t∈[0,T ]

|X(m)(t)−X(n)(t)|1 = E sup
t∈[0,T ]

n∑
j=m+1

X
(n)
j (t). (4.5)

Let Z(t) =
∑n
j=m+1X

(n)
j (t). By (4.3) we have

dZ(t) ≤
( ∞∑
j=m+1

αj

)
dt+

n∑
j=m+1

√
s(1− |X(n)(t)|1)X

(n)
i (t) dBi(t).

So,

Z(t) ≤
∞∑

j=1+m

(xj + tαj) +

n∑
j=m+1

∫ t

0

√
s(1− |X(n)(s)|1)X

(n)
i (s) dBi(s)

=: Z̄(t), t ∈ [0, T ].
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Since Z(t) ≥ 0, Z̄(t) is a nonnegative submartingale. Then by Kolmogorov’s in-
equality,

P
(

sup
t∈[0,T ]

Z(t) ≥ λ
)
≤ P

(
sup
t∈[0,T ]

Z̄(t) ≥ λ
)
≤ 1

λ
EZ̄(T ) =

1

λ

∞∑
j=m+1

(xj+αjT ), λ > 0.

Since Z(t) ≤ 1, this implies

E sup
t∈[0,T ]

Z(t) ≤ λ+ P
(

sup
t∈[0,T ]

Z(t) ≥ λ
)
≤ λ+

1

λ

∞∑
j=m+1

(xj + αjT ), λ > 0.

Taking λ =
√∑∞

j=m+1(xj + αjT ), and combining with (4.5), we obtain

lim
m→∞

sup
n≥m+1

WT (P
(n)
x,T , P

(m)
x,T ) ≤ 2 lim

m→∞

√√√√ ∞∑
j=m+1

(xj + αjT ) = 0.

Therefore, the first assertion is proved.
(b) Let f ∈ FC2. We have f(x) = f(x1, · · · , xm) for some m ≥ 1 and f ∈

C2(∆(m)). For the coordinate process X(t), define

M (n)(t) = f(X(t))−
∫ t

0

L(n)
α,α∞f(X(s))ds, n ≥ m, t ∈ [0, T ].

Then (M
(n)
t )t∈[0,T ] is a P

(n)
x,T -martingale; that is, for any 0 < s < t ≤ T , and any

bounded Lipschitz continuous function g on ΩT measurable with respect to Fs,∫
ΩT

M (n)(t)(ω)g(ω)dP
(n)
x,T =

∫
ΩT

M (n)(s)(ω)g(ω)dP
(n)
x,T . (4.6)

We intend to prove the same equality for P
(∞)
x,T and

M (∞)(t) := f(X(t))−
∫ t

0

L(∞)
α,α∞f(X(s))ds, t ∈ [0, T ].

By an approximation argument, we may and do assume that f ∈ C3
b (∆(m)). In this

case, M (n)(t) is bounded and Lipschitz on ΩT uniformly in n ≥ m and t ∈ [0, T ].
Since g is bounded and Lipschitz on ΩT as well, there exists a constant C > 0 such
that

|(M (n)(t)g)(ξ)− (M (n)g)(t)(η)| ≤ C‖ξ − η‖1,∞, n ≥ m, ξ, η ∈ ΩT , t ∈ [0, T ].

Therefore,∣∣∣∣ ∫
ΩT

M (n)(t)gdP
(n)
x,T−

∫
ΩT

M (n)(t)gdP
(∞)
x,T

∣∣∣∣ ≤ CWT (P
(n)
x,T , P

(∞)
x,T ), n ≥ m, t ∈ [0, T ].

Combining this with (4.6), limn→∞WT (P
(n)
x,T , P

(∞)
x,T ) = 0, limn→∞M (n) = M (∞)

and noting that {M (n)g}n≥m are uniformly bounded, we conclude that∣∣∣∣ ∫
ΩT

[
M (∞)(t)−M (∞)(s)

]
g dP

(∞)
x,T

∣∣∣∣
= lim
n→∞

∣∣∣∣ ∫
ΩT

[
M (n)(t)−M (n)(s)

]
g dP

(∞)
x,T

∣∣∣∣
≤ 2C lim sup

n→∞
WT (P

(n)
x,T , P

(∞)
x,T ) = 0.
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Then the proof is finished. �

5. A Discrete Model

For any N ≥ 1, M ≥ N + 1, consider a population of M individuals of N + 1
different types. Divide the population into two groups: group I of types 1, . . . , N
and group II of type N + 1. Focusing on group I and treat group II as outsiders or
external sources. Initially the number of type i individuals is mi, i = 1, . . . , N + 1.
The group I evolves as follows: a type i individual independent of all others will
wait for an exponential time at rate αN+1 and at the end of the waiting emigrates
to the outside becoming type N + 1; an outsider will independently wait for an
exponential time with rate αi and immigrate to group I becoming type i; in addition
to emigration and immigration, each couple between a type I and a type II waits
for an exponential time with rate 2 and when the clock rings, either the group
I individual moves out becoming an outsider or the group II individual moves in
becoming the type of the selected individual in group I.

Let X(t) = M−1(M1(t), . . . ,MN (t)) denote the relative frequencies of individ-
uals of different types in group I among the whole population at time t. For
α ∈ (0,∞)N+1, we construct X(t) as a multivariate Markov chain with generator

A(N)
M,αf(x)

= M

N∑
i=1

{
αN+1xi

[
f
(
x− ei

M

)
− f(x)

]
+ αi(1− |x|1)

[
f
(
x+

ei
M

)
− f(x)

]}
+M2

N∑
i=1

(1− |x|1)xi

{
f
(
x− ei

M

)
+ f

(
x+

ei
M

)
− 2f(x)

}
, f ∈ C2(∆(N))

for x ∈ ∆
(N)
M :=

{
x ∈ 1

MZN+ : |x|1 =
∑N
i=1 xi ≤ 1

}
, where ei is the unit vector in the

ith direction. Letting M →∞ and x→ y ∈ ∆(N), one gets A(N)
M,αf(x)→ L

(N)
α f(y).

We will see that the finite Markov chain generated by A(N)
M,α on ∆

(N)
M is reversible

with respect to the probability measure µ
(N)
M,α:

µ
(N)
M,α(x) :=

[αN+1]M(1−|x|1)

Z{M(1− |x|1)}!

N∏
i=1

[αi]Mxi

(Mxi)!
, x ∈ ∆

(N)
M ,

where [α]m :=
∏m−1
i=0 (α+ i) for α ≥ 0 and m ≥ 1, [α]0 := 1, and

Z :=
∑

x∈∆
(N)
M

[αN+1]M(1−|x|1)

{M(1− |x|1)}!

N∏
i=1

[αi]Mxi

(Mxi)!

is the normalization. Moreover, for N ≥ 2, A(N)
M,α has the same spectral gap αN+1

as L
(N)
α .

Theorem 5.1. Let N ≥ 2. The Markov chain generated by A(N)
M,α is irreducible and

reversible with respect to µ
(N)
M,α. Moreover, A(N)

M,α has spectral gap αN+1 in L2(µ
(N)
M,α).
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Proof : (a) Denote γi = ei
M for 1 ≤ i ≤ N . For any x, y ∈ ∆

(N)
M , let

qx,y =


MxiαN+1 +M2xi(1− |x|1), if y = x− γi, 1 ≤ i ≤ N ;

αiM(1− |x|1) +M2xi(1− |x|1), if y = x+ γi, 1 ≤ i ≤ N ;

0, otherwise.

We have

A(N)
M,αf(x) =

∑
y∈∆

(N)
M

qxy
{
f(y)− f(x)

}
, x ∈ ∆

(N)
M .

Since qx,y > 0 when x, y ∈ ∆
(N)
M with y = x ± γi for 1 ≤ i ≤ N , and ∆

(N)
M is

connected by the edges x→ x± γi, we see that the Markov chain is irreducible.

Next, it is well known that A(N)
M,α is symmetric in L2(µ

(N)
M,α) if and only if

µ
(N)
M,α(x)qx,y = µ

(N)
M,α(y)qy,x, x, y ∈ ∆

(N)
M . (5.1)

To verify this condition, we only need to consider the following two situations.
(a1) y = x + γi for some 1 ≤ i ≤ N. In this case we have M |x|1 ≤ M − 1, and

by the definition of µ
(N)
M,α,

µ
(N)
M,α(y)

µ
(N)
M,α(x)

=
M(1− |x|1)(αi +Mxi)

(αN+1 +M(1− |x|1)− 1)(Mxi + 1)
=
qxy
qyx

.

(a2) y = x − γi for some 1 ≤ i ≤ N. In this case we have Mxi ≥ 1, and by the

definition of µ
(N)
M,α,

µ
(N)
M,α(y)

µ
(N)
M,α(x)

=
(αN+1 +M(1− |x|1))Mxi

(M(1− |x|1) + 1)(Mxi − 1 + αi)
=
qxy
qyx

.

In conclusion, (5.1) holds and thus, A(N)
M,α is symmetric in L2(µ

(N)
M,α).

(b) For any d ∈ Z+, consider again Pd the space of all polynomials (in N
variables) whose total degree is less than or equal to d. For any f ∈ Pd and
1 ≤ i ≤ N , x 7→ f(x−γi)−f(x) and x 7→ f(x+γi)−f(x) are polynomials belonging
to Pd−1, while x 7→ f(x−γi)+f(x+γi)−2f(x) is a polynomial belonging to Pd−2.

From the definition of A(N)
M,α, it follows that Pd is preserved by A(N)

M,α. As in Section
2, we consider for d ∈ Z+,

Qd := {f ∈ Pd ∩ L2(µ
(N)
M,α) : µ

(N)
M,α[fg] = 0,∀g ∈ Pd−1}

(with the convention Q0 = P0). Note that for d large enough, Qd = {0}, neverthe-
less, we still have

L2(µ
(N)
M,α) =

⊕
d∈Z+

Qd

and the Qd are orthogonal. Furthermore by symmetry of A(N)
M,α in L2(µ

(N)
M,α), each

of the Qd is preserved by A(N)
M,α. Thus it is sufficient to study the spectral decompo-

sitions of the restrictions of A(N)
M,α to the Qd. But this is exactly the same analysis

as in Section 2, because there we only used the highest monomials. Indeed, note
that for all f ∈ Qd and 1 ≤ i ≤ N ,

x 7→ f(x− γi)− f(x) +
∂if(x)

M
, x 7→ f(x+ γi)− f(x)− ∂if(x)

M
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are polynomials belonging to Pd−2, and

x 7→ f(x− γi) + f(x+ γi)− 2f(x)− ∂2
i f(x)

M2

belong to Pd−3, where we set Pk = {0} if k < 0. Thus, for any polynomial f ∈ Qd,
the polynomials A(N)

M,αf and L
(N)
α f have the same highest order term (i.e. the term

of degree d), so that these two operators have the same spectral gap.
�

Finally, we show that µ
(N)
M,α converges weakly to µ

(N)
α as M →∞.

Proposition 5.2. Under the topology on ∆(N) induced by | · |1, µ
(N)
M,α converges

weakly to µ
(N)
α as M →∞.

Proof : It suffices to prove that µ
(N)
M,α(f)→ µ

(N)
α (f) for any polynomial f . We first

consider µ(f) = 0, i.e. f ∈ P0,d for some d ≥ 1. Since L
(N)
α |P0,d

is bounded with

eigenvalues not larger than −αN+1, L
(N)
α is invertible on P0,d. So, there exists

g ∈ P0,d such that f = L
(N)
α g. Noting that

lim
M→∞

‖A(N)
M,αg − L

(N)
α g‖∞ = 0, µ

(N)
α,M (A(N)

M,αg) = 0,

we obtain

lim
M→∞

|µ(N)
α,M (f)| = lim

M→∞
|µ(N)
α,M (L(N)

α g)| = lim
M→∞

|µ(N)
α,M (A(N)

α,Mg)| = 0.

That is, limM→∞ µ
(N)
α,M (f) = µ

(N)
α (f) holds for any polynomial f with µ(f) = 0. In

general, if µ(f) 6= 0, by letting f̂ = f − µ(f) we obtain

0 = lim
M→∞

µ
(N)
α,M (f̂) = lim

M→∞
µ

(N)
α,M (f)− µ(f).

Then the proof is finished. �
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