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Abstract. In this article we consider continuous time moving averages observed
on a lattice, driven by an infinite variance Lévy process with regularly varying tails
with index α ∈ (0, 2). We show that the asymptotic distribution of the sample mean
and sample autocovariance function is a stable law. The parameters of the stable
limit distribution are explicitly given in terms of the kernel and characteristics of
the Lévy process.

1. Introduction

Continuous time moving averages appear in many fields of applied probability as
economics and finance and cover many popular models from time series analysis in
continuous time. Because of their applicability to irregularly spaced observations
and high-frequency data, frequently appearing in finance and turbulence, continu-
ous time moving averages are often favored over their discrete time counterparts.
Let L = (Lt)t∈R be a two-sided one-dimensional Lévy process, i.e. a stochastic pro-
cess with L0 = 0, independent and stationary increments and càdlàg paths. In this
paper we will consider continuous time moving averages of type

Xt =

∫
R
f(t− s)dLs, t ∈ R, (1.1)

where f : R → R is a measurable function and the Lévy process L = (Lt)t∈R
has regularly varying tails with index α ∈ (0, 2) and in particular infinite variance.
Many popular models in continuous time as e.g. CARMA processes and Ornstein-
Uhlenbeck processes can be represented by continuous time moving averages and
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methods for the estimation of the kernel function f are available (see e.g. Brockwell
et al., 2013 and Fasen, 2013, and for the special case of a stable driving Lévy process
Fasen and Fuchs, 2013 and Garćıa et al., 2011). Our purpose will be to determine
the asymptotic distribution of the sample mean and sample autocovariances of
(Xt)t∈R in (1.1), observed on a lattice {∆t : t = 1, 2, . . .} for some ∆ > 0.

The asymptotic distribution of the mean and autocovariance function of contin-
uous time moving averages has been already investigated by many others. Cohen
and Lindner (2013) proved a central limit theorem for the mean and autocovari-
ance function under the assumptions EL2

1 < ∞ (respectively EL4
1 < ∞ for the

autocovariances) and square-integrable kernel f . Spangenberg (2015) studied the
long memory case where f(t) ∼ Cdtd−1 for d ∈ (0, 1

2 ) and some constant Cd. When

EL4
1 <∞ he proved a central limit theorem and in the case of a Lévy process with

regularly varying tails with index α ∈ (2, 4) that the limit distribution is either a
Rosenblatt or stable distribution, depending on the interplay of d and α. Further,
Bai et al. (2016) considered certain Toeplitz type quadratic functionals of continu-
ous time moving averages with square integrable kernel f and finite variance Lévy
processes which arise in the statistical estimation of the spectrum of stationary
processes.

For discrete time moving averages of the form Xt =
∑∞
k=0 ckZt−k for (ck)k∈N0 ⊂

R and t ∈ Z where (Zt)t∈Z is an i.i.d. sequence of random variables which are reg-
ularly varying with index α ∈ (0, 2) and satisfy a tail balance condition, Davis
and Resnick (1985) established that the sample mean and the sample autocovari-
ances are asymptotic stable distributed. Their approach was based on point process
methods. We will use a different approach which is based on classical blocking and
mixing techniques, and is due to Jakubowski (1993, 1997), see also Bartkiewicz
et al. (2011) for a survey on stable limit theorems under dependence. The main ad-
vantage compared to the point process approach is the more explicit representation
of the parameters of the stable distribution.

We will use the following notations: the indicator function of a set A is denoted
by 1A and the signum function sign(z) is defined by sign(z) = 1(z > 0)−1(z < 0).
The boundary of a set A is denoted by ∂A. By B(A) for a set A we denote the Borel-

σ-algebra on A. The symbols
d→,

w→,
v→ and

P→ denote convergence in distribution,
weak convergence, vague convergence and convergence in probability. Sometimes
we write for a measure ν and a set A short νA for ν(A). By f+ and f− we denote
the positive and negative part of a function f .

2. Preliminaries

In this article we assume that (Lt)t∈R is a two-sided one-dimensional Lévy
process with triplet (γ, σ2, ν), i.e. the characteristic function of Lt is given by
ϕLt(z) = EeizLt = e|t|ψ(z sign(t)) where the characteristic exponent ψ(z) admits the
representation (see Sato, 1999, Theorem 8.1)

ψ(z) = iγz − σ2z2

2
+

∫
R
[eizx − 1− izx1(|x| ≤ 1)]ν(dx), z ∈ R.

Here γ ∈ R is called generalized drift, σ2 ≥ 0 the Gaussian part and ν is the Lévy
measure, a measure on (R,B1) such that ν({0}) = 0 and

∫
R\{0}(|x|

2∧1)ν(dx) <∞.

Denote by ν̄(x) = ν(x,∞) + ν(−∞,−x) for x > 1 the Lévy tail measure.
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We will use the notion of multivariate regular variation (see Hult and Lindskog,

2006). Set Rd = [−∞,∞]d. An Rd-valued random vector X = (X1, . . . , Xd)
T

with unbounded support is multivariate regularly varying, if there are an α > 0,
a positive sequence (an)n∈N, an ↑ ∞, and a nonzero Radon measure µ defined on

B(Rd\{0}), µ(Rd\Rd) = 0, such that, as n→∞,

nP(X ∈ an·)
v→ µ(·) on B(Rd\{0}).

We write X ∈ RV (α, an, µ). Similarly, we write for a Radon measure ν on

B(Rd\{0}), ν ∈ RV (α, an, µ), if nν(an·)
v→ µ(·) on B(Rd\{0}). Notice that the

limiting measure has the property µ(xA) ∼ x−αµ(A) for x > 0 and every set

A ∈ B(Rd\{0}), see e.g. Hult and Lindskog (2006). If d = 1 and the Lévy process
(Lt)t∈R satisfies L1 ∈ RV (α, an, µ) for a sequence (an)n∈N with

nP(|L1| ≥ an)→ 1, n→∞, (2.1)

then the limiting measure µ is explicitly given by

µ(dx) = (p1(0,∞)(x) + q1(−∞,0)(x))α|x|−α−1dx, (2.2)

where the constants p and q are explicitly given by

lim
x→∞

P(L1 > x)

P(|L1| > x)
= p, lim

x→∞

P(L1 < −x)

P(|L1| > x)
= q, p+ q = 1, p, q ∈ [0, 1]. (2.3)

If L1 ∈ RV (α, bn, µ̃) for some (bn)n∈N and µ̃, and we set an = inf(x : P(|L1| >
x) ≤ 1

n ) for n ∈ N, then (an)n∈N satisfies (2.1) and L1 ∈ RV (α, an, µ) for some µ.

In this case the sequence (an)n∈N is regularly varying with index α−1 and behaves
therefore like

an ∼ L(n)nα
−1

, n→∞ (2.4)

for some slowly varying function L and n ∈ N.

Remark 1. If X is an infinitely divisible random variable with triplet (γ, σ2, ν),
then X ∈ RV (α, an, µ) if and only if ν ∈ RV (α, an, µ), see Pakes (2007, Theorem
3.3) and also Embrechts et al. (1979) for one-sided distributions. Hult and Lindskog
(2006, Proposition 3.1, Corollary 3.1) proved the analogue statement for multivari-
ate infinitely divisible distributions and the notion of multivariate regular variation.
We will use above tail equivalence only for d = 1, but note that it is implicitly used
for d > 1 in the proof of Proposition 1 (i) (see Moser and Stelzer, 2011, Theorem
3.1). Note further that there are many equivalent definitions of multivariate regu-
lar variation, see e.g. Lindskog et al. (2014, Theorem 3.1). Equation (2.3) is often
referred to as tail balance condition. In particular, if p > 0 and q > 0, by Hult and
Lindskog (2006, Corollary 3.1) as x→∞

P(L1 > x) ∼ ν(x,∞) ∼ ν[x,∞), P(L1 < −x) ∼ ν(−∞,−x) ∼ ν(−∞,−x].

Also note that P(L1 > x) ∼ ν[x,∞) entails P(Lt > x) ∼ tν[x,∞) for t > 0 and
x→∞.

In the following we will consider continuous time moving averages of the form

Xt =

∫
R
f(t− s)dLs, t ∈ R, (2.5)
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where f : R → R is a measurable function and L = (Lt)t∈R is a one-dimensional
Lévy process with triplet (γ, σ2, ν). The stochastic integral (2.5) is defined as
follows: let a < b, a, b ∈ R, and f : (a, b) → R be a measurable function. Then f
is called L-integrable, if for every sequence of simple functions (fn)n∈N such that
fn → f almost everywhere, the limit P− limn→∞

∫
(a,b)

fn(s)dLs exists. In this case

we set
∫

(a,b)
f(s)dLs := P− limn→∞

∫
(a,b)

fn(s)dLs and the limit does not depend

on the choice of the sequence of simple functions. If further for a function f : R→ R
the limit P − limp,q→∞

∫ q
−p f(s)dLs exists, the stochastic integral

∫∞
−∞ f(s)dLs is

called defineable, the function f is called (improper) L-integrable, and Xt in (2.5)
is set equal to P− limp,q→∞

∫ q
−p f(t− s)dLs, in which case the distribution of Xt is

infinitely divisible. Since the Lévy process has the independent increment property,
the convergence is also almost surely. Necessary and sufficient conditions in terms
of f and the characteristic triplet (γ, σ2, ν) for the stochastic integral (2.5) being
definable are well-known (see Sato, 2006 or Rajput and Rosiński, 1989).

Denote by Lp(A) for A ∈ B(R) and 0 < p < ∞ the set of functions f : A → R
which satisfy

∫
A
|f(s)|pds < ∞. Throughout this article we will assume that the

following two conditions are satisfied.

Condition (A1). The Lévy process (Lt)t∈R satisfies L1 ∈ RV (α, an, µ) for some
α ∈ (0, 2), a positive sequence (an)n∈N, an ↑ ∞, satisfying (2.1) and µ(dx) =
(p1(0,∞)(x) + q1(−∞,0)(x))α|x|−α−1dx, where the constants p and q are given by

lim
x→∞

P(L1 > x)

P(|L1| > x)
= p, lim

x→∞

P(L1 < −x)

P(|L1| > x)
= q, p+ q = 1, p, q ∈ [0, 1]. (2.6)

Further, assume that for α > 1 the expectation of L1 is zero, i.e. EL1 = 0.

Condition (A2). The kernel f : R→ R is bounded, f ∈ Lδ(R) for some δ < α, δ ≤ 1
and

∫
R |f(s)|ds 6= 0.

Under above conditions (A1) and (A2) the stochastic integral (2.5) is definable,
see Fasen (2005, Proposition 3.1). Observe that f ∈ Lδ(R) implies f ∈ Lδ+ε(R) for
bounded f : R→ R and δ, ε > 0.

3. Results

In this section we state our main results. We establish limit theorems for the
sample mean and sample autocovariances of continuous time moving averages of
type (2.5). In both cases the limit distribution will be a stable law. Two random
variables X and Y , and also their distributions, are said to belong to the same type,

if they have the same distribution after change of scale and location, i.e. X
d
= aY +b

for some a > 0 and b ∈ R. Stable distributions are distributions which are closed
under convolutions. More precisely, a distribution F is stable if for i.i.d. random
variables X and Y , X,Y ∼ F , the distribution of the sum X+Y is of same type as
F . The characteristic function ϕX of a (nondeterministic) stable random variable
X admits for z ∈ R the unique representation (see Nolan, 2017, Proposition 1.17)

ϕX(z) = exp (izδ − |γz|α(1− iβsign(z)Φα(z))) ,

where Φα(z) =


tan(

πα

2
), α 6= 1,

− 2

π
log |z|, α = 1,

(3.1)
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and α ∈ (0, 2], β ∈ [−1, 1], γ > 0, δ ∈ R. We write X ∼ Sα(β, γ, δ). Notice that for
X ∼ Sα(β, γ, δ) and a, b ∈ R, a 6= 0 (see also Nolan, 2017, Proposition 1.17)

aX + b ∼


Sα(sign(a)β, |a|γ, aδ + b), α 6= 1,

Sα(sign(a)β, |a|γ, aδ + b− 2

π
βa log(|a|)), α = 1.

(3.2)

Define for ∆ > 0

F∆ : [0,∆]→ R, u 7→
∞∑

j=−∞
f(∆j − u),

F∆ : [0,∆]→ [0,∞], u 7→
∞∑

j=−∞
|f(∆j − u)|.

Observe that (A2) ensures F∆ < ∞ almost everywhere and F∆ ∈ L1([0,∆]). We
can now state our first main result:

Theorem 1. Let ∆ > 0, conditions (A1) and (A2) be satisfied and set Xt =∫∞
−∞ f(t− s)dLs. Suppose further that the distribution of L1 is symmetric if α = 1

and that F∆ ∈ L2([0,∆]). Define the coefficients c+∆ and c−∆ by

c+∆ =

∫ ∆

0

(
p(F+

∆ (s))α + q(F−∆ (s))α
)

ds, c−∆ =

∫ ∆

0

(
q(F+

∆ (s))α + p(F−∆ (s))α
)

ds.

(i) If c+∆ + c−∆ > 0, then a−1
n

∑n
t=1X∆t

d→ Sα(β∆, γ∆, 0) as n → ∞, where the
parameters are given by

β∆ = (p− q)
∫∆

0
(F+

∆ (s))α − (F−∆ (s))αds∫∆

0
|F∆(s)|α ds

,

γα∆ =


(c+∆ + c−∆)

Γ(2− α)

(1− α)
cos(

πα

2
), α 6= 1,

(c+∆ + c−∆)
π

2
, α = 1.

(ii) If c+∆ + c−∆ = 0, then a−1
n

∑n
t=1X∆t

P→ 0 as n→∞.

Remark 2. (i) Notice that f ∈ L1(R) is necessary for F∆ ∈ L2([0,∆]) (see Co-
hen and Lindner, 2013, Remark 2.3). In the discrete time case (i.e. when f =∑
j∈Z cj1(∆j,∆(j+1)] for a real sequence (cj)j∈Z) F∆ ∈ L2([0,∆]) is automatically

satisfied and hence Theorem 1 recovers the results from Davis and Resnick (1985,
Theorem 4.1), who derived the stable law as asymptotic distribution for the sample
mean of discrete time moving averages Xt =

∑∞
j=0 cjZt−j for t ∈ Z. In contrast to

their result, the parameters of the stable limit distribution are explicitly given in
Theorem 2. However, we assume in addition to their assumptions that the distri-
bution of L1 is symmetric if α = 1.
(ii) Cohen and Lindner (2013) determined the asymptotic distribution of the sam-
ple mean for continuous time moving averages Xt =

∫
R f(t − s)dLs under the

assumption of E|L1|2 <∞. They showed that

√
n(n−1

n∑
t=1

X∆t − EX∆)
d→ N(0, v2),
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as n→∞ and for some explicitly given constant v2, provided that F∆ ∈ L2([0,∆]).
(iii) The condition c+∆ + c−∆ = 0 of Theorem 1 (ii) applies if for example the kernel
is given by f(s) = 1[−1,0)(s)e

−1−s − 1[0,1)(s)e
−s when ∆ = 1 and for arbitrary

p, q ∈ [0, 1].

Define for ∆ > 0, h ∈ N0 and n ∈ N the sample autocovariance function of

(Xt)t∈Z in (2.5) by γn,∆(h) = n−1
n∑
t=1

X∆tX∆(t+h) and

Gh,∆ : [0,∆]→ R, u 7→
∞∑

j=−∞
f(∆j − u)f(∆(j + h)− u).

Theorem 3. Let ∆ > 0, h ∈ N0,
∫
R |f(s)f(s + ∆h)|ds > 0, conditions (A1) and

(A2) be satisfied and set Xt =
∫∞
−∞ f(t−s)dLs. Suppose G0,∆ ∈ Lα/2([0,∆]). Then

Gh,∆ ∈ Lα/2([0,∆]) for each h ∈ N0. Define the coefficients c+h,∆ and c+h,∆ by

c+h,∆ =

∫ ∆

0

(G+
h,∆(s))α/2ds, c−h,∆ =

∫ ∆

0

(G−h,∆(s))α/2ds.

(i) If c+h,∆ + c−h,∆ > 0, then as n→∞

n

a2
n

γn,∆(h) =
1

a2
n

n∑
t=1

X∆tX∆(t+h)
d→ Sα/2(βh,∆, γh,∆, 0),

where the parameters are given by

βh,∆ =

∫∆

0
(G+

h,∆(s))α/2 − (G−h,∆(s))α/2ds∫∆

0
|Gh,∆(s)|α/2ds

,

γ
α/2
h,∆ = (c+h,∆ + c−h,∆)

Γ(2− α
2 )

(1− α
2 )

cos(
πα

4
). (3.3)

(ii) If c+h,∆ + c−h,∆ = 0, then n
a2n
γn,∆(h)

P→ 0 as n→∞.

Remark 4. Theorem 3 recovers the result of Davis and Resnick (1985, Theorem
4.2) who applied point process techniques to derive the stable limit distribution for
the autocovariance function of discrete moving averages. Again our method has the
advantage that the parameters of the stable limit distribution are explicitly given.

Consider the special case of discrete time moving averages (Xn)n∈N, where for
Zj = Lj − Lj−1, j ∈ Z, and f(s) =

∑∞
j=0 cj1[j,j+1)(s), (cj)

∞
j=0 ⊂ R,

Xn =

∫ ∞
−∞

f(n− s)dLs =

∞∑
j=0

cjZn−j , n ∈ N. (3.4)

Suppose that
∑∞
j=0 |cj |δ < ∞ for some δ < α, δ ≤ 1 and that the i.i.d. sequence

(Zj)j∈Z satisfies for some slowly varying function L : (0,∞) → (0,∞) and p, q ∈
[0, 1]

P(|Z1| > x) = L(x)x−α, α ∈ (0, 2),

lim
x→∞

P(Z1 > x)

P(|Z1| > x)
= p, lim

x→∞

P(Z1 < −x)

P(|Z1| > x)
= q, p+ q = 1.
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Davis and Resnick (1985, Theorem 4.2) proved under these assumptions that for
γn(h) := n−1

∑n
t=1XtXt+h with (Xn)n∈N in (3.4) and every l ∈ N, as n→∞,

n

a2
n

(γn(0), . . . , γn(l))T
d→ Zα/2(

∞∑
j=0

c2j ,

∞∑
j=0

cjcj+1, . . . ,

∞∑
j=0

cjcj+l)
T ,

for a (positive) stable distributed random variable Zα/2 with parameter α/2 and a
positive sequence (an)n∈N satisfying nP(|Z1| > an) → 1 as n → ∞. The following
counter example shows that a similar statement does not hold for the more general
case of continuous time moving averages.

Example 5. Let ∆ = 1, h ∈ N0 and (Lt)t∈R be a Lévy process satisfying condition
(A1) with p 6= 1

2 . Consider the kernel f(s) = 21(0, 12 ](s)−1( 1
2 ,1](s) +1(1,2](s) which

satisfies (A2). Then the assumptions of Theorem 3 are satisfied for h = 0, 1 and
hence as n→∞

1

a2
n

n∑
t=1

X2
t

d→ Sα/2(β0,1, γ0,1, 0), (3.5)

1

a2
n

n∑
t=1

XtXt+1
d→ Sα/2(β1,1, γ1,1, 0), (3.6)

where the parameters γh,1 are given in (3.3) and for Gh,1(s) =
∑∞
j=−∞ f(j + h −

s)f(j − s)

βh,1 =

∫ 1

0
((G+

h,1(s))α/2 − (G−h,1(s))α/2)ds∫ 1

0
|Gh,1(s)|α/2ds

.

Notice that G0,1 ≥ 0, so that G0,1 = G+
0,1 = |G0,1| and hence β0,1 = 1. For

h = 1 and s ∈ [0, 1) we have G1,1(s) = f(1 − s)f(2 − s), and so G+
1,1(s) =

21[1/2,1)(s) and G−1,1(s) = 1[0,1/2)(s). Hence β1,1 = 2α/2−1
2α/2+1

. By eq. (3.2), aX ∼
Sα/2(sign(a)β, |a|γ, 0) for X ∼ Sα/2(β, γ, 0), α < 2 and a ∈ R\{0}. But since
both limit distributions (3.5) and (3.6) have different parameters β0,1, β1,1 with
|β0,1| 6= |β1,1| the joint convergence

n

a2
n

(γn,1(0), γn,1(1))T
d→ Zα/2(cf (0), cf (1))T

cannot hold for a stable distributed random variable Zα/2 with parameter α/2 and
some constants cf (0) and cf (1) depending on the kernel f .

It is still possible that n
a2n

(γn,1(0), . . . , γn,1(l))T converges for l ∈ N to a multi-

variate distribution, but we have not investigated the question of joint convergence
further.

4. Proofs

In this section we prove our main results, Theorems 1 and 3. We will apply in
both proofs the following two Lévy-Itô decompositions (see Sato, 1999, Theorem
19.2). Suppose that condition (A1) is satisfied.

Decomposition (L1). The Lévy process (Lt)t∈R admits the Lévy-Itô decomposition
Lt = L+

t +L−t for t ∈ R, where (L+
t )t∈R and (L−t )t∈R are independent Lévy processes

such that (L+
t )t∈R has triplet (γ, 0, ν||x|>1) and (L−t )t∈R has triplet (0, σ2, ν||x|≤1).
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The Lévy process (L+
s )s∈R is a compound Poisson processes (with drift) and admits

therefore for s ∈ [0, 1] the representation L+
s = γs+

∑N+
s

i=1 ∆L+

T+
i

= γs+
∑N+

s
i=1 Y

+
i ,

with jump times (T+
i ) and jump heights (Y +

i ) satisfying

P(Y +
i ∈ ·) =

ν(· ∩ {|x| > 1})
ν({|x| > 1})

,

and (N+
s )s∈[0,1] being a Poisson process with parameters ν({|x| > 1}), independent

of (T+
i ) and (Y +

i ).

Decomposition (L2). The Lévy process (L+
t )t∈R in (L1) admits for a sequence

(an)n∈N satisfying (2.1) the further decomposition into L+
t = L≤,nt + L>,nt for

t ∈ R, where (L≤,nt )t∈R and (L>,nt )t∈R are independent Lévy processes with triplets
(γ, 0, ν|1<|x|≤an) and (0, 0, ν||x|>an), respectively. We usually suppress the index

n and simply write L≤t for L≤,nt and L>t for L>,nt . The Lévy processes (L≤s )s∈R
and (L>s )s∈R are compound Poisson processes (with drift) and admit therefore for
s ∈ [0, 1] the representations

L≤s = γs+

N≤
s∑

i=1

∆L≤
T

≤
i

= γs+

N≤
s∑

i=1

Y ≤i,n, L>s =

N>s∑
i=1

∆L>
T>i

=

N>s∑
i=1

Y >i,n,

with jump times (T≤i ) and (T>i ) and jump heights (Y ≤i,n) and (Y >i,n) satisfying

P(Y ≤i,n ∈ ·) =
ν(· ∩ {1 < |x| ≤ an})
ν({1 < |x| ≤ an})

, P(Y >i,n ∈ ·) =
ν(· ∩ {|x| > an})
ν({|x| > an})

,

and (N≤s )s∈[0,1], (N
>
s )s∈[0,1] being Poisson processes with parameters ν({1 < |x| ≤

an}) and ν({|x| > an}), independent of (T≤i ) and (Y ≤i,n) and of (T>i ) and (Y >i,n),
respectively.

By a time change we can restrict ourselves in the following proofs to the case
∆ = 1 since we can write for g∆(x) := f(∆x) and the Lévy process (U∆

v )v∈R with
U∆
v := L∆v

X∆t =

∫
R
f(∆t− s)dLs =

∫
R
g∆(t− v)dU∆

v =: X∆
t , t ∈ R, (4.1)

where (X∆
t )t∈R is observed on the lattice (t)t∈Z whereas (Xt)t∈R is observed on

(∆t)t∈Z. In the proof of the following proposition we will use the notion of vague

convergence and in particular that the vague convergence µn
v→ µ of a sequence of

Radon measures (µn)n∈N, µ on (Rd\{0},B(Rd\{0})) is equivalent to µn(B)→ µ(B)

as n → ∞, for all relatively compact sets B ∈ B(Rd\{0}) such that µ(∂B) = 0
(see Kallenberg, 1983, Theorem 15.7.2). Notice that the relatively compact sets

in B(Rd\{0}) are the sets B ∈ B(Rd\{0}) which are bounded away from zero, i.e.

0 /∈ B ∩ Rd.

Proposition 1. Let (Lt)t∈R be a Lévy process and f : R→ R a function such that
(A1) and (A2) are satisfied. Then for (Xt)t∈R in (2.5) the following statements
hold:
(i)[Moser and Stelzer, 2011, Theorem 3.1] The random vector Xk = (X1, . . . , Xk)T
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satisfies Xk ∈ RV (α, an, µfk) for each k ∈ N, where for fk(s) := (f(1 − s), f(2 −
s), . . . , f(k − s))T the measure µfk is given by

µfk(B) =

∫ ∞
−∞

∫ ∞
−∞

1B(fk(s)x)µ(dx)ds, B ∈ B(Rk\{0}). (4.2)

(ii) For k ∈ N and h ∈ N0 define gk,h : Rk+h → Rk, gk,h(x1, . . . , xk+h) =
(x1x1+h, . . . , xkxk+h)T . Then Zk,h := gk,h(Xk+h) = (X1X1+h, . . . , XkXk+h)T ∈
RV (α/2, a2

n, µfk+h ◦ g
−1
k,h).

Denote by
◦
A and A the interior and closure of a set A, respectively.

Proof : (ii) The function gk,h is continuous, 2-homogeneous (i.e. gk,h(tx) = t2gk,h(x)

for t > 0 and x ∈ Rk+h) and g−1
k,h(A) is bounded away from zero (i.e. 0 /∈ g−1

k,h(A))

for every set A ∈ B(Rk\{0}), which is bounded away from zero. To prove this claim,

assume A is bounded away from zero, but 0 ∈ g−1
k,h(A). Then there is a sequence

(xn)n∈N ⊂ g−1
k,h(A) such that xn → 0 as n → ∞. But then for (gk,h(xn))n∈N ⊂ A

it holds that gk,h(xn) → 0 (since gk,h is continuous) implying 0 ∈ A which is a

contradiction. Therefore, as x → ∞, and for A ∈ B(Rk\{0}) bounded away from
zero such that µfk+h ◦ g

−1
k,h(∂A) = 0

nP(a−2
n Zk,h ∈ A) = nP(a−2

n gk,h(Xk+h) ∈ A) = nP(gk,h(a−1
n Xk+h) ∈ A)

= nP(a−1
n Xk+h ∈ g−1

k,h(A))→ µfk+h(g−1
k,h(A)),

i.e. nP(a−2
n Zk,h ∈ A)

v→ µfk+h ◦ g
−1
k,h. Notice that we used here that g−1

k,h(A) ⊂
g−1
k,h(A) and g−1

k,h(
◦
A) ⊂ [g−1

k,h(A)]◦, and hence µfk+h ◦ g
−1
k,h(∂A) = 0 implies that also

µfk+h(∂g−1
k,h(A)) = 0 since

0 = µfk+h(g−1
k,h(∂A)) = µfk+h(g−1

k,h(A\
◦
A)) = µfk+h(g−1

k,h(A))− µfk+h(g−1
k,h(

◦
A))

≥ µfk+h(g−1
k,h(A))− µfk+h([g−1

k,h(A)]◦)

= µfk+h(∂g−1
k,h(A)) ≥ 0.

�

Next we will consider strictly stationary sequences (Xt)t∈Z which are regularly
varying in the following sense: for every d ∈ N and some (equivalently: every)
sequence (rn)n∈N satisfying rn →∞ and

nP(|X1| ≥ rn)→ 1, (n→∞) (4.3)

there exists a non-null Radon measure µd on (Rd\{0},B(Rd\{0})) with µd(R
d\Rd)

= 0 such that

nP(r−1
n (X1, . . . , Xd)

T ∈ ·) v→ µd(·) (n→∞). (4.4)

The measure µd does not depend on the specific choice of the sequence (rn)n∈N.
Notice that under (A1) and (A2) for I := (

∫
R |f(s)|αds)1/α and rn := Ian by

Proposition 1(i)

lim
n→∞

nP(|X1| ≥ rn) = lim
n→∞

nP(|a−1
n X1| > I) = µf1((I,∞) ∪ (−∞,−I)) = 1.
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Hence under (A1) and (A2) the sequence (Xt)t∈Z in (2.5) is regularly varying
in the sense of (4.4) with rn = (

∫
R |f(s)|αds)1/αan satisfying (4.3) and µd :=

µfd/(
∫
|f(s)|αds) with µfd in (4.2). Observe that if we scale instead by (an)n∈N sat-

isfying (2.1), then nP(a−1
n (X1, . . . , Xd)

T ∈ ·) v→ µfd(·). Define further for (rn)n∈N
satisfying (4.3), a sequence (Xt)t∈Z satisfying (4.4) and Sn =

∑n
i=1Xi the param-

eters

y+(d) = lim
n→∞

nP(Sd > rn), y−(d) = lim
n→∞

nP(Sd < −rn), d ≥ 1. (4.5)

We will show later for (Xt)t∈Z defined in (2.5) the existence of these limits (see the
proof of Proposition 3). For general sequences (Xt)t∈Z satisfying (4.3) and (4.4), a
similar argument can be given to show existence of y+(d) and y−(d). Our proofs
of the main results will rely on the following limit theorem for strictly stationary,
m-dependent and regularly varying sequences.

Proposition 2 (Bartkiewicz et al., 2011, Proposition 1). Assume that (Xt)t∈Z is
a strictly stationary, m-dependent sequence for some m ≥ 1 which satisfies (4.4)
with a sequence (rn)n∈N satisfying (4.3) for some α ∈ (0, 2). Moreover, assume
EX1 = 0 if α > 1 and for α = 1 that the distribution of X1 is symmetric. Then
z+
m, z

−
m ≥ 0, where for y+(d), y−(d) in (4.5)

z+
m = y+(m+ 1)− y+(m), z−m = y−(m+ 1)− y−(m).

(i) If z+
m + z−m > 0, then r−1

n Sn
d→ Sα(τm, λm, 0) as n→∞, where

τm =
z+
m − z−m
z+
m + z−m

, λαm =


(z+
m + z−m)

Γ(2− α)

(1− α)
cos(

πα

2
), α 6= 1,

(z+
m + z−m)

π

2
, α = 1.

(4.6)

(ii) If z+
m + z−m = 0, then r−1

n Sn
P→ 0 as n→∞.

Let (Lt)t∈R and f satisfy the conditions (A1) and (A2) and define for m ∈ N
and ∆ > 0 the compactly supported function f∆m(s) = f(s)1[−∆m,∆m](s) and the
sequence (Xt,∆m)t∈Z, defined by

Xt,∆m :=

∫ ∞
−∞

f∆m(t− s)dLs =

∫ t+∆m

t−∆m

f(t− s)dLs, t ∈ R. (4.7)

We will use the more natural scaling by (an)n∈N satisfying (2.1) instead of the
scaling (rn)n∈N in (4.3). The advantage of this scaling is that it depends only on the
Lévy process (Lt)t∈R and not on the kernel f nor on ∆ > 0 and m ∈ N. Applying
Proposition 2 to the sequence (X∆t,∆m)t∈Z yields the following limit theorem for
its sample mean.

Proposition 3. Let (A1) and (A2) be satisfied and assume that the distribution
of L1 is symmetric if α = 1. Let ∆ > 0 and m ∈ N sufficiently large, so that∫
R |f∆m(s)|ds > 0. Then for (Xt,∆m)t∈Z in (4.7), Sn,∆,m =

∑n
t=1X∆t,∆m and

d ≥ 1 the limits

b+∆,m(d) = lim
n→∞

nP(Sd,∆,m > an), b−∆,m(d) = lim
n→∞

nP(Sd,∆,m < −an), (4.8)
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exist and the parameters c±∆,m = b±∆,m(2m)− b±∆,m(2m− 1) are given by

c+∆,m =

∫ ∆

0

(
p[(

m∑
t=1−m

f(∆t− s))+]α + q[(

m∑
t=1−m

f(∆t− s))−]α

)
ds, (4.9)

c−∆,m =

∫ ∆

0

(
q[(

m∑
t=1−m

f(∆t− s))+]α + p[(

m∑
t=1−m

f(∆t− s))−]α

)
ds. (4.10)

(i) If c+∆,m + c−∆,m > 0, then a−1
n Sn,∆,m

d→ Sα(β∆,mγ∆,m, 0) for n→∞, where the
parameters are given by

β∆,m =
c+∆,m − c

−
∆,m

c+∆,m + c−∆,m
, γα∆,m =


(c+∆,m + c−∆,m)

Γ(2− α)

(1− α)
cos(

πα

2
), α 6= 1,

(c+∆,m + c−∆,m)
π

2
, α = 1.

(4.11)

(ii) If c+∆,m + c−∆,m = 0, then a−1
n Sn,∆,m

P→ 0 as n→∞.

Proof : W.l.o.g we suppose ∆ = 1 (the other cases follow from a time change, see

(4.1)). By Proposition 1 (i), X1,m ∈ RV (α, an, µf(m)
1

) where for f
(m)
d := (fm(1 −

s), . . . , fm(d − s))T the measure µ
f
(m)
1

is defined in (4.2). Denote ϕ(x1, . . . , xd) =∑d
i=1 xi and notice that ϕ−1((1,∞)) is bounded away from zero. Hence

b+1,m(d) = lim
n→∞

nP(Sd,1,m > an)

= lim
n→∞

nP(a−1
n (X1,m, . . . , Xd,m)T ∈ ϕ−1((1,∞)))

= µ
f
(m)
d

(ϕ−1((1,∞))), (4.12)

provided µ
f
(m)
d

(∂ϕ−1((1,∞))) = 0. This is the case since by continuity of ϕ and

(4.2)

µ
f
(m)
d

(∂ϕ−1((1,∞))) ≤ µ
f
(m)
d

(ϕ−1(∂(1,∞))) = µ
f
(m)
d

(ϕ−1({1}))

=

∫
R
µ({(

d∑
i=1

fm(i− s))−1})ds = 0.

Hence the coefficients b+1,m and b−1,m are well-defined. By Proposition 1 (i) and

the discussion after eq. (4.4), (Xt,m)t∈Z in (4.7) is regularly varying in the sense

of (4.4) with µd = µ
f
(m)
d

/(
∫
|fm(s)|αds) and rn = (

∫
R |fm(s)|αds)1/αan satisfying

(4.3). Observe that the sequence (Xt,m)t∈Z is (2m − 1)-dependent, i.e. (Xs,m)s≤t
is independent of (Xs,m)s≥t+2m for every t ∈ Z. Hence we checked that (Xt,m)t∈Z
satisfies the assumptions of Proposition 2 with rn = (

∫
|fm(s)|αds)1/αan. Let y±

denote the coefficients in (4.5) corresponding to the partial sums of (Xt,m)t∈Z, i.e.

y+(d) = lim
n→∞

nP(Sd,1,m > rn), y−(d) = lim
n→∞

nP(Sd,1,m < −rn), d ≥ 1. (4.13)

Then y±(d) = b±1,m(d)/(
∫
R |fm(s)|αds) and if c+1,m + c−1,m > 0 by Proposition 2

r−1
n Sn,1,m

d→ Sα(τm, λm, 0), n→∞, (4.14)

where the parameters are given by (4.6). But since z±m(d)(
∫
R |fm(s)|αds) = b±1,m(d)

and by (3.2), it follows that a−1
n Sn,1,m

d→ Sα(β1,mγ1,m, 0) with the parameters
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given in (4.11). The statement for the case c+1,m + c−1,m = 0 is clear. It remains to

prove (4.9) and (4.10). Notice that for m ∈ N
2m∑
t=1

Xt,m =

∫ ∞
−∞

(

2m∑
t=1

fm(t− s))dLs =

3m−1∑
i=1−m

2m∧(i+m)∑
t=1∨(i−m+1)

∫ i+1

i

f(t− s)dLs. (4.15)

Recall the definition of µ in (2.2) and notice that xf
(m)
2m (s) ∈ ϕ−1((1,∞)) if and

only if x
∑2m
i=1 fm(i− s) ≥ 1. Hence we conclude by (4.12) that

b+1,m(2m) = µ
f
(m)
2m

(ϕ−1((1,∞)))

=

∫ ∞
−∞

p

(
(

2m∑
t=1

fm(t− s))+
)α

+ q

(
(

2m∑
t=1

fm(t− s))−
)α

ds

=

3m−1∑
i=1−m

∫ i+1

i

p

(

2m∧(i+m)∑
t=1∨(i−m+1)

f(t− s))+
α

+ q

(

2m∧(i+m)∑
t=1∨(i−m+1)

f(t− s))−
α

ds.

Similarly, one calculates b+1,m(2m−1), b−1,m(2m) and b−1,m(2m−1). For simplification

of notation assume that f = f+. Notice that in this case

p−1b+1,m(2m) =

3m−1∑
i=1−m

∫ i+1

i

 2m∧(i+m)∑
t=1∨(i−m+1)

f(t− s)

α

ds

=

2m−1∑
i=1

∫ 1

0

(

i+m∑
t=1+m

f(t− s− i))αds+

2m−1∑
i=0

∫ 1

0

(

m−i∑
t=1−m

f(t− s))αds.

Similarly,

p−1b+1,m(2m− 1) =

2m−1∑
i=1

∫ 1

0

(

i+m∑
t=1+m

f(t− s− i))αds+

2m−1∑
i=1

∫ 1

0

(

m−i∑
t=1−m

f(t− s))αds.

Hence we conclude

p−1(b+1,m(2m)− b+1,m(2m− 1)) =

∫ 1

0

(
m∑

t=1−m
f(t− s)

)α
ds.

Similar calculations for f− yield (4.9) and (4.10). �

Proof of Theorem 1: For simplicity in notation we assume ∆ = 1 (the other cases
follow from a time change, see (4.1)). By the Lévy-Itô decomposition (L1), Lt =
L+
t +L−t for t ∈ R. Denote X+

t,m =
∫∞
−∞ fm(t−s)dL+

s and X±t =
∫∞
−∞ f(t−s)dL±s .

Then a−1
n

∑n
t=1X

−
t converges in probability to zero as n → ∞ by Remark 2 (ii)

since EX−t = EL−1 = 0 and
√
n/an → 0 by (2.4). Hence d−limn→∞ a−1

n

∑n
t=1Xt =

d− limn→∞ a−1
n

∑n
t=1X

+
t . By Hölder’s inequality∫ 1

0

|F 1(s)|αds ≤ (

∫ 1

0

|F 1(s)|2ds)α/2 <∞

and thus by the Theorem of Lebesgue the limits c±1 := limm→∞ c±1,m of the quanti-

ties c+1,m and c−1,m, defined in (4.9)-(4.10), exist and are given by

c+1 =

∫ 1

0

(
p(F+

1 (s))α + q(F−1 (s))α
)

ds, c−1 =

∫ 1

0

(
q(F+

1 (s))α + p(F−1 (s))α
)

ds.



continuous time moving averages driven by heavy-tailed Lévy noise 415

Observe that c+1,m + c−1,m > 0 for large m ∈ N provided c+1 + c−1 > 0 and also∫
|fm(s)|αds > 0 for sufficiently large m. Hence if c+1 + c−1 > 0, for large enough m

by Proposition 3

1

an

n∑
t=1

X+
t,m

d→ Sα(β1,m, γ1,m, 0) (n→∞), (4.16)

where the parameters are given in (4.11). Applying the second Lévy-Itô decompo-

sition (L2) such that L+
t = L≤t + L>t we define for t ∈ N and k ∈ Z

Z≤t,k :=

∫ k+1

k

f(t− s)dL≤s , Z>t,k :=

∫ k+1

k

f(t− s)dL>s , Z̃≤t,k := Z≤t,k − EZ≤t,k.

Next we want to prove that, as n→∞,

1

an

 n∑
t=1

X+
t,m − n

m−1∑
j=−m

EZ≤0,j

 d→ Sα(β1,m, γ1,m, δ1,m), (4.17)

where δ1,m = −α(p−q)
1−α

∫m
−m f(−s)ds. To this end let first α ∈ (0, 1). Using the

compound Poisson representation and since limn→∞ na−1
n γ

∫ 1

0
f(−j − s)ds = 0 we

have

lim
n→∞

n

an
EZ≤0,j = lim

n→∞

n

an
E
∫ 1

0

f(−j − s)dL≤s = lim
n→∞

n

an
E(

N
≤
1∑

k=1

f(−j − T≤k )Y ≤k,n).

Conditioning on the number of jumps and jump times yields for pn := P(N≤1 = n)

E(

N
≤
1∑

k=1

f(−j − T≤k )Y ≤k,n)

= EY ≤1,n
∞∑
N=0

pN

∫
RN

(

N∑
k=1

f(−j −
k∑
l=1

tl))P(T≤1 − T
≤
0 = dt1, . . . , T

≤
N − T

≤
N−1 = dtN )

= EY ≤1,nE
∫ 1

0

f(−j − s)dN≤s = EY ≤1,nEN
≤
1

∫ 1

0

f(−j − s)ds. (4.18)

By Bingham et al. (1989, Theorem 1.6.4) and since EN≤1 = ν(1 < |x| ≤ an)

lim
n→∞

nEN≤1 EY ≤1,n
an

= − lim
n→∞

n

an

∫
1<x≤an

xν̄(dx) =
α(p− q)
(1− α)

.

If α ∈ (1, 2) we assumed EL1 = 0, hence EL+
1 = 0 and EZ≤0,j = −EZ>0,j . Condi-

tioning as before, we conclude

EZ≤0,j = −EZ>0,j = −EY >1,nEN>
1

∫ j+1

j

f(−s)ds.

By Bingham et al. (1989, Theorem 1.6.5)

− lim
n→∞

nEN>
1 EY >1,n
an

= lim
n→∞

n

an

∫
x>an

xν̄(dx) =
α(p− q)
(1− α)

.
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For α = 1 we assumed symmetry and therefore the centering vanishes and hence
we proved (4.17) for all α ∈ (0, 2). With the same arguments the convergence

1

an

 n∑
t=1

X+
t − n

∞∑
j=−∞

EZ≤0,j

 d→ Sα(β1, γ1, δ1) (n→∞), (4.19)

where δ1 = −α(p−q)
1−α

∫∞
−∞ f(−s)ds, is equivalent to a−1

n

∑n
t=1X

+
t

d→ Sα(β1, γ1, 0)

and (4.19) follows by Billingsley (1968, Theorem 4.2) if we can show that the
following two conditions are satisfied

Sα(β1,m, γ1,m, δ1,m)
w→ Sα(β1, γ1, δ1) (m→∞), (4.20)

lim
m→∞

lim sup
n→∞

P(a−1
n |

n∑
t=1

(X+
t −X+

t,m)− n
∑

j>|m|,j=m

EZ≤0,j | > ε) = 0 ∀ε > 0.(4.21)

By assumption f ∈ L1(R) and hence δ1,m → δ1 as m → ∞. Since we have shown
before that c±1 = limm→∞ c±1,m it holds that β1,m → β1 and γ1,m → γ1. Observe

that the characteristic function of the distribution Sα(β, γ, δ) is continuous in β, γ
and δ, and therefore the first condition (4.20) follows. Notice that

n∑
t=1

(X+
t −X+

t,m)− n
∑
j>|m|,
j=m

EZ≤0,j =

n∑
t=1

∑
k∈{−∞,...,t−m−1}∪{t+m,...,∞}

(Z̃≤t,k + Z>t,k).

Rearranging yields

n∑
t=1

∑
k∈{−∞,...,t−m−1}∪{t+m,...,∞}̃

Z≤t,k =

∞∑
j=m+1

n∧(j−m)∑
i=1

Z̃≤i,j +

−m−1+n∑
j=−∞

n∑
i=1∨(m+1+j)

Z̃≤i,j .

Hence we can bound the probability in (4.21) by

P(a−1
n |

∞∑
j=m+1

n∧(j−m)∑
i=1

Z̃≤i,j +

−m−1+n∑
j=−∞

n∑
i=1∨(m+1+j)

Z̃≤i,j | >
ε

2
)

+ P(a−1
n |

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)Z>t,k| >
ε

2
). (4.22)

We first show that the limm→∞ lim supn→∞ of the first term is zero. Observe that
Var(A+B) ≤ 2(Var(A) + Var(B)) for arbitrary random variables A and B. Hence
applying the Chebyshev inequality yields

P

a−1
n |

∞∑
j=m+1

n∧(j−m)∑
i=1

Z̃≤i,j +

−m−1+n∑
j=−∞

n∑
i=1∨(m+1+j)

Z̃≤i,j | > ε/2


≤ 8

a2
nε

2

 ∞∑
j=m+1

Var(

n∧(j−m)∑
i=1

Z≤i,j) +

−m−1+n∑
j=−∞

Var(

n∑
i=1∨(m+1+j)

Z≤i,j)

 . (4.23)

Denote the quadratic variation of a semimartingale M = (Ms)s≥0 on the interval
[0, s] by [M,M ]s and notice that L≤ = (L≤s )s≥0 with the compound Poisson repre-

sentation from (L2) has quadratic variation [L≤, L≤]s =
∑N≤

s

k=1(Y ≤k,n)2 for s ∈ [0, 1].
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Hence by the Itô-isometry we conclude for g(s) :=
∑n∧(j−m)
i=1 f(i− j − s)

Var(

n∧(j−m)∑
i=1

Z≤i,j) = Var(

∫ 1

0

(

n∧(j−m)∑
i=1

f(i− j − s))dL≤s )

= E[(

∫ 1

0

g(s)dL≤s )2]− (E
∫ 1

0

g(s)dL≤s )2

= E
∫ 1

0

g2(s)d[L≤, L≤]s = E[(Y ≤1,n)2]EN≤1
∫ 1

0

g2(s)ds.

Thus we get

1

a2
n

∞∑
j=m+1

Var(

n∧(j−m)∑
i=1

Z≤i,j) =

=

(
1

a2
n

EN≤1 E[(Y ≤1,n)2]

) ∞∑
j=m+1

∫ 1

0

(

n∧(j−m)∑
i=1

f(i− j − s))2ds

=
EN≤1 E[(Y ≤1,n)2]

a2
n

(

n+m∑
j=m+1

∫ 1

0

(

−m∑
i=1−j

f(i− s))2ds+

∞∑
j=n+m+1

∫ 1

0

(

n−j∑
i=1−j

f(i− s))2ds).

By Bingham et al. (1989, Theorem 1.6.4) it holds that

lim sup
n→∞

n

a2
n

EN≤1 E[(Y ≤1,n)2] = lim sup
n→∞

n

a2
n

∫
1<|x|≤an

|x|2ν(dx) <∞.

The first sum in (4.24) satisfies since F 1 ∈ L2([0, 1]), as n→∞,

1

n

n+m∑
j=m+1

∫ 1

0

(

−m∑
i=1−j

f(i− s))2ds =
1

n

n∑
j=1

∫ 1

0

 −m∑
i=1−j−m

f(i− s)

2

ds

→
∫ 1

0

( −m∑
i=−∞

f(i− s)

)2

ds. (4.24)

Similarly, we calculate for the second term in (4.24)

1

n

∞∑
j=n+m+1

∫ 1

0

(

n−j∑
i=1−j

f(i− s))2ds =
1

n

∞∑
j=m+1

∫ 1

0

 −j∑
i=1−j−n

f(i− s)

2

ds

≤
∫ 1

0

(

−m−1∑
i=−∞

|f(i− s)|)2ds. (4.25)

Hence limm→∞ lim supn→∞ a−2
n

∑∞
j=m+1 Var(

∑n∧(j−m)
i=1 Z≤i,j) = 0 by equations

(4.24)-(4.25), and a similar argument applies to the second term in (4.23). Suppose
α ∈ (1, 2). The second term in (4.22) can be bounded from above by

P

(
a−1
n |

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)Z>t,k| > ε/2

)
≤ 2

εan

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)E|Z>t,k|.
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As before in (4.18), by conditioning on the number of jumps and jump times and
the triangle inequality we conclude

E|Z>t,k| ≤ E|Y >1,n|E
∫ 1

0

|f(t− k − s)|dN>
s = E|Y >1,n|EN>

1

∫ 1

0

|f(t− k − s)|ds.

Applying again Bingham et al. (1989, Theorem 1.6.5) yields

lim sup
n→∞

nE|Y >1,n|EN>
1

an
= lim sup

n→∞

n

an

∫
|x|≥an

|x|ν(dx) <∞.

Further, we have

1

n

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)

∫ 1

0

|f(t− k − s)|ds =

∫ −m
−∞
|f(−s)|ds+

∫ ∞
m

|f(−s)|ds.

Hence

P

(
a−1
n |

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)Z>t,k| >
ε

2

)
≤ 2

ε

n

an
E|Y >1,n|EN>

1

∫ ∞
−∞
|f(−s)|ds

and since f ∈ L1(R) the limm→∞ lim supn→∞ of this term is zero. If α ∈ (0, 1],
choose δ < α, δ ≤ 1 such that f ∈ Lδ(R). Then by Chebyshev’s inequality and the
subadditivity of x 7→ |x|δ, δ ≤ 1,

P

(
a−1
n |

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)Z>t,k| > ε/2

)
≤ 2δ

εδaδn

n∑
t=1

(

t−m−1∑
k=−∞

+

∞∑
k=t+m

)E|Z>t,k|
δ.

Conditioning as before gives

E|Z>t,k|
δ ≤ E|Y >1,n|δE

∫ 1

0

|f(t− k − s)|δdN>
s = E|Y >1,n|δEN>

1

∫ 1

0

|f(t− k − s)|δds,

and applying again Bingham et al. (1989, Theorem 1.6.5) yields

lim sup
n→∞

nE|Y >1,n|δEN>
1

aδn
= lim sup

n→∞

n

aδn

∫
|x|≥an

|x|δν(dx) <∞.

Similar calculations as before complete the proof of (4.21) and hence the claim
is proved when c+1 + c−1 > 0. If c+1 + c−1 = 0, then there is either an increasing
subsequence (mi)i∈N ⊂ N, i.e. mi ≤ mi+1 for all i ∈ N, such that c+1,mi + c−1,mi = 0

for all i ∈ N, or one such that c+1,mi + c−1,mi > 0 for all i ∈ N. In the first case

Proposition 2 implies a−1
n

∑n
t=1X

+
t,mi

P→ 0 as n → ∞ for every i ∈ N and the
statement of the theorem follows in this case also from (4.21), which has been
already proved. In the second case, (4.16) holds along (mi)i∈N and γα1,mi → 0 as

well γα1,miβ1,mi → 0 as i→∞. Hence Sα/2(β1,mi , γ1,mi , 0)
w→ δ0 as i→∞ by (3.1),

where δ0 denotes the Dirac measure at 0. �

Assume (A1) and (A2) are satisfied and define for fixed sampling frequency
∆ > 0, h ≥ 0 and Yt,h = XtXt+h with (Xt)t∈R in (2.5) the sample autocovariance
with lag h by

γn,∆(h) = n−1
n∑
t=1

X∆tX∆(t+h) = n−1
n∑
t=1

Y∆t,∆h, n ∈ N.
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Further, denote for m ∈ N and f∆m(s) = f(s)1[−m∆,m∆](s) the random variables

Xt,∆m :=

∫ ∞
−∞

f∆m(t− s)dLs =

∫ t+m∆

t−m∆

f(t− s)dLs, t ∈ R, (4.26)

Yt,h,∆,m := X∆t,∆mX∆(t+h),∆m. (4.27)

By Proposition 1(ii), Yt,h ∈ RV (α/2, a2
n, µf1+h ◦ g

−1
1,h) for h ∈ N0. Hence one

concludes by the same arguments as in the proof of Proposition 9 that for every
fixed h ∈ N0 the sequence (Yt,h)t∈Z is regularly varying in the sense of equations

(4.3) and (4.4) with rn = (
∫∞
−∞ |f(s)f(s + h)|α/2ds)2/αa2

n and µd := (µfd+h ◦
g−1
d,h)/(

∫∞
−∞ |f(s)f(s+ h)|α/2ds).

Proposition 4. Let ∆ > 0, h ∈ N0 and m ∈ N sufficiently large, so that h < 2m
and assume that

∫∞
−∞ |f∆m(s)f∆m(s+∆h)|ds > 0. Assume that (A1) and (A2) are

satisfied and let (Yt,h,∆,m)t∈Z be defined as in (4.27). For Sn,h,∆,m =
∑n
t=1 Yt,h,∆,m

the limits

b+h,∆,m(d) = lim
n→∞

P(Sd,h,∆,m > a2
n), b−h,∆,m(d) = lim

n→∞
P(Sd,h,∆,m < −a2

n), d ≥ 1,

exist and the parameters c±h,∆,m = b±h,∆,m(2m+ h)− b±h,∆,m(2m+ h− 1) are given

for Fh,∆,m(s) =
∑m−h
j=1−m f(∆j − s)f(∆(j + h)− s) by

c+h,∆,m =

∫ ∆

0

(F+
h,∆,m(s))α/2ds, c−h,∆,m =

∫ ∆

0

(F−h,∆,m(s))α/2ds. (4.28)

(i) If c+h,∆,m+c−h,∆,m > 0, then a−2
n

∑n
t=1 Yt,h,∆,m

d→ Sα/2(βh,∆,m, γh,∆,m, 0), where
the parameters βh,∆,m, γh,∆,m are given by

βh,∆,m =
c+h,∆,m − c

−
h,∆,m

c+h,∆,m + c−h,∆,m
, γ

α/2
h,∆,m = (c+h,∆,m + c−h,∆,m)

Γ(2− α
2 )

1− α
2

cos(
πα

4
).(4.29)

(ii) If c+h,∆,m + c−h,∆,m = 0, then a−2
n

∑n
t=1 Yt,h,∆,m

P→ 0.

Proof : Observe that the sequence (Yt,h,∆,m)t∈Z is (2m + h − 1)-dependent. The
proof of part (i) and (ii) is completely analogue to the proof of Proposition 3 and
therefore omitted. It remains to show (4.28). To this end, assume w.l.o.g. ∆ = 1.
With the notation as in the proof of Proposition 3 and by Proposition 1(ii) we get

b+h,1,m(2m+ h) = (µ
f
(m)
2m+2h

◦ g−1
2m+h,h)(ϕ−1((1,∞)))

=

∫ ∞
−∞

((

2m+h∑
i=1

fm(i− s)fm(i+ h− s))+)α/2ds.

Notice that fm(i− s)fm(i+ h− s) = 0 if s /∈ [i+ h−m, i+m]. Hence

b+h,1,m(2m+ h) =

3m+h−1∑
j=1−m+h

∫ j+1

j

((

(2m+h)∧(m−h+j)∑
i=1∨(j−m+1)

f(i− s)f(i+ h− s))+)α/2ds.
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Further, for w(z) := f(z)f(z + h), z ∈ R, we get by index changes

b+h,1,m(2m+ h) =

3m+h−1∑
j=1−m+h

∫ 1

0

((

(2m+h−j)∧(m−h)∑
i=(1−j)∨(−m+1)

w(i− s))+)
α
2 ds

=

m∑
j=1−m+h

∫ 1

0

((

m−h∑
i=1−j

w(i− s))+)
α
2 ds+

m+2h−1∑
j=m+1

∫ 1

0

((

m−h∑
i=−m+1

w(i− s))+)
α
2 ds

+

3m+h−1∑
j=m+2h

∫ 1

0

((

2m+h−j∑
i=−m+1

w(i− s))+)
α
2 ds.

Similarly, one deduces

b+h,1,m(2m+ h− 1) =

m∑
j=1−m+h

∫ 1

0

((
m−h∑
i=1−j

w(i− s))+)
α
2 ds

+

m+2h−1∑
j=m+1

∫ 1

0

((

m−h∑
i=−m+1

w(i− s))+)
α
2 ds+

3m+h−2∑
j=m+2h

∫ 1

0

((

2m+h−j−1∑
i=−m+1

w(i− s))+)
α
2 ds.

Hence

c+h,1,m = b+h,1,m(2m+ h)− b+h,1,m(2m+ h− 1)

=

∫ 1

0

((

m−h∑
i=1−m

f(i− s)f(i+ h− s))+)α/2ds

and the same calculations for c−h,1,m complete the proof. �

Proof of Theorem 3. W.l.o.g. we assume ∆ = 1 (other cases follow from a time
change, see (4.1)). Applying the Lévy-Itô decomposition (L1), we can write Lt =
L+
t + L−t for t ∈ R and define X±t =

∫∞
−∞ f(t− s)dL±s . Let ε > 0 and τ ∈ (α/2, 1).

Then by the subadditivity of x 7→ |x|τ and (2.4), as n→∞,

P(|
n∑
t=1

X+
t X

−
t+h| > εa2

n) ≤
E|
∑n
t=1X

+
t X

−
t+h|τ

ετa2τ
n

≤ ε−τna−2τ
n E|X+

0 |τE|X
−
0 |τ → 0.

A similar argument applies for
∑n
t=1X

−
t X

+
t+h and

∑n
t=1X

−
t X

−
t+h, so that

a−2
n

n∑
t=1

(X+
t X

−
t+h +X−t X

+
t+h +X−t X

−
t+h)

P→ 0 (n→∞)

and hence by Slutsky’s theorem

d− lim
n→∞

a−2
n

n∑
t=1

XtXt+h = d− lim
n→∞

a−2
n

n∑
t=1

X+
t X

+
t+h.

Since G0,1 ∈ Lα/2([0, 1]) we also have u 7→
∑
j∈Z |f(j−u)f(j+h−u)| ∈ Lα/2([0, 1])

by Hölder’s inequality, and hence by the Theorem of Lebesgue the limits
limm→∞ c±h,1,m of c±h,1,m in (4.28) exist and are equal to c±h,1. Suppose first that

c+h,1+c−h,1 > 0, so that also c+h,1,m+c−h,1,m > 0 for largem. Since
∫
R |f(s)f(s+h)|ds >

0, also
∫
R |fm(s)fm(s + h)|ds > 0 for large m ∈ N and we have by Proposition 4

for X+
t,m =

∫∞
−∞ fm(t− s)dL+

s that a−2
n

∑n
t=1X

+
t,mX

+
t+h,m

d→ Sα/2(βh,1,m, γh,1,m, 0)
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as n→∞, where the parameters are given in equation (4.29). Hence it suffices by
Theorem 4.2 (Billingsley, 1968) to show that

Sα/2(βh,1,m, γh,1,m, 0)
w→ Sα/2(βh,1, γh,1, 0) (m→∞), (4.30)

lim
m→∞

lim sup
n→∞

P(a−2
n |

n∑
t=1

(X+
t X

+
t+h −X

+
t,mX

+
t+h,m)| > ε) = 0 ∀ε > 0. (4.31)

But βh,1,m → βh,1 and γh,1,m → γh,1 as m→∞ and hence the first statement (4.30)
follows from the continuity of the characteristic function of the stable distribution.

Denote Z+
t,i =

∫ i+1

i

f(t − s)dL+
s for t ∈ R and i ∈ Z and let δ < α, δ ≤ 1 as

in (A2). Notice that
∑
k∈Z |Z

+
t,k| converges almost surely absolutely since by the

subadditivity of x 7→ |x|δ and by applying the compound Poisson representation
from (L1) and conditioning on the number of jumps and jump times as in (4.18),

E|
∑
k∈Z
|Z+
t,k||

δ ≤
∑
k∈Z

E|Z+
t,k|

δ ≤ (|γ|δ + EN+
1 E|Y +

1 |δ)
∫
R
|f(s)|δds <∞. (4.32)

Observe that

X+
t X

+
t+h −X

+
t,mX

+
t+h,m =

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z+
t,kZ

+
t+h,j +

∑
|k−t|>m,
k=t+m

t+h+m−1∑
j=t+h−m

Z+
t,kZ

+
t+h,j .

Applying the Lévy-Itô decomposition (L2), we define for t ∈ R and k ∈ Z

Z≤t,k :=

∫ k+1

k

f(t− s)dL≤s , Z>t,k :=

∫ k+1

k

f(t− s)dL>s .

By similar estimates as in (4.32), E|
∑
k∈Z |Z

≤
t,k||δ < ∞ and E|

∑
k∈Z |Z

>
t,k||δ < ∞.

Hence
∑
k∈Z Z

≤
t,k and

∑
k∈Z Z

>
t,k are also almost surely absolutely convergent.

Notice that P(a−2
n |
∑n
t=1(X+

t X
+
t+h − X

+
t,mX

+
t+h,m)| > ε) can be bounded from

above by

P(|
n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z≤t,kZ
≤
t+h,j | >

εa2n
8

) + P(|
n∑
t=1

∑
|k−t|>m,
k=t+m

t+h+m−1∑
j=t+h−m

Z≤t,kZ
≤
t+h,j | >

εa2n
8

)

+P(|
n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z>t,kZ
>
t+h,j | >

εa2n
8

) + P(|
n∑
t=1

∑
|k−t|>m,
k=t+m

t+h+m−1∑
j=t+h−m

Z>t,kZ
>
t+h,j | >

εa2n
8

)

+P(|
n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z>t,kZ
≤
t+h,j | >

εa2n
8

) + P(|
n∑
t=1

∑
|k−t|>m,
k=t+m

t+h+m−1∑
j=t+h−m

Z>t,kZ
≤
t+h,j | >

εa2n
8

)

+P(|
n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z≤t,kZ
>
t+h,j | >

εa2n
8

) + P(|
n∑
t=1

∑
|k−t|>m,
k=t+m

t+h+m−1∑
j=t+h−m

Z≤t,kZ
>
t+h,j | >

εa2n
8

).

(4.33)
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We consider first the third term in (4.33). Let η = δ/2. Then by Chebyshev’s
inequality

P(a−2
n |

n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z>t,kZ
>
t+h,j | >

ε

8
) ≤ 16η

εηa2η
n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

E|Z>t,jZ>t+h,j |
η

+
162η

ε2ηa4η
n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

∑
k∈Z,k 6=j

E|Z>t,k|
2ηE|Z>t+h,j |

2η .

(4.34)

Applying the compound Poisson representation from (L2), the Cauchy-Schwarz
inequality and the subadditivity of x 7→ |x|η we conclude by conditioning on the
number of jumps and jump times of (N>

s )s∈[0,1]

E|Z>t,jZ>t+h,j |
η = E|

∫ 1

0

f(t− j − s)dL>s
∫ 1

0

f(t+ h− j − s)dL>s |η

= E|(
N>s∑
i=1

f(t− j − T>i )Y >i,n)(

N>s∑
l=1

f(t+ h− j − T>l )Y >l,n)|η

≤ E|Y >1,n|2ηE(

∫ 1

0

‖f(t− j − s)|ηdN>
s

∫ 1

0

|f(t+ h− j − s)|ηdN>
s ).(4.35)

Denote gt(s) := |f(t−s)|η for t, s ∈ R and Ñ>
s := N>

s −sEN>
1 for s ∈ [0, 1]. By the

Itô-isometry and since the quadratic variation of a Poisson process is the process
itself, it follows that

E(

∫ 1

0

gt−j(s)dN
>
s

∫ 1

0

gt+h−j(s)dN
>
s )

= E
∫ 1

0

gt−j(s)gt+h−j(s)dN
>
s + (EN>

1 )2

∫ 1

0

gt−j(s)ds

∫ 1

0

gt+h−j(s)ds

= EN>
1

∫ 1

0

gt−j(s)gt+h−j(s)ds+ (EN>
1 )2

∫ 1

0

gt−j(s)ds

∫ 1

0

gt+h−j(s)ds. (4.36)

Applying Bingham et al. (1989, Theorem 1.6.5), we conclude

lim sup
n→∞

nE|Y >1,n|δEN>
1

aδn
= lim sup

n→∞
(−
n
∫
x>an

|x|δ ν̄(dx)

aδn
) <∞. (4.37)

It holds by the Cauchy-Schwarz inequality since f ∈ Lδ(R), δ = 2η < α, δ ≤ 1, that

1

n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

∫ j−t+1

j−t
|f(−s)f(h− s)|ηds =

∫
|s−h|>m

|f(−s)f(h− s)|ηds

≤

(∫
|s−h|>m

|f(−s)|δds
∫
|s−h|>m

|f(h− s)|δds

)1/2

→ 0 (m→∞). (4.38)
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Similarly, applying the inequality ab ≤ a2 + b2 for a, b ≥ 0 and again the Cauchy-
Schwarz inequality we conclude

1

n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

∫ j−t+1

j−t
|f(−s)|ηds

∫ j−t+1

j−t
|f(h− s)|ηds

≤ 1

n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

(

∫ j−t+1

j−t
|f(−s)|2ηds+

∫ j−t+1

j−t
|f(h− s)|2ηds)

=

∫
|s−h|>m

|f(−s)|2ηds+

∫
|s−h|>m

|f(h− s)|2ηds→ 0 (m→∞). (4.39)

Hence by equations (4.35)-(4.39) and since EN>
1 = ν(|x| > an) < C for some C > 0

and all n ∈ N, limm→∞ lim supn→∞ a−2η
n

∑n
t=1

∑
|j−t−h|>m,
j=t+h+m

E|Z>t,jZ>t+h,j |η = 0.

Next, we consider the second term in (4.34). Analogously to the calculations before,
we bound

E|Z>t,k|
2η = E|

∫ 1

0

f(t− k − s)dL>s |2η ≤ E|Y >1,n|2ηEN>
1

∫ k−t+1

k−t
|f(−s)|2ηds.

Hence the latter estimation yields for dk =
∫ k+1

k
|f(−s)|2ηds and for the second

term in (4.34)

1

a4η
n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

∑
k∈Z,k 6=j

E|Z>t,k|
2ηE|Z>t+h,j |

2η

≤ (
nE|Y1,n|2ηEN>

1

a2η
n

)2 1

n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

∑
k∈Z,k 6=j

dk−tdj−t−h, (4.40)

and as m→∞

1

n

n∑
t=1

∑
|j−t−h|>m,
j=t+h+m

∑
k∈Z,
k 6=j

dk−tdj−t−h =
∑

|j−h|>m,
j=m+h

∑
k∈Z,
k 6=j

dkdj−h

≤
∫
R
|f(−s)|2ηds

∫
|s|>m

|f(−s)|2ηds→ 0. (4.41)

Hence the limm→∞ lim supn→∞ in (4.34) is zero by (4.37) and (4.40)-(4.41). Next
we consider the first term in (4.33). By Chebyshev’s inequality,

P(a−2
n |

n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z≤t,kZ
≤
t+h,j | >

ε

8
)

≤ 8

εa2
n

n∑
t=1

(
∑

|j−t−h|>m,
j=t+h+m

E|Z≤t,jZ
≤
t+h,j |+

∑
|j−t−h|>m,
j=t+h+m

∑
k∈Z,k 6=j

E|Z≤t,kZ
≤
t+h,j |). (4.42)
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Since f is bounded, applying the compound Poisson representation from (L2)

and the Cauchy-Schwarz inequality yields for ek =
∫ k+1

k
|f(−s)|ds and some C > 0

E|Z≤t,jZ
≤
t+h,j |

≤ E(|γ|ej−t +

N
≤
1∑

i=1

|f(t− j − T≤i )Y ≤i,n|)(|γ|ej−t−h +

N
≤
1∑

l=1

|f(t+ h− j − T≤l )Y ≤l,n|)

≤ C(ej−t + ej−t−h)(1 + 2E|Y ≤1,n|EN
≤
1 + E|Y ≤1,n|

2EN≤1 ).

Similarly, for j 6= k

E|Z≤t,k|E|Z
≤
t+h,j | ≤ (|γ|+ E|Y ≤1,n|EN

≤
1 )2

∫ 1

0

|f(t− k − s)|ds
∫ 1

0

|f(t+ h− j − s)|ds.

Applying Bingham et al. (1989, Theorem 1.6.4), we conclude

lim sup
n→∞

nE|Y ≤1,n|2EN
≤
1

a2
n

= lim sup
n→∞

(−
n
∫

1<x≤an |x|
2ν̄(dx)

a2
n

) <∞. (4.43)

Since E|Y ≤1,n| ≤ (E|Y ≤1,n|2)1/2 also lim supn→∞ na−2
n E|Y ≤1,n|EN

≤
1 < ∞ and it holds

that
lim sup
n→∞

n

a2
n

(|γ|+ E|Y ≤1,n|EN
≤
1 )2 <∞.

These estimates and similar calculations as in (4.38) and (4.41) show that the
limm→∞ lim supn→∞ of (4.42) is zero. Also by similar calculations it can be shown
that the limm→∞ lim supn→∞ of the second and fourth term in (4.33) is zero. Next
we consider the 5th term in (4.33). By Chebyshev’s inequality,

P(|
n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

Z>t,kZ
≤
t+h,j | >

εa2n
8

)

≤ 8δ

εδa2δn

n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

E|Z>t,k|
δE|Z≤t+h,j |

δ. (4.44)

Since supn∈N E|Y ≤1,n|δ ≤ E|Y +
1 |δ <∞ we conclude for some C > 0

E|Z≤t,k|
δ ≤ (|γ|δ + E|Y ≤1,n|δEN

≤
1 )

∫ k−t+1

k−t
|f(−s)|δds ≤ C

∫ k−t+1

k−t
|f(−s)|δds

and as shown before it holds that E|Z>t,k|δ ≤ E|Y >1,n|δEN>
1

∫ k−t+1

k−t |f(−s)|δds. Hence

1

a2δ
n

n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

E|Z>t,k|
δE|Z≤t+h,j |

δ

≤
CE|Y >1,n|δEN>

1

a2δ
n

n∑
t=1

∑
k∈Z

∑
|j−t−h|>m,
j=t+h+m

∫ k−t+1

k−t
|f(−s)|δds

∫ j−t−h+1

j−t−h
|f(−s)|δds.

By (4.37) and (4.41) it follows now that the limm→∞ lim supn→∞ of (4.44) is equal
to zero. The 6th to 8th terms in (4.33) can be estimated analogously and therefore
we proved (4.31) and the theorem in the case c+h,1 + c−h,1 > 0. If c+h,1 + c−h,1 = 0,

there is an increasing subsequence (mi)i∈N ⊂ N, i.e. mi ≤ mi+1 for all i ∈ N,
such that either c+h,1,mi + c−h,1,mi = 0 for all i ∈ N or such that c+h,1,mi + c−h,1,mi >
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0 for all i ∈ N. In the first case a−2
n

∑n
t=1X

+
t,miX

+
t+h,mi

P→ 0 as n → ∞ for

every i ∈ N by Proposition 4 and the claim follows from (4.31), which has been
already proved. Let δ0 denote the Dirac measure at zero. In the second case

a−2
n

∑n
t=1X

+
t,miX

+
t+h,mi

d→ Sα/2(βh,1,mi , γh,1,mi , 0) as n→∞ by Proposition 4 and

Sα/2(βh,1,mi , γh,1,mi , 0)
w→ δ0 for i → ∞ by (3.1), since |γh,1,mi |α/2 → 0 as well as

γ
α/2
h,1,mi

βh,1,mi → 0 for i→∞. �
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