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Abstract. In this article we consider continuous time moving averages observed
on a lattice, driven by an infinite variance Lévy process with regularly varying tails
with index « € (0,2). We show that the asymptotic distribution of the sample mean
and sample autocovariance function is a stable law. The parameters of the stable
limit distribution are explicitly given in terms of the kernel and characteristics of
the Lévy process.

1. Introduction

Continuous time moving averages appear in many fields of applied probability as
economics and finance and cover many popular models from time series analysis in
continuous time. Because of their applicability to irregularly spaced observations
and high-frequency data, frequently appearing in finance and turbulence, continu-
ous time moving averages are often favored over their discrete time counterparts.
Let L = (Ly)¢cr be a two-sided one-dimensional Lévy process, i.e. a stochastic pro-
cess with Ly = 0, independent and stationary increments and cadlag paths. In this
paper we will consider continuous time moving averages of type

X, = / f(t—s)dL,, teR, (1.1)
R

where f : R — R is a measurable function and the Lévy process L = (Lt)ier
has regularly varying tails with index « € (0,2) and in particular infinite variance.
Many popular models in continuous time as e.g. CARMA processes and Ornstein-
Uhlenbeck processes can be represented by continuous time moving averages and
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methods for the estimation of the kernel function f are available (see e.g. Brockwell
et al., 2013 and Fasen, 2013, and for the special case of a stable driving Lévy process
Fasen and Fuchs, 2013 and Garcia et al.; 2011). Our purpose will be to determine
the asymptotic distribution of the sample mean and sample autocovariances of
(X¢)ter in (1.1), observed on a lattice {At: ¢t =1,2,...} for some A > 0.

The asymptotic distribution of the mean and autocovariance function of contin-
uous time moving averages has been already investigated by many others. Cohen
and Lindner (2013) proved a central limit theorem for the mean and autocovari-
ance function under the assumptions EL? < oo (respectively EL{ < oo for the
autocovariances) and square-integrable kernel f. Spangenberg (2015) studied the
long memory case where f(t) ~ Cqt?~! for d € (0, 1) and some constant Cg. When
EL} < oo he proved a central limit theorem and in the case of a Lévy process with
regularly varying tails with index « € (2,4) that the limit distribution is either a
Rosenblatt or stable distribution, depending on the interplay of d and «. Further,
Bai et al. (2016) considered certain Toeplitz type quadratic functionals of continu-
ous time moving averages with square integrable kernel f and finite variance Lévy
processes which arise in the statistical estimation of the spectrum of stationary
processes.

For discrete time moving averages of the form X, = ZZOZO ek Zi—y, for (ck)ren, C
R and t € Z where (Z;)tcz is an i.i.d. sequence of random variables which are reg-
ularly varying with index a € (0,2) and satisfy a tail balance condition, Davis
and Resnick (1985) established that the sample mean and the sample autocovari-
ances are asymptotic stable distributed. Their approach was based on point process
methods. We will use a different approach which is based on classical blocking and
mixing techniques, and is due to Jakubowski (1993, 1997), see also Bartkiewicz
et al. (2011) for a survey on stable limit theorems under dependence. The main ad-
vantage compared to the point process approach is the more explicit representation
of the parameters of the stable distribution.

We will use the following notations: the indicator function of a set A is denoted
by 14 and the signum function sign(z) is defined by sign(z) = 1(z > 0) — 1(z < 0).
The boundary of a set A is denoted by 0A. By B(A) for a set A we denote the Borel-
o-algebra on A. The symbols —d>7 A 5 and & denote convergence in distribution,
weak convergence, vague convergence and convergence in probability. Sometimes
we write for a measure v and a set A short vA for v(A). By fT and f~ we denote
the positive and negative part of a function f.

2. Preliminaries

In this article we assume that (Li):cr is a two-sided one-dimensional Lévy
process with triplet (7,02, v), i.e. the characteristic function of L; is given by
or,(2) = Ee#lt = eltlv(z sien(®) where the characteristic exponent v(z) admits the
representation (see Sato, 1999, Theorem 8.1)

0?22

P(z) =iyz — + /]R[eiz”C —1—izzl(|z| < 1)v(dz), zeR.

Here v € R is called generalized drift, 02 > 0 the Gaussian part and v is the Lévy
measure, a measure on (R, By) such that v({0}) = 0 and fR\{O}(\mF Al)v(dr) < oo.

Denote by 7(z) = v(z,00) + v(—o0, —x) for > 1 the Lévy tail measure.
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We will use the notion of multivariate regular variation (see Hult and Lindskog,

. —d

2006). Set R* = [~00,00]%. An R¢-valued random vector X = (Xy,...,Xq)7
with unbounded support is multivariate reqularly varying, if there are an o > 0,
a positive sequence (ay)nen, an T 00, and a nonzero Radon measure p defined on

B(@d\{O}), u(@d\Rd) = 0, such that, as n — oo,

nP(X € an) > u(-)  on BRN\{0}).
We write X € RV(a,an,p). Similarly, we write for a Radon measure v on
B(@d\{O}), v € RV(a,an, ), if nv(a,-) 2 u(-) on B(Kd\{O}). Notice that the
limiting measure has the property u(xA) ~ x=*u(A) for z > 0 and every set

A€ B(Rd\{O})7 see e.g. Hult and Lindskog (2006). If d = 1 and the Lévy process
(L¢)ter satisfies L1 € RV (o, ap, ) for a sequence (ap,)nen with

nP(|L1] > an) = 1, n— oo, (2.1)
then the limiting measure p is explicitly given by
1(dz) = (p1(0,00) (%) + ql(— 000 (z))at|z| > 'da, (2.2)
where the constants p and ¢ are explicitly given by
. P(Ly > x) . P(Ly < —x)
lim ——= =p, lim —— =g, =1, p,qel0,1]. (2.3
S TR R - I E pacl01 (23)

If L1 € RV(a, by, i) for some (by,)nen and g, and we set a,, = inf(x : P(|L;| >
x) < %) for n € N, then (ay)nen satisfies (2.1) and Ly € RV (a, @y, 1) for some p.
In this case the sequence (a,),en is regularly varying with index a~! and behaves
therefore like

Gy ~ L(n)n‘fl7 n — oo (2.4)
for some slowly varying function L and n € IN.

Remark 1. If X is an infinitely divisible random variable with triplet (v, 0?2, v),
then X € RV («, an, p) if and only if v € RV (a, ay, p), see Pakes (2007, Theorem
3.3) and also Embrechts et al. (1979) for one-sided distributions. Hult and Lindskog
(2006, Proposition 3.1, Corollary 3.1) proved the analogue statement for multivari-
ate infinitely divisible distributions and the notion of multivariate regular variation.
We will use above tail equivalence only for d = 1, but note that it is implicitly used
for d > 1 in the proof of Proposition 1 (i) (see Moser and Stelzer, 2011, Theorem
3.1). Note further that there are many equivalent definitions of multivariate regu-
lar variation, see e.g. Lindskog et al. (2014, Theorem 3.1). Equation (2.3) is often
referred to as tail balance condition. In particular, if p > 0 and ¢ > 0, by Hult and
Lindskog (2006, Corollary 3.1) as © — oo

P(Ly > z) ~ v(z,00) ~ v[z,00), P(L; < —2)~ v(—00,—x) ~ v(—00, —z].

Also note that P(L; > x) ~ v]z,00) entails P(L; > x) ~ tv[z,00) for ¢ > 0 and
T — 00.

In the following we will consider continuous time moving averages of the form

Xt:/]Rf(t—s)dLs, tER, (2.5)
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where f : R — R is a measurable function and L = (L;)¢cgr is a one-dimensional
Lévy process with triplet (v,02,v). The stochastic integral (2.5) is defined as
follows: let a < b,a,b € R, and f : (a,b) — R be a measurable function. Then f
is called L-integrable, if for every sequence of simple functions (f,),en such that
fn — [ almost everywhere, the limit P —lim,, f(a’b) fn(s)dLs exists. In this case
we set f(a,b) f(s)dLs :=P —lim,, f(a,b) fn(s)dLs and the limit does not depend
on the choice of the sequence of simple functions. If further for a function f : R — R
the limit P — limy, ;o0 ff’p f(s)dL exists, the stochastic integral [~ f(s)dL, is
called defineable, the function f is called (improper) L-integrable, and X in (2.5)
is set equal to P —lim,, 4, oo ffp f(t—s)dLs, in which case the distribution of X; is
infinitely divisible. Since the Lévy process has the independent increment property,
the convergence is also almost surely. Necessary and sufficient conditions in terms
of f and the characteristic triplet (v, 02,v) for the stochastic integral (2.5) being
definable are well-known (see Sato, 2006 or Rajput and Rosinski, 1989).

Denote by LP(A) for A € B(R) and 0 < p < oo the set of functions f: A — R
which satisfy [, [f(s)[’ds < oo. Throughout this article we will assume that the
following two conditions are satisfied.

Condition (Al). The Lévy process (Li)icr satisfies Ly € RV («,ap, ) for some

a € (0,2), a positive sequence (an)new,an T 00, satisfying (2.1) and p(dz) =

(P1(0,00) () + qﬂ(,oo’o)(a:))a|x|_"‘_1dx, where the constants p and g are given by
P(L; > z) P(L; < —x)

lim —— = lim ————
e Py > @) 1 ameo P(|Ly| > @)

Further, assume that for o > 1 the expectation of L is zero, i.e. EL; = 0.

Condition (A2). The kernel f : R — R is bounded, f € L(R) for some § < o, < 1
and [, [f(s)|ds # 0.

Under above conditions (A1) and (A2) the stochastic integral (2.5) is definable,
see I'asen (2005, Proposition 3.1). Observe that f € L°(R) implies f € LO+¢(R) for
bounded f: R — R and §,¢ > 0.

=q, p+q=1, p,qel0,1]. (2.6)

3. Results

In this section we state our main results. We establish limit theorems for the
sample mean and sample autocovariances of continuous time moving averages of
type (2.5). In both cases the limit distribution will be a stable law. Two random
variables X and Y, and also their distributions, are said to belong to the same type,

if they have the same distribution after change of scale and location, i.e. X L aY +b
for some a > 0 and b € R. Stable distributions are distributions which are closed
under convolutions. More precisely, a distribution F' is stable if for i.i.d. random
variables X and Y, X, Y ~ F| the distribution of the sum X +Y is of same type as
F. The characteristic function px of a (nondeterministic) stable random variable
X admits for z € R the unique representation (see Nolan, 2017, Proposition 1.17)

ox(z) = exp(izd — |y2]|*(1 — ifsign(z) P, (2))),

tan(5),  a#l,
where ®,(z) = 9 (3.1)
——log|z|, a=1,
™
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and « € (0,2],8 € [-1,1],7 > 0,6 € R. We write X ~ S,(8,7,9). Notice that for
X ~ 84(8,7,9) and a,b € R,a # 0 (see also Nolan, 2017, Proposition 1.17)

Sa(sign(a)B,|aly,ad +b), a#1,

aX +b~ . 2
Sa(sign(a)B, laly,ad +b— —falog(lal)), ~ a=1.

(3.2)

Define for A > 0

Fa :[0,A] = R, U Z J(Aj —u),

j=—o00
Fa:[0,A] 5 [0,00], ur Y [f(Aj—u)l.
j=—o00

Observe that (A2) ensures FaA < 0o almost everywhere and Fa € L([0,A]). We
can now state our first main result:

Theorem 1. Let A > 0, conditions (A1) and (A2) be satisfied and set X; =
ffooo f(t—s)dLs. Suppose further that the distribution of Ly is symmetric if o = 1

and that Fa € L%([0,A]). Define the coefficients cX and cx by
A A
A= /O (P(FX(s) +a(Fx(s)*) ds, cx= /O (@(FX () +p(Fx (5)*) ds.

(i) If ¢k +cx > 0, then a,t >0, Xa <4 Sa(Ba,va,0) as n — oo, where the
parameters are given by

foA(FX(S))a — (Fx(s))*ds

e T S R ds
. _I2-a) Ta
W/Z _ (CA + CA) (1 . OZ) COS( 2 )7 « 7é 17
(ck + cg)7T a=1

57
(ii) If ¢k +cx =0, then ayt Y7 | Xas 50 asn— oo.

Remark 2. (i) Notice that f € L'(R) is necessary for Fa € L?([0,A]) (see Co-
hen and Lindner, 2013, Remark 2.3). In the discrete time case (i.e. when f =
> jez ¢il(ajag+1y) for a real sequence (¢;)jez) Fa € L%([0,A]) is automatically
satisfied and hence Theorem | recovers the results from Davis and Resnick (1985,
Theorem 4.1), who derived the stable law as asymptotic distribution for the sample
mean of discrete time moving averages X; = Z;io cjZi—j for t € Z. In contrast to
their result, the parameters of the stable limit distribution are explicitly given in
Theorem 2. However, we assume in addition to their assumptions that the distri-
bution of L is symmetric if a = 1.

(ii) Cohen and Lindner (2013) determined the asymptotic distribution of the sam-
ple mean for continuous time moving averages X; = fR f(t — s)dLs under the
assumption of E|L;|?> < co. They showed that

n
Vit Xar — EXa) % N(0,0%),

t=1



408 M. Drapatz

as n — oo and for some explicitly given constant v?, provided that Fa € L?([0, A]).
(iii) The condition ¢{ + ¢ = 0 of Theorem 1 (ii) applies if for example the kernel
is given by f(s) = L_1)(s)e™ "% — Ljp,1y(s)e”* when A = 1 and for arbitrary
p,q € [0,1].

Define for A > 0, h € Ny and n € IN the sample autocovariance function of

(Xo)iez in (25) by y,a(h) =n"" Y XarXa(rn) and
t=1

Gra:[0,A] R, urs > f(A] —u)f(AG +h) —u).

Jj=—00
Theorem 3. Let A > 0,h € No, [, |f(s)f(s+ Ah)|ds > 0, conditions (A1) and
(A2) be satisfied and set X, = [*_ f(t—s)dLs. Suppose Go.a € L*/?([0,A]). Then
Gr.a € L®/2([0,A]) for each h € Ny. Define the coefficients CIA and C;A by

A A
c;lr,A = /0 (G:’A(s))aﬂds7 C}:,A = /0 (G;;A(S))a/zds.
(i) [fCZ,A +cpa > 0, then as n — oo

n 1 < d
aj%,A(h) = ZXAtXA(t+h) — Sas2(Br,aVh,A,0),

n =1

where the parameters are given by

foA(GZ,A(S))a/z - (G;,A(S))Q/st

Bra = ;
Jo 1G,a(s)[o/2ds
@ _Ire-9) To
’Yh,/A2 = (C}T,A + Ch,A) 1_ 772 COS(T)- (3.3)
(1-9)

(i) Ifc;A +cpa =0, then Jzvn,a(h) 50 asn — .

Remark 4. Theorem 3 recovers the result of Davis and Resnick (1985, Theorem
4.2) who applied point process techniques to derive the stable limit distribution for
the autocovariance function of discrete moving averages. Again our method has the
advantage that the parameters of the stable limit distribution are explicitly given.

Consider the special case of discrete time moving averages (X,,)nen, where for
Zj = Lj — Lj—laj S Z, and f(S) = Z;O:O cj]l[j’j+1)(8)7 (Cj)‘?ozo C R,

[e%s) e’}
X, = / fn—s)dLy = ¢jZn_j, neN. (3.4)
oo =

Suppose that Z;‘;o ;| < oo for some § < a,d < 1 and that the i.i.d. sequence
(Z;)jez satisfies for some slowly varying function L : (0,00) — (0,00) and p,q €
[0,1]

P(Z| > 2) = L)z, a € (0,2),

lim P(Zl > SC) — lim P(Zl < *l‘)

_— —_—— =1.
00 B(|Z1] > @) e P >a) P
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Davis and Resnick (1985, Theorem 4.2) proved under these assumptions that for
Yn(h) :==n"t 570 XeXiqn with (X,)nen in (3.4) and every [ € IN, as n — oo,

o0 o0 o0
a%(*yn(O)7 (T 4 ZQ/Q(Z c?, chchrh R chch)T,
n j=0  j=0 §=0
for a (positive) stable distributed random variable Z, /o with parameter /2 and a
positive sequence (ay,)nen satistfying nlP(|Z1| > a,) — 1 as n — co. The following
counter example shows that a similar statement does not hold for the more general
case of continuous time moving averages.

Ezample 5. Let A =1, h € Ny and (L;):er be a Lévy process satisfying condition
(A1) with p # 1. Consider the kernel f(s) = 219,11(s) = L1 1j(s) + L(1,2)(s) which
satisfies (A2). Then the assumptions of Theorem 3 are satisfied for h = 0,1 and
hence as n — oo

1 « d
CTQZXE = Say2(Bo,1,70,1,0), (3.5)
n =1
1 & d
aTZXtXtH = Sas2(B1,1,71,1,0), (3.6)
n =1

where the parameters ;1 are given in (3.3) and for Gp1(s) = 2272 f(j +h —
s)f(j —s) )
Jo (G 1 ()22 = (G 1 (5))*/?)ds

Jo |G ()2
Notice that Go1 > 0, so that Go; = GS"I = |Go,1| and hence Sy = 1. For
h =1and s € [0,1) we have Gy1(s) = f(1 —5)f(2 —s), and so GT,(s) =

_ a/z_ Y

211/2,1)(s) and G 4(s) = Ljg,1/2)(s). Hence B11 = 730(/;}. By eq. (3.2), aX ~
Say2(sign(a)B, laly,0) for X ~ S,/5(8,7,0), a < 2 and a € R\{0}. But since
both limit distributions (3.5) and (3.6) have different parameters By 1,1,1 with
|B0,1] # |B1.1] the joint convergence

= (100701 ()T 2 Zaya(er (0), ep(1)”

n

Bra =

cannot hold for a stable distributed random variable Z, /, with parameter /2 and
some constants ¢f(0) and c¢(1) depending on the kernel f.

It is still possible that 2% (7,1(0),...,7n,1(1))" converges for | € N to a multi-
variate distribution, but we have not investigated the question of joint convergence
further.

4. Proofs

In this section we prove our main results, Theorems 1 and 3. We will apply in
both proofs the following two Lévy-Itd6 decompositions (see Sato, 1999, Theorem
19.2). Suppose that condition (A1) is satisfied.

Decomposition (L1). The Lévy process (L;)tcr admits the Lévy-1td6 decomposition
Ly = LF+L; fort € R, where (L; )er and (L; )¢er are independent Lévy processes
such that (L;);er has triplet (7,0, V|1z>1) and (L; )ter has triplet (0,02,u|‘m|§1).
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The Lévy process (LT )ser is a compound Poisson processes (with drift) and admits
+ +
therefore for s € [0, 1] the representation L} = vs + ZZLI AL;Jr =5+ Zf;l \
with jump times (7;") and jump heights (Y;") satisfying
v(- 0 {fe] > 1})
v({lz[ > 1})

and (N;7)c(0,1] being a Poisson process with parameters v({|z| > 1}), independent
of (T;7) and (Y;).

P(Y," €)=

2

Decomposition (L2). The Lévy process (L; )ier in (L1) admits for a sequence
(an)nen satisfying (2.1) the further decomposition into L = L=" + L™ for
t € R, where (Ltg’")teR and (L;"™)ser are independent Lévy processes with triplets
(7,0, ¥|1<)2|<a, ) and (0,0,7||z>q, ), respectively. We usually suppress the index
n and simply write L7 for L™ and L7 for L. The Lévy processes (LS)ser

S
and (L7 )ser are compound Poisson processes (with drift) and admit therefore for

s € [0, 1] the representations

NE NE NS NS
L =ns+ ) ALpo=ns+) Yo, L7 =) ALz =) Y7,
i=1 ’ i=1 i=1 ta=t

with jump times (T=) and (7;”) and jump heights (Y,S,) and (Y;,) satisfying

v(- 0 {lz][ > an})
v({le| > an})
and (N3)sep0,1), (NS )sefo,1) being Poisson processes with parameters v({1 < |z| <

an}) and v({|z| > a,}), independent of (7;°) and (Y;5,) and of (7}) and (Y;,),
respectively.

. B V(' a {1 < |:C‘ < an})
P ) =M<l <a])

PY €)=

in

By a time change we can restrict ourselves in the following proofs to the case
A = 1 since we can write for ga(x) := f(Az) and the Lévy process (U2),cr with
UUA = LAy

Xnr = / f(At — s)dL, = /gA(t —0)dUD =: X2, teR, (4.1)
R R

where (X/)icr is observed on the lattice (¢);cz whereas (X;)ier is observed on
(At)¢ez. In the proof of the following proposition we will use the notion of vague
convergence and in particular that the vague convergence j,, — p of a sequence of
Radon measures (fin )nen, (4 On (Rd\{O}, B(@d\{O})) is equivalent to p, (B) — u(B)
as n — oo, for all relatively compact sets B € B(Rd\{O}) such that u(0B) = 0
(see Kallenberg, 1983, Theorem 15.7.2). Notice that the relatively compact sets
in B(Rd\{O}) are the sets B € B(@d\{O}) which are bounded away from zero, i.e.
0¢ BNR

Proposition 1. Let (L;)icr be a Lévy process and f : R — R a function such that
(A1) and (A2) are satisfied. Then for (Xi)ier in (2.5) the following statements
hold:

(i)[Moser and Stelzer, 2011, Theorem 8.1] The random vector X, = (X1, ..., X3)T
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satisfies X, € RV (v, an, puf,) for each k € N, where for fi(s) := (f(1—s), f(2—
)., f(k—3))T the measure py, is given by

17, (B / / 1p(fu(s)2)u(da)ds, B € BERM{0}). (4.2)

(i) For k € N and h € Ny define gip : RF+h 5 RF, Ik h(T1, .o Tprn) =
(£E1$1+h, e 7xkxk+h)T. Then Zk,h = gk’h(Xk;Jrh) = (X1X1+h, e ,Xka+h)T S
RV(O‘/Z a’rzw Pfroqn © gk_,}L)

Denote by A and 4 the interior and closure of a set A, respectively.

Proof: (ii) The function g, is continuous, 2-homogeneous (i.e. gy n(tz) = t?gi n(z)
for t > 0 and = € R¥*") and gk_i(A) is bounded away from zero (i.e. 0 ¢ g; , (A))

for every set A € B (Rk\{O}), which is bounded away from zero. To prove this claim,

assume A is bounded away from zero, but 0 € g;}l(A) Then there is a sequence
(Zn)nen C gk_}L(A) such that z, — 0 as n — co. But then for (gin(zn))new C A
it holds that g p(r,) — O (since gy, is continuous) implying 0 € A which is a
contradiction. Therefore, as © — oo, and for A € B(Rk\{()}) bounded away from
zero such that py, , o gk_),ll(aA) =0
nIP(a,_ka,h € A) = np(a;2gk,h(Xk+h) S A) = n]P’(gk’h(a;le+h) S A)
= nP(a, Xirn € g1 (A) = tpipn(955(A4)),

ie. nP(a,?Zy;, € A) S gy, © g,;}L Notice that we used here that gk_}L(A) C
g,;}L(Z) and g,;}l(/i) C [g,;}l(A)]O, and hence pyf, og;i(@A) = 0 implies that also
Hfretn (8.9]@_,}11(14)) = 0 since

0= i (Grn @A) = i, (G (A\A) = pps, (g5 b (D) = pgs, (g5 1 (A))
> fifn (geh(A) — um([gk,hm)r)
Hfrsn (a‘h:i(A))

)

O

Next we will consider strictly stationary sequences (X;);ez which are regularly
varying in the following sense: for every d € IN and some (equivalently: every)
sequence (7, )nen satisfying r, — oo and

nP(|X1| >r,) = 1, (n— ) (4.3)

there exists a non-null Radon measure pg on (@d\{O}, B (Rd\{O})) with ud(ﬁd\Rd)
= 0 such that

nP(r; (X, ., Xa)T €) B opa(t)  (n— o0). (4.4)
The measure pg does not depend on the specific choice of the sequence (r;,)nen.

Notice that under (A1) and (A2) for I = ([ |f(s)|*ds)"/® and r, := Ia, by
Proposition 1(i)

ILm nP(|X1| > ry) = lim nP(|a, ' X1| > 1) = py, ((I,00) U (—00, —1I)) = 1.
n o0 n—oo
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Hence under (A1) and (A2) the sequence (Xi)iez in (2.5) is regularly varying
in the sense of (1.4) with r, = (i [f(s)|*ds)"/“a, satisfying (1.3) and pq :=
pr. /([ 1f(s)|*ds) with g, in (4.2). Observe that if we scale instead by (an)nen sat-
isfying (2.1), then nP(a; ' (X1,...,Xa)T € ) 5 uy, (). Define further for (r,,)nen
satisfying (4.3), a sequence (X;);ez satisfying (4.4) and S,, = 3", X; the param-
eters

yT(d) = Jim nP(Sg > ),y (d) = lm nP(Sq < —ry), d=>1. (4.5)
We will show later for (X;):cz defined in (2.5) the existence of these limits (see the
proof of Proposition 3). For general sequences (X )iez satisfying (4.3) and (4.4), a
similar argument can be given to show existence of y*(d) and y~(d). Our proofs
of the main results will rely on the following limit theorem for strictly stationary,
m-dependent and regularly varying sequences.

Proposition 2 (Bartkiewicz et al., 2011, Proposition 1). Assume that (X¢)iez is
a strictly stationary, m-dependent sequence for some m > 1 which satisfies (4.4)
with a sequence (rp)nen satisfying (4.3) for some a € (0,2). Moreover, assume
EX; =0 if a > 1 and for a« = 1 that the distribution of X; is symmetric. Then
zt 2 >0, where for y*(d),y~(d) in (4.5)

=y (m+1) =yt (m), 2z, =y (m+1)—y (m).
(i) If 2 + 2, > 0, then 7,15, 5 So(Tuns Am, 0) as n — 0o, where

I'2-—a) T

+ —
+_ - (2m + 2m) os(5-),  aFL
Tp=mm e 0 (Lma) 2 (4.6)
Zm + Zm + \T
(zm+zm)§, a=1.

(ii) If z} + 2z, = 0, then r;; 1S, 50 asn— oo.

Let (L¢)ier and f satisfy the conditions (A1) and (A2) and define for m € IN
and A > 0 the compactly supported function fam(s) = f(8)1|—am,am](s) and the
sequence (X am)tez, defined by

oo t+Am
XiAam = / fam(t—s)dLs = / f(t—s)dL,, teR. (4.7)

— 00 t—Am

We will use the more natural scaling by (a,)nen satisfying (2.1) instead of the
scaling (7, )nen in (4.3). The advantage of this scaling is that it depends only on the
Lévy process (L;)ter and not on the kernel f nor on A > 0 and m € IN. Applying
Proposition 2 to the sequence (Xa¢ am)iez yields the following limit theorem for
its sample mean.

Proposition 3. Let (A1) and (A2) be satisfied and assume that the distribution
of L1 is symmetric if « = 1. Let A > 0 and m € N sufficiently large, so that
Jz |fam(s)|ds > 0. Then for (X;am)iez in (4.7), Spam = >y Xat,am and
d > 1 the limits

bz’m(d) = lim nP(SqgAm > an), bz\’m(d) = lim nP(Sgam < —an), (4.8)

n—oo n—oo
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exist and the parameters ci = bjE m(2m) — bi m(2m — 1) are given by

tlm t=1—m

Cam = /< ZfAt—s pl( > f(At—ys)) ])ds.(4.10)

—m t=1-m

flAt—s))7 ] )ds, (4.9)

(i) If cxm + cam > 0, then antSn am 4 Sa(Ba,mYA,m,0) for n — co, where the
parameters are given by

I'(2—
C+ — Ch (CZm_FCZ m) ( a) COS(E% OL# 17
_ A,m A,m «a _ ’ ’ (1 — OZ) 2 4 11
5A,m - C+ + s ) ,YA,m - T ( . )
Am A,m (czm_i_cg m)§7 a=1.

(i) If c&m +Cam =0, then a; Sy Am 50 asn — .
Proof: W.l.o.g we suppose A = 1 (the other cases follow from a time change, see
(4.1)). By Proposition 1 (i), X1, € RV(a,an,ufl(m)) where for fdm) = (fm(1 —
),y fm(d — 5))T the measure 4 m) is defined in (4.2). Denote ¢(z1,...,24) =
2?21 x; and notice that ¢~1((1,00)) is bounded away from zero. Hence
b, (d) = lim nIP(Sd 1m > Gn)
= lim nP(ay ! (Xim, -, Xam)" € 97 ((1,00)))

by (07 (1,00)), (112)
provided 4 cm) (0p~1((1,00))) = 0. This is the case since by continuity of ¢ and
d
(4.2)
by (07 (L00)) < gty (07 ((1,00))) = pym (97 (1))

d

= [ WA i = ) s o

i=1

Hence the coefficients b, and by, are well-defined. By Proposition 1 (i) and

,m 1M
the discussion after eq. (4 4), (Xt,m)tez in (4.7) is regularly varying in the sense

of (4.4) with pg = ,uf<m>/(f | fm(s)|%ds) and ry, = ([g | fm(s)|*ds)Y/*a, satisfying
d

(4.3). Observe that the sequence (Xy m)iez is (2m — 1)-dependent, i.e. (X m)s<t

is independent of (X )s>1+2m for every ¢ € Z. Hence we checked that (X, )iez

satisfies the assumptions of Proposition 2 with 7, = ([ |f(s)[*ds)Y/%a,. Let y*

denote the coefficients in (4.5) corresponding to the partial sums of (Xy ,,)iez, i.€.

yt(d) = ILm nP(Sq1,m > ™), y (d)= le nP(Sq1,m < —rn), d>1.(4.13)
Then y*(d) = bli,m (d)/ ([ | fm(s)|*ds) and if ¢, + ¢, > 0 by Proposition 2

P St 5 S (T, Am,0), 1 — o0, (4.14)

where the parameters are given by (1.6). But since 2 (d)( [ [fm(s)|*ds) = bfm(d)

and by (3.2), it follows that a, 'S, 1,m 4 Sa(ﬁl,m’yLm,O) with the parameters
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given in (4.11). The statement for the case cfm + ¢y, = 0 is clear. It remains to
prove (4.9) and (4.10). Notice that for m € IN

2m o 2m 3m—1 2mA(i+m) i+l
> Xim = / O funlt—s)dLs= > 3 / F(t — s)dL,. (4.15)
t=1 o0 t=1 i=l—-mt=1Vv(i—m+1) """

Recall the definition of y in (2.2) and notice that :cféz)(s) € ¢ 1((1,00)) if and
only if Ef;”l fm(i —s) > 1. Hence we conclude by (4.12) that
by m(2m) = Nf§$>(¢7l((1,00)))

2m

/mp((me(t—s)ﬁ) +q<(me(t—8))) ds

- t=1

3m—1

it1 2mA(i+m) @ 2mA(i+m) @
Z/ p(< > f(t—S))+> +q(< > f(t—s))‘)ds.

i=1-mv? t=1V(i—m+1) t=1V(i—m+1)

Similarly, one calculates bfm(2m—1), bym(2m) and by, (2m—1). For simplification
of notation assume that f = f*. Notice that in this case

3m—1 2mA(i+m) «

Z /:H Z flt—=s)] ds

p_lbim(2m)

i=1—m t=1V(i—m+1)
2m—1 1 i+m 2m—1 1 m—i
= Z/(Z f(t—s—i))ads+2/(z ft — s))*ds.
i=1 Y0 t=14m i=0 Y0 i=1-m
Similarly,
2m—1 1 i+m 2m—1 1 m—i
P 2m—1) = > /(Z flt—s—i)ds+ > / (> flt—s))"ds.
i=1 Y0 t=14+m i=1 70 t=1-m

Hence we conclude

1 m «
p_l(bim(Qm) — bim(Qm -1)) = / ( Z f— s)) ds.
0 t=1—-m
Similar calculations for f~ yield (4.9) and (4.10). O

Proof of Theorem 1: For simplicity in notation we assume A = 1 (the other cases
follow from a time change, see (4.1)). By the Lévy-It6 decomposition (L1), L; =
Lf +L; fort € R. Denote X\, = [ fn(t—s)dL} and X;* = [~ f(t—s)dLF.
Then a,' >} ; X; converges in probability to zero as n — oo by Remark 2 (ii)
since EX; = EL] = 0 and v/n/a, — 0 by (2.4). Hence d—lim,, oo a, ' D1 | Xy =
d —lim, 00 a1 Y07, X7, By Holder’s inequality

178048 17523(1/200
/0|F1<>|d s(/o [Ty (s) 2ds)*/ <

and thus by the Theorem of Lebesgue the limits cli = limy, 00 cfm of the quanti-
+

1,m

1 1
ot = [ G )+ alry 0 ds e = [ (B )+ (5)7) ds.

0 0

ties ¢y ,,, and ¢y ., defined in (4.9)-(4.10), exist and are given by
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Observe that cfm + ¢1m > 0 for large m € N provided cf +c; > 0 and also
[ 1fm(s)|*ds > 0 for sufficiently large m. Hence if ¢j +c; > 0, for large enough m
by Proposition 3
1 n
=3 X S Sa(Brms 11m, 0) (= 00), (4.16)
n 13
where the parameters are given in (4.11). Applying the second Lévy-1t6 decompo-
sition (L2) such that L = L + L7 we define for t € N and k € Z

< k+1 k+1 ~ < <
Z5 ::/k ft—s)dLs, Z7 ::/k ft—9)dL7, Z5 = Z5 —BZ5,.

Next we want to prove that, as n — oo,

n m—1

1

; ZXt-t_m -n Z IEZOS,] E) Sa(ﬂl,maﬁyl,maél,m% (417)
"o\ t=1 j=—m

where 61, = fagpffaq) J™ f(=s)ds. To this end let first v € (0,1). Using the

compound Poisson representation and since lim,,_, », na, vy fol f(—=j—s)ds =0 we
have

<

1

1
lim —EZ5; = lim ﬁE/ f(=j = $)dLE = Tim E(Y f(—) = TE)Ys,).
P 0 n—00 Ay, P ’

n—00 Gy, n—00 Ay,

Conditioning on the number of jumps and jump times yields for p, := P(N= = n)

NEE
EQ (=i =TV
k=1
) N k
—BYE, S / (3 (=i = SSU)P(IE —TF =dt,..., T5 — TS, = dtw)
N=0 RN k1 =1
1 1
= IEYE,LIE/ f(—=j—s)dNS = IEYERIENF/ f(—j — s)ds. (4.18)
0 0

By Bingham et al. (1989, Theorem 1.6.4) and since Il'_T,NlS =v(l <|z| <ap)

nENTEYT _
lim ———— 1" — _ Jim i/ xp(de) = M.
n— 00 an, n—=00 G J1<p<a, (1 — a)
If o € (1,2) we assumed EL; = 0, hence EL] = 0 and IEZOSJ = —~EZg7 ;. Condi-
tioning as before, we conclude

j+1
EZy; = -EZy; = —EanENf/ f(—s)ds.
J
By Bingham et al. (1989, Theorem 1.6.5)
nEN7EY, —
— lim — =5 — im i/ av(de) = Lip q)'
T>an

n— oo an, n—00 Ay,
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For a = 1 we assumed symmetry and therefore the centering vanishes and hence
we proved (4.17) for all a € (0,2). With the same arguments the convergence

1

Qn

ZX+771 z EZ5 | % Sa(Br,m.61) (n— o0), (4.19)

j=—00

where §; = a(p Q) 1= ds, is equivalent to a, > 1| X;" 4 s, (B1,71,0)
and (4.19) follows by I%lllmosl(,) (1968, Theorem 4.2) if we can show that the
following two conditions are satisfied

Sa(BrmsY1,ms>01,m) — Sa(B1,71,01)  (m — o0), (4.20)

n

<
mlgnOO llﬁsolipp Z —-n Z EZg;| >€) =0 Ve>0.(4.21)

= Jj>|m|,j=m

By assumption f € L'(R) and hence 01,m — 01 as m — oo. Since we have shown
before that cli = lim,, cfm it holds that 1, — B1 and 1, — 1. Observe
that the characteristic function of the distribution S, (8,~,d) is continuous in 3, v
and 4, and therefore the first condition (4.20) follows. Notice that

n

D (X=Xl —n 3 EBZGy =) > (Zi+ 27%)-

t=1 j>|ml, t=1ke{—oo,...,t—m—1}U{t+m,...,c0}
Jj=m

Rearranging yields

n nA(j—m) —m—1+n .
) 2 ZRD DI S/ T SID SR
t=1 ke{—o0,...,t—m—1}U{t+m,...,00} j=m+1 i=1 j=—00 i=1V(m+1+j)

Hence we can bound the probability in (4.21) by

oo nA(F—m) —m—1+n 6
— 7<
ECEID YD DRI SID SR
j=m+1 =1 j=—00 i=1V(m+1+j)

n t—m-—1

Pla, 1) (> + Z Zk|> . (4.22)

t=1 k=—o0 k=t+m

We first show that the lim,,_,~ limsup,,_, ., of the first term is zero. Observe that
Var(A + B) < 2(Var(A) + Var(B)) for arbitrary random variables A and B. Hence
applying the Chebyshev inequality yields

%) nA(j—m) —m—1+n
_ <

ot 3 S 2 Y S s

j=m+1 =1 j=—00 i=1V(m+1+j)
8 0o nA(j—m) —m—1+n n

<
s Sw(S e S S z)

n j=m+1 j=—o00 i=1V(m+1+j)

Denote the quadratic variation of a semimartingale M = (Mj)s>o on the interval
[0, s] by [M, M]s and notice that LS = (LS)s>0 with the compound Poisson repre-

<
sentation from (1.2) has quadratic variation [LS, LS], = Zgil(YEn)Q for s € [0,1].



continuous time moving averages driven by heavy-tailed Lévy noise 417

Hence by the Ito-isometry we conclude for g(s) := S0~ (i — j — )

nA(j—m) 1 nA(G—m)

Var( Z ij) = Var/ Z fli—j—s))dLS)
i=1

_ /Olg L)~ 8 [ o)y

1
= E/ g*(s)d[L=, L=], = E[(Y(S,)JENT / ds.
0
Thus we get
1 &= nA(j—m)
<
N j=m+1 i=1
1 < < o0 1 n/\(J m
— (gEvFEes) O [ > J-i-9ra
n j=m+1 0
ENFEIYE)] % 12 SIS
=SS [ s rase Y [ (3 s s,
n j=m+170 i=1—j j=nt+m+170 i=1—j

By Bingham et al. (1989, Theorem 1.6.4) it holds that

lim sup ENl E[(Y< )2 = limsup%/ lz[?v(dz) < oo.
<|z|<an

n—00 a’n n—oo Ay

The first sum in (4.24) satisfies since F'; € L%([0,1]), as n — oo,

n+m —m 1 n 1 —m 2
CD SN D SIENRTEEIED o) B (IS SR ((E] It
"t i=1—j [ P i,
2
— / (Z fzs) ds. (4.24)
Similarly, we calculate for the second term in (4.24)
. 2
1 o) 1 n—J —J
- > /( f(i—s))2ds = Z / fli—s)| ds
nj:n+m+1 0 i=1—j J m—+1 i=1l—j—n
1 —m—1
< / Z |f(i — s)])%ds. (4.25)
Hence lim,, o0 limsup,, o a2 >0 ) Var(3 110 ™) Zig,j) = 0 by equations

(4.24)-(4.25), and a similar argument applies to the second term in (4.23). Suppose
€ (1,2). The second term in (4.22) can be bounded from above by

P<G;1|Z( _z:_ + > )z k|>e/2> S%Z _z: + ; 127,

t=1 k=—o0 k=t+
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As before in (4.18), by conditioning on the number of jumps and jump times and
the triangle inequality we conclude

1 1
Elzik\SElanlE/o |J‘(7f—/€—8)|df\fs>=H*3|an|1E1\71>/0 [f(t =k — s)|ds.

Applying again Bingham et al. (1989, Theorem 1.6.5) yields
. nE[Y7, [ENT n
lim sup ——————— = limsup —/ |z|v(dz) < oo.
|z|>an

n—o0 an n—oo Qn

Further, we have

n t—-m-—1 00

YIRS

t=1 k=—oc k=t+m

)| R~ s)lds = / ;m fols+ [ 1 (=s)lds.

Hence
o0

B n —m— [e%e) € 2 n
P(aan( o+ >Zt>,k>2> < 2ZEYZENT [ If(-)lds

t=1 k=—o00 k=t+m -

t 1

and since f € L'(R) the lim,, ,o limsup,,_, .. of this term is zero. If o € (0,1],
choose § < a,d < 1 such that f € L°(R). Then by Chebyshev’s inequality and the
subadditivity of z + |z|?, § < 1,

m—1 0o

n t—m-—1 [e’e] 5 n t—m-—
1P><a;1|2( o+ Y )Z;k|>e/2> gés%Z( S+ Y EIZ

t=1 k=—oco k=t+m N t=1 k=—0oco0 k=t+m

4

Conditioning as before gives
1 1
BIZ;,° S BIYZIE [ 15t~ k= s)PN; =BIYZ,PENT [ 1f - k- 9)l%ds,
0 0

and applying again Bingham et al. (1989, Theorem 1.6.5) yields

nE|Y |PENT
lim sup % = lim sup %/ |z v(dz) < oc.
n—00 Ay n—oo Un Jiz|>a,

Similar calculations as before complete the proof of (4.21) and hence the claim
is proved when ¢ +¢; > 0. If ¢f +¢; = 0, then there is either an increasing
subsequence (m;);eny C IN, i.e. my; < myyq for all ¢ € IN, such that Cim,- +eim, =0
for all 7 € IN, or one such that cimi + ¢, > 0 forall i € N. In the first case
Proposition 2 implies a;, ! >}, X;)rmi 5 0asn — oo for every ¢ € IN and the
statement of the theorem follows in this case also from (4.21), which has been
already proved. In the second case, (4.16) holds along (m;)ien and 7§, — 0 as

well ¥§,, B1,m, — 0 as i — co. Hence Sy /2(B1,m,,V1,m,,0) — 8o as i — oo by (3.1),
where &g denotes the Dirac measure at 0. O

Assume (Al) and (A2) are satisfied and define for fixed sampling frequency
A>0,h>0and Y = X Xiyp with (Xy)eer in (2.5) the sample autocovariance
with lag h by

n n
a(h) =n""Y " XaeXageny =0 Yaran, neNN.

t=1 t=1



continuous time moving averages driven by heavy-tailed Lévy noise 419

Further, denote for m € N and fam(s) = f(5)1|—ma,ma](s) the random variables

00 t+mA
XiAam = / fam(t —s)dLs = / ft—9s)dLs, teR, (4.26)
—0o0 t—mA

Yinam = XaeamXA@+h),Am- (4.27)

By Proposition 1(ii), Y;, € RV (a/2,a2, piy, ., 091_7;) for h € INy. Hence one
concludes by the same arguments as in the proof of Proposition 9 that for every
fixed h € INy the sequence (Y7 p)iez is regularly varying in the sense of equations
(4.3) and (1.4) with r,, = (f7_|f(s)f(s + R)[*/2ds)?/®a2 and pg = (py,,, ©

9an) /72 [f(8)f (s + h)[*/2ds).

Proposition 4. Let A >0, h € Ng and m € IN sufficiently large, so that h < 2m
and assume that [ |fam(s)fam(s+Ah)|ds > 0. Assume that (A1) and (A2) are

satisfied and let (E,h7A7m)teZ be defined as in (1.27). For Sppam = Y pe1 Yo.h,Am
the limits

b;;A’m(d) = li_}rn P(Sa,n,a,m > ai), b;’A’m(d) = li_>m P(Sa,n,a,m < —ai), d=>1,
exist and the parameters ciA’m = biA’m(Qm +h)— biA’m(Qm + h —1) are given
for Fnam(s) = X750 F(A] = ) (AG + 1) = s) by

A

A
CZ,A,m :/0 (F;:A,m(s))a/zds7 C;,A,m:/o (Fh_,A,m(s))a/st' (4.28)

. _ _ d
(i) [fc;Am—f—ch’A’m >0, thena,? >0 Yipnam — Sa/2(Br,Ams Yh,Am,0), where
the parameters Bn A m, Yh,A,m are given by

CZAm_C;Am a2 + - ( %)
Br,am=—F—"—"—"—"", VYh,Am = (Ch,A,m + Ch,A,m) 1_2 COS( 4 ) (4.29)
Ch,A,m + ch,A,m 2

.. _ _ P
(”) If C;,A,m + ch,A,m = 07 then an2 Z?:l Y;JMAJTL = 0.

Proof: Observe that the sequence (Yi p A,m)iez is (2m + h — 1)-dependent. The
proof of part (i) and (ii) is completely analogue to the proof of Proposition 3 and
therefore omitted. It remains to show (4.28). To this end, assume w.l.o.g. A = 1.
With the notation as in the proof of Proposition 3 and by Proposition 1(ii) we get
bram@mth) = (ugom o Gominn) (@7 (1,00)))

2m-+h

[ X fuli=9gmli+h=) ) as
OO i=1

Notice that fn, (i —s)fm(i+h—s)=0if s ¢ [i + h —m,i+ m]. Hence

3m+h—1 J+1 (2m+h /\(m h+7)
b+

mam(@mEh) = 3 / Fli— $)f(i +h — 5))*)*/ds.

j=1l—-m-+h i= 1V(_] m—+1)
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Further, for w(z) := f(2)f(z + h), z € R, we get by index changes

3m+h—1 (2m+h— g)/\m h)

bam@mt ) = Y / w(i —5))*)¥ds
j=l—-m+h =(1— ])\/ —m+1)
m—+2h—1
= Z / szfs )2ds + Z / w(i—s))T)2ds
j=1—-m+h 1=1—3 j=m+1 i=—m-+1
3m+h—1 2m+h 7
+ 0y / (i —s))") % ds.
j=m—+2h z——m+1
Similarly, one deduces
m m—h
b;lm(Qm—i—h—l): Z / sz—s )2ds
j=l—m+h i=1—
m+2h—1 3m+h—2 2m~+h— j 1
+ Z / (i—s))")2ds+ Z / w(i —s)) )2 ds.
Jj=m+1 0 1=—m-+1 j=m+2h z*7m+1
Hence
Cz,l,m = b;l m(2m +h) — b21 m(2m +h—1)
- / S i+ h - ) )2
i=1—m
and the same calculations for Ch1,m complete the proof. (Il

Proof of Theorem 3. W.lo.g. we assume A = 1 (other cases follow from a time
change, see (4.1)). Applying the Lévy-Itd6 decomposition (L.1), we can write L; =
L 4+ L; for t € R and define X;* = 75 f(t—s)dLE. Let e > 0 and 7 € (o0/2,1).
Then by the subadditivity of  +— |z|™ and (2.4), as n — oo,

E|Z 1X X h| -7 —27 T —|T
|ZXt X, ipl > €a?) < = ot Hh < e e 2TEBIXSTEIX T — 0.

A similar argument applies for Y ;" ; X;X;h and Y0, Xy Xy, so that

e _ _ N
a,? Y (XX, + XX, + X7 X,) =00 (n— 00)
t=1

and hence by Slutsky’s theorem

d— lim a, ZXtXHh =d— lim a 22X+Xt+h

t=1 t=1

Since Go1 € L*/?([0,1]) we also have u ez fG—w)f(i+h—-u)| € L/2(]0, 1))
by Holder’s inequality, and hence by the Theorem of Lebesgue the limits
limm_>oo Cijilm of Cilm in (4.28) exist and are equal to cil. Suppose first that
¢ 1+cp, > 0,s0thatalso ¢y | +¢; > 0for large m. Since [ [ f(s)f(s+h)|ds >
0, also fR | fm(8) fm(s + h)|ds > 0 for large m € IN and we have by Proposition 4

for X;fm = f_oo fm(t—s)dLE that a2 Sy X+ Xtﬁ_hm — Sa/2(Br,1,ms Yh,1,m»0)
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as n — 0o, where the parameters are given in equation (4.29). Hence it suffices by
Theorem 4.2 (Billingsley, 1968) to show that

Sa/2(ﬂh,1,m;7h,1,m70) = Sas2(Bra, h1,0)  (m—o00),  (4.30)

lim limsup P(a 2|Z XX, - XX, ) >e) =0 Ve>0. (4.31)

M= n_soo t+h.m

But Sr,1,m — Bn,1 and Ya,1,m — Yh,1 as m — oo and hence the first statement (4.30)
follows from the continuity of the characteristic function of the stable distribution.
i+1
Denote Z;7; = f(t —s)dL} for t € R and i € Z and let § < «,8 < 1 as
i
n (A2). Notice that » 7, , |Zt+ .| converges almost surely absolutely since by the

subadditivity of = + |z|° and by applying the compound Poisson representation
from (L1) and conditioning on the number of jumps and jump times as in (4.18),

E Y IZ5N° <Y EBIZE 1 < (11° + ENFE[Y) /|f )%ds < o0 (4.32)
keZ keZ

Observe that

t+h+m—1
+ v+ + v+ Z Z + 7+ Z Z + 7+
X Xt+h X Xt+hm Z Zt+hj+ Z Zt+h]
kEZ |j—t—h|>m, |[k—t|>m, j=t+h—m

j=t+h+m k=t+m

Applying the Lévy-1t6 decomposition (L.2), we define for t € R and k € Z

k+1 k+1
Zi= [ se-oas za= [ fa-sarz
’ k ’ k

By similar estlmates as in (4. 32) El> ez 125 = 1| < oo and E| > okez | Z; k|| < 00.

Hence ), ., Z {k and ZkeZ i, are also almost surely absolutely convergent.
Notice that P(a,,?| Z?:l(X+Xtt_h - XX )1 > €) can be bounded from

t+h,m
above by
n ca’ t+h+m—1 a2
YY Y i Y Y Y ZaZ >
t=1 k€Z |j—t—h|>m, t=1 |k—t|>m, j=t+h—m
j=t+h+m k=t+m
n ea t+h+m-—1 ea2
P(|ZZ Z Zt>th+hj|> . +P|Z Z Z ZinZin;) > ?n)
t=1 k€Z|j—t—h|>m, t=1 |k—t|>m, j=t+h—m
j=t+h+m k=t+m
n GCL t+h+m—1 60,2
09 YD VRV SRR DD SIS SP P AE S
t=1 kE€Z |j—t—h|>m, t=1 |k—t|>m, j=t+h—m
j=t+h+m k=t+m
n ca t+h+m—1 ca?
FRID_>. D ZiZhasl> ) RIS Y Zazi) > =)
t=1 kE€Z |j—t—h|>m, t=1 |[k—t|>m, j=t+h—m
j=t+h+m k=t+m

(4.33)
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We consider first the third term in (4.33). Let n = 6/2. Then by Chebyshev’s
inequality

]P’(a;2|zz Z Z5, t+hg|> S 2772 Z E|Z7; 270 ;1"

n
t=1 k€Z|j—t—h|>m, " =1 |j—t—h|>m,

j=t+h+m j=t+h+m

n

n
1P S S S iz PRIz,

277
an' = 1 |j—t—h|>m, k€L k#j
j=t+h+m
(4.34)

Applying the compound Poisson representation from (I.2), the Cauchy-Schwarz
inequality and the subadditivity of  — |z|7 we conclude by conditioning on the
number of jumps and jump times of (N;)se0,1]

1 1
EIZ7, 27, = K / f(t—j - s)dL? / ft+h—j— s)dLZ|"
0 0
NI

NZ
IS f(t—i =TS flt+h—j—T7)Y)"
i=1

=1

IA

E[Y77 [*E( / 1£(t — G — 5)"dN? / F(t+h—j — 8)"dNZ).(4.35)

Denote gq(s) := |f(t—s)|7 for t,s € R and N> := N> —sEN for s € [0,1]. By the
Ito-isometry and since the quadratic variation of a Poisson process is the process
itself, it follows that

1 1
Edm%%%/mwﬂ%@)
0 0
1 1 1
- E/ghmeMAWW?+mNm{/wﬁ@mﬂ/wwﬂ®¢
0 0 0

1 1 1
EN1>/ gt,j(s)gt+h,j(s)ds+(EN1>)2/ gt,j(s)ds/ Grrn—j(s)ds. (4.36)
0 0 0

Applying Bingham et al. (1989, Theorem 1.6.5), we conclude

nE|Y |PEN] n z|°v(dz
lim sup % = limsup(— Jaza, |6| ( )) < 0. (4.37)
n—00 Cln n—00 an

It holds by the Cauchy-Schwarz inequality since f € L°(R),8 = 2n < o, < 1, that

o [

t=1|j—t—h|>m,
j=t+h+m

1/2
—5)|’ds —8)|°ds m — 00). .
< (/Shmf( )1°d /|sh|>m|f(h )°d ) -0 (m—o0). (4.38)

w—swws=[‘m>|ﬂ—@ﬂh—@ww
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Similarly, applying the inequality ab < a? + b2 for a,b > 0 and again the Cauchy-
Schwarz inequality we conclude

Jj— t+1 j—t+1
- 77ds h — s)|"ds
Z 3 / 9l / F(h—3)

t 1|j—t—h|>m, —t
j=t+h+m

n J—t+1 j—t+1
Y (s [ - s

1|j—t—h|>m, "It —t
j=t+h+m

/ |f(—s)|2”ds—|—/ |f(h—38)[*"ds =0 (m — o0). (4.39)
|[s—h|>m |s—h|>m

IN

Hence by equations (4.35)-(4.39) and since ENy” = v(|z| > a,,) < C for some C' > 0

and all n € N, lim,, o limsup,,_, . a, 2" > 1 L 2 lj—t—h|>m, BIZ] t+hj|77 = 0.
j=t+h+m
Next, we consider the second term in (4.34). Analogously to the calculations before,

we bound

1 k—t4+1
E|Z3 " = IE|/ ft—k—s)dL7 " < IE|an|2"ﬂ*31\71>/ [f(=s)[*"ds.
0 k—t
Hence the latter estimation yields for dy = :H |f(—5)|?>"ds and for the second

term in (4.34)

4,72 > > EIZpElzz, 1P

an" 4= 1|j—t—h|>m, kEZ,k#]
j=t+h+m

n

2 >
(w Z > Y diedjin, (4:40)

t 1|j—t—h|>m, k€Z,k#j
j=t+h+m

and as m — 00

%Z Z deftdjftfh = Z dedjfh

t=1|j—t—h|>m, kEZ, |j—h|>m, kEZ,
j=t+h4+m k#j j=m-+h k#j
< / \f(—s)|27’ds/ |f(—5)|2"d5—>0. (4.41)
R [s|>m

Hence the lim,, - limsup,, .., in (4.34) is zero by (4.37) and (4.40)-(4.41). Next
we consider the first term in (4.33). By Chebyshev’s inequality,

@10 Y ZaZial>g)

t=1 k€Z|j—t—h|>m,

j=t+h+m
8 n
< (X EIZSZR, v Y Y EIZSZS,D). (142)
=1 |j—t—h|>m, li—t—h|>m, kEZ,k#]

j=t+h+m j=t+h+m
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Since f is bounded, applying the compound Poisson representation from (L.2)
and the Cauchy-Schwarz inequality yields for e = k+1 |f(—s)|ds and some C' > 0

]E| t+h]‘
Nf NIS
< EB(nleg—e+ D _1fE =3 = TAYSD(les—ton+ D _If(E+h =5 — TS
i=1 =1
< Clej—i +eji h)(1+2E|Y1 |EN + E| 1n| EN )-

Similarly, for j # k

E|Z; k|E| +hj‘ < (I +E|Y

k—s |ds/ |[f(t+h—j—s)|ds.

Applying Bingham et al. (1989, Theorem 1.6.4), we conclude

nE|YS, |PENS n z20(dx
lim sup % = lim sup(— f1<x§a"2| i )) < (4.43)
n— o0 ay n— o0 ay

Since E\Y1§n| < (I[-E|an|2)1/2 also limsup,, 11(1,72IE|Y§,1|IENlS < oo and it holds
that
hmsup o (|7| +IE|Y1 IENS)? < oo.

These estimates and sumlar calculatlons as in (4.38) and (4.41) show that the
lim,, 00 limsup,, ., of (4.42) is zero. Also by similar calculations it can be shown
that the lim,, . limsup,,_, . of the second and fourth term in (4.33) is zero. Next
we consider the 5th term in (4.33). By Chebyshev’s inequality,

BN Y Znzi.l>

t=1 kEZ |j—t—h|>m,
j=t+h+m

8
= mzz Z E|Zg, VK| th\&. (4.44)

" t=1 k€L |j—t—h|>m,
j=t+h+m

Since sup,,ciy IE|Y1 |9 < E|Y;T]° < 0o we conclude for some C' > 0

< < < k—t+1 k—t+1
E|ZE) < (1P + BV, PENE) /k feafas<c [ s
—t

and as shown before it holds that E\Zﬁkﬁ < E[Y7,PENY [, - t“ |f(—s)|°ds. Hence

§ §
25§ > > EIZ3 P EIZ5, ]
Un t=1 k€Z|j—t—h|>m,

j=t+h+m

CE| ‘6EN> n k— t+1 6dS/J —t—h+1
J

Sty Y [

t=1 k€Z|j—t—h|>m,
j=t+h+m

|/ (=s)|°ds.

—t—h

By (4.37) and (4.41) it follows now that the lim,, ,~ limsup,,_, ., of (4.44) is equal
to zero. The 6th to 8th terms in (4.33) can be estimated analogously and therefore
we proved (4.31) and the theorem in the case c;l"’l +e,, >0 If c;;l +¢,, =0,
there is an increasing subsequence (m;);eny C N, ie. m; < myyq for all ¢ € IN,
such that either C:,l,mi + ¢ 1m, = 0 for all ¢ € IN or such that c;l,mi +Chm; >
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0 for all i € IN. In the first case a,2> X;’LmiX;;h - 5 0asn — oo for
every i € IN by Proposition 4 and the claim follows from (4.31), which has been

already proved. Let dy denote the Dirac measure at zero. In the second case
a2y, XtJ,rquXttrhm,i 4 Se/2(Br,1,mis Vh,1,m,»0) as n — oo by Proposition 4 and

Sa/2(Bh,1.mqs Vh1,m, 0) = 8o for i — oo by (3.1), since |[ya,1,m,|*/* — 0 as well as
el Bhtm, — 0 for i = oc. .
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