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Abstract. A fractional Fick’s law and fractional hydrostatics for the one dimen-
sional exclusion process with long jumps in contact with infinite reservoirs at dif-
ferent densities on the left and on the right are derived.

1. Introduction

The exclusion process is known as the “Ising model” of non-equilibrium statistical
mechanics and since its introduction in the 70’s in biophysics by MacDonald et al.
(MacDonald et al., 1968; MacDonald and Gibbs, 1969) and in probability by Spitzer
Spitzer (1970), a lot of papers in the mathematical physics literature focused on
it because it captures the main features of more realistic diffusive systems driven
out of equilibrium (Liggett, 1985, 1999; Spohn, 1991). The exclusion process is an
interacting particle system consisting of a collection of continuous-time dependent
random walks moving on the lattice Z: A particle at x waits an exponential time
and then chooses to jump to x + y with probability p(y). If, however, x + y is
already occupied, the jump is suppressed and the clock is reset. In this paper we are
interested in the case where p(·) has a long tail, proportional to | · |−(1+γ) for γ > 1.
Curiously it is only very recently that the investigation of the exclusion process
with long jumps started (Bernardin et al., 2016b; Jara, 2015, 2009; Gonçalves and
Jara, 2015; Sethuraman, 2016; Szavits-Nossan and Uzelac, 2008).

Our motivation for this study is threefold. First, due to the intense activity de-
veloped around the exclusion process since its introduction almost fifty years ago,
it is very natural to investigate on the differences and the similarities between the
finite jumps exclusion process and the long jumps exclusion process. Our second
motivation is related to the field of anomalous diffusion in one dimensional chains
of oscillators (Dhar, 2008; Lepri et al., 2003; Spohn, 2014). Recent studies sug-
gest that the macroscopic behavior of some chains of oscillators (with short range
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interactions) displaying anomalous diffusion should be similar to the macroscopic
behavior of the symmetric exclusion process with long jumps. In order to motivate
this claim, let us observe that the equilibrium fluctuations of a harmonic chain with
energy-momentum conservative noise and of the long jumps exclusion process with
exponent γ = 3/2 are the same (Jara, 2015, 2009; Bernardin et al., 2016a, 2015;
Jara et al., 2015). See also Remark 2.3 of this paper for a second example. These
similarities can be roughly understood by the fact that in 1d chains of oscillators,
the energy carriers, the phonons, do not behave like interacting Brownian parti-
cles but like interacting Lévy walks (Dhar et al., 2013; Dhar and Saito, 2013 and
Zaburdaev et al., 2015 for a review on Lévy walks). Therefore, we believe that
the symmetric exclusion process with long jumps could play the role of a simple
effective model to investigate properties of superdiffusive chains of oscillators. Our
third motivation, which is related to the second but has also its own interest, is to
develop a macroscopic fluctuation theory for superdiffusive systems (e.g. exclusion
process with long jumps) as it has been done during the last decade by Bertini
et al. (2015) for diffusive systems. The key idea behind the macroscopic fluctuation
theory is that the non-equilibrium free energy of a particular given system depends
only on its macroscopic behavior and not on its microscopic details. Therefore, two
models macroscopically identical shall have the same non-equilibrium free energie.
As explained above our hope is that some superdiffusive chains of oscillators and
exclusion processes with long jumps have the same macroscopic behavior and hence
the same non-equilibrium free energy.

In this paper we consider the symmetric exclusion process with long jumps in
contact with two reservoirs with different densities at the boundaries. We show that
in the non-equilibrium stationary state the average density current scales with the
length N of the system as N−δ, 0 < δ < 1. We also show that the stationary density
profile is described by the stationary solution of a fractional diffusion equation with
Dirichlet boundary conditions. Observe that in a diffusive regime, δ = 1 and that
the stationary profile is the stationary solution of a usual diffusion equation with
Dirichlet boundary conditions. Similar conclusions to ours, as well as extensions
to the asymmetric case, have been obtained in a non-rigorous physics paper by
Szavits-Nossan and Uzelac (2008). As a final remark of this introduction let us
observe that in our paper, as well as in Szavits-Nossan and Uzelac (2008), the
reservoirs are described by infinite reservoirs. This has the advantage to avoid a
truncation of the long range transition probability p(·). However other reservoirs
descriptions are possible but we conjecture that they could have a quantitative
effect on the form of the stationary profile. Indeed, since the fractional Laplacian is
a non-local operator, the fractional Laplacian with Dirichlet boundary conditions
can be interpreted in several ways giving rise to different stationary solutions. The
(microscopic) description used for the reservoirs fix the (macroscopic) interpretation
of the fractional Laplacian with Dirichlet boundary conditions. In our case it is the
so called “restricted fractional Laplacian” which appears. This sensitivity to the
form of the reservoirs is due to the presence of long jumps and does not appear
for the exclusion process with short jumps. This sensitivity has also been observed
in models of (non interacting) Lévy walks and in the context of 1d superdiffusive
chains of oscillators (Lepri and Politi, 2011).

The paper is organized as follows. In Section 2 we describe precisely the model
studied and the results obtained. In Section 3 we recall basic facts on the fractional
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Laplacian and explain what we mean by stationary solution of a fractional diffusion
equation with Dirichlet boundary conditions. Section 4 is devoted to the proofs of
the results with some technical lemmata postponed to the Appendix.

2. Model and Results

We consider a symmetric long jumps exclusion process on ΛN = {1, . . . , N − 1},
N ≥ 2, in contact with two reservoirs at density α ∈ (0, 1) on the left and density
β ∈ (0, 1) on the right. Let p(·) be a probability function on Z which takes the form

p(z) =
cγ

|z|1+γ
, |z| ≥ 1, p(0) = 0,

where 2 > γ > 1 and cγ > 0 is a normalization factor. If γ ≥ 2 the boundary driven
long jumps symmetric exclusion process has mutatis mutandis the same behavior
as the usual boundary driven finite jumps exclusion process 1. The configuration
space of the process is ΩN = {0, 1}ΛN and a typical configuration η is denoted
as a sequence (ηz)z indexed by z ∈ ΛN . The generator of the boundary driven
symmetric long jumps exclusion process {η(t) ; t ≥ 0} is defined by

LN = L0
N + LrN + L`N (2.1)

where for any f : ΩN → R

(L0
Nf)(η) =

∑
x,y∈ΛN

p(x− y)ηx(1− ηy)[f(ηxy)− f(η)]

=
1

2

∑
x,y∈ΛN

p(x− y)[f(ηxy)− f(η)],

(LrNf)(η) =
∑

x∈ΛN ,y≥N

p(x− y)[ηx(1− β) + (1− ηx)β][f(ηx)− f(η)],

(L`Nf)(η) =
∑

x∈ΛN ,y≤0

p(x− y)[ηx(1− α) + (1− ηx)α][f(ηx)− f(η)].

(2.2)

Here the configurations ηx and ηxy are defined by

(ηxy)z =


ηz, z 6= x, y,

ηy, z = x,

ηx, z = y

, (ηx)z =

{
ηz, z 6= x,

1− ηx, z = x.

Sometimes it will be useful to consider a configuration η ∈ ΩN as a configuration
on {0, 1, α, β}Z by extending η by setting ηx = α for x ≤ 0 and ηx = β for x ≥ N .
Observe that the reservoirs add and remove particles on all the sites of the lattice
ΛN , and not only at the boundaries, but with rates which decrease as the distance
from the corresponding reservoir increases. The same kind of reservoirs is used in
Szavits-Nossan and Uzelac (2008).

1For γ = 2 the diffusive scaling has to be replaced by a diffusive scaling with some logarithmic

corrections but the system behaves macroscopically in a diffusive way (Jara, 2015, Appendix A).
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The bulk dynamics (i.e. without the presence of the reservoirs) conserves the
number of particles. Let Wx, x = 1, . . . , N , be defined by

Wx =
∑

y≤x−1

∑
z≥x

p(z − y)[ηy − ηz] + (β − α)
∑
y≤0
z≥N

p(z − y).
(2.3)

In this formula, as explained above, we adopted the convention ηz = α for z ≤ 0
and ηz = β for z ≥ N . It can be checked that since γ > 1, these quantities are well
defined. Observe that the quantity Wx is equal to

Wx =
∑

1≤y≤x−1<z≤N−1

p(z − y)[ηy(1− ηz)− ηz(1− ηy)]

+
∑

x≤z≤N−1

∑
y≤0

p(z − y)(α− ηz)−
∑

1≤y≤x−1

∑
z≥N

p(z − y)(β − ηy).

It corresponds to the rate of particles jumping in the bulk by crossing x− 1/2 from
the left to the right minus the rate of particles jumping in the bulk by crossing
x− 1/2 from the right to the left (first sum) plus the rate of particles coming from
the left reservoir by crossing x−1/2 (second sum) minus the rate of particles coming
from the right reservoir by crossing x− 1/2 (third sum). Then for any x ∈ ΛN we
have the following microscopic continuity equation

LNηx = −∇Wx := −(Wx+1 −Wx). (2.4)

Remark 2.1. Observe that for each x ∈ ΛN , the current due to the bulk dynam-
ics
∑
y≤x−1

∑
z≥x p(z − y)[ηy − ηz] can be written as a sum of discrete gradients∑

k αx(k)(ηk+1− ηk). Therefore, it belongs to the class of so-called “gradient mod-
els” (see Kipnis and Landim, 1999 for more explanations). However the function
αx(·) is not exponentially localized around x so that the model is quite different
from a standard “gradient model”.

Let us denote by µN the unique invariant measure of {η(t) ; t ≥ 0}. If α = β = ρ
then µN is equal to the Bernoulli product measure with density ρ. It is denoted
by νρ. The expectation of a function f with respect to µN (resp. νρ) is denoted
by 〈f〉N (resp. 〈f〉ρ) or µN (f) (resp. νρ(f)). For any ρ ∈ (0, 1) the density of µN
with respect to νρ is denoted by fN,ρ.

Let ρ̄ be the unique weak solution (see Section 3 for a precise definition ) of the
stationary fractional heat equation with Dirichlet boundary conditions

(−∆)γ/2 ρ̄(q) = 0, q ∈ (0, 1),

ρ̄(0) = α,

ρ̄(1) = β.

(2.5)

We have that (see Bogdan and Byczkowski, 1999)

∀q ∈ (0, 1), ρ̄(q) =

∫
|y− 1

2 |>
1
2

g(y) P 1
2

(
q − 1

2 , y −
1
2

)
dy, (2.6)

where the function g is given by

g(y) =


α if y < 0,

β if y > 1,

0 otherwise,
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and the Poisson kernel Pr(· − θ, · − θ), r > 0, θ ∈ R, is defined by

Pr(q − θ, y − θ) = Cγ

[
r2 − (q − θ)2

(y − θ)2 − r2

] γ
2

|q − y|−1,

for |q − θ| < r, |y − θ| > r and equal to 0 elsewhere. Here Cγ is a normalization

constant equal to Cγ = Γ(1/2)π−3/2 sin(πγ/2). It can be shown that the function
ρ̄ is smooth in the bulk but only γ/2-Hölder at the boundaries.

Our first result is the hydrostatic behavior for the boundary driven exclusion
process with long jumps, stated in the following theorem.

Theorem 2.2. Let γ ∈ (1, 2). For any continuous function H : [0, 1]→ R we have
that

lim
N→∞

1

N − 1

N−1∑
z=1

H( zN )ηz =

∫ 1

0

H(q)ρ̄(q)dq

in probability under µN .

Remark 2.3. In Basile et al. (2015) and Lepri et al. (2009), a harmonic chain with
energy-momentum conservative noise in contact with thermal baths at different
temperatures is considered and it is shown that the temperature profile is given
by the solution of a fractional heat equation with Dirichlet boundary conditions.
In these papers the baths are of Langevin type and the fractional Laplacian which
appears is not the “restricted fractional Laplacian” like in our work but some “spec-
tral fractional Laplacian”. We conjecture that if Langevin baths are replaced by
infinite thermal baths then the macroscopic behavior is described by the “restricted
fractional Laplacian”.

Our second result is the following “fractional Fick’s law”.

Theorem 2.4. Let γ ∈ (1, 2) then the following fractional Fick’s law holds 2

lim
N→∞

Nγ−1〈W1〉N = cγ

∫ x

−∞
dy

∫ ∞
x

dz
ρ̄(y)− ρ̄(z)

(z − y)1+γ
+

cγ

γ(γ − 1)
(β − α) (2.7)

where ρ̄ : R→ [0, 1] is the unique solution of (2.5) and x is arbitrary in (0, 1).

Observe that the current is a non-local function of the density.

Remark 2.5. The results obtained in this paper could probably be generalized to
the case where p(·) is such that p(z) ∼ L(z)|z|−(1+γ) as z → ±∞ for some slowly
varying function L. Moreover, the model can be defined in higher dimensions and
we expect similar results. However the proofs could be much more technical.

3. Weak solution of the stationary fractional heat equation with Dirich-
let boundary conditions

The fractional Laplacian (−∆)γ/2 of exponent γ/2 is defined on the set of func-
tions H : R→ R such that ∫ ∞

−∞

|H(q)|
(1 + |q|)1+γ

dq <∞ (3.1)

2The RHS of (2.7) does not depend on x. It can be proved by taking the derivative w.r.t. x of

the RHS of (2.7) and showing it vanishes thanks to (2.5).
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by

(−∆)γ/2H (q) = cγ lim
ε→0

∫ ∞
−∞

1|y−q|≥ε
H(q)−H(y)

|y − q|1+γ
dy (3.2)

provided the limit exists (which is the case if H is differentiable such that H ′ is
β-Hölder for some β > γ − 1 and satisfies (3.1), e.g. if H is in the Schwartz space).
Up to a multiplicative constant, −(−∆)γ/2 is the generator of a γ-Lévy stable
process. The fractional Laplacian can also be defined in an equivalent way as a
pseudo-differential operator of symbol |ξ|γ (up to a multiplicative constant).

We are interested in the boundary problem (2.5) which has to be suitably inter-
preted since the fractional Laplacian is not a local operator. The correct interpre-
tation of (2.5) which appears in this paper is that ρ̄ is the restriction to [0, 1] of a
function u : R→ R such that

(−∆)γ/2 u(q) = 0, q ∈ (0, 1),

u(q) = α, q ≤ 0,

u(q) = β, q ≥ 1.

(3.3)

In the PDE’s literature this interpretation corresponds to the so-called “restricted
fractional Laplacian”. Another popular interpretation of the fractional Laplacian
with Dirichlet boundary conditions is the “spectral fractional Laplacian” (Vázquez,
2014). The interpretation appearing in Basile et al. (2015) is a third one.

Let the functions r± : (0, 1)→ (0,∞) be defined by

r−(q) = cγγ
−1q−γ , r+(q) = cγγ

−1(1− q)−γ . (3.4)

The operator L is defined by its action on functions H ∈ C2
c ([0, 1]), the space of C2

functions with compact suport included in (0, 1), by

∀q ∈ (0, 1), (LH)(q) = −(−∆)γ/2H (q) + r−(q)H(q) + r+(q)H(q). (3.5)

Definition 3.1. We say that a continuous function ρ : [0, 1] → [0, 1] is a weak
solution of (2.5) if ρ(0) = α, ρ(1) = β and for any smooth function H ∈ C2

c ([0, 1])
we have that

−〈ρ , (−∆)γ/2H〉+ 〈αr− + βr+ , H〉 = 0

where 〈·, ·〉 denotes the usual scalar product in L2([0, 1]).

Proposition 3.2. There exists a unique weak solution to (2.5). It is given by (2.6).

Proof : The existence of a continuous (explicit) solution given by (2.6) and satisfying
(3.3) is a well known fact (see e.g. Bogdan and Byczkowski, 1999). Let us denote
it by ρ and let us show it is also a weak solution. For any H ∈ C2

c ([0, 1]) we have

〈ρ , LH〉+ 〈α− ρ , Hr−〉+ 〈β − ρ , Hr+〉

= −〈ρ , (−∆)γ/2H〉+ 〈α , Hr−〉+ 〈β , Hr+〉

= −
∫ ∞
−∞

ρ(q)(−∆)γ/2H(q) dq.

(3.6)

To prove the last equality we first recall that H vanishes outside of (0, 1), ρ(y) = α
for y ≤ 0, ρ(y) = β for y ≥ 1 and

r−(q) = cγ

∫ 0

−∞
|q − y|−1−γdy, r+(q) = cγ

∫ +∞

1

|q − y|−1−γdy.
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It follows that

〈α , Hr−〉 = αcγ

∫ 1

0

H(q)
(∫ 0

−∞

1

|q − y|1+γ
dy
)
dq

= αcγ

∫ ∞
−∞

H(q)
(∫ 0

−∞

1

|q − y|1+γ
dy
)
dq = cγ

∫ 0

−∞
α
(∫ ∞
−∞

H(q)

|q − y|1+γ
dq
)
dy

= cγ

∫ 0

−∞
ρ(y)

(∫ ∞
−∞

H(q)−H(y)

|q − y|1+γ
dq
)
dy = −

∫ 0

−∞
ρ(y) (−∆)γ/2H (y)dy

and similarly for 〈β , Hr+〉. Then the last line of (3.6) follows by adding together
the three terms of the second line of (3.6). Since (−∆)γ/2 is a symmetric operator
in L2(R) we have∫ ∞

−∞
ρ(q)(−∆)γ/2H(q) dq =

∫ ∞
−∞

H(q)(−∆)γ/2ρ(q) dq

=

∫ 1

0

H(q)(−∆)γ/2ρ(q) dq = 0.

Let us now turn to the uniqueness part. Let ρ1 and ρ2 be two weak solutions. We
extend them continuously to R by ρ1(y) = ρ2(y) = α if y ≤ 0 and ρ1(y) = ρ2(y) = β
if y ≥ 1. By linearity we have that for any H ∈ C2

c ([0, 1])

〈ρ1 − ρ2, (−∆)γ/2H〉 = 0.

Since ρ1 − ρ2 = 0 outside (0, 1), 〈·, ·〉 may be replaced by the scalar product in
L2(R). By using Theorem 3.12 in Bogdan and Byczkowski (1999), there exists a
γ/2-harmonic 3 (continuous) function u, such that u = ρ1 − ρ2 a.e. Since ρ1 = ρ2

outside of (0, 1), we can deduce that ρ1 = ρ2 everywhere. �

For any continuous function F : [0, 1] → R we denote by LNF the continuous
function on [0, 1] obtained as the linear interpolation of the function defined by
(LNF )(0) = (LNF )(1) = 0 and

∀x ∈ ΛN , (LNF )( xN ) =
∑
y∈ΛN

p(y − x)
[
F ( yN )− F ( xN )

]
.

We introduce also the two linear interpolation functions r±N : [0, 1] → R such
that for z ∈ ΛN

r−N ( zN ) =
∑
y≥z

p(y), r+
N ( zN ) =

∑
y≤z−N

p(y) (3.7)

and

r±N (0) = r±N ( 1
N ), r±N (1) = r±N (N−1

N ).

Let finally KN the operator defined by

KN = LN − r−N − r
+
N

which, for functions F with compact support in [0, 1], satisfies

(KNF )( xN ) =
∑
y∈Z

p(y − x)
[
F ( yN )− F ( xN )

]
.

3A function u : (0, 1) → R is γ/2-harmonic in (0, 1) if for any open set U with closure included
in (0, 1) and any x ∈ U , u(x) = Ex(u(XτU )) where (Xt)t is a γ/2-stable Lévy process and τU is

its exit time from U .
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Lemma 3.3. Let H be a smooth function with compact support included in [a, 1−a]
where a ∈ (0, 1). Then we have the following uniform convergence on [a, 1− a]

lim
N→∞

Nγr−N (q) = cγγ
−1q−γ = r−(q),

lim
N→∞

Nγr+
N (q) = cγγ

−1(1− q)−γ = r+(q),

lim
N→∞

Nγ(KNH)(q) = − [(−∆)γ/2H] (q).

(3.8)

Proof : This Lemma establishes uniform convergence of Riemann sums to corre-
sponding integrals. But since the uniformity statement requires a bit of technical
work it is postponed to Appendix B. �

Remark 3.4. The two first items of the previous lemma are in fact valid for γ ∈
(0, 2). See the proof in Appendix B.

4. Proofs

The first step consists to obtain a sharp upper bound on the average current
in the non-equilibrium stationary state (see Lemma 4.1). This bound will be used
to derive an estimate of the entropy production (Lemma 4.2) which is the key
estimate to obtain by a coarse graining argument and entropy bounds that the
empirical density at each extremity of ΛN is given by α and β (Corollary 4.4). To
identify the form of the stationary profile in the bulk, we use a method introduced in
Kipnis et al. (1995) for boundary driven diffusive systems (Lemma 4.6). Fractional
Fick’s law is then derived.

4.1. Entropy production bounds.

Lemma 4.1. Let γ ∈ (1, 2). There exists a constant C > 0 such that for any
N ≥ 2

〈W1〉N ≤ CN1−γ .

Proof : By stationarity we have that for any x ∈ ΛN , 〈W1〉N = 〈Wx〉N . It follows
that

〈W1〉N =
1

N − 1

N−1∑
x=1

〈Wx〉N =
1

N − 1

∑
y<z

p(z − y)[〈ηy〉N − 〈ηz〉N ]θ(y, z)

+ (β − α)
∑
y≤0
z≥N

p(z − y)
(4.1)

where

θ(y, z) = Card{x ∈ ΛN ; y + 1 ≤ x ≤ z}.
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Considering the different positions of y, z in ΛN , we get

〈W1〉N =
1

N − 1

N−1∑
z=1

z[α− 〈ηz〉N ]
∑
y≤0

p(z − y)

+
1

N − 1

N−1∑
y=1

(N − 1− y)[〈ηy〉N − β]
∑
z≥N

p(z − y)

+
1

N − 1

∑
y<z

z,y∈ΛN

p(z − y)(z − y)[〈ηy〉N − 〈ηz〉N ]

= (I) + (II) + (III).

(4.2)

We have that

|(I)| ≤
2

N − 1

N−1∑
z=1

z
∑
y≥z

p(y) = O(N1−γ)

since
∑
y≥z p(y) = O(z−γ) as z →∞. A similar upper bound is valid for (II). For

the last term we observe that

(III) = −
1

N − 1

N−2∑
y=1

N−1−y∑
k=1

kp(k)[〈ηy+k〉N − 〈ηy〉N ].

Now, using Fubini Theorem we get

(III) = −
1

N − 1

N−2∑
k=1

kp(k)

N−1−k∑
y=1

[〈ηy+k〉N − 〈ηy〉N ].

Observe that for any sequence (f(x))x and any n, k ≥ 1 we have

n∑
x=1

[f(x+ k)− f(x)] =

k∑
x=1

[f(n+ 1 + k − x)− f(x)].

It follows that

(III) = −
1

N − 1

N−2∑
k=1

kp(k)

k∑
y=1

[〈ηN−y〉N − 〈ηy〉N ]

so that

|(III)| ≤
2

N − 1

N−2∑
k=1

k2p(k) = O(N1−γ).

�

A simple consequence of this Lemma is the following bound on the Dirichlet
forms of the stationary state.

Lemma 4.2. Let ρ ∈ (0, 1). There exists a constant C := C(ρ, α, β) > 0 such that
for any N ≥ 2∑

x,y∈ΛN

p(y − x)

〈[√
fN,ρ(ηxy)−

√
fN,ρ(η)

]2
〉
ρ

≤
C

Nγ−1
,
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∑
x∈ΛN

∑
y≤0

p(y − x)

〈[√
fN,α(ηx)−

√
fN,α(η)

]2
〉
α

≤
C

Nγ−1
,

∑
x∈ΛN

∑
y≥N

p(y − x)

〈[√
fN,β(ηx)−

√
fN,β(η)

]2
〉
β

≤
C

Nγ−1
.

Proof : To simplify the notation we denote fN,ρ by fN . By definition of stationary
state we have:

0 = 〈fNLN log fN 〉ρ
= 〈fNL0

N log fN 〉ρ + 〈fNLrN log fN 〉ρ + 〈fNL`N log fN 〉ρ.
(4.3)

We first obtain an upper bound for the second and the third term on the right hand
side of the previous equality. For any R > 0, the second term is equal to∑

x∈ΛN
y≥N

p(x− y)〈fN (η)ηx(1− β) [log fN (ηx)− log fN (η)]〉ρ

+
∑
x∈ΛN
y≥N

p(x− y)〈fN (η)(1− ηx)β [log fN (ηx)− log fN (η)]〉ρ

=
∑
x∈ΛN
y≥N

p(x− y)

〈
fN (η)ηx(1− β)

[
log

RfN (ηx)

fN (η)

]〉
ρ

+
∑
x∈ΛN
y≥N

p(x− y)

〈
fN (η)(1− ηx)β

[
log

fN (ηx)

RfN (η)

]〉
ρ

− logR
∑
x∈ΛN
y≥N

p(x− y) 〈fN (η) (ηx(1− β)− (1− ηx)β)〉ρ .

(4.4)

Now by the change of variable w = ηx we have that (4.4) is equal to

−
∑
x∈ΛN
y≥N

p(x− y)

〈
fN (wx)(1− wx)(1− β)

[
log

fN (wx)

RfN (w)

](
ρ

1− ρ

)〉
ρ

+
∑
x∈ΛN
y≥N

p(x− y)

〈
fN (η)(1− ηx)β

[
log

fN (ηx)

RfN (η)

]〉
ρ

− logR
∑
x∈ΛN
y≥N

p(x− y) 〈fN (η) (ηx(1− β)− (1− ηx)β)〉ρ .

Now, choosing R =
β

1− β
1− ρ
ρ

and using (x − y) log(y/x) < 0, we have that the

last expression is equal to

β

R

∑
x∈ΛN
y≥N

p(x− y)

〈
(1− wx) (RfN (w)− fN (wx))

[
log

fN (wx)

RfN (w)

]〉
ρ
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− logR
∑
x∈ΛN
y≥N

p(x− y) 〈fN (η) (ηx(1− β)− (1− ηx)β)〉ρ

≤ − log

(
β

1− β
1− ρ
ρ

) ∑
x∈ΛN
y≥N

p(x− y) 〈fN (η) (ηx − β)〉ρ .

We proved therefore that

〈fNLrN log fN 〉ρ ≤ − log

(
β

1− β
1− ρ
ρ

)
〈WN 〉N .

Similar computations give that

〈fNL`N log fN 〉ρ ≤ − log

(
1− α
α

ρ

1− ρ

)
〈W1〉N .

By Lemma 4.1, we get that there exists a constant C ′ > 0 such that

〈fNLrN log fN 〉ρ ≤ C ′N1−γ ,

〈fNL`N log fN 〉ρ ≤ C ′N1−γ .

Therefore, by (4.3), we have that

−〈fNL0
N log fN 〉ρ ≤ CN1−γ .

Now, using the simple inequality a(log b− log a) ≤ 2
√
a(
√
b−
√
a), we obtain that

−〈
√
fNL

0
N

√
fN 〉ρ ≤ CN1−γ .

This gives the first inequality in Lemma 4.2 since the left hand side of the previous
inequality is equal to the left hand side of the first inequality of Lemma 4.2 because
L0
N is reversible with respect to νρ for any ρ. Choosing now ρ = α, and using again

the simple inequality a(log b− log a) ≤ 2
√
a(
√
b−
√
a), we have that

−〈
√
fN,α L

`
N

√
fN,α〉α ≤ C ′N1−γ .

Since L`N is reversible with respect to να we have that

− 〈
√
fN,α L

`
N

√
fN,α〉α

=
1

2

∑
x∈ΛN

∑
y≤0

p(y − x)

〈
[ηx(1− α) + (1− ηx)α]

[√
fN,α(ηx)−

√
fN,α(η)

]2
〉
α

.

Since α ∧ 1 − α ≤ ηx(1 − α) + (1 − ηx)α, the term above is bigger or equal to a
constant times the left hand side of the second inequality of Lemma 4.2. The third
inequality of Lemma 4.2 is obtained similarly by choosing ρ = β. �

4.2. Proof of Theorem 2.2. Let M+
d , d = 1, 2, be the space of positive measures

on [0, 1]d with total mass bounded by 1 equipped with the weak topology. For any
η ∈ ΩN the empirical measures πN (η) ∈M+

1 (resp. π̂N (η) ∈M+
2 ) is defined by

πN (η) =
1

N − 1

N−1∑
x=1

ηxδx/N (4.5)

resp.

π̂N (η) =
1

(N − 1)2

N−1∑
x,y=1

ηxηyδ(x/N,y/N) (4.6)
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where δu (resp. δ(u,v)) is the Dirac mass on u ∈ [0, 1] (resp. (u, v) ∈ [0, 1]2). Let

PN be the law on M+
1 ×M

+
2 induced by (πN , π̂N ) : ΩN →M+

1 ×M
+
2 when ΩN

is equipped with the non-equilibrium stationary state µN . To simplify notations,
we denote πN (η) (resp. π̂N (η)) by πN (resp. π̂N ) and the action of π ∈ M+

d on a

continuous function H : [0, 1]d → R by 〈π,H〉 =
∫

[0,1]d
H(u)π(du).

The sequence (PN )N≥2 is tight on M+
1 × M

+
2 . This is obvious since it is a

family of probabilities over the compact set M+
1 ×M

+
2 . Our goal is to prove that

every limit point P∗ of this sequence is concentrated on the set of measures (π, π̂)
of M+

1 ×M
+
2 such that π (resp. π̂) is absolutely continuous with respect to the

Lebesgue measure on [0, 1] (resp. [0, 1]2) and with a density ρ(u) (resp. ρ(u)ρ(v))
where ρ is a weak solution of (2.5).

Lemma 4.3. Let P∗ be a limit point of the sequence (PN )N . Then P∗ is concen-
trated on measures (π, π̂) such that π (resp. π̂) is absolutely continuous with respect
to Lebesgue measure on [0, 1] (resp. [0, 1]2). The density ρ of π is a continuous
function on [0, 1] and the density of π̂ is equal to ρ⊗ ρ : (x, y) ∈ [0, 1]2 → ρ(x)ρ(y).

Proof : See Appendix C. �

With some abuse of notation we denote by (PN )N a fixed subsequence converging
to a limit point P∗. A generic element of M+

1 ×M
+
2 is denoted by (π, π̂) with the

convention that π and π̂ = π ⊗ π denotes the probability measure as well as its
density with respect to the Lebesgue measure.

Proposition 4.4. We have that P∗ almost surely π(0) = α and π(1) = β.

Proof : For small ε > 0 and small λ ∈ R, let B be the box B := {[Nε], . . . , N − 1}
in ΛN and let u be the function defined by

u = eλ
∑
x∈B ηx .

We recall that the action of the generator L`N on a function f : ΩN → R can be
rewritten as

(L`Nf)(η) =
∑
z∈ΛN

r−N
(
z
N

)[
ηz(1− α) + (1− ηz)α

][
f(ηz)− f(η)

]

where r−N
(
z
N

)
=
∑
y≥z p(y). An elementary computation shows that

−
L`Nu

u
=
[
(eλ − 1)− 2(1− α)(coshλ− 1)

]∑
z∈B

r−N
(
z
N

)
(ηz − α)

− 2α(1− α)(coshλ− 1)
∑
z∈B

r−N
(
z
N

)
.

(4.7)
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Multiplying (4.7) by fN,α, integrating w.r.t. να and using the variational formula
of the Dirichlet form we deduce that[

(eλ − 1)− 2(1− α)(coshλ− 1)
]∑
z∈B

r−N
(
z
N

)
(〈ηz〉N − α)

≤
∑
z∈ΛN

r−N
(
z
N

)〈[√
fN,α(ηz)−

√
fN,α(η)

]2
〉
α

+ 2α(1− α)(coshλ− 1)
∑
z∈B

r−N
(
z
N

)
≤ CN1−γ + 2α(1− α)(coshλ− 1)

∑
z∈B

r−N
(
z
N

)
(4.8)

where the last inequality is a consequence of Lemma 4.2. Observe that for λ→ 0,
the term (eλ − 1) − 2(1 − α)(coshλ − 1) is equivalent to λ and has therefore the
sign of λ for sufficiently small λ. The term coshλ− 1 is of order λ2. Assume first
that λ > 0 is small. Then there exists a constant C > 0 independent of λ, ε and N
such that

µN
(
〈πN − α , Nγ 1[ε,1]

(
z
N

)
r−N
(
z
N

)
〉
)

= Nγ−1
∑
z∈B

r−N
(
z
N

)
(〈ηz〉N − α)

≤
C

λ
+ CλN−1

∑
z∈B

Nγr−N
(
z
N

)
.

(4.9)

By Lemma 3.3 we have that for some constant C > 0

N−1
∑
z∈B

Nγr−N
(
z
N

)
≤ C

∫ 1

ε

q−γdq = O(ε1−γ). (4.10)

Therefore we conclude that

lim sup
ε→0

εγ−1 lim sup
N→∞

µN
(
〈πN − α , 1[ε,1]

(
z
N

)
Nγr−N

(
z
N

)
〉
)
≤ 0. (4.11)

Similarly, by considering small λ < 0, we deduce that

lim inf
ε→0

εγ−1 lim inf
N→∞

µN
(
〈πN − α , 1[ε,1]

(
z
N

)
Nγr−1

N

(
z
N

)
〉
)
≥ 0. (4.12)

By using Lemma 3.3 we deduce that P∗ a.s. we have

lim
ε→0

εγ−1

∫ 1

ε

π(q)− α
qγ

dq = 0. (4.13)

But since by Lemma 4.3 π is a continuous function on [0, 1], if π(0) 6= α, we have
that

lim
ε→0

εγ−1

∫ 1

ε

π(q)− α
qγ

dq =
π(0)− α
γ − 1

6= 0

and we get a contradiction. We deduce thus that π(0) = α. Similarly π(1) = β. �
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Remark 4.5. The usual proof for driven diffusive systems of this proposition is
quite different and based on the so-called two-blocks estimate (Eyink et al., 1990,
Kipnis et al., 1994). It turns out that in the context of exclusion process with long
jumps this approach does not work since the control of the entropy production is
not sufficient to cancel the heavy tails of p, even by using the arguments of Jara
(2015).

Lemma 4.6. Let ρ̄ be the unique weak solution of (2.5). For any F,G in C∞c ([0, 1])
we have

∫
[0,1]2

[
G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)

]
I(u, v)dudv = 0 (4.14)

where

I(u, v) = E∗ [(π(u)− ρ̄(u))(π(v)− ρ̄(v))] . (4.15)

Proof : We have that

LN (〈πN , F 〉) =
1

N − 1

∑
x∈ΛN

∑
y∈Z

F ( xN )p(y − x)(ηy − ηx)

= 〈πN ,KNF 〉+
α

N − 1

∑
x∈ΛN

(Fr−N )( xN ) +
β

N − 1

∑
x∈ΛN

(Fr+
N )( xN )

(4.16)

where

KNF = LNF − Fr−N − Fr
+
N .

We then multiply (4.16) by Nγ and take the expectation with respect to µN
on both sides, the left hand side being then equal to 0 by stationarity. By using
Lemma 3.3 and weak convergence we conclude that

E∗
[∫ 1

0

{
LF − r−F − r+F

}
(x) π(x)dx

]
+

∫ 1

0

{
αr−F + βr+F

}
(x) dx = 0.

We compute now LN (〈π̂N , J〉) where J : [0, 1]2 → R is a smooth test function
with compact support strictly included in [0, 1]2 and which is identically equal
to 0 on the diagonal. Consider a small δ > 0 and take a smooth even function
Hδ : R → [0, 1] which is equal to 0 on [−δ, δ] and equal to 1 outside of [−2δ, 2δ].
Let then Jδ(u, v) = F (u)G(v)Hδ(v − u), (u, v) ∈ [0, 1]2.

For u ∈ [0, 1] we denote by Fδ,u, Gδ,u the functions given by

Fδ,u(v) = F (v)Hδ(v − u), Gδ,u(v) = G(v)Hδ(v − u).
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By using Lemma A.1 we get that

LN (〈π̂N , Jδ〉) =
1

N − 1

∑
x∈ΛN

ηxF ( xN )〈πN ,KNGδ,x/N 〉

+
1

N − 1

∑
x∈ΛN

ηxG( xN )〈πN ,KNFδ,x/N 〉

+
α

N − 1

∑
x∈ΛN

ηxG( xN )

 1

N − 1

∑
y∈ΛN

Fδ,x/N ( yN )r−N ( yN )


+

α

N − 1

∑
x∈ΛN

ηxF ( xN )

 1

N − 1

∑
y∈ΛN

Gδ,x/N ( yN )r−N ( yN )


+

β

N − 1

∑
x∈ΛN

ηxG( xN )

 1

N − 1

∑
y∈ΛN

Fδ,x/N ( yN )r+
N ( yN )


+

β

N − 1

∑
x∈ΛN

ηxF ( xN )

 1

N − 1

∑
y∈ΛN

Gδ,x/N ( yN )r+
N ( yN )


−

1

(N − 1)2

∑
x,y∈ΛN

p(y − x)(ηy − ηx)2Jδ(
x
N

y
N ).

(4.17)

Since Jδ(u, v) is equal to 0 for |u− v| ≤ δ, we have that

NγµN

 − 1

(N − 1)2

∑
x,y∈ΛN

p(y − x)(ηy − ηx)2Jδ(
x
N

y
N )

 = O(N−1).

We multiply (4.17) by Nγ and take the expectation with respect to µN on both
sides, the left hand side being then equal to 0 by stationarity. By using Lemma 3.3
and weak convergence we conclude that

− E∗
[∫

[0,1]2

{
G(u)((−∆)γ/2Fδ,u)(v) + F (v)((−∆)γ/2Gδ,v)(u)

}
π(u)π(v)dudv

]

+ E∗
[∫

[0,1]2

{
G(u)αr−(v)Fδ,u(v) + G(u)βr+(v)Fδ,u(v)

}
π(u)dudv

]

+ E∗
[∫

[0,1]2

{
F (u)αr−(v)Gδ,u(v) + F (u)βr+(v)Gδ,u(v)

}
π(u)dudv

]
= 0.

We can take the limit δ → 0 and since Hδ converges to the function identically
equal to 1, we get

− E∗
[∫

[0,1]2

{
G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)

}
π(u)π(v)dudv

]

+ E∗
[∫

[0,1]2

{
G(u)αr−(v)F (v) + G(u)βr+(v)F (v)

}
π(u)dudv

]
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+ E∗
[∫

[0,1]2

{
F (u)αr−(v)G(v) + F (u)βr+(v)G(v)

}
π(u)dudv

]
= 0.

We have also proved that for any smooth compactly supported function H

−E∗
[∫ 1

0

((−∆)γ/2H)(u)π(u)du

]
+

∫ 1

0

{
αr−H + βr+H

}
(u) du = 0.

Let ρ̄ be the unique weak solution of (2.5). Then we have

−
∫ 1

0

((−∆)γ/2H)(u)ρ̄(u)du+

∫ 1

0

{
αr−H + βr+H

}
(u) du = 0.

It follows that∫
[0,1]2

[
G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)

]
I(u, v)dudv = 0. (4.18)

�

Since P∗ almost surely π(0) = ρ̄(0) = α and π(1) = ρ̄(1) = β and that π, ρ̄ are
continuous functions, by extending then to R by π(x) = ρ̄(x) = α if x ≤ 0 and
π(x) = ρ̄(x) = β if x ≥ 1, we get that for any F,G in C∞c ([0, 1]2),∫

R2

[
G(u)((−∆)γ/2F )(v) + F (v)((−∆)γ/2G)(u)

]
I(u, v)dudv = 0 (4.19)

By using Theorem 3.12 in Bogdan and Byczkowski (1999) we deduce that I is a.s.
constant with respect to Lebesgue measure on [0, 1]2. Since by Proposition 4.4, we
have I(0, 0) = I(1, 1) = 0, we deduce that I is identically equal to 0. Thus P∗
almost surely π = ρ̄.

We have proved

Proposition 4.7. The sequence (PN )N converges in law to the delta measure con-
centrated on

(ρ̄(x)dx, ρ̄(x)ρ̄(y)dxdy)

where ρ̄ is the unique weak solution of (2.5).

Theorem 2.2 is a trivial consequence of this proposition.

4.3. Proof of Fick’s law. Let us define for z ∈ ΛN

r̃−N
(
z
N

)
=
∑
y≥z

yp(y), r̃+
N

(
z
N

)
= −

∑
y≤z−N

yp(y)

which are, up to a multiplicative constant, defined as r±N with γ replaced by γ−1 ∈
(0, 1). Recalling (4.2) we see that

Nγ−1〈W1〉N = µN
(
〈πN , ϕN 〉

)
+Nγ−1θN

where ϕN : (0, 1)→ R defined by

ϕN ( zN ) = −Nγ
∑
y≤0

z
N p(z − y) +Nγ

∑
y≥N

[
1− 1

N −
z
N

]
p(y − z)

+Nγ
∑
y>z
y∈ΛN

p(y − z)
(
y−z
N

)
−Nγ

∑
y<z
y∈ΛN

p(y − z)
(
z−y
N

)
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= − z
NN

γr−N
(
z
N

)
+
(
1− 1

N −
z
N

)
Nγr+

N

(
z
N

)
+Nγ

∑
y∈ΛN

p(y − z)
(
y−z
N

)
= − z

NN
γr−N

(
z
N

)
+
(
1− 1

N −
z
N

)
Nγr+

N

(
z
N

)
+Nγ−1r̃−N

(
z
N

)
−Nγ−1r̃+

N

(
z
N

)
is a discrete approximation of the function ϕ : (0, 1)→ R given by

ϕ(q) =
cγ

γ(1− γ)
{(1− q)1−γ − q1−γ}

and

θN =
α

N − 1

N−1∑
z=1

∑
y≤0

z p(z − y)−
β

N − 1

N−1∑
y=1

∑
z≥N

(N − 1− y) p(z − y).

It is easy to compute the limit of Nγ−1θN by writing it as a Riemann sum:

lim
N→∞

Nγ−1θN = αcγ lim
N→∞

N

N − 1

1

N2

N−1∑
z=1

∑
y≤0

z
N∣∣ z

N −
y
N

∣∣1+γ

− βcγ lim
N→∞

N

N − 1

1

N2

N−1∑
y=1

∑
z≥N

(1− 1
N −

y
N )∣∣ z

N −
y
N

∣∣1+γ

= αcγ

∫ 1

0

(∫ 0

−∞

dy
|z−y|1+γ

)
z dz − βcγ

∫ 1

0

(∫ +∞

1

dz
|z−y|1+γ

)
(1− y) dy

=
cγ(α− β)

γ(2− γ)
.

Let us now compute the limit of µN

(
〈πN , ϕN 〉

)
= 1

N−1

∑N−1
z=1 ϕN ( zN )〈ηz〉N .

Observe that the function ϕ is singular at q = 0 and q = 1 but that it is in-
tegrable on [0, 1]. Lemma 3.3 and Remark 3.4 imply that for any a ∈ (0, 1),
limN→∞ |ϕN ([Nq]/N) − ϕ(q)| = 0 uniformly in q ∈ [a, 1 − a]. Therefore we fix
some small a ∈ (0, 1) and we split the sum in three sums, one over z < aN , one
over aN ≤ z ≤ (1−a)N and the last one over z > (1−a)N . By using the estimate
(B.1) for r−N and similar ones for r+

N , r̃
±
N it is easy to get that∣∣∣ϕN( zN )∣∣∣ ≤ C[( zN )1−γ +

(
1− z

N

)1−γ]
so that (use 〈ηz〉N ≤ 1)∣∣∣∣∣∣∣∣

1

N − 1

∑
z<aN

z>(1−a)N

ϕN ( zN )〈ηz〉N

∣∣∣∣∣∣∣∣ ≤ C
′[a2−γ + (1− a)2−γ ]

for some constants C,C ′ > 0 independent of N . By using the uniform convergence
of ϕN to ϕ over [a, 1− a] we get that

lim
N→∞

1

N − 1

∑
aN≤z≤(1−a)N

ϕN ( zN )〈ηz〉N =

∫ 1−a

a

ϕ(q)ρ̄(q)dq.

Thus sending first N →∞ and then a→ 0 we conclude that

lim
N→∞

µN
(
〈πN , ϕN 〉

)
=

∫ 1

0

ρ̄(q)ϕ(q)dq.
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Then Theorem 2.4 follows by simple integral computations and using the fact
that ρ̄ is the stationary solution of the fractional diffusion equation with Dirichlet
boundary conditions.
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Appendix A. Computations involving the generator

Lemma A.1. For any j 6= k ∈ ΛN , we have

L0
N (ηjηk) = ηjL

0
Nηk + ηkL

0
Nηj − p(k − j)(ηk − ηj)2,

LrN (ηjηk) = ηjL
r
Nηk + ηkL

r
Nηj ,

L`N (ηjηk) = ηjL
`
Nηk + ηkL

`
Nηj .

(A.1)

Proof : By definition of L0
N we have that

L0
N (ηjηk) =

1

2

∑
x,y∈ΛN

p(y − x)
[
ηxyj ηxyk − ηjηk

]
=

1

2

∑
x,y∈ΛN

p(y − x)
[
(ηxyj ηk − ηjηk) + (ηxyk ηj − ηjηk)+

+ηxyj ηxyk − η
xy
j ηk − ηxyk ηj + ηjηk

]
= ηjL

0
Nηk + ηkL

0
Nηj +

1

2

∑
x,y∈ΛN

p(y − x)
[
ηxyj − ηj

]
[ηxyk − ηk]

= ηjL
0
Nηk + ηkL

0
Nηj − p(k − j)(ηk − ηj)2.

In order to prove the second expression, note that
[
ηxj − ηj

]
[ηxk − ηk] = 0, for all

x ∈ Z, thus by definition of LrN we have

LrN (ηjηk) =
∑

x∈ΛN ,y≥N

p(y − x) [ηx(1− β) + (1− ηx)β] [(ηjηk)x − ηjηk]

= ηjL
r
Nηk + ηkL

r
Nηj+

+
∑

x∈ΛN ,y≥N

p(y − x) [ηx(1− β) + (1− ηx)β]
[
ηxj − ηj

]
[ηxk − ηk]

= ηjL
r
Nηk + ηkL

r
Nηj .

The proof of the third expression is analogous. �
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Appendix B. Proof of Lemma 3.3

Let us prove the first item, the second one being similar. It is sufficient to prove
it for q in the form z/N , z ≥ aN . We have, by performing an integration by parts,
that

Nγr−N ( zN )− r−( zN ) = Nγ
∑
y≥z

p(y)− cγ
∫ ∞
z/N

q−γ−1dq

= cγ
∑
y≥z

[
1
N

(
y
N

)−γ−1 −
∫ (y+1)/N

y/N

q−γ−1 dq

]

= cγ
∑
y≥z

∫ (y+1)/N

y/N

[(
y
N

)−γ−1 − q−γ−1
]
dq

= cγ
∑
y≥z

∫ (y+1)/N

y/N

d

dq

[
q −

(
y+1
N

)] [(
y
N

)−γ−1 − q−γ−1
]
dq

= −(γ + 1)cγ
∑
y≥z

∫ (y+1)/N

y/N

q−(γ+2)
(
q − y+1

N

)
dq.

Therefore we have that∣∣∣Nγr−N ( zN )− r−( zN )
∣∣∣ ≤ cγN−1(z/N)−γ−1 (B.1)

which is of order O(N−1) since z/N ≥ a.
For the last claim it is sufficient to prove it for q = x/N . By using the symmetry

of p we can rewrite

(KNH)( xN ) =
1

2

∑
z∈Z

p(z)
[
H(x+z

N ) +H(x−zN )− 2H( xN )
]
.

We split the sum over z ∈ Z into a sum over z ≥ 1 and over z ≤ −1 (recall
that p(0) = 0) and we treat separately the convergence of these two sums. Since
the study is the same we consider only the sum over z ≥ 1. Then, by a discrete
integration by parts, we have

Nγ
∑
z≥1

p(z)
[
H(x+z

N ) +H(x−zN )− 2H( xN )
]

=

∞∑
z=2

Nγr−N ( zN )
{
θ x
N

( zN )− θ x
N

( z−1
N )
}

+Nγr−N ( 1
N ) θ x

N
( 1
N )

where

θu(v) = H(u+ v) +H(u− v)− 2H(u).

By a second order Taylor expansion of H, which is uniform over x since H has
compact support, we see that since γ < 2,

lim
N→∞

Nγr−N ( 1
N ) θ x

N
( 1
N ) = 0

uniformly over x. Our aim is now to replace in the remaining sum the term
Nγr−N ( zN ) by r−( zN ). Recall that we have seen in the proof of the first item that
for any a ∈ (0, 1) there exists a constant Ca > 0 such that

|Nγr−N ( zN )− r−( zN )| ≤ CaN−1.
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We rewrite the sum
∞∑
z=2

{
Nγr−N ( zN )− r−( zN )

} {
θ x
N

( zN )− θ x
N

( z−1
N )
}

as the sum over 2 ≤ z ≤ aN and the sum over z > aN . In fact the sum over z > aN
is equal to the sum over 3N > z > aN since for z ≥ 3N , θ x

N
( zN ) − θ x

N
( z−1
N ) = 0.

Moreover, we have that |θ x
N

( zN )− θ x
N

( z−1
N )| = O(N−1) uniformly in x and z. The

sum over 3N > z > aN is thus bounded from above by C ′a/N for some positive
constant C ′a (going to ∞ as a goes to 0). Since θu(v) ≤ Cv2 for some positive
constant uniformly in u, by using the estimate (B.1) obtained in the proof of the
first item, we have also that∣∣∣∣∣∣

[aN ]∑
z=2

{
Nγr−N ( zN )− r−( zN )

} {
θ x
N

( zN )− θ x
N

( z−1
N )
}∣∣∣∣∣∣

≤ C ′
[aN ]∑
z=2

( zN )2N−1(z/N)−γ−1 ≤ C ′′a2−γ

for constants C ′, C ′′ which do not depend on a and x. In conclusion, the replacement
of the term Nγr−N ( zN ) by r−( zN ) costs C ′′a2−γ + C ′a/N . Therefore, by sending
N →∞ and then a→ 0, we are reduced to estimate

∞∑
z=2

r−( zN )
{
θ x
N

( zN )− θ x
N

( z−1
N )
}

=
1

N

∞∑
z=2

r−( zN )θ′x
N

( zN ) + εN (x).

By a second Taylor expansion, and using that γ < 2, it is easy to see that

lim
N→∞

sup
x∈ΛN

|εN (x)| = 0.

To conclude we observe that there exists C > 0 such that |r−(q)θ′u(q)−r−(q′)θ′u(q′)|
≤ C|q− q′|(q ∧ q′)−γ , uniformly in u. This is because θ′u(0) = 0. It follows that for
some positive constant C > 0, we have∣∣∣∣∣ 1

N

∞∑
z=2

r−( zN )θ′x
N

( zN )−
∫ ∞

2/N

r−(q)θ′x
N

(q)dq

∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
z=2

∫ z+1
N

z
N

(r−( zN )θ′x
N

( zN )− r−(q)θ′x
N

(q))dq

∣∣∣∣∣∣
≤ CNγ−2

∞∑
z=2

z−γ

where the last term goes to 0 as N goes to ∞.

Appendix C. Proof of Lemma 4.3

The fact that P∗ is concentrated on absolutely continuous measures is obvious
since for any continuous function H : [0, 1]→ R we have

|〈πN , H〉| ≤
1

(N − 1)

N−1∑
x=1

|H(x/N)|
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and similarly for π̂N . Since for any continuous function H, the functional π ∈
M+

d → 〈π,H〉 is continuous, by weak convergence, we have that P∗ is concentrated

on measures (π, π̂) such that for any continuous function H, Ĥ

|〈π,H〉| ≤
∫

[0,1]

|H(u)|du, |〈π̂, Ĥ〉| ≤
∫

[0,1]2
|Ĥ(u, v)|dudv

which implies that such a π and π̂ are absolutely continuous with respect to the
Lebesgue measure. The densities are denoted by π and π̂. Since π̂N is a product
measure whose marginals are given by πN , by weak convergence, we have that
π̂(u, v) = π(u)π(v) for any (u, v) ∈ [0, 1]2.

To prove that π is continuous we adapt the proof of Kipnis et al. (1995) Proposi-
tion A.1.1. Let νNρ(·) be the Bernoulli product measure on ΩN with marginals given

by

νNρ(·){ηx = 1} = ρ
( x
N

)
, (C.1)

where ρ : [0, 1] → [0, 1] is a smooth function such that α ≤ ρ(q) ≤ β, for all
q ∈ [0, 1], and ρ(0) = α and ρ(1) = β.

Let ε > 0 be a small real number. Let F ∈ C∞c ([0, 1]2) be a smooth test func-
tion and denote by (η(t))t≥0 the boundary driven symmetric long-range exclusion
process with generator NγLN . By stationarity of µN and the entropy inequality
we have

µN

(
Nγ−1

∑
x,y∈ΛN
|x−y|≥εN

F ( xN ,
y
N )p(y − x)(ηy − ηx)

)

= EµN

(∫ 1

0

dt Nγ−1
∑

x,y∈ΛN
|x−y|≥εN

F ( xN ,
y
N )p(y − x)(ηy(t)− ηx(t))

)

≤ C0 +
1

N
log

{
EνN

ρ(·)

(
exp

[
Nγ

∫ 1

0

dt
∑

x,y∈ΛN
|x−y|≥εN

F ( xN ,
y
N )p(y − x)(ηy(t)− ηx(t))

])}

where C0 is a constant resulting from the bound 4 of the relative entropy of µN
with respect to νNρ(·).

By Feynman-Kac’s formula the last expression is bounded by

λN

N
+ C0

where the eigenvalue λN is given by the variational formula

λN = sup
f

Nγ
∑

x,y∈ΛN
|x−y|≥εN

F ( xN ,
y
N )p(y − x)〈(ηy − ηx)f(η)〉νN

ρ(·)

+Nγ
〈
LN
√
f,
√
f
〉
νN
ρ(·)

} (C.2)

4The fact that the relative entropy of µN with respect to νN
ρ(·) is bounded above by C0N with

C0 <∞ independent of N can be proved easily since {0, 1} is compact.
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and the supremum is taken over all the densities f on ΩN with respect to νNρ(·). Let

F a be the antisymmetric (resp. symmetric) part of F , i.e.

∀(u, v) ∈ [0, 1]2, F a(u, v) =
1

2

[
F (u, v)− F (v, u)

]
, F s(u, v) =

1

2

[
F (u, v) + F (v, u)

]
.

Observe that F a(u, u) = 0 and that F = F a + F s. We can rewrite∑
x,y∈ΛN
|x−y|≥εN

F ( xN ,
y
N )p(y − x)〈(ηy − ηx)f(η)〉νN

ρ(·)

=
∑

x,y∈ΛN
|x−y|≥εN

F a( xN ,
y
N )p(y − x)〈(ηy − ηx)f(η)〉νN

ρ(·)

(C.3)

as ∑
x,y∈ΛN
|x−y|≥εN

F a( xN ,
y
N )p(y − x)〈ηy (f(η)− f(ηxy))〉νN

ρ(·)

+
∑

x,y∈ΛN
|x−y|≥εN

F a( xN ,
y
N )p(y − x)〈ηyf(ηxy) (1− θxy(η))〉νN

ρ(·)

=
∑

x,y∈ΛN
|x−y|≥εN

F a( xN ,
y
N )p(y − x)〈ηy (f(η)− f(ηxy))〉νN

ρ(·)

+
∑

x,y∈ΛN
|x−y|≥εN

F a( xN ,
y
N )p(y − x)〈ηxf(η) (θxy(η)− 1)〉νN

ρ(·)

= (I) + (II)

where θxy(η) =
dνNρ(·)(η

xy)

dνN
ρ(·)(η)

. By Cauchy-Schwarz inequality, the fact that f is a

density and |ηy| ≤ 1, we have that (I) is bounded above by

∑
x,y∈ΛN
|x−y|≥εN

∣∣F a( xN ,
y
N )
∣∣ p(y − x)

√〈
[
√
f(ηxy)−

√
f(η)]2

〉
νN
ρ(·)

.

Since ρ(·) is Lipshitz we have that supη∈ΩN |θ
xy(η)− 1| = O( |x−y|N ). Therefore, by

using the elementary inequality |ab| ≤ a2

2C + Cb2

2 , and the fact that f is a density,
we have that (II) is bounded above by a constant (independent of N, ε, F ) times

∑
x,y∈ΛN
|x−y|≥εN

p(y − x)
[
F a
(
x
N ,

y
N

)]2
+

∑
x,y∈ΛN
|x−y|≥εN

p(y − x)

(
|x− y|
N

)2

= cγN
1−γ


1

N2

∑
x,y∈ΛN
|x−y|≥εN

[
F a
(
x
N ,

y
N

)]2
| xN −

y
N |1+γ

+
1

N2

∑
x,y∈ΛN
|x−y|≥εN

| xN −
y
N |

1−γ

 .
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Observe that

sup
ε>0

sup
N≥1

1

N2

∑
x,y∈ΛN
|x−y|≥εN

| xN −
y
N |

1−γ <∞

since 1− γ > −1.
By using (C.2), Lemma C.1, Cauchy-Schwarz inequality and the previous upper

bound for (C.3) it follows that there exist constants C ′, C ′′, C ′′′,K (independent of
ε > 0, N ≥ 1 and F ∈ C∞c ([0, 1]2)) such that

λN

N
≤ Nγ−1 sup

f

[ ∑
x,y∈ΛN
|x−y|≥εN

p(y − x)

(∣∣F a( xN ,
y
N )
∣∣√〈[

√
f(ηxy)−

√
f(η)]2

〉
νN
ρ(·)

−C ′
〈

[
√
f(ηxy)−

√
f(η)]2

〉
νN
ρ(·)

)]
+
C
′′

N2

∑
x,y∈ΛN
|x−y|≥εN

[
F a
(
x
N ,

y
N

)]2
| xN −

y
N |1+γ

+K

≤ C
′′′ 1

N2

∑
x 6=y∈ΛN

cγ

| xN −
y
N |1+γ

[
F a( xN ,

y
N )
]2

+K.

We have proved that

µN

(
Nγ−1

∑
x,y∈ΛN
|x−y|≥εN

F ( xN ,
y
N )p(y − x)(ηy − ηx)

)
= −2cγ µ

N
(
〈πN , gN 〉

)

≤
C
′′′

N2

∑
x,y∈ΛN
|x−y|≥εN

cγ

| xN −
y
N |1+γ

[
F a( xN ,

y
N )
]2

+K.

(C.4)

Here gN is the function defined by

∀u ∈ [0, 1], gN (u) =
1

N

∑
y∈ΛN∣∣ y
N −u

∣∣≥ε
F a
(
u, yN

)
|u− y

N |1+γ

and is a discretization of the smooth function g defined by

∀u ∈ [0, 1], g(u) =

∫
y∈[0,1],
|y−u|≥ε

F a(u, y)

|y − u|1+γ
dy.

Let Qε = {(u, v) ∈ [0, 1]2 ; |u− v| ≥ ε}.Observe first that for symmetry reasons we
have that for any integrable function π,∫ 1

0

π(u)g(u)du =
1

2

∫∫
Qε

(π(v)− π(u))F a(u, v)

|u− v|1+γ
dudv.

We take the limit N → ∞. We conclude that there exist constants C,C ′ > 0
independent of F ∈ C∞c ([0, 1]2) and ε > 0 such that

E∗
[∫∫

Qε

(π(v)− π(u))F a(u, v)

|u− v|1+γ
dudv − C

∫∫
Qε

[
F a(u, v)

]2
|u− v|1+γ

dudv

]
≤ C ′. (C.5)
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It is easy to see that the supremum over F can be inserted in the expectation (see
Lemma 7.5 in Kipnis et al., 1994) so that

E∗
[

sup
F

{∫∫
Qε

(π(v)− π(u))F a(u, v)

|u− v|1+γ
dudv − C

∫∫
Qε

[
F a(u, v)

]2
|u− v|1+γ

dudv

}]
≤ C ′.

(C.6)
By writing F = F a + F s, and observing that the function (u, v) ∈ [0, 1]2 → π(v)−
π(u) is antisymmetric, we have that∫∫

Qε

(π(v)− π(u))F a(u, v)

|u− v|1+γ
dudv =

∫∫
Qε

(π(v)− π(u))F (u, v)

|u− v|1+γ
dudv.

Moreover, by using the definition of F a and using the inequality (a+b
2 )2 ≤ a2+b2

2 ,
it is easy to see that∫∫

Qε

[
F a(u, v)

]2
|u− v|1+γ

dudv ≤
∫∫

Qε

[
F (u, v)

]2
|u− v|1+γ

dudv.

It follows that

E∗
[

sup
F

{∫∫
Qε

(π(v)− π(u))F (u, v)

|u− v|1+γ
dudv − C

∫∫
Qε

[
F (u, v)

]2
|u− v|1+γ

dudv

}]
≤ C ′.

(C.7)
Consider the Hilbert space L2([0, 1]2, dµε) where µε is the measure whose density

with respect to Lebesgue measure is

(u, v) ∈ [0, 1]2 → 1|u−v|≥ε |u− v|−(1+γ).

By letting

Π : (u, v) ∈ [0, 1]2 → π(v)− π(u)

the previous formula implies that

E∗
[∫∫

[0,1]2
Π2(u, v) dµε(u, v)

]
≤ 4CC ′.

Letting ε→ 0, by the monotone convergence theorem, we conclude that∫∫
[0,1]2

(π(v)− π(u))2

|u− v|1+γ
dudv

is finite P∗ a.s.. It follows from Theorem 8.2 of Di Nezza et al. (2012) that P∗
almost surely π is γ−1

2 -Hölder. This concludes the proof of Lemma 4.3.

Lemma C.1. Let f be a density with respect to the product measure νNρ(·) defined

by (C.1). Then, there exist constants Cα,β , C
′
α,β such that

〈LN
√
f,
√
f〉νN

ρ(·)
≤ −C ′α,βDN (f) +

Cα,β
Nγ−1

≤ −C ′α,βD0
N (f) +

Cα,β
Nγ−1
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where DN (f) = D0
N (f) +D`

N (f) +Dr
N (f) with

D0
N (f) =

∑
x,y∈ΛN

p(y − x)
〈

[
√
f(ηxy)−

√
f(η)]2

〉
νN
ρ(·)

,

D`
N (f) =

∑
x∈ΛN ,y≤0

p(y − x)[ηx(1− α) + α(1− ηx)]
〈

[
√
f(ηx)−

√
f(η)]2

〉
νN
ρ(·)

,

Dr
N (f) =

∑
x∈ΛN ,y≥N

p(y − x)[ηx(1− β) + β(1− ηx)]
〈

[
√
f(ηx)−

√
f(η)]

2
〉
νN
ρ(·)

.

Proof : In the proof C and C ′ are constants depending on α and β and ρ(·) whose
value can change from line to line. We are going to show that

〈L0
N

√
f,
√
f〉νN

ρ(·)
≤ −C ′D0

N (f) +
C

Nγ−1
,

〈L`N
√
f,
√
f〉νN

ρ(·)
≤ −C ′D`

N (f) +
C

Nγ−1
,

〈LrN
√
f,
√
f〉νN

ρ(·)
≤ −C ′Dr

N (f) +
C

Nγ−1
.

(C.8)

We have that

〈L0
N

√
f,
√
f〉νN

ρ(·)
=

1

2

∑
x,y∈ΛN

p(x− y)〈L0
x,y

√
f,
√
f〉νN

ρ(·)

where 〈L0
x,y

√
f,
√
f〉νN

ρ(·)
=

∫
p(x− y)

[√
f(ηxy)−

√
f(η)

]√
f(η)dνNρ(·)(η). Thus,

recalling that θxy(η) =
dνNρ(·)(η

xy)

dνN
ρ(·)(η)

we obtain the following

〈L0
x,y

√
f,
√
f〉νρ(·)N =

1

2

∫
p(y − x)

[√
f(ηxy)−

√
f(η)

]√
f(η)dνNρ(·)(η)

− 1

2

∫
p(y − x)

[√
f(ηxy)−

√
f(η)

]√
f(ηxy)dνNρ(·)(η)

+
1

2

∫
p(y − x)

[√
f(ηxy)

]2
[1− θxy(η)] dνNρ(·)(η)

= −1

2

∫
p(y − x)

[√
f(ηxy)−

√
f(η)

]2
dνNρ(·)(η)

+
1

2

∫
p(y − x)

[√
f(ηxy)

]2
[1− θxy(η)] dνNρ(·)(η).

Thus we have that

〈L0
N

√
f,
√
f〉νN

ρ(·)
≤ −1

4
D0
N (f)

+
1

4

∑
x,y∈ΛN

p(x− y)

∫ [√
f(ηxy)

]2
[1− θxy(η)] dνNρ(·)(η).

The second term on the right hand side of the last expression is equal to

1

8

∑
x,y∈ΛN

∫
p(x− y)

[√
f(ηxy)

]2
[1− θxy(η)] dνNρ(·)(η)

+
1

8

∑
x,y∈ΛN

∫
p(x− y)

[√
f(η)

]2
[θxy(η)− 1] dνNρ(·)(η),
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so using that for any ε > 0, ab ≤ ε2a2

2 + b2

2ε2 and writing [
√
f(ηxy)]2 − [

√
f(η)]2 =

[
√
f(ηxy)−

√
f(η)][

√
f(ηxy)+

√
f(η)] the last expression is absolutely bounded by

Cε2
∑

x,y∈ΛN

p(x− y)

∫ [√
f(ηxy)−

√
f(η)

]2
dνNρ(·)(η)

+ Cε−2
∑

x,y∈ΛN

p(x− y)

∫ [√
f(η) +

√
f(ηxy)

]2
[1− θxy(η)]

2
dνNρ(·)(η)

≤ Cε2D0
N (f) + Cε−2N−2

∑
y 6=x∈ΛN

1

|x− y|γ−1
,

≤ Cε2D0
N (f) + Cε−2N−γ+1.

We choose then ε > 0 sufficiently small to have C ′ = 1/4−Cε2 > 0. Then the first
inequality in (C.8) follows.

Now we prove only the second inequality in (C.8) since the third one can be
proved similarly. We have that

〈L`N
√
f,
√
f〉νN

ρ(·)
=
∑
y≤0,
x∈ΛN

p(x− y)〈L`x
√
f,
√
f〉νN

ρ(·)

where 〈L`x
√
f,
√
f〉νN

ρ(·)
=
∫
Ixα(η)

[√
f(ηx)−

√
f(η)

]√
f(η)dνNρ(·)(η) and Ixα =

[ηx(1−α) + (1− ηx)α]. Thus, denoting θx(η) =
dνNρ(·)(η

x)

dνNρ(·)(η)
we obtain the following

〈L`x
√
f,
√
f〉νN

ρ(·)
= −1

2

∫
Ixα(η)

[√
f(ηx)−

√
f(η)

]2
dνNρ(·)(η)

+
1

2

∫ [√
f(ηx)

]2
[Ixα(η)− Ixα(ηx)θx(η)] dνNρ(·)(η).

Performing a change of variables we have that the second term on the right hand
side of the last expression can be written as

1

4

∫ [√
f(ηx)

]2
[Ixα(η)− Ixα(ηx)θx(η)] dνNρ(·)(η)

− 1

4

∫ [√
f(η)

]2
[Ixα(η)− Ixα(ηx)θx(η)] dνNρ(·)(η)

=
1

4

∫ ([√
f(ηx)

]2
−
[√

f(η)
]2)

[Ixα(η)− Ixα(ηx)θx(ηx)] dνNρ(·)(η).

Using again the inequality ab ≤ ε2a2

2 + b2

2ε2 , ε > 0, the integral above is absolutely
bounded by

Cε2

∫
Ixα(η)

([√
f(ηx)

]
−
[√

f(η)
])2

dνNρ(·)(η)

+ Cε−2

∫
1

Ixα(η)
[Ixα(η)− Ixα(ηx)θx(η)]

2
([√

f(ηx)
]

+
[√

f(η)
])2

dνNρ(·)(η)

≤ Cε2

∫
Ixα(η)

([√
f(ηx)

]
−
[√

f(η)
])2

dνNρ(·)(η)
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+ 2Cε−2

∫
1

Ixα(η)
[Ixα(η)− Ixα(ηx)θx(η)]

2
(f(ηx) + f(η)) dνNρ(·)(η).

Now, by the smoothness of ρ and the fact that ρ(0) = α we have that

1

Ixα(η)
[Ixα(η)− Ixα(ηx)θx(η)]

2 ≤ C x2

N2
.

Thus, by using the fact that f is a density and that θx is uniformly bounded, and
by choosing ε > 0 sufficiently small, we get

〈L`N
√
f,
√
f〉νρ(·) ≤ −C ′D`

N (f) +
C

N2

∑
y≤0,
x∈ΛN

x2

[x− y]γ+1

≤ −C ′D`
N (f) +O(N1−γ)

which proves the second inequality in (C.8). �
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