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Abstract. Sabot and Zeng have discovered two martingales, one of which played
a key role in their investigation of the vertex-reinforced jump process. Starting
from the related supersymmetric hyperbolic sigma model, we give an alternative
derivation of these two martingales. They turn out to be the first two instances in
an infinite hierarchy of martingales, derived from a generating function.

1. Introduction

Sabot, Tarrès, and Zeng (Sabot et al., 2017+) proved that the vertex-reinforced
jump process can be related to a certain random Schrödinger operator. A conve-
nient way to characterize the corresponding random environment β is its Laplace
transform, investigated in Sabot et al. (2017+) using a matrix decomposition from
linear algebra.

Subsequently, Sabot and Zeng (2015) have discovered that a certain field ψ(n) as-
sociated to the random Schrödinger operator, on increasing finite pieces (with wired
boundary conditions) of an infinite graph exhibits a martingale property. This turns
out to be the crucial ingredient to prove, among other things, a characterization
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of the recurrence and transience behavior of the vertex-reinforced jump process on
an arbitrary locally finite graph and, in a certain parameter regime, a functional
central limit theorem for this process on Zd with d ≥ 3. Ergodicity with respect
to spatial translations of the limit of the mentioned martingale is also one of the
key ingredients for Sabot and Zeng’s proof of recurrence of linearly edge-reinforced
random walk on Z2 with arbitrary constant initial weights.

Sabot and Zeng have also described the (discrete) quadratic variation of the men-
tioned martingale in terms of a second martingale involving the Green’s function
of the random Schrödinger operator.

In the present paper, we show that these two martingales are the first two in-
stances of an infinite hierarchy of martingales, described in Corollary 2.7 below. The
infinite hierarchy is obtained by expanding a martingale consisting of generating
functions; cf. Theorem 2.6.

Our starting point is the supersymmetric hyperbolic sigma model H2|2, invented
by Zirnbauer (1991) and investigated by Disertori, Spencer, and Zirnbauer in Dis-
ertori et al. (2010). Sabot and Tarrès (2015) showed that this model is related to
the mixing measures for both vertex-reinforced jump process and edge-reinforced
random walk. Key ingredients in our analysis are the symmetries of H2|2 and a
local scaling transformation.

Overview of this article. In Section 2, Zirnbauer’s H2|2 model is defined formally
and the main results are stated.

In Section 3.1 we introduce the mentioned local scaling transformation of the
random field (eu, s), described by H2|2. In Theorem 3.1 we describe the Radon-
Nikodym derivative of the distribution of the transformed field with respect to the
original random field. It allows us also to give a short alternative proof of the
Laplace transform of β from Sabot et al. (2017+); cf. Corollary 3.2 below. Taking
H2|2 as a starting point, the measurability argument required to show the various
martingale properties is a little easier than in the random Schrödinger operator
approach. This is why we include the argument in Section 3.2.

In Section 4, using Theorem 3.1 and the fact E[euk ] = 1 known from Disertori
et al. (2010), we give a short alternative proof for the first martingale from Sabot and
Zeng (2015); cf. Theorem 2.5 below. In addition to the local scaling transformation,
our proofs in Sections 4 and 6 of the martingale properties use a Kolmogorov
consistency discovered by Sabot and Zeng (2015) for the random environment β.

In Section 5, we first review the symmetries of H2|2 that we need for our proof.
These include ordinary Euclidean rotations and a Q-supersymmetry introduced in
Disertori et al. (2010). Using these (super-)symmetries, we derive Ward identities
for certain harmonic functions; see Lemma 5.2. The proof of this lemma is based
on two main ingredients. First, the mean value theorem for harmonic functions
localizes the average over a circle at its center. Second, a technique from Disertori
et al. (2010) localizes the expectation of Q-supersymmetric functions at the zero
field configuration.

In Section 6, a combination of these Ward identities with the local scaling trans-
formation from Section 3.1 yields a generating martingale. An infinite sequence of
martingales is then produced by Taylor expansion.

In Section 7, we use Theorem 2.1, which is also a basic ingredient for the gener-
ating martingale, to prove a formula discovered by Letac (2014).
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Finally, in the appendix we explain some geometric background and analyze
the precise assumptions for the supersymmetric transformation formula between
horospherical and cartesian coordinates to hold.

2. Definitions and main results

2.1. Finite graph. Let G̃ = (Ṽ , Ẽ) be a finite, undirected, connected graph with

vertex set Ṽ and edge set Ẽ. The graph is assumed to have no self-loops. We fix
a reference vertex δ ∈ Ṽ and abbreviate V := Ṽ \ {δ}. We assign positive weights

Wij = Wji > 0 to every undirected edge (i ∼ j) ∈ Ẽ and set Wij = 0 for i 6∼ j. In
particular, Wii = 0. Let

UV :={u = (ui)i∈Ṽ ∈ RṼ : uδ = 0}, (2.1)

ΩV :=UV × UV

={(u = (ui)i∈Ṽ , s = (si)i∈Ṽ ) ∈ RṼ × RṼ : uδ = 0, sδ = 0}. (2.2)

For u ∈ UV , we define the (negative) discrete Laplacian AW (u) ∈ RṼ×Ṽ associated
to the weights Wije

ui+uj by

AWi,j(u) =

{
−Wije

ui+uj for i 6= j,∑
k∈Ṽ Wike

ui+uk for i = j.
(2.3)

Let AWV V (u) denote the submatrix of AW (u) obtained by deleting the δ-th row and

column, and T the set of spanning trees of G̃.
The H2|2 model on G̃ is given by a probability measure µW on ΩV . Following

Disertori et al. (2010) and Disertori and Spencer (2010), it can be written in the
two following equivalent ways:

µW (du ds)

=
∏

(i∼j)∈Ẽ

e−Wij [cosh(ui−uj)+ 1
2 (si−sj)2eui+uj−1]

∑
T∈T

∏
(i∼j)∈T

Wije
ui+uj

∏
i∈V

e−ui
duidsi

2π

= e−
1
2 s
tAW (u)s detAWV V (u)

∏
(i∼j)∈Ẽ

e−Wij [cosh(ui−uj)−1]
∏
i∈V

e−ui
duidsi

2π
(2.4)

with dui and dsi denoting the Lebesgue measure on R. Recall that sδ = 0; hence
we need only the submatrix AWV V to evaluate the quadratic form stAW s. Because

the graph G̃ is connected, this quadratic form with the constraint sδ = 0 is positive
definite. In particular, the matrix AWV V is invertible.

We define the Green’s function Ĝ = ĜV = ĜV,W : UV → RṼ×Ṽ by

Ĝij(u) =

{
eui(AWV V (u)−1)ije

uj for i, j ∈ V,
0 for i = δ or j = δ.

(2.5)

Note that this definition is equivalent to the representation of Ĝ given in formula
(4.4) in Sabot and Zeng (2015). Furthermore, we introduce the random vector

βV,W (u) = (βV,Wi (u))i∈V by

βV,Wi (u) =
1

2

∑
j∈Ṽ :j∼i

Wije
uj−ui . (2.6)
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When there is no risk of confusion we use the notation β, βV , or βW (according to
which dependence we want to stress) instead of βV,W .

We denote by EµW the expectation with respect to µW and by 〈a, b〉 =
∑
i∈I aibi

the Euclidean scalar product, where I = V or I = Ṽ depending on the context.
We will also need the following space:

ΛV := {λ = (λi)i∈Ṽ ∈ (−1,∞)Ṽ : λδ = 0}. (2.7)

For λ ∈ ΛV , we denote by λV its restriction to V . Real functions of λ, like
√

1 + λ,
are understood componentwise. We abbreviate eu

Ṽ
= (eui)i∈Ṽ .

The main result of this section is the following generalization of the Laplace
transform of β = (βi)i∈V .

Theorem 2.1. For all θ ∈ (−∞, 0]Ṽ and all λ ∈ ΛV , one has

EµW
[
e〈θ,e

u
Ṽ 〉− 1

2 〈θ,Ĝ(u)θ〉e−〈λV ,β(u)〉
]

= LW (λ)e〈θ,
√

1+λ〉, (2.8)

where

LW (λ) =
∏

(i∼j)∈Ẽ

eWij(1−
√

1+λi
√

1+λj)
∏
i∈V

1√
1 + λi

. (2.9)

The proof is done in Section 6. For θ = 0 equation (2.8) gives indeed the
Laplace transform LW (λ) of β. This special case appeared first in Proposition 1
of Sabot et al. (2017+) in the context of a random Schrödinger operator approach.
The equivalence of this approach to H2|2 is shown in Corollary 2 of Sabot et al.
(2017+). In particular the joint distribution of the βi’s is a marginal of their νW,1.
Using a local scaling transformation, we will give an alternative derivation of the
Laplace transform LW (λ) in Corollary 3.2.

For any vector b = (bi)i∈V ∈ RV , we define

(Hb)ij = 2biδij −Wij , i, j ∈ V. (2.10)

In particular,

(Hβ(u))ij = 2βi(u)δij −Wij = e−uiAWij (u)e−uj , i, j ∈ V, (2.11)

where the last equality follows from the definition (2.6) of β and (2.3) of AW . Since
AWV V is positive definite, the matrix Hβ(u) is invertible. Hence,

H−1
β(u) = ĜV,WV V (u) (2.12)

is the restriction of ĜV,W (u), defined in (2.5), to V × V .
The following result is a consequence of Theorem 2.1.1

1Xiaolin Zeng has told us that Gérard Letac has proved formula (2.13) with an inductive

approach using linear algebraic methods. Unfortunately, this proof is not published. We were
wondering whether Theorem 2.1 is related to Letac’s formula. Xiaolin Zeng and Christophe Sabot

have answered this question in the affirmative. Christophe Sabot (private communication) showed

that Theorem 2.1 can be derived from Letac’s formula. Here, we go in the opposite direction and
deduce Letac’s formula from Theorem 2.1. After the first version of this paper was written, Pierre

Tarrès sent us a copy of Letac’s manuscript (Letac, 2014).
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Corollary 2.2 (Letac’s formula, Theorem 2.1 in Letac, 2014). For all φ, θ ∈
(0,∞)V , one has∫

{b∈RV :Hb>0}

e−
1
2 (〈φ,Hbφ〉+〈θ,H−1

b θ〉)
√

detHb

db =
(π

2

) |V |
2 e−〈φ,θ〉∏

i∈V φi
, (2.13)

where the notation Hb > 0 means that Hb is positive definite.

To construct the martingale hierarchy, we will need to write u as a function of β,
i.e. to invert the relation (2.6). This is formalized in the following lemma. Recall
that βV = (βVi )i∈V .

Lemma 2.3 (Measurability, Sabot, Tarrès, and Zeng in Sabot et al., 2017+).

We introduce a measurable function fWV : RV → RṼ as follows. Given b ∈ RV such
that Hb is invertible, we set

fWV (b)δ = 0 and fWV (b)i = log

[∑
j∈V

(H−1
b )ijWjδ

]
for i ∈ V. (2.14)

In all other cases, we set fWV (b) = 0. In particular, we have

(ui)i∈Ṽ = fWV (βV ). (2.15)

Consequently, the random vector (ui)i∈Ṽ is measurable with respect to the σ-field

σ(βV ).

Given the equivalence of H2|2 and a random Schrödinger description mentioned
above, this lemma follows from Proposition 2 in Sabot et al. (2017+). However,
since our starting point is H2|2 rather than random Schrödinger operators, we
include the proof in Section 3.2 below.

2.2. Infinite graph. Let G∞ = (V∞, E∞) be an infinite locally finite connected
undirected graph without direct loops. We approximate G∞ by finite subgraphs
Gn = (Vn, En) such that Vn ↑ V∞ and En = {(i ∼ j) ∈ E∞ : i, j ∈ Vn}. Given n,

we obtain a new finite graph G̃n = (Ṽn, Ẽn) from G∞ by collapsing all vertices in

V∞ \ Vn to a single vertex δn. Thus, Ṽn = Vn ∪ {δn} and

Ẽn = En ∪ {(i ∼ δn) : i ∈ Vn and ∃j ∈ V∞ \ Vn such that (i ∼ j) ∈ E∞}. (2.16)

In other words, G̃n is obtained from Gn introducing wired boundary conditions. As
in Section 2.1, we assign positive weights Wij = Wji > 0 to every undirected edge

(i ∼ j) ∈ E∞ and we set Wij = 0 for i 6∼ j. For i, j ∈ Ṽn, we define the weight

W
(n)
ij = W

(n)
ji as follows:

W
(n)
ij = Wij if i ∈ Vn and j ∈ Vn, (2.17)

W
(n)
iδn

= W
(n)
δni

=
∑

j∈V∞\Vn

Wij for i ∈ Vn, and W
(n)
δnδn

= 0. (2.18)

In particular, W
(n)
ij > 0 if and only if (i ∼ j) ∈ Ẽn.

Let µWn denote the H2|2-measure defined in (2.4) for the graph G̃n and edge

weights W
(n)
ij . The following observation was made by Sabot and Zeng (2015). To

make the presentation self-contained, we will repeat their argument in Section 4.
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Lemma 2.4. (Kolmogorov consistency, Sabot and Zeng, 2015) For n ∈ N,

the Laplace transform LWn (λ) = EµWn [e−〈λVn ,β
Vn〉] of βVn = (βi)i∈Vn satisfies the

consistency relation

LWn (λ) = LWn+1(λ), (2.19)

for all λ ∈ ΛVn+1
with λi = 0 for all i ∈ Ṽn+1 \ Vn. In particular, the law of βVn

with respect to µWn agrees with the law of βVn+1 |Vn with respect to µWn+1.

Consequently, as worked out in Sabot and Zeng (2015), Kolmogorov’s exten-
sion theorem yields the existence of a coupling (βββi)i∈V∞ on a probability space
(Ω∞,F∞, µW∞) such that for any n ∈ N the laws of the random vectors

βββ(n) = (βββi : Ω∞ → R)i∈Vn (2.20)

with respect to µW∞ and βVn : ΩVn → RVn with respect to µWn coincide; recall the
definition (2.2) of ΩVn . Following Sabot and Zeng (2015), we define the σ-field

Fn = σ(βββ(n)) ⊆ F∞. (2.21)

Using the function fWV from Lemma 2.3, we define

u(n) = (u
(n)
i )i∈Ṽn = fWVn(βββ(n)). (2.22)

In particular, for all n, the law of u(n) with respect to µW∞ coincides with the law
of u = (ui)i∈Ṽn with respect to µWn . We also define

u
(n)
i = u

(n)
δn

= 0 for i ∈ V∞ \ Vn. (2.23)

In Section 4, we present an alternative short proof of the following first martingale
from Proposition 9 in Sabot and Zeng (2015).

Theorem 2.5 (Martingale eu, Sabot and Zeng, 2015). For any k ∈ V∞, the process

(eu
(n)
k )n∈N is a martingale with respect to the filtration (Fn)n∈N:

EµW∞
[
eu

(n+1)
k |Fn

]
= eu

(n)
k , ∀k ∈ V∞. (2.24)

This martingale will now be generalized. Recall the definition (2.5) of the Green’s

function Ĝ. We denote by Ĝ(n) = ĜVn(u(n)) the Green’s function (on the graph G̃n)
obtained by replacing u by u(n). Let (−∞, 0](V∞) denote the set of all θ ∈ (−∞, 0]V∞

having only finitely many non-zero entries. For these θ and n ∈ N, we define

θ(n) ∈ (−∞, 0]Ṽ
(n)

by

θ
(n)
i = θi for i ∈ Vn and θ

(n)
δn

=
∑

j∈V∞\Vn

θj . (2.25)

Theorem 2.6 (Generating martingale). For all θ ∈ (−∞, 0](V∞),

M (n)(θ) = e

〈
θ(n),eu

(n)
〉
− 1

2 〈θ(n),Ĝ(n)θ(n)〉
, n ∈ N, (2.26)

is a martingale with respect to the filtration (Fn)n∈N defined in (2.21).

The martingale M (n)(θ) is the generating function for an infinite hierarchy of
martingales. The first two martingales (2.27) and (2.28) in this hierarchy are the
martingales discovered by Sabot and Zeng; see Proposition 9 in Sabot and Zeng
(2015).

In the following, we use the notation Ĝ
(n)
kl = Ĝ

(n)
lk = 0 for k ∈ V∞ \ Vn, l ∈ V∞.
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Corollary 2.7 (Hierarchy of martingales). For any j, k, l ∈ V∞,

M
(n)
j = eu

(n)
j , n ∈ N, (2.27)

M
(n)
j,k = eu

(n)
j +u

(n)
k − Ĝ(n)

jk , n ∈ N, and (2.28)

M
(n)
j,k,l = eu

(n)
j +u

(n)
k +u

(n)
l − eu

(n)
j Ĝ

(n)
kl − e

u
(n)
k Ĝ

(n)
jl − e

u
(n)
l Ĝ

(n)
jk , n ∈ N, (2.29)

are martingales with respect to the filtration (Fn)n∈N. More generally, for any
m ∈ N and any i1, . . . , im ∈ V∞,

M
(n)
i1,...,im

=
∑

I⊆{1,...,m}
|I| even

∑
I∈P2(I)

(−1)|I|/2
∏

k∈{1,...,m}\I

e
u

(n)
ik

∏
{k,l}∈I

Ĝ
(n)
ikil

, n ∈ N

(2.30)

are martingales with respect to the same filtration, where P2(I) denotes the set of
all partitions of I in sets of size 2.

Note that the case I = ∅ corresponds to P2(I) = {∅} and the term
∏m
k=1 e

u
(n)
ik

in the right-hand side of (2.30).

3. Some tools

3.1. Local scaling transformation. Fix λ ∈ ΛV . We define the local shift

Sλ : ΩV → ΩV , (ũ, s) 7→ (u, s) with ui = ũi + log
√

1 + λi for all i ∈ Ṽ . (3.1)

In particular, Sλ leaves the s-variables unchanged and ũδ = uδ = 0. We also
introduce the rescaled weights

Wλ
ij = Wλ

ji =
√

1 + λi
√

1 + λjWij . (3.2)

The following theorem describes a key property of the local scaling transformation
Sλ. Note that similar computations appear also in the proof of Theorem 2(ii) on
page 2365 in Sabot and Tarrès (2015).

Theorem 3.1 (Measure transformation). For all λ ∈ ΛV , the image of µW
λ

with
respect to the transformation Sλ is given by

Sλµ
Wλ

(du ds) =
∏

(i∼j)∈Ẽ

eW
λ
ij−Wij ·

∏
j∈V

√
1 + λj e

−λjβWj (u) µW (du ds) (3.3)

=
∏

(i∼j)∈Ẽ

eWij(
√

1+λi
√

1+λj−1) ·
∏
j∈V

√
1 + λj e

−λjβWj (u) µW (du ds).

Remark. Note that (3.3) gives the general formula for Sλµ
W :

Sλµ
W (du ds) =

∏
(i∼j)∈Ẽ

eWij−Wλ′
ij ·

∏
j∈V

1√
1 + λ′j

e

λ′j
1+λ′j

βW
λ′

j (u)
µW

λ′

(du ds), (3.4)

where λ′j = −λj/(1 + λj) so that
√

1 + λj
√

1 + λ′j = 1 and the weights satisfy

Wλ′

ij = Wij/(
√

1 + λi
√

1 + λj).
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Proof of Theorem 3.1: Using the definition (2.4) of µW , we find

µW
λ

(dũ ds)

= e−
1
2 s
tAW

λ
(ũ)s detAW

λ

V V (ũ)
∏

(i∼j)∈Ẽ

e−W
λ
ij [cosh(ũi−ũj)−1]

∏
i∈V

e−ũi
dũidsi

2π
. (3.5)

Fix (u, s) ∈ ΩV and set (ũ, s) = S−1
λ (u, s) = ((ui − log

√
1 + λi)i∈Ṽ , s) ∈ ΩV as in

(3.1). From Wλ
ije

ũi+ũj = Wije
ui+uj for i, j ∈ Ṽ one has AW

λ

(ũ) = AW (u) and
hence

e−
1
2 s
tAW

λ
(ũ)s detAW

λ

V V (ũ) = e−
1
2 s
tAW (u)s detAWV V (u). (3.6)

Again for i, j ∈ Ṽ , we calculate

Wλ
ij cosh(ũi − ũj) = 1

2Wij

√
1 + λi

√
1 + λj(e

ũi−ũj + eũj−ũi)

= 1
2Wij

√
1 + λi

√
1 + λj

(√
1+λj
1+λi

eui−uj +
√

1+λi
1+λj

euj−ui
)

= 1
2Wij

(
(1 + λj)e

ui−uj + (1 + λi)e
uj−ui

)
= Wij cosh(ui − uj) + 1

2Wij

(
λje

ui−uj + λie
uj−ui

)
. (3.7)

Summing this over all edges i ∼ j and using Wij = 0 for i 6∼ j, we get∑
(i∼j)∈Ẽ

Wλ
ij cosh(ũi − ũj)

=
∑

(i∼j)∈Ẽ

Wij cosh(ui − uj) + 1
2

∑
(i∼j)∈Ẽ

Wij

(
λje

ui−uj + λie
uj−ui

)
=

∑
(i∼j)∈Ẽ

Wij cosh(ui − uj) + 1
2

∑
j∈Ṽ

λj
∑
i∈Ṽ

Wije
ui−uj

=
∑

(i∼j)∈Ẽ

Wij cosh(ui − uj) +
∑
j∈V

λjβ
W
j (u), (3.8)

where in the last line we used λδ = 0. Therefore,∏
(i∼j)∈Ẽ

e−W
λ
ij [cosh(ũi−ũj)−1]

=
∏

(i∼j)∈Ẽ

eW
λ
ij−Wij

∏
(i∼j)∈Ẽ

e−Wij [cosh(ui−uj)−1]
∏
j∈V

e−λjβ
W
j (u). (3.9)

Finally, ∏
j∈V

e−ũj =
∏
j∈Ṽ

e−ũj =
∏
j∈Ṽ

√
1 + λje

−uj , (3.10)

where we extended the product
∏
j∈V to

∏
j∈Ṽ using ũδ = 0. Substituting formulas

(3.6), (3.9), and (3.10) into (3.5), claim (3.3) follows. �

The following corollary gives a short alternative derivation of the Laplace trans-
form of the random vector (βi)i∈V . It is a special case of Theorem 2.1 and also one
of the ingredients for the proof of this theorem.
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Corollary 3.2 (Laplace transform of β, Sabot, Tarrès, and Zeng in Sabot et al.,
2017+).
The function LW , defined in formula (2.9), is the Laplace transform of the random
vector β = (βi)i∈V :

EµW
[
e−〈λV ,β〉

]
= LW (λ) =

∏
(i∼j)∈Ẽ

eWij(1−
√

1+λi
√

1+λj)
∏
i∈V

1√
1 + λi

(3.11)

for all λ ∈ ΛV .

Proof : Integrating both sides of (3.3) over ΩV , the claim follows from the fact that

the image measure Sλµ
Wλ

is a probability measure on ΩV . �

The following corollary contains the previous one as special case g = 1:

Corollary 3.3. For any random variable g : ΩV → R and any λ ∈ ΛV , one has

EµW
[
ge−〈λV ,β〉

]
= LW (λ)E

µWλ [g ◦ Sλ] (3.12)

in the sense that the left-hand side exists if and only if the right-hand side exists.

Proof : Using Corollary 3.2, we rewrite claim (3.3) of Theorem 3.1 in the form

e−〈λV ,β〉 = LW (λ)
d(Sλµ

Wλ

)

dµW
. (3.13)

This yields the claim as follows:

EµW
[
ge−〈λV ,β〉

]
=LW (λ)EµW

[
g
d(Sλµ

Wλ

)

dµW

]
=LW (λ)E

SλµW
λ [g] = LW (λ)E

µWλ [g ◦ Sλ]. (3.14)

�

Example 3.4. Taking g(u, s) = euk for any k ∈ Ṽ , this corollary gives

EµW
[
euke−〈λV ,β(u)〉

]
= LW (λ)

√
1 + λk. (3.15)

Indeed, using

g(Sλ(u, s)) = euk+log
√

1+λk =
√

1 + λke
uk , (3.16)

formula (3.12) reduces to formula (3.15) as follows

EµW
[
euke−〈λV ,β(u)〉

]
= LW (λ)

√
1 + λkEµWλ [euk ] = LW (λ)

√
1 + λk. (3.17)

The last equality follows from formula (B.3) in Appendix B of Disertori et al. (2010),
which shows E

µWλ [euk ] = 1. It is also a consequence of Corollary 5.3 below; cf.

formula (5.26).
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3.2. Measurability.

Proof of Lemma 2.3: Since uδ = 0 we only need to consider (ui)i∈V . Given u ∈ RṼ
with uδ = 0, the definition (2.6) of βi = βi(u) can be reorganized as

2βie
ui −

∑
j∈V

Wije
uj = Wiδ. (3.18)

Recall from (2.11), (Hβ(u))ij = 2βi(u)δij −Wij = e−uiAWij (u)e−uj for all i, j ∈ V
and Hβ is invertible. Using the notations euV = (eui)i∈V and WV δ = (Wiδ)i∈V ,
equation (3.18) above becomes Hβe

u
V = WV δ or equivalently for i ∈ V

eui = (H−1
β WV δ)i = ef

W
V (βV )i . (3.19)

Thus, euV is σ(βV )-measurable. The claim follows. �

Remark. In our setup, starting with H2|2, it is a priori clear that euV has positive

entries. As a consequence, log(H−1
β WV δ) is well-defined. In contrast to this, Sabot

and Zeng (2015) starts with the distribution of the β’s. There, additional arguments
are needed to insure that this log is indeed well-defined.

4. First martingale

Proof of Lemma 2.4 – Kolmogorov consistency: Using Corollary 3.2, we can calcu-
late both Laplace transforms:

LWn+1(λ) =
∏

(i∼j)∈Ẽn+1

eW
(n+1)
ij (1−

√
1+λi
√

1+λj)
∏

i∈Vn+1

1√
1 + λi

, (4.1)

LWn (λ) =
∏

(i∼j)∈Ẽn

eW
(n)
ij (1−

√
1+λi
√

1+λj)
∏
i∈Vn

1√
1 + λi

. (4.2)

Since λi = 0 for all i ∈ Vn+1 \ Vn, the last product in (4.1) agrees with the last

product in (4.2). It remains to consider the product over edges. Let (i ∼ j) ∈ Ẽn+1.
We distinguish several cases.

Case 1: i ∈ Vn and j ∈ Vn. Then (i ∼ j) ∈ Ẽn and W
(n+1)
ij = Wij = W

(n)
ij . Thus

the contribution of this edge is the same in (4.1) and (4.2).

Case 2: i ∈ Ṽn+1 \ Vn and j ∈ Ṽn+1 \ Vn. Then W
(n+1)
ij (1−

√
1 + λi

√
1 + λj) = 0

because λi = λj = 0. Furthermore, (i ∼ j) 6∈ Ẽn. Thus, i ∼ j does not contribute.

Case 3: i ∈ Vn and j ∈ Ṽn+1 \ Vn. For a fixed i ∈ Vn, we calculate∑
j∈Ṽn+1\Vn:

(i∼j)∈Ẽn+1

W
(n+1)
ij (1−

√
1 + λi

√
1 + λj)

=

[
W

(n+1)
iδn+1

+
∑

j∈Vn+1\Vn

Wij

]
(1−

√
1 + λi)

=

[ ∑
j∈V∞\Vn

Wij

]
(1−

√
1 + λi) = W

(n)
iδn

(1−
√

1 + λi). (4.3)

This is the contribution of the edge (i ∼ δn) ∈ Ẽn to (4.2).
Thus the products in (4.1) and (4.2) agree and the claim is proved. �
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Proof of Theorem 2.5 – Martingale eu: Given n ∈ N, it suffices to consider k ∈
Vn+1, since otherwise u

(n+1)
k = u

(n)
k = 0 and (2.24) is trivially satisfied. Note that

u
(n)
k = u

(n)
δn

= 0 for k ∈ Vn+1 \ Vn. By its definition (2.22), u
(n)
k is Fn-measurable.

It remains to prove

EµW∞
[
eu

(n+1)
k g(βββ(n))

]
= EµW∞

[
eu

(n)
k g(βββ(n))

]
(4.4)

for any measurable function g : RVn → [0,∞). For any given c ∈ R, the uniqueness
theorem for Laplace transforms allows us to restrict the claim to test functions

g(βββ(n)) =
∏
j∈Vn e

−λjβββj with λj > c for all j ∈ Vn

EµW∞
[
eu

(n+1)
k

∏
j∈Vn

e−λjβββj
]

= EµW∞
[
eu

(n)
k

∏
j∈Vn

e−λjβββj
]
, (4.5)

as long as all these expectations are finite. As explained below formula (2.22), the
law of u(n) with respect to µW∞ coincides with the law of u = (ui)i∈Ṽn with respect

to µWn . In analogy to (2.23), we define u′ : ΩVn → RVn+1 by

u′k =

{
uk, if k ∈ Vn,
uδn = 0, if k ∈ Vn+1 \ Vn.

(4.6)

Then, claim (4.5) is equivalent to

EµWn+1

[
euk

∏
j∈Vn

e−λjβ
Vn+1
j (u)

]
= EµWn

[
eu
′
k

∏
j∈Vn

e−λjβ
Vn
j (u)

]
. (4.7)

For c = −1, Corollary 3.3 and Example 3.4 imply that these expectations are finite;
hence the same is true for the expectations in (4.5).

Set λi = 0 for all i ∈ Ṽn+1 \ Vn. Using Example 3.4 and Lemma 2.4, we obtain
the claim (4.7) in both cases, k ∈ Vn or k ∈ Vn+1 \ Vn, as follows:

EµWn+1

[
euk

∏
j∈Vn

e−λjβ
Vn+1
j (u)

]
= EµWn+1

[
euk

∏
j∈Vn+1

e−λjβ
Vn+1
j (u)

]
= LWn+1(λ)

√
1 + λk = LWn (λ)

√
1 + λk = EµWn

[
eu
′
k

∏
j∈Vn

e−λjβ
Vn
j (u)

]
. (4.8)

�

5. Using (super-)symmetries of the model

Let G̃ = (Ṽ , Ẽ) be a finite graph as described at the beginning of Section 2.
Disertori, Spencer, and Zirnbauer in Disertori et al. (2010) use an alternative repre-
sentation in terms of Grassmann variables of the H2|2 measure µW defined in (2.4).
It has the advantage of making the internal symmetries and supersymmetries of
the model visible. Since we are using these symmetries in the remainder, we briefly
review this alternative representation; cf. Section 2.2 of Disertori et al. (2010). Let
ψi, ψi, i ∈ V , be independent Grassmann variables, and let ψδ = 0 = ψδ. Motivated

by ψ
2

i = ψ2
i = 0, a smooth superfunction f(u, s, ψ, ψ) is defined to be a polynomial
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in the Grassmann variables

f(u, s, ψ, ψ) =
∑
I,J⊆V

fIJ(u, s)ψIψJ , (5.1)

where the coefficients fIJ are smooth functions of u and s and we abbreviate

ψI =
∏
i∈I

ψi, ψJ =
∏
j∈J

ψj ; (5.2)

the products are understood with respect to some fixed arbitrary ordering of the
vertex set V . Since each ψi or ψi appears with degree at most one,

∏
i∈V ∂ψi∂ψif

is a smooth function of u and s only.
The measure µW can be represented as follows

µW (du ds) =
∏
i∈V

e−ui
duidsi

2π
∂ψi∂ψie

S (5.3)

with the action

S = S(u, s, ψ, ψ) (5.4)

=−
∑

(i∼j)∈Ẽ

Wij

[
cosh(ui − uj)− 1 +

[
1
2 (si − sj)2 +

(
ψi − ψj

)
(ψi − ψj)

]
eui+uj

]
.

Note that eS = eS(u,s,ψ,ψ) is a smooth function. Therefore, using the above argu-
ment,

∏
i∈V ∂ψi∂ψie

S is a function of u and s only. Thus, µW is the marginal of

the superintegration form

EDµW [f ] =

∫
DµW f :=

∫
ΩV

∏
i∈V

e−ui
duidsi

2π
∂ψi∂ψi(e

Sf(u, s, ψ, ψ)) (5.5)

obtained by integrating the Grassmann variables out. This superexpectation is
defined whenever

∏
i∈V e

−ui∂ψi∂ψi(e
Sf(u, s, ψ, ψ)) is an integrable function.

The internal (super-)symmetries of DµW are most easily seen in cartesian coor-
dinates x = (xi)i∈Ṽ , y = (yi)i∈Ṽ , z = (zi)i∈Ṽ , ξ = (ξi)i∈Ṽ , and η = (ηi)i∈Ṽ defined
by

xi = sinhui −
(

1

2
s2
i + ψiψi

)
eui , yi = sie

ui , ξi = euiψi, ηi = euiψi, (5.6)

zi =
√

1 + x2
i + y2

i + 2ξiηi = coshui +

(
1

2
s2
i + ψiψi

)
eui . (5.7)

In particular, xδ = yδ = ξδ = ηδ = 0 and zδ = 1. A geometrical intuition of
these coordinates is given in the appendix. As described in sections 2.1 and 2.2 of
Disertori et al. (2010), the image DµWcart of DµW under this supertransformation is
given by formulas (2.5) and (2.6) of that paper:

DµWcart =

(∏
i∈V

dxidyi
2π

∂ξi∂ηi ◦
1

zi

)
eScart (5.8)

with the transformed action Scart = Scart(x, y, ξ, η) given by

Scart = −
∑

(i∼j)∈Ẽ

Wij(−1− xixj − yiyj + zizj − ξiηj + ηiξj). (5.9)
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In (5.8), the symbol ◦ means that the partial derivatives ∂ξi∂ηi act not only on 1
zi

and eScart , but also on the test function as follows:

EDµWcart
[f ] =

∫
DµWcartf (5.10)

:=

∫ ∏
i∈V

dxidyi
2π

∂ξi∂ηi

(∏
i∈V

1

zi
· eScart(x,y,ξ,η)f(x, y, ξ, η)

)
To make the superintegration transformation from DµWcart to DµW precise, let
A(ξ, η) be the Grassmann algebra generated by the family of Grassmann variables
ξi, ηi, i ∈ V . Let Ssusy(ΩV , ξ, η) denote the space of superfunctions of the form

fcart : ΩV → A(ξ, η)
(x, y) 7→ fcart(x, y, ξ, η) =

∑
I,J⊆V fIJ(x, y)ξIηJ ,

(5.11)

where the coefficients fIJ are Schwartz functions and the products ξI and ηJ of
Grassmann variables are defined in analogy to (5.2) as follows

ξI =
∏
i∈I

ξi, ηJ =
∏
j∈J

ηj . (5.12)

After doing the change of coordinates given in (5.6), we obtain the test function in
horospherical coordinates fhor : ΩV → A(ψ,ψ),

(u, s) 7→fhor(u, s, ψ, ψ)

=fcart

(
x(u, s, ψ, ψ), y(u, s, ψ, ψ), ξ(u, s, ψ, ψ), η(u, s, ψ, ψ)

)
. (5.13)

Then we have the following superintegration transformation formula. It is proved
in the appendix.

Lemma 5.1. For any superfunction fcart(x, y, ξ, η) with the property eScartfcart ∈
Ssusy(ΩV , ξ, η), we have

EDµWcart
[fcart] = EDµW [fhor]. (5.14)

In the following we will use only test superfunctions f = fcart which satisfy the
assumption of this lemma.

Rotational symmetry. It is obvious that DµWcart is invariant with respect to
rotations in the xy-plane, (x, y, ξ, η) 7→ (xα, yα, ξ, η) with

xα = x cosα− y sinα, yα = x sinα+ y cosα, for α ∈ R. (5.15)

In horospherical coordinates u, s, ψ, ψ this symmetry is not so easy to describe and
somehow hidden.

Q-supersymmetry. In Disertori et al. (2010), the invariance of the H2|2-model
with respect to the supersymmetry operator

Q =
∑
i∈V

(xi∂ηi − yi∂ξi + ξi∂xi + ηi∂yi) (5.16)

played a key role. From Proposition 2 in Appendix C of Disertori et al. (2010)
we know that for any smooth superfunction f = f(x, y, ξ, η) with Qf = 0 and
eScartf ∈ Ssusy(ΩV , ξ, η), one has

EDµWcart
[f ] = eScart(o)f(o) = f(o), (5.17)
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where o denotes the zero-field configuration x = y = 0, ξ = η = 0. In particular,
the assumption Qf = 0 is satisfied for smooth superfunctions of the form f = f(z)
because of Qzi = 0 for all i ∈ V .

These (super-)symmetries play the key role in the proof of the following lemma.

Lemma 5.2 (Ward identities). Let f : R2 → C be a harmonic function and θ ∈ RṼ .
If f(〈θ, x+ z〉 , 〈θ, y〉)eScart ∈ Ssusy(ΩV , ξ, η), then the following identity holds

EDµWcart
[f(〈θ, x+ z〉 , 〈θ, y〉)] = f(〈θ, 1〉 , 0), (5.18)

where 〈θ, 1〉 stands for
∑
i∈Ṽ θi.

Note that the extension of f to a superfunction is used in the expectation because
z defined in (5.7) involves Grassmann variables. This extension is denoted by the
same symbol f .

Proof : By rotational symmetry of the model H2|2 in the xy-plane, using the nota-
tion (5.15), we have

EDµWcart
[f(〈θ, x+ z〉 , 〈θ, y〉)] = EDµWcart

[f(〈θ, xα + z〉 , 〈θ, yα〉)] (5.19)

for any α ∈ R. Taking the average over α ∈ [0, 2π] and using the mean value
theorem for the harmonic function f yields

EDµWcart
[f(〈θ, x+ z〉 , 〈θ, y〉)] =

1

2π

∫ 2π

0

EDµWcart
[f(〈θ, xα + z〉 , 〈θ, yα〉)] dα

= EDµWcart

[
1

2π

∫ 2π

0

f(〈θ, xα + z〉 , 〈θ, yα〉) dα
]

= EDµWcart
[f(〈θ, z〉 , 0)] . (5.20)

Since f(〈θ, z〉 , 0) is a smooth superfunction of z, we have the supersymmetry

Qf(〈θ, z〉 , 0) = 0. (5.21)

The assumption f(〈θ, x+ z〉 , 〈θ, y〉)eScart ∈ Ssusy(ΩV , ξ, η) implies that we can ap-
ply Proposition 2 from Appendix C of Disertori et al. (2010), cited in (5.17), to the
averaged superfunction f(〈θ, z〉 , 0). It yields

EDµWcart
[f(〈θ, z〉 , 0)] = f(〈θ, 1〉 , 0). (5.22)

�

Corollary 5.3 (Ward identity for exp). For all θ ∈ (−∞, 0]Ṽ , one has

EµW [e〈θ,e
u(1+is)〉] = e〈θ,1〉, (5.23)

using the abbreviation eu(1 + is) = (euj (1 + isj))j∈Ṽ .

Proof : By Lemma B.1 in the appendix, eScart ∈ Ssusy(ΩV , ξ, η). Note that all

coefficients in the expansion (5.11) of e〈θ,x+z+iy〉, together with all their deriva-

tives of any order in x and y, are of the form p · e〈θ,x+z′+iy〉 with z′ = (z′i =√
1 + x2

i + y2
i )i∈Ṽ , where p : ΩV → R are algebraic functions of x and y, nowhere

singular. Moreover, for any θ ∈ (−∞, 0]Ṽ , the term e〈θ,x+z′+iy〉 is bounded. There-
fore, eScarte〈θ,x+z+iy〉 ∈ Ssusy(ΩV , ξ, η), as well. Thus, we can apply Lemma 5.1 as
follows:

EµW [e〈θ,e
u(1+is)〉] = EDµWcart

[e〈θ,x+z+iy〉], (5.24)



A susy approach to martingales related to VRJP 543

since from (5.6) and (5.7), we know xj + zj = euj and yj = sje
uj . We apply now

Lemma 5.2 to the holomorphic (and hence harmonic) function f = exp : R2 = C→
C, f(x, y) = ex+iy. We obtain

EDµWcart
[e〈θ,x+z+iy〉] = e〈θ,1〉, (5.25)

which proves the claim (5.23). �

Remark. As a consequence of Corollary 5.3, we obtain for all vertices k, l,m ∈ Ṽ ,

EµW [euk ] = 1, (5.26)

EµW [euk+ul(1− sksl)] = 1, (5.27)

EµW [euk+ul+um(1− sksl − sksm − slsm)] = 1. (5.28)

More generally, for any m ∈ N and any i1, . . . , im ∈ Ṽ ,

EµW

[
e
∑m
j=1 uij

∑
I⊆{1,...,m}:
|I| even

(−1)|I|/2
∏
k∈I

sik

]
= 1. (5.29)

Indeed, given m ∈ N and i1, . . . , im ∈ Ṽn, we take the left derivative ∂θi1 . . . ∂θim at

θ = 0 of (5.23) to get

EµW

[
m∏
k=1

euik (1 + isik)

]
= 1. (5.30)

Note that the hypothesis θi ≤ 0 allows us to interchange expectations and partial
derivatives. Expanding the product and taking the real part of this equation gives
formula (5.29). The cases m = 1, 2, 3 of this formula may be written in the form
(5.26), (5.27), and (5.28), respectively.

Using uδ = sδ = 0, note that the (m+ 1)-st instance of formula (5.29) contains
the m-th instance as special case im+1 = δ.

6. A hierarchy of martingales

For a finite graph G̃ = (Ṽ , Ẽ) with δ ∈ Ṽ , recall the definitions (2.3) of the

matrix AW and (2.5) of the Green’s function Ĝ. We remind that the Gaussian part
in the measure µW defined in (2.4) can be rewritten as∏

(i∼j)∈Ẽ

e−
1
2Wij(si−sj)2eui+uj = e−

1
2 s
tAW (u)s. (6.1)

Therefore, we have the following representations of the Green’s function as condi-
tional expectation:

Ĝij = EµW [sisje
ui+uj |u] µW -a.s., for all i, j ∈ Ṽ , (6.2)

e−
1
2 〈θ,Ĝθ〉 = EµW [ei〈θ,se

u〉|u] µW -a.s., for any θ ∈ RṼ . (6.3)

Note that sisje
ui+uj ∈ Lp(ΩV , µW ) implies Ĝij ∈ Lp(ΩV , µW ) for all p ∈ [1,∞).

To prove Theorem 2.6, we need some preliminaries. Since the martingale Mn(θ)
in that theorem involves the Green’s function and we use the preceding represen-
tation as a conditional expectation, we need the following variant of Corollary 3.3.
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Lemma 6.1. For any random variable g : ΩV → R and any λ ∈ ΛV , one has

EµW
[
EµW [g|u] e−〈λV ,β〉

]
= LW (λ)E

µWλ [g ◦ Sλ] (6.4)

in the sense that the left-hand side exists if and only if the right-hand side exists.

Proof : This follows immediately from Corollary 3.3 because β is a function of u,
but not of s. �

From this lemma we get immediately the proof of Theorem 2.1.

Proof of Theorem 2.1: Using the conditional Laplace transform (6.3) and the fact
that β is a function of u only, we can rewrite the claim with the function gθ(u, s) =
e〈θ,e

u(1+is)〉 as follows:

EµW
[
EµW [gθ|u] e−〈λV ,β〉

]
= LW (λ)e〈θ,

√
1+λ〉. (6.5)

We apply Lemma 6.1 to the left-hand side. Observe that

gθ(Sλ(u, s)) =e〈θ,
√

1+λeu(1+is)〉 = gθ
√

1+λ(u, s). (6.6)

Since EµWλ [gθ
√

1+λ] = e〈θ,
√

1+λ〉 by Corollary 5.3, the claim follows. �

With these tools we can now prove the main result of this section.

Proof of Theorem 2.6 – Generating martingale: The proof follows the same lines as
the proof of Theorem 2.5. Recall that Ĝ(n) is a function of u(n). Consequently, by
Lemma 2.3, Ĝ(n) and hence M (n)(θ) are Fn-measurable. To prove the martingale
property, it suffices to show

EµW∞
[
M (n+1)(θ)

∏
j∈Vn

e−λjβββj
]

= EµW∞
[
M (n)(θ)

∏
j∈Vn

e−λjβββj
]

(6.7)

for all λi > −1, i ∈ Vn. Recall that by the construction in Section 2.2 the law of
βββ(n) with respect to µW∞ coincides with the law of βVn with respect to µWn . Hence,
we rewrite the claim (6.7) in the form

EµWn+1

[
M̃ (n+1)(θ)

∏
j∈Vn

e−λjβ
Vn+1
j (u)

]
= EµWn

[
M̃ (n)(θ)

∏
j∈Vn

e−λjβ
Vn
j (u)

]
, (6.8)

with the following variant of M (n)(θ)

M̃ (n)(θ) : ΩVn → R, M̃ (n)(θ) = e〈θ
(n),eu〉− 1

2 〈θ(n),ĜVn (u)θ(n)〉. (6.9)

Compare (6.8) with the similar claim (4.7). Set λi = 0 for i ∈ Ṽn+1 \ Vn. Using
Theorem 2.1, claim (6.8) is equivalent to

LWn+1(λ)e〈θ
(n+1),

√
1+λ〉 = LWn (λ)e〈θ

(n),
√

1+λ〉. (6.10)
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By Lemma 2.4, one has LWn+1(λ) = LWn (λ). We calculate the remaining factors

using the definition (2.25) of θ(i), i ∈ {n, n+ 1}:〈
θ(n),

√
1 + λ

〉
=
∑
i∈Vn

θi
√

1 + λi + θ
(n)
δn

=
∑
i∈Vn

θi
√

1 + λi +
∑

j∈V∞\Vn

θj , (6.11)

〈
θ(n+1),

√
1 + λ

〉
=
∑

i∈Vn+1

θi
√

1 + λi +
∑

j∈V∞\Vn+1

θj =
〈
θ(n),

√
1 + λ

〉
, (6.12)

where in the last step we use λi = 0 for i ∈ Ṽn+1 \ Vn. Thus, equality (6.10) holds
and the martingale property is shown. �

Proof of Corollary 2.7 – Hierarchy of martingales: The random variable M
(n)
i1,...,im

is Fn-measurable as a function of u(n) and Ĝ(n). The martingale property for

M
(n)
i1,...,im

is obtained by expanding the corresponding property for M (n)(θ) from
Theorem 2.6 around θ = 0, as follows. We rewrite the martingale property for
M (n)(θ) in the following form:

EµW∞
[
M (n+1)(θ)1A(βββ(n))

]
= EµW∞

[
M (n)(θ)1A(βββ(n))

]
(6.13)

for any A ∈ B(RVn), n ∈ N, θ ∈ (−∞, 0](V∞), using the notation βββ(n) = (βββi)i∈Vn
again. We take m (left) partial derivatives of this equation with respect to θ; note

that the hypothesis θi ≤ 0 and the fact that all moments of Ĝ(n) are finite allow us
to interchange expectations and partial derivatives. This yields

EµW∞
[
∂θi1 . . . ∂θimM

(n+1)(θ)1A(βββ(n))
]

= EµW∞
[
∂θi1 . . . ∂θimM

(n)(θ)1A(βββ(n))
]
.

(6.14)

We use the well-known Isserlis-Wick-formula for I ⊆ {1, . . . ,m} in the form(∏
i∈I

∂θji

)
e−

1
2 〈θ(n),Ĝ(n)θ(n)〉

∣∣∣∣∣
θ=0

=
∑
I∈P2(I)

∏
{k,l}∈I

(−Ĝ(n)
k,l ). (6.15)

The sum on the right-hand side is empty for sets I with odd cardinality. Taking the
iterated derivative of Mn(θ) as defined in (2.26), using the Leibniz rule and (6.15),
we get

∂θi1 . . . ∂θimM
(n)(θ)

∣∣∣
θ=0

(6.16)

=
∑

I⊆{1,...,m}
|I| even

e
∑
k∈{1,...,m}\I u

(n)
ik

(∏
i∈I

∂θji

)
e−

1
2 〈θ(n),Ĝ(n)θ(n)〉

∣∣∣∣∣
θ=0

= M
(n)
i1,...,im

.

Inserting this and the corresponding identity for M (n+1)(θ) into (6.14) yields the

martingale property for M
(n)
i1,...,im

, n ∈ N, in the form

EµW∞
[
M

(n+1)
i1,...,im

1A(βββ(n))
]

= EµW∞
[
M

(n)
i1,...,im

1A(βββ(n))
]
. (6.17)

�
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7. Proof of Letac’s formula

7.1. A special case. We consider first the simpler case φ = 1, i.e. φi = 1 for all
i ∈ V . We will see later that the general case follows by a scaling argument.

It is shown in Theorem 1 in Sabot et al. (2017+) that the following is a probability
measure on RV :

ν(dβ) = νW,1(dβ) = 1{Hβ>0}

(
2

π

) |V |
2
e−〈1,β〉

∏
(i∼j)∈E

eWij
1√

detHβ

dβ. (7.1)

Using the measure ν, we obtain the relation

L :=

(
2

π

) |V |
2
∫
{b∈RV :Hb>0}

e−
1
2 (〈1,Hb1〉+〈θ,H−1

b θ〉)
√

detHb

db

=Eν
[
e〈1,β〉−

1
2 (〈1,Hβ1〉+〈θ,H−1

β θ〉)
] ∏

(i∼j)∈E

e−Wij = Eν
[
e−

1
2 〈θ,H−1

β θ〉
]
, (7.2)

where, in the last equality, we have used

〈1, β〉 − 1
2 〈1, Hβ1〉 −

∑
(i∼j)∈E

Wij = 1
2

∑
i,j∈V

Wij −
∑

(i∼j)∈E

Wij = 0. (7.3)

The problem then reduces to evaluate Eν [e−
1
2 〈θ,H−1

β θ〉]. This is done in three steps.

Step 1. Let lawν(β) denote the law of β = (βi)i∈V with respect to ν. In Corollary 2
of Sabot et al. (2017+), Sabot, Tarrès, and Zeng express lawν(β) using β defined in
analogy to (2.6) and an additional independent gamma distributed random variable,
associated to a special vertex inside V .

In contrast to this, here we consider again the enlarged vertex set Ṽ = V ∪ {δ}
and the H2|2 measure µW , defined in (2.4), on the enlarged graph (Ṽ , Ẽ). We may

assume the vertex δ ∈ Ṽ \ V is connected to a single vertex ` ∈ V ,

Ẽ = E ∪ {` ∼ δ}, E = Ẽ \ {` ∼ δ}. (7.4)

We will prove below the following relation.

Lemma 7.1. We have

L = Eν
[
e−

1
2 〈θ,H−1

β θ〉
]

= lim
W`δ↓0

EµW
[
e−

1
2 〈θ,H−1

β θ〉
]
, (7.5)

where W`δ is the (positive) weight associated to the edge ` ∼ δ.

Step 2. To construct the analog of the additional gamma variable in Sabot et al.
(2017+), we select now as special vertex in V the unique vertex ` connected to δ.

Let us consider the reduced graph consisting of the vertex set V ◦ = V \ {`} and
edge set E◦ = E \ {(i ∼ `) : i ∈ V }. In the same way, let W ◦ ∈ RV×V be the
reduced weight matrix given by W ◦ij = Wij for i, j ∈ V .

With respect to the smaller graph G = (V,E), the objects V ◦, E◦, `, V , E, W ◦,

and UV ◦ play the same role as V , E, δ, Ṽ , Ẽ, W , and UV , with respect to the larger
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original graph G̃ = (Ṽ , Ẽ). In particular, we have the following analog of (2.5):

ĜV
◦,W◦: UV ◦ → RV×V ,

ĜV
◦,W◦

ij (ũ) =

{
eũi(AW

◦

V ◦V ◦(ũ)−1)ije
ũj i, j ∈ V ◦,

0 i = ` or j = `.
(7.6)

Recall that H−1
β(u) = ĜV,WV V (u) by (2.12). To relate UV and UV ◦ we define the shift

∼ : UV → UV ◦ , u 7→ ũ = (ũi = ui − u`)i∈V . (7.7)

Then we have the following relation between ĜV,WV V (u) and ĜV
◦,W◦(ũ).

Lemma 7.2. The matrices ĜV,WV V (u) and ĜV
◦,W◦(ũ) satisfy the following relation

ĜV,Wij (u) =
eũi+ũj

W`δe−u`
+ ĜV

◦,W◦

ij (ũ) for all i, j ∈ V. (7.8)

This relation is an analog to the second formula in Proposition 8 of Sabot and
Zeng (2015). The proof is given below.

Step 3. Using (7.8), we get〈
θ,H−1

β θ
〉

=
〈
θ, ĜV,WV V (u)θ

〉
=
〈
θ, ĜV

◦,W◦(ũ)θ
〉

+
eu`

W`δ

〈
θ, eũ

〉2
. (7.9)

Inserting this in (7.5), we obtain

L = lim
W`δ↓0

EµW
[
e−

1
2 〈θ,H−1

β θ〉
]

= lim
W`δ↓0

EµW
[
e
− 1

2

〈
θ,ĜV

◦,W◦ (ũ)θ
〉
− eu`

2W`δ
〈θ,eũ〉2

]
= lim
W`δ↓0

EµW
[
e
− 1

2

〈
θ,ĜV

◦,W◦ (ũ)θ
〉
EµW

[
e
− eu`

2W`δ
〈θ,eũ〉2

∣∣∣∣ ũ]] . (7.10)

In the following, we denote the H2|2-measure µW , defined in (2.4), by µW,G̃δ , in

order to stress the dependence on the graph G̃ and the reference point δ, which
satisfies uδ = 0. The conditional expectation is described in the following lemma.

Lemma 7.3. Let ũ ∈ UV ◦ be defined as in (7.7). We have

E
µW,G̃δ

[
e
− eu`

2W`δ
〈θ,eũ〉2

∣∣∣∣ ũ] = eWδ`−
√
W 2
δ`+〈θ,eũ〉

2

. (7.11)

The proof uses independence of ũ and u` with respect to µW,G̃δ . It is given below.
Now, inserting (7.11) into (7.10), we obtain

L = lim
W`δ↓0

E
µW,G̃δ

[
e
− 1

2

〈
θ,ĜV

◦,W◦ (ũ)θ
〉
eWδ`−

√
W 2
δ`+〈θ,eũ〉

2

]
=E

µW,G̃δ

[
e
− 1

2

〈
θ,ĜV

◦,W◦ (ũ)θ
〉
−〈θ,eũ〉

]
. (7.12)

The measure µW,G̃δ , on the bigger weighted graph (G̃,W ) with reference point δ, is

related to the measure µW
◦,G

` on the smaller weighted graph (G,W ◦) with reference

point ` as follows. The µW,G̃δ -law of ũ = (ũi = ui−u`)i∈V , with u ∈ UV , equals the

µW
◦,G

` -law of u = (ui)i∈V ∈ UV ◦ . Hence, applying (2.8) from Theorem 2.1 with −θ
and λ = 0, we get

L =E
µW
◦,G

`

[
e
− 1

2

〈
θ,ĜV

◦,W◦ (u)θ
〉
−〈θ,eu〉

]
= LW

◦
(0)e〈−θ,1〉 = e−〈θ,1〉. (7.13)
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This proves formula (2.13) in the special case φ = 1.
Finally, we give the proof of Lemmas 7.1-7.3.

Proof of Lemma 7.1: By Proposition 1 of Sabot et al. (2017+), the Laplace trans-
form of β = (βi)i∈V with respect to ν is given by

Eν
[
e−〈λ,β〉

]
=

∏
(i∼j)∈E

eWij(1−
√

1+λi
√

1+λj)
∏
i∈V

1√
1 + λi

(7.14)

for λ ∈ (−1,∞)V . Comparing with formula (2.9) from Theorem 2.1, we find for
these λ

Eν
[
e−〈λ,β〉

]
= EµW

[
e−〈λ,β〉

]
e−W`δ(1−

√
1+λ`) (7.15)

with the H2|2 measure µW defined in (2.4). To see this, one may extend λ by the
additional value λδ = 0.

Both sides of (7.15) are complex analytic functions of λ ∈ ((−1,∞) + iR)V . The

square root is understood as its principal branch, i.e.
√
r2e2iϕ = reiϕ for r > 0,

−π < ϕ < π. Although equation (7.15) was derived for real λ ∈ (−1,∞)V only, the
identity theorem for holomorphic functions implies that it holds also for complex
λ ∈ ((−1,∞) + iR)V . The identity (7.15) holds for any value W`δ > 0. Hence, for
all λ ∈ ((−1,∞) + iR)V , one has

Eν
[
e−〈λ,β〉

]
= lim
W`δ↓0

EµW
[
e−〈λ,β〉

]
, (7.16)

where in the last limit Wij is kept fixed unless {i, j} = {`, δ}. In particular, taking
imaginary λ ∈ (iR)V , equation (7.16) shows a pointwise convergence of Fourier
transforms. We conclude that lawµW (β) converges weakly to lawν(β) as W`δ ↓ 0.

SinceHβ is positive definite,
〈
θ,H−1

β θ
〉
> 0. Note that 1{Hβ>0} exp(− 1

2

〈
θ,H−1

β θ
〉

)

is a bounded function of β ∈ RV and its set of discontinuities has ν-measure 0. Con-
sequently, using weak convergence, the result follows. �

Proof of Lemma 7.2: We write HW
b rather than Hb because we are working with

varying weights W . Remember that ĜV,WV V (u) = (HW
βV (u))

−1. By using the partition

V = V ◦ ∪ {`}, we can write

HW
βV (u) =

(
2β`(u) −W`V ◦

−WV ◦` M

)
, (7.17)

where M := (HW
βV (u))V ◦V ◦ . Since δ is not directly connected to any vertex in

V ◦, we have βW
◦
(ũ) = βW (u)V ◦ . Hence (HW◦

βV ◦ (ũ)
)V ◦V ◦ = (HW

βV (u))V ◦V ◦ , and we

conclude

ĜV
◦,W◦

V ◦V ◦ (ũ) = M−1. (7.18)

We can write (HW
βV (u))

−1 using the following block-matrix inversion formula(
A C
D B

)−1

=

(
b−1 −b−1CB−1

−B−1Db−1 B−1 +B−1Db−1CB−1

)
, (7.19)
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with b = A − CB−1D, which holds if B and b are invertible. In our case b =
2β`(u)−W`V ◦M

−1WV ◦` is a scalar and

2β`(u) = W`δe
−u` +

∑
j∈V ◦

W`je
ũj = W`δe

−u` +W`V ◦e
ũ
V ◦ (7.20)

with eũV ◦ = (eũi)i∈V ◦ . Hence

(HW
βV (u))

−1 =
1

b

(
1 W`V ◦M

−1

M−1WV ◦` M−1WV ◦`W`V ◦M
−1

)
+

(
0 0
0 M−1

)
=

1

b

(
1

M−1WV ◦`

)(
1

M−1WV ◦`

)t
+ ĜV

◦,W◦(ũ). (7.21)

Now recall that, by (3.19), we have HW
β(u)e

u
V = WV δ, for all u ∈ UV . Applying

the same identity to the smaller graph (V,E) with reference point ` we obtain

HW◦

β(ũ)e
ũ
V ◦ = WV ◦`, for all ũ ∈ UV ◦ . We obtain

M−1WV ◦` = eũV ◦ ,

(
1

M−1WV ◦`

)
= eũV . (7.22)

Furthermore, b = W`δe
−u` and (7.21) yields the claim written in matrix form:

ĜV,WV V (u) = eũV
1

W`δe−u`
(eũV )t + ĜV

◦,W◦(ũ). (7.23)

�

Proof of Lemma 7.3: Let Γ denote the graph consisting only of the two vertices `
and δ and the edge ` ∼ δ with weight W`δ connecting them. Using Lemma A.1

of Disertori et al. (2016), the laws of u` with respect to µW,G̃δ and µW`δ,Γ
δ coincide

and the gradient variables ũ are independent of u` with respect to µW,G̃δ . Thus,

abbreviating C(ũ) =
〈
θ, eũ

〉2
/(2W`δ), we get

E
µW,G̃δ

[
e
− eu`

2W`δ
〈θ,eũ〉2

∣∣∣∣ ũ] = E
µW,G̃δ

[
e−ce

u`
]∣∣∣
c=C(ũ)

= E
µ
W`δ,Γ

δ

[
e−ce

u`
]∣∣∣
c=C(ũ)

.

(7.24)

In order to compute the last expectation, we exchange the role of δ and ` using ` as

new reference point. The µW`δ,Γ
δ -law of u` − uδ has the Radon-Nikodym derivative

euδ−u` with respect to the µW`δ,Γ
` -law of the same function u` − uδ. To see this,

note that t = u` − uδ has distribution√
W`δ

2π e
−W`δ(cosh t−1)e−

t
2 dt (7.25)

with respect to µW`δ,Γ
δ . Hence, for any c > 0, we obtain

E
µ
W`δ,Γ

δ

[
e−ce

u`
]

=E
µ
W`δ,Γ

δ

[
e−ce

u`−uδ
]

=E
µ
W`δ,Γ

`

[
euδ−u`e−ce

u`−uδ
]

= E
µ
W`δ,Γ

`

[
euδe−ce

−uδ
]
. (7.26)
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Note that for the weighted graph (Γ,W`δ) with reference `, we have βδ = βW`δ

δ =
1
2W`δe

−uδ . Thus, abbreviating λδ = 2c/W`δ, we obtain from formula (3.15) in
Example 3.4

E
µ
W`δ,Γ

`

[
euδe−ce

−uδ
]

=E
µ
W`δ,Γ

`

[
euδe−λδβδ

]
=LW`δ(λδ)

√
1 + λδ = eW`δ(1−

√
1+λδ); (7.27)

in the last equality we used (3.11) to calculate LW`δ(λδ). Summarizing, this shows

E
µW,G̃δ

[
e
− eu`

2W`δ
〈θ,eũ〉2

∣∣∣∣ ũ] = e
W`δ

[
1−
√

1+2C(ũ)W−1
`δ

]
= eW`δ−

√
W 2
`δ+〈θ,eũ〉

2

. (7.28)

�

7.2. General case. We deduce the general case of (2.13) from the special case φ = 1
using a scaling argument. In this part of the proof, we write again HW

b rather than
Hb. Let φ, θ ∈ (0,∞)V . We consider the change of variables b′i = φ2

i bi for all i ∈ V
and the rescaled weights W ′ij = φiWijφj . Denoting by diag φ ∈ RV×V the diagonal

matrix with diagonal entries φi, i ∈ V , we have for i, j ∈ V and b ∈ RV

(diag φHW
b diag φ)ij = 2φibiφjδij − φiWijφj = 2b′iδij −W ′ij = (HW ′

b′ )ij . (7.29)

Thus, diag φHW
b diag φ = HW ′

b′ . From this, we deduce

(HW
b )−1 = diag φ (HW ′

b′ )−1 diag φ and
1√

detHW
b

=

∏
i∈V φi√

detHW ′
b′

. (7.30)

Furthermore, HW
b > 0 if and only if HW ′

b′ > 0. Changing variables from b to b′ we
get the Jacobi determinant |db/db′| = (

∏
i∈V φi)

−2. Abbreviating θφ = (θiφi)i∈V ,
we conclude∫

{b∈RV :HWb >0}

e−
1
2 (〈φ,HWb φ〉+〈θ,(HWb )−1θ〉)√

detHW
b

db (7.31)

=

∫
{b′∈RV :HW

′
b′ >0}

e
− 1

2

(〈
1,HW

′
b′ 1

〉
+
〈
θφ,(HW

′
b′ )−1θφ

〉)
√

detHW ′
b′
∏
i∈V φi

db′ =
(π

2

) |V |
2 e−〈1,φθ〉∏

i∈V φi
,

where we used (2.13) for the special case φ = 1 treated in Section 7.1 above. Since
〈1, φθ〉 = 〈φ, θ〉 the claim (2.13) follows.

Appendix A. Geometric intuition.

The supersymmetric hyperbolic nonlinear sigma model lives over a supermanifold
H2|2 extending the hyperboloid

H2 = {v = (a, b, c) ∈ R3 : c > 0, 〈v, v〉h = −1}, (A.1)

where the hyperbolic inner product 〈·, ·〉h is defined by

〈v, ṽ〉h = aã+ bb̃− cc̃ (A.2)

for v = (a, b, c), ṽ = (ã, b̃, c̃) ∈ R3. The restriction of 〈·, ·〉h to the tangential spaces
of H2 is positive definite although the hyperbolic inner product itself is indefinite.
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Consequently, this restriction gives a Riemannian metric on H2. The corresponding
geodesic distance is called hyperbolic distance and is given by

dh(v, ṽ) = arcosh(−〈v, ṽ〉h) = arcosh

(
1 +

1

2
〈v − ṽ, v − ṽ〉h

)
(A.3)

for v, ṽ ∈ H2. The right-hand side is well-defined because of 〈v, ṽ〉h ≤ −1. The
hyperbolic distance dh is a metric on H2. In particular, dh satisfies the triangle
inequality. The supersymmetric extension H2|2 is obtained by replacing v ∈ H2 by
v = (x, y, z, ξ, η) with even elements x, y, z and odd elements ξ, η and the hyperbolic
inner product by

〈v, ṽ〉sh = xx̃+ yỹ − zz̃ + ξη̃ − ηξ̃. (A.4)

Note that the constraint 〈v,v〉sh = −1 implies z2 = 1 + x2 + y2 + 2ξη; cf. formula
(5.7). In horospherical coordinates H2 is parametrized by

H2 = {(a(u, s), b(u, s), c(u, s)) : u, s ∈ R}, with

a(u, s) = sinhu− 1

2
s2eu, b(u, s) = seu, c(u, s) = coshu+

1

2
s2eu. (A.5)

Therefore equation (5.6) yields a supersymmetric extension of these horospherical
coordinates. The action Scart defined in (5.9) can be now written as

Scart = −1

2

∑
(j∼k)∈Ẽ

Wjk 〈vj − vk,vj − vk〉sh =
∑

(j∼k)∈Ẽ

Wjk(1 + 〈vj ,vk〉sh).

(A.6)

Appendix B. Some useful results.

Lemma B.1. The superfunction Scart fulfills eScart ∈ Ssusy(ΩV , ξ, η).

Proof : For any superfunction fcart(x, y, ξ, η) we define its body as the first term in
the expansion (5.11): body(fcart) = f∅∅ : ΩV → C. Note that all coefficients in the
expansion (5.11) of eScart , together with all their derivatives of any order in x and
y, are of the form p · ebody(Scart), where p : ΩV → R are algebraic functions of x and
y, nowhere singular. Therefore, it is enough to show that for all (x, y) ∈ ΩV

−body(Scart)(x, y) ≥ 1

2
c(W ) max

i∈Ṽ
‖(xi, yi)‖

1
r − c(W ) (B.1)

holds with a constant c(W ) > 0 and r = r(G̃, ρ) being the maximum of all graph

distances in G̃ from vertices i ∈ V to the reference vertex ρ. Observe that

− body(Scart)(x, y) =
1

2

∑
(j∼k)∈Ẽ

Wjk 〈vj − vk, vj − vk〉h

=
∑

(i∼j)∈Ẽ

Wij(−1− 〈vi, vj〉h) =
∑

(j∼k)∈Ẽ

Wjk(cosh dh(vj , vk)− 1), (B.2)

where vi = (xi, yi, z
′
i) and z′i =

√
1 + x2

i + y2
i = body(zi) for i ∈ V .

Let o = (0, 0, 1) ∈ H2. In particular, vρ = o. Given a vertex i ∈ V , we take a

path π = (i0 = ρ, i1, . . . , in = i) in G̃ from ρ to i with length n ≤ r, where r is the
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maximum graph distance defined below equation (B.1). By the triangle inequality
for dh, we know

dh(vi, o) ≤
n∑

m=1

dh(vim−1
, vim) ≤ rmax{dh(vj , vk) : (j ∼ k) ∈ Ẽ}. (B.3)

Using the fact cosh(ra) ≤ (2 cosh a)r for a ≥ 0 and the definition (A.3) of the
hyperbolic distance dh(v, ṽ), we can write

‖(xi, yi)‖ ≤z′i = −〈vi, o〉h = cosh dh(vi, o)

≤ max
(j∼k)∈Ẽ

cosh(rdh(vj , vk)) ≤

(
2 max

(j∼k)∈Ẽ
cosh dh(vj , vk)

)r
. (B.4)

Taking the r-th root and the maximum over i yields

max
(j∼k)∈Ẽ

cosh dh(vj , vk) ≥ 1

2
max
i∈Ṽ
‖(xi, yi)‖

1
r . (B.5)

Inserting these in body(Scart), cf. (B.2), we obtain

−body(Scart) ≥c(W )

(
max

(j∼k)∈Ẽ
cosh dh(vj , vk)− 1

)

≥1

2
c(W ) max

i∈Ṽ
‖(xi, yi)‖

1
r − c(W ) (B.6)

with the constant c(W ) = min(j∼k)∈ẼWjk > 0. This concludes the proof. �

Proof of Lemma 5.1: We factorize the supertransformation in (5.6) from the carte-
sian coordinates (x, y, ξ, η) to horospherical coordinates (u, s, ψ, ψ) in a composition
of four supertransformations as follows.
(1) The first step consists of the substitution ξi = ξ̃i

√
xi + z′i, ηi = η̃i

√
xi + z′i,

where we define z′i = z′i(x, y) =
√

1 + x2
i + y2

i .

Recall zi(x, y, ξ, η) =
√

1 + x2
i + y2

i + 2ξiηi. We set

f1(x, y, ξ̃, η̃) =
(
eScartfcart

∏
j∈V

1
zj

)((
xi, yi, ξ̃i

√
xi + z′i, η̃i

√
xi + z′i

)
i∈V

)
. (B.7)

Note that when eScartfcart ∈ Ssusy(ΩV , ξ, η), then f1 ∈ Ssusy(ΩV , ξ̃, η̃). Moreover,

since ξ2
i = 0 = η2

i , we have ξ̃i
√
xi + z′i = ξ̃i

√
xi + zi and η̃i

√
xi + z′i = η̃i

√
xi + zi.

In the new coordinates, zi becomes

zi =

√
1 + x2

i + y2
i + 2(xi + z′i)ξ̃iη̃i. (B.8)

Under the first coordinate change, the Grassmann derivatives in DµWcart (5.8) are
transformed as

∏
j∈V ∂ξj∂ηj =

∏
j∈V

1
xj+z′j

∂ξ̃j∂η̃j . Hence,

EDµWcart
[fcart] =

∫
ΩV

( ∏
j∈V

dxjdyj
2π ∂ξ̃j∂η̃j

)(
f1(x, y, ξ̃, η̃)

∏
j∈V

1
xj+z′j

)
(B.9)
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Observe that in the original coordinates, zj = z′j + 1
z′j
ξjηj , zjξjηj = z′jξjηj , and

z′j ξ̃j η̃j = zj ξ̃j η̃j . Using these identities, we obtain

zj(xj + z′j) =zj

(
xj + zj − 1

z′j
ξjηj

)
= zj(xj + zj)− ξjηj

=(xj + zj)(zj − ξ̃j η̃j). (B.10)

We abbreviate

F1(x, y, ξ̃, η̃) = f1(x, y, ξ̃, η̃)
∏
j∈V

1

xj + z′j
(B.11)

=
(
eScartfcart

)((
xi, yi, ξ̃i

√
xi + z′i, η̃i

√
xi + z′i

)
i∈V

) ∏
j∈V

1

(xj + zj)(zj − ξ̃j η̃j)
.

Summarizing, we rewrite (B.9) as follows:

EDµWcart
[fcart] =

∫
ΩV

( ∏
j∈V

dxjdyj
2π

∂ξ̃j∂η̃j

)
F1(x, y, ξ̃, η̃). (B.12)

(2) The next transformation will substitute real variables by even elements in a
Grassmann algebra. This can be explained as the following automorphism f 7→
g := f |x=x̃−ξ̃η̃ of the space of superfunctions Ssusy(ΩV , ξ, η):

g(x̃, y, ξ̃, η̃) := f((x̃i − ξ̃iη̃i)i∈V , y, ξ̃, η̃) =
∑

a∈{0,1}V
Da
x̃f(x̃, y, ξ̃, η̃)(−ξ̃η̃)a

= f(x̃, y, ξ̃, η̃) +
∑

a∈{0,1}V
a 6=0

Da
x̃f(x̃, y, ξ̃, η̃)(−ξ̃η̃)a (B.13)

The fundamental theorem of calculus yields∫
ΩV

( ∏
j∈V

dx̃jdyj
2π

∂ξ̃j∂η̃j

)
g(x̃, y, ξ̃, η̃) =

∫
ΩV

( ∏
j∈V

dxjdyj
2π ∂ξ̃j∂η̃j

)
f(x, y, ξ̃, η̃).

(B.14)

Note that this formula contains no boundary terms because all coefficients of f and
g are Schwartz functions. Using this automorphism, we define

F2(x̃, y, ξ̃, η̃) = F1(x̃− ξ̃η̃, y, ξ̃, η̃) ∈ Ssusy(ΩV , ξ̃, η̃). (B.15)

In the new coordinates, with the abbreviation z̃′i =
√

1 + x̃2
i + y2

i , the variable zi
becomes

zi|x=x̃−ξ̃η̃ =

√
1 + x̃2

i + y2
i + 2z̃′iξ̃iη̃i. (B.16)

Then, equation (B.12) becomes

EDµWcart
[fcart] =

∫
ΩV

( ∏
j∈V

dx̃jdyj
2π ∂ξ̃j∂η̃j

)
F2(x̃, y, ξ̃, η̃). (B.17)

(3) Setting now x̃i = sinhui − 1
2e
uis2

i , yi = sie
ui , we define

F3(u, s, ξ̃, η̃) = F2

((
sinhui − 1

2e
uis2

i , sie
ui , ξ̃i, η̃i

)
i∈V

)
(B.18)
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In the new coordinates, zi becomes

zi = coshui + 1
2e
uis2

i + ξ̃iη̃i. (B.19)

The Jacobian of the third transformation is given by

∂(x̃, y)

∂(u, s)
=
∏
i∈V

∣∣∣∣ coshui − 1
2e
uis2

i −sieui
sie

ui eui

∣∣∣∣ =
∏
i∈V

eui
(
coshui + 1

2e
uis2

i

)
=
∏
i∈V

eui
(
zi − ξ̃iη̃i

)
. (B.20)

Thus with zi as in (B.19), equation (B.17) becomes

EDµWcart
[fcart]

=

∫
ΩV

( ∏
j∈V

dujdsj
2π ∂ξ̃j∂η̃j

)(
F3(u, s, ξ̃, η̃)

∏
i∈V

eui
(
zi − ξ̃iη̃i

))
. (B.21)

(4) Finally, we set ξ̃i = e
ui
2 ψi, η̃i = e

ui
2 ψi for i ∈ V . In the new coordinates, zi

becomes

zi = coshui + 1
2e
uis2

i + eui ψ̄iψi. (B.22)

We have ∂ξ̃j = e−
uj
2 ∂ψj , ∂η̃j = e−

uj
2 ∂ψj . Hence, the fourth transformation yields∏

j∈V
∂ξ̃j∂η̃j =

∏
j∈V

e−uj∂ψj∂ψj . (B.23)

Observe that the term xj + zj from (B.11) is transformed under the coordinate
changes as follows:

xj + zj =x̃j − ξ̃j η̃j + zj = sinhuj − 1
2e
ujs2

j − ξ̃j η̃j + coshuj + 1
2e
ujs2

j + ξ̃j η̃j

= sinhuj + coshuj = euj . (B.24)

The composition of the above four coordinate changes gives indeed the supertrans-
formation in (5.6). Inserting all these results in (B.21), we conclude

EDµWcart
[fcart] =

∫
ΩV

( ∏
j∈V

e−uj
dujdsj

2π ∂ψj∂ψj

)
(
eScartfcart

) (
x(u, s, ψ, ψ), y(u, s, ψ, ψ), ξ(u, s, ψ, ψ), η(u, s, ψ, ψ)

)
=EDµW [fhor]. (B.25)

�
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