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Abstract. We obtain strong consistency and asymptotic normality of a least
squares estimator of the drift coefficient for complex-valued Ornstein-Uhlenbeck
processes disturbed by fractional noise, extending the result of Hu and Nualart
(2010) to a special 2-dimensions. The strategy is to exploit the Garsia-Rodemich-
Rumsey inequality and complex fourth moment theorems. The main ingredients of
this paper are the sample path regularity of a multiple Wiener-Itô integral and two
equivalent conditions of complex fourth moment theorems in terms of the contrac-
tions of integral kernels and complex Malliavin derivatives.

1. Introduction

To model the Chandler wobble, or variation of latitude conerning with the ro-
tation of the earth, M. Arató, A. N. Kolmogorov and Y. G. Sinai (see also Arató,
1982) proposed in the paper Arató et al. (1962) the following stochastic linear
equation

dZt = −γZtdt+
√
adζt , t ≥ 0 , (1.1)
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where Zt = X1(t) + iX2(t) is a complex-valued process, γ = λ − iω, λ > 0, a > 0
and ζt is a complex Brownian motion. It is also suggested in Arató (1982) that
the Brownian motion in (1.1) may be replaced by other processes. In this paper
we consider the statistical estimator of γ when the complex Brownian motion ζ

in (1.1) is replaced by a complex fractional Brownian motion ζt =
B1
t+iB2

t√
2

, where

(B1
t , B

2
t ) is a two dimensional fractional Brownian motion with H ∈ [ 1

2 ,
3
4 ). [We

shall fix the Hurst parameter and then omit the explicit dependence of the process
on the Hurst parameter.] From now on we assume that ζ is a complex fractional
Brownian motion of Hurst parameter H ∈ (1/2, 3/4).

To compare with the work in Hu and Nualart (2010), we write (1.1) as[
dX1(t)
dX2(t)

]
=

[
−λ −ω
ω −λ

] [
X1(t)
X2(t)

]
dt+

√
a

2

[
dB1

t

dB2
t

]
. (1.2)

Thus (1.1) can be considered as a particular two dimensional Langevin equation
driven by fractional Brownian motions. However, we find it is more convenient to
use the complex valued equation (1.1).

Motivated by the work of Hu and Nualart (2010), we also consider a least squares
estimator for γ. To this end, we intuitively rewrite (1.1) as

Żt + γZt =
√
aζ̇t , 0 ≤ t ≤ T .

We minimize
∫ T

0

∣∣∣Żt + γZt

∣∣∣2 dt to obtain a least squares estimator of γ as follows.

γ̂T = −
∫ T

0
Z̄tdZt∫ T

0
|Zt|2 dt

= γ −
√
a

∫ T
0
Z̄tdζt∫ T

0
|Zt|2 dt

. (1.3)

The main results of the present paper are the strong consistency and the asymp-
totic normality of the estimator γ̂T which we state as follows.

Theorem 1.1. Let H ∈ [ 1
2 ,

3
4 ).

(i) The least squares estimator γ̂T is strongly consistent. Namely, γ̂T converges
to γ almost surely as T →∞.

(ii)
√
T (γ̂T − γ) is asymptotically normal. Namely,

√
T [γ̂T − γ]

law→ N (0,
1

2d2a
C) as T →∞ , (1.4)

where C =

[
σ2 + c b
b σ2 − c

]
with

σ2 =
2

Γ(2− 2H)2

∫
[0,∞)2

dxdy
(xy)1−2H

(x+ y)(x+ γ̄)(y + γ)

+
Γ2(2H − 1)

2λ

( 2

|γ|4H−2
+

1

γ4H−2
+

1

γ̄4H−2

)
(1.5)

c+ ib =
2

Γ(2− 2H)2

∫
[0,∞)2

(xy)1−2H

(y + γ)2

[ 1

x+ y
+

1

x+ γ

]
dxdy. (1.6)

d =
Γ(2H − 1)

2λ

( 1

γ2H−1
+

1

γ̄2H−1

)
. (1.7)
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In the special case when H = 1
2 , we have

√
T [γ̂T − γ]

law→ N (0,
λ

4a
Id2) , (1.8)

where Id2 is a 2× 2 identity matrix.

Remark 1.2. An important new feature for the case of fractional Ornstein-
Uhlenbeck process (H ∈ (1/2, 3/4)) is that the limiting distribution is no longer
independent Gaussian as in the case of Brownian motion case (H = 1/2). We will
discuss exclusively the case H 6= 1/2 since the case H = 1/2 is easy.

A minor difference between the case of one dimensional fractional
Ornstein-Uhlenbeck process considered in Hu and Nualart (2010) and our complex

case is that in our least squares estimator γ̂ defined by (1.3), we have
∫ T

0
Z̄tdZt

in the numerator, while in Hu and Nualart (2010) it is
∫ T

0
XtdXt. However, this

minor difference causes a big unpleasant trouble. By using Itô formula the latter
is expressed as X2

T plus another manageable term. This is critical in the proof of
the strong consistency of the estimator since it allows us to use a famous theorem
of Pickands in Hu and Nualart (2010). However, we cannot no longer apply the Itô

formula to
∫ T

0
Z̄tdZt to obtain a similar identity. To get around this difficulty we

shall use another famous result, the Garsia-Rodemich-Rumsey inequality, see e.g.
Hu (2017, Theorem 2.1).

To show the asymptotic normality, we may use a multi-dimensional fourth mo-
ment theorem. However, we develop a complex version of the fourth moment
theorem which is easier to use in our case. To state the theorem we denote
αH = H(2H − 1) and φ(s, t) = αH |s− t|2H−2

and define the Hilbert space

H := L2
φ = {f | f : R+ → R, |f |2φ :=

∫ ∞
0

∫ ∞
0

f(s)f(t)φ(s, t)dsdt <∞}. (1.9)

Now the theorem is stated as follows.

Theorem 1.3 (Fourth Moment Theorems). Let {Fk = Im,n(fk)} with fk ∈ H�mC ⊗
H�nC be a sequence of (m,n)-th complex Wiener-Itô multiple integrals (see the next
section for a discussion), with m and n fixed and m + n ≥ 2. Suppose that as

k → ∞, E[|Fk|2] → σ2 and E[F 2
k ] → c + ib, where |·| is the absolute value (or

modulus) of a complex number and c, b ∈ R. Then the following statements are
equivalent:

(i) The sequence (ReFk, ImFk) converges in law to a bivariate normal distri-

bution with covariance matrix C = 1
2

[
σ2 + c b
b σ2 − c

]
,

(ii) E[|Fk|4]→ c2 + b2 + 2σ4.
(iii) ‖fk ⊗i,j fk‖H⊗(2(l−i−j)) → 0 and ‖fk⊗i,jhk‖H⊗(2(l−i−j)) → 0 for any 0 <

i+j ≤ l−1 where l = m+n and hk is the kernel of F̄k, i.e., F̄k = In,m(hk).
(iv)

∥∥fk⊗̃i,jfk∥∥H⊗(2(l−i−j)) → 0 and
∥∥fk⊗̃i,jhk∥∥H⊗(2(l−i−j)) → 0 for any 0 <

i+ j ≤ l − 1.

(v) ‖DFk‖2H,
∥∥DF̄k∥∥2

H
and 〈DFk, DF̄k〉H converge to a constant in L2(Ω) as k

tends to infinity, where D is the complex Malliavin derivatives. That is to

say, Var(‖DFk‖2H) → 0, Var(
∥∥DF̄k∥∥2

H
) → 0 and Var(〈DFk, DF̄k〉H) → 0

as k tends to infinity.
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Remark 1.4.

1) If m = n and E[Fk
2] = 0 or if m 6= n, then C = σ2

2 Id2. That is to say,

the limit is a complex Gaussian variable CN (0, σ2). Theorem 7 of Nualart
and Ortiz-Latorre (2008) is concerning multi-dimensional fourth moment

theorems, but it requires C = σ2

2 Id. Thus, our results are more general.
2) We shall give a different and simpler proof of the theorem in next section.

The equivalence (i)⇔ (ii) is shown by an indirect method in Chen and Liu
(2017) and by Stein’s method in Campese (2015). In this paper, we show
that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i) directly. We make use of (iii)
to show the asymptotic normality which is simpler than to use (v) as in
previous work of Hu and Nualart (2010). In addition, similar to the real-
valued case, see e.g. Hu (2017, p169), one can show (iv) ⇒ (iii) directly,
see Chen and Jiang (2017).

2. Preliminaries: complex multiple Wiener-Itô integrals

Denote by (Bt, t ≥ 0) a fBm of Hurst parameter H ∈ (1/2, 3/4). Then a
Gaussian isonormal process associated with H is given by Wiener integrals with
respect to a fBm for any deterministic kernel ∈ H (where H is defined by (1.9)):

B(f) =

∫ ∞
0

f(s)dBs, ∀f ∈ H. (2.1)

Let B̃(·) be an independent copy of the fractional Brownian motion B(·). Follow-
ing the same idea of Chen and Liu (2017), we define complex Gaussian isonormal
processes and complex multiple Wiener-Itô integrals with respect to fBm as follows.
For any f = f1 + if2 with f1, f2 ∈ H, define that

HC := {f1 + if2 : f1, f2 ∈ H}, 〈f1 + if2 , f1 + if2〉HC = 〈f1 , f1〉H + 〈f2 , f2〉H ,

(2.2)

B(f) = B(f1) + iB(f2) , ζ(f) =
1√
2

[B(f) + iB̃(f)]. (2.3)

Then ζ is called a complex isonormal Gaussian process over HC, which is a centered
complex Gaussian family satisfying

E[ζ(h)2] = 0, E[ζ(g)ζ(h)] = 〈g, h〉HC , ∀g, h ∈ HC.

From now on, without ambiguity, we still denote HC by H.

Definition 2.1 (Complex multiple Wiener-Itô integrals). For a fixed (p, q), suppose
that g ∈ H�p ⊗ H�q, we call Ip,q(g) the complex multiple Wiener-Itô integral of g

with respect to ζ, see Chen and Liu (2017). And if f ∈ H⊗(p+q) then we define

Ip,q(f) = Ip,q(f̃), (2.4)

where f̃ is the symmetrization of f in the sense of Itô (1952):

f̃(t1, . . . , tp+q) =
1

p!q!

∑
π

∑
σ

f(tπ(1), . . . , tπ(p), tσ(1), . . . , tσ(q)), (2.5)

where π and σ run over all permutations of (1, . . . , p) and (p+ 1, . . . , p+ q) respec-
tively.
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It is easy to see that Ip,q(f) = Iq,p(f̄) and

E[Ip,q(f)Ip′,q′(g)] = δp,p′δq,q′p!q!〈f̃ , g̃〉, (Itô’s isometry) (2.6)

where the Kronecker delta δp,p′ is 1 when p′ is equal to p, and is 0 otherwise, and

〈·, ·〉 is the inner product on H⊗(p+q). As a consequence,

E[|Ip,q(f)|2] = p!q!
∥∥∥f̃∥∥∥2

≤ p!q! ‖f‖2 , (Itô’s isometry). (2.7)

The proof of Theorem 1.3 proceeds through several propositions and lemmas.
Firstly, we define the contraction of (i, j) indices of two symmetric functions.

Definition 2.2. For two symmetric functions f ∈ H�p1 ⊗ H�q1 , g ∈ H�p2 ⊗ H�q2

and i ≤ p1 ∧ q2, j ≤ q1 ∧ p2, the contraction of (i, j) index is defined as (see Chen,
2014)

f ⊗i,j g(t1, . . . , tp1+p2−i−j ; s1, . . . , sq1+q2−i−j)

=

∫
R2l

+

d~ud~u′φ(u1, u
′
1) . . . φ(ui, u

′
i)f(t1, . . . , tp1−i, u1, . . . , ui; s1 . . . , sq1−j , v1 . . . , vj)

× g(tp1−i+1, . . . , tp−l, v
′
1, . . . , v

′
j ; sq1−j+1, . . . , sq−l, u

′
1, . . . , u

′
i)

× φ(v1, v
′
1) . . . φ(vj , v

′
j)d~vd~v′,

where l = i + j, p = p1 + p2, q = q1 + q2, ~u = (u1, · · · , ui), ~u′ = (u′1, · · · , u′i) and

~v = (v1, · · · , vj), ~v′ = (v′1, · · · , v′j).

By convention, f ⊗0,0 g = f ⊗g denotes the tensor product of f and g. We write
f⊗̃p,qg for the symmetrization of f ⊗p,q g. In what follows, we use the convention
f ⊗i,j g = 0 if i > p1 ∧ q2 or j > q1 ∧ p2.

Our next result is a technical lemma.

Lemma 2.3. Suppose that F = Im,n(f) with f ∈ H�m⊗H�n and that F̄ = In,m(h).
Then

E[|F |4]− 2
(
E[|F |2]

)2 − ∣∣E[F 2]
∣∣2

=
∑

0<i+j<l

(
m

i

)2(
n

j

)2

(m!n!)2 ‖f ⊗i,j f‖2H⊗(2(l−i−j)) +

l−1∑
r=1

((l − r)!)2 ‖ψr‖2H⊗(2(l−r))

(2.8)

=
∑

0<i+j<l

(
m

i

)(
n

i

)(
n

j

)(
m

j

)
(m!n!)2 ‖f ⊗i,j h‖2H⊗(2(l−i+j)) (2.9)

+

l−1∑
r=1

(2m− r)!(2n− r)! ‖ϕr‖2H⊗2(l−r) ,

where l = m+ n and

ψr =
∑
i+j=r

i!j!

(
m

i

)2(
n

j

)2

f⊗̃i,jh, (2.10)

ϕr =
∑
i+j=r

i!j!

(
m

i

)(
n

i

)(
n

j

)(
m

j

)
f⊗̃i,jf. (2.11)
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Proof : Applying Lemma 4.1 of Chen (2014) to G = F , we obtain that

E[|F |4]−
(
E[|F |2]

)2
(2.12)

=
∑
i+j>0

(
m

i

)2(
n

j

)2

(m!n!)2 ‖f ⊗i,j f‖2H⊗(2(l−i−j)) +

l∑
r=1

(
(l − r)!

)2 ‖ψr‖2H⊗(2(l−r)) .

We calculate the term ψl = f ⊗m,n h:

f ⊗m,n h =

∫
Rm+n

+

d~ud~u′d~vd~v′φ(u1, u
′
1) . . . φ(um, u

′
m)φ(v1, v

′
1) . . . φ(vn, v

′
n)

×f(u1, . . . , um; v1, . . . , vn)h(v′1, . . . , v
′
n;u′1, . . . , u

′
m)

= ‖f‖2H⊗(m+n) =
1

m!n!
E[|F |2], (2.13)

where the last equality is from Ito’s isometry (2.7). Next, we calculate the term
f ⊗m,n f in Eq.(2.12) according to whether m = n or not. We consider the case
m 6= n first. Without loss of generality we can take m > n. By Definition 2.2 we
have that if i > n or j > n then f ⊗i,j f = 0. Therefore, if m 6= n then

f ⊗m,n f = 0 = E[F 2], (2.14)

where the last equality is Itô’s isometry (2.6). If m = n, similarly to show (2.13),
we obtain that

f ⊗m,m f = 〈f, h〉H⊗(m+n) =
1

(m!)2
E[F 2]. (2.15)

Substituting (2.15) or (2.14) according to whether m = n or not, and (2.13), into
(2.12), we obtain (2.8). Applying Lemma 4.1 of Chen (2014) to G = F̄ , we can
show (2.9) similarly. �

Remark 2.4. Both (2.8) and (2.9) are from the product formula and are analogous
to (5.2.6) of Nourdin and Peccati (2012). One can also obtain another expansion
of the moment analogous to (5.2.5) of Nourdin and Peccati (2012) if the complex
Ornstein-Uhlenbeck operator is explored, see Chen and Jiang (2017).

Notation 1. Suppose that f(~tm, ~sn) ∈ H�m ⊗ H�n. Denote

fu(~tm−1, ~sn) = f(~tm−1, u, ~sn), fv(~tm, ~sn−1) = f(~tm, ~sn−1, v). (2.16)

Clearly, fu(~tm−1, ~sn) ∈ H�m−1 ⊗ H�n and fv(~tm, ~sn−1) ∈ H�m ⊗ H�n−1.

Definition 2.5 (Complex Malliavin Derivatives). Let S denote the set of all ran-
dom variables of the form

f
(
ζH(ϕ1), · · · , ζH(ϕm)

)
, (2.17)

where f ∈ C∞↑ (Cm) and ϕi ∈ H, i = 1, 2, · · · ,m. Let F ∈ S be given by (2.17).

The complex Malliavin derivative of F is the element of L2(Ω,H) defined by:

DF =

m∑
i=1

∂if(ζH(ϕ1), . . . , ζH(ϕm))ϕi, (2.18)

D̄F =

m∑
i=1

∂̄if(ζH(ϕ1), . . . , ζH(ϕm))ϕ̄i, (2.19)
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where ∂jf = ∂
∂zj

f(z1, . . . , zm), ∂̄jf = ∂
∂z̄j

f(z1, . . . , zm) are the Wirtinger deriva-

tives, see e.g. Campese (2015).

Proposition 2.6. Suppose that l = m+ n and

ηr =
∑
i+j=r

i

(
m

i

)2(
n

j

)2

i!j!f⊗̃i,jh, (2.20)

ξr =
∑
i+j=r

j

(
m

i

)2(
n

j

)2

i!j!h⊗̃j,if, (2.21)

νr =
∑
i+j=r

i

(
m

i

)(
n

i

)(
n

j

)(
m

j

)
i!j!f⊗̃i,jf, (2.22)

then we have that

Var(‖DIm,n(f)‖2H) =

l−1∑
r=1

[(l − r)!]2 ‖ηr‖2H⊗(2(l−r)) , (2.23)

Var(
∥∥D̄Im,n(f)

∥∥2

H
) =

l−1∑
r=1

[(l − r)!]2 ‖ξr‖2H⊗(2(l−r)) , (2.24)

Var(〈DIm,n(f), DIm,n(f)〉H) =

l−1∑
r=1

(2m− r)!(2n− r)! ‖νr‖2H⊗(2(l−r)) . (2.25)

Proof : We need only to show (2.23) since the other two are similar. Denote l′ =
m+ n− 1.
Step 1: Using product formula. By Theorem 12(D) of Itô (1952) and the product
formula of complex Wiener-Itô multiple integrals (Theorem 3.2 of Chen, 2014), we
have that

1

m2
‖D·(Im,n(f))‖2H

=
∥∥Im−1,n

(
fu(~tm−1, ~sn)

)∥∥2

H

=

∫
[0,∞)2

dudvφ(u, v)Im−1,n

(
fu(~tm−1, ~sn)

)
Im−1,n

(
fv(~tm−1, ~sn)

)
=

m−1∑
i=0

n∑
j=0

(
m− 1

i

)2(
n

j

)2

i!j!

×
∫

[0,∞)2
dudvφ(u, v)Il′−i−j,l′−i−j

(
fu(~tm−1, ~sn)⊗i,j hv(~tn, ~sm−1)

)
where hv(~tn, ~sm−1) = f̄v(~s

m−1,~tn) = f̄(~sm−1, v,~tn) and(
fu(~tm−1, ~sn)⊗i,j hv(~tn, ~sm−1)

)
(t̄l
′−i−j , u, s̄l

′−i−j , v) (2.26)

=

∫
[0,∞)i+j

d~xid~x′
i
φ(x1, x

′
1) . . . φ(xi, x

′
i)fu(~tm−1−i, ~xi, ~sn−j , ~yj)

× f̄v(sn−j+1, . . . , sl′−j−i, ~x′
i
, tm−i, . . . , tl′−i−j , ~y′

j
)φ(y1, y

′
1) . . . φ(yj , y

′
j)d~y

jd~y′
j
.
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Then we obtain that

1

m2
‖D·(Im,n(f))‖2H =

l′∑
r=0

∫
[0,∞)2

dudvφ(u, v)Il′−r,l′−r(gr(u, v)). (2.27)

where

gk(u, v) =
∑
i+j=k

(
m− 1

i

)2(
n

j

)2

i!j!fu(~tm−1, ~sn)⊗̃i,jhv(~tn, ~sm−1). (2.28)

Taking expectation to Eq.(2.27), we have that

1

m2
E[‖D·(Im,n(f))‖2H] =

∫
[0,∞)2

dudvφ(u, v)gl′(u, v)

= (m− 1)!n!

∫
[0,∞)2

dudvφ(u, v)fu ⊗m−1,n h
v

= (m− 1)!n! ‖f‖2H⊗(m+n) . (2.29)

Step 2: Calculating variance. It follows from Fubini’s theorem and Itô’s isometry
that we have:

1

m4
E[
∥∥D·(Im,n(f)

)∥∥4

H
] (2.30)

=

l′∑
r=0

∫
[0,∞)4

dudvdu′dv′φ(u, v)φ(u′, v′)[(l′ − r)!]2〈gr(u, v), gr(u
′, v′)〉H⊗2(l′−r) .

It is easy to check that∫
[0,∞)4

dudvdu′dv′φ(u, v)φ(u′, v′)〈fu⊗̃i,jhv, fu′⊗̃i,jhv
′
〉H⊗2(l′−k)

= 〈f⊗̃i+1,jh, f⊗̃i+1,jh〉H⊗2(l′−k) =
∥∥f⊗̃i+1,jh

∥∥2

H⊗2(l′−k) ,

which implies that

1

m4
E[
∥∥D·(Im,n(f)

)∥∥4

H
] =

l′∑
r=0

[(l′ − r)!]2〈Gr, Gr〉H⊗2(l′−r) ,

where

Gk =
∑
i+j=k

(
m− 1

i

)2(
n

j

)2

i!j!f(~tm, ~sn)⊗̃i+1,jh(~tn, ~sm). (2.31)

Especially, for the term with k = l′, we have that

|Gl′ |2 = [(m− 1)!n!]2 |f ⊗m,n h|2

= [(m− 1)!n!]2 ‖f‖4H⊗(m+n) =
( 1

m2
E[‖D·(Im,n(f))‖2H]

)2

.

Substituting the above equality displayed into (2.30), we have that

Var(‖DIm,n(f)‖2H) = m4
l′−1∑
r′=0

[(l′ − r′)!]2〈Gr′ , Gr′〉H⊗2(l′−r′)

=

l−1∑
r=1

[(l − r)!]2 ‖ηr‖2H⊗(2(l−r)) ( let l = l′ + 1, r = r′ + 1),
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where ηr = m2Gr′ , which implies the desired expressions (2.20) and (2.23).
�

Proof of Theorem 1.3. Since (i)⇒(ii) is well known, we need only to show the
following implications:

(ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (i).

[(ii)⇒ (iii) ] Condition (ii) implies that as k →∞,

E[|Fk|4]− 2
(
E[|Fk|2]

)2 − ∣∣E[Fk
2]
∣∣2 → 0, (2.32)

which implies that Condition (iii) holds by (2.8)-(2.9), (see Lemma 2.3).
[(iii)⇒(iv)] The inequality (5.2) of Itô (1952) implies that when Condition (iii)

holds, we have that as k →∞,∥∥fk⊗̃i,jfk∥∥H⊗(2(l−i−j)) → 0,
∥∥fk⊗̃i,jhk∥∥H⊗(2(l−i−j)) =

∥∥hk⊗̃i,jfk∥∥H⊗(2(l−i−j)) → 0.

[(iv)⇒(v)] It follows from Minkowski’s inequality and Proposition 2.6 that as
k →∞,

ηkr → 0, ξkr → 0, νkr → 0, r = 1, . . . , l − 1,

where ηkr , ξ
k
r , ν

k
r are given as Equations (2.20)-(2.22). By (2.23)-(2.25), we obtain

that Condition (iv) holds.
[(v)⇒(i)] We follow the idea of Nualart and Ortiz-Latorre (2008, Theorem 4),

i.e. we combine Malliavin calculus and partial differential equations. Let

ϕk(z) = E
[
ei(z̄Fk+zF̄k)/2

]
.

Then we have that {
∂ϕk
∂z = i

2E
[
F̄k × ei(z̄Fk+zF̄k)/2

]
,

∂ϕk
∂z̄ = i

2E
[
Fk × ei(z̄Fk+zF̄k)/2

]
.

(2.33)

By the assumption E[|Fk|2] → σ2, {Fk} are tight. Now suppose that the sub-
sequence {Fnk} converges to G in law. Without ambiguity, we still denote {Fnk}
by {Fk}. By the hypercontractivity inequality of complex multiple Wiener-Itô in-
tegrals, see e.g. Chen (2014), {|Fk|r} is uniformly integrable and thus E[|G|r] =
limk→∞ E[|Fk|r] for all r ≥ 1, see e.g. Billingsley (1968, Theorem 5.4). Therefore,

the characteristic function ϕ(z) = E[e
i
2 (z̄G+zḠ)] has continuous partial derivatives

of any order.
It is not difficult to see that

E
[
F̄k × ei(z̄Fk+zF̄k)/2

]
=

1

m
E
[
(δD)Fk × ei(z̄Fk+zF̄k)/2

]
=

1

m
E
[
〈D(ei(z̄Fk+zF̄k)/2), DFk〉H

]
=

1

m
E
[
〈ei(z̄Fk+zF̄k)/2(z̄DFk + zDF̄k), DFk〉H

]
Clearly, for any z ∈ C, ei(z̄Fk+zF̄k)/2 → ei(z̄G+zḠ)/2 in L2(Ω). Thus, Condition (iv)
implies that as k →∞,

E
[
〈ei(z̄Fk+zF̄k)/2(z̄DFk + zDF̄k), DFk〉H

]
→ (z̄ lim

k→∞
E[‖DFk‖2H] + z lim

k→∞
E[〈DF̄kDFk〉H])ϕ(z), ∀z ∈ C,
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since the scalar product in the Hilbert space L2(Ω) depends continuously on its
factors. It follows from (2.29) and

1

mn
E
[
〈DIm,n(f), DIm,n(f)〉H

]
= δm,nm!(m− 1)!f ⊗m,m f,

that

lim
k→∞

E[‖DFk‖2H] = m lim
k→∞

E[‖Fk‖2H] = mσ2,

lim
k→∞

E[〈DF̄kDFk〉H] = mδm,n lim
k→∞

E[F 2
k ]

= m(c− ib)δm,n.

Therefore, it follows from (2.33) that for any z ∈ C,

∂ϕ

∂z
= [z̄σ2 + z · (c− ib)δm,n]ϕ(z). (2.34)

In the same way,

∂ϕ

∂z̄
= [z̄ · (c+ ib)δm,n + zσ2]ϕ(z). (2.35)

Clearly, ϕ(0) = 1. Therefore, G is a bivariate normal distribution with covariance

matrix C = 1
2

[
σ2 + c b
b σ2 − c

]
. Prokhorov’s theorem implies that {Fk} converges

to a bivariate normal distribution with the desired covariance matrix C. �

3. Asymptotic consistency and normality

We need several propositions and lemmas before the proof of Theorem 1.1. The
following lemma’s proof is easy.

Lemma 3.1. For any H ∈ ( 1
2 , 1), we have that∫

[0,∞)2
e−γu1−γ̄u2 |u1 − u2|2H−2

du1du2 = d , (3.1)

where d is defined by (1.7).

Proposition 3.2. Let Z be the solution to (1.1). As T →∞, we have that

1

T

∫ T

0

|Zt|2 dt→ aαHd, a.s. (3.2)

Proof : Denote Yt =
√
a
∫ t
−∞ e−γ(t−s)dζs. It is easy to see that Y is centered com-

plex Gaussian process. Itô’s isometry implies that for any t ∈ R, s ≥ 0,

E[Yt+sȲt] = αHa

∫ ∞
−s

dv1

∫ ∞
0

dv2e
−γ(v1+s)e−γ̄v2 |v1 − v2|2H−2

= E[YsȲ0]. (3.3)

Thus Yt is stationary. It is easy to check that as s→∞, E[YsȲ0]→ 0 with the same

order as |s|2H−2
, which implies that {Yt} is ergodic, see e.g. Dym and McKean

(1976, p. 78).
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Then we have that

Zt = e−γtZ0 +
√
a

∫ t

0

e−γ(t−s)dζs

= e−γtZ0 +
√
a

∫ t

−∞
e−γ(t−s)dζs − e−γt

√
a

∫ 0

−∞
eγsdζs

= Yt + e−γt(Z0 − Y0) .

The ergodicity and Cauchy-Schwarz inequality imply that as T →∞,

1

T

∫ T

0

|Zt|2 dt =
1

T

∫ T

0

[
|Yt|2 − 2<(e−γt(Z0 − Y0)Ȳt) + e−2λt |Z0 − Y0|2

]
dt

→ lim
T→∞

E[|YT |2] = aαHd, a.s.

where the last equality is from Eq. (3.3) and Lemma 3.1. �

Denote

ψt(r, s) = e−γ̄(r−s)1{0≤s≤r≤t} and Xt = I1,1(ψt(r, s)) . (3.4)

Lemma 3.3. As n → ∞, the sequence
{
ξn := 1

nXn

}
converges to zero almost

surely.

Proof : Denote FT = 1√
T
XT . Lemma 3.5 implies that supn E[|Fn|2] <∞. From the

hypercontractivity of multiple Wiener-Itô integrals, we see that supn E[|Fn|4] <∞.
For any fixed ε > 0, it follows from Chebyshev’s inequality that

P
(
|ξn| > ε

)
= P

(
|Fn| >

√
nε
)
≤ 1

n2ε4
E[|Fn|4] ≤ 34

n2ε4
E[|Fn|2]2 .

The Borel-Cantelli lemma implies that {ξn} converges to zero almost surely. �

Proposition 3.4. For any real number p ≥ 2 and integer n ≥ 1,

Bn :=

∫ n+1

n

∫ n+1

n

|Xt −Xs|p

|t− s|2pH
dsdt (3.5)

is finite. Moreover, for any real numbers p > 2, q > 1 and integer n ≥ 1,

|Xt2 −Xt1 | ≤ Rp,qnq/p, ∀t1, t2 ∈ [n, n+ 1], (3.6)

where Rp,q is a random constant independent of n.

Proof : For any n ≤ t1 ≤ t2 ≤ n+ 1, Itô’s isometry implies that

E[|Xt2 −Xt1 |
2
] = ‖ψt2(r, s)− ψt1(r, s)‖2H⊗2 =

∥∥∥e−γ̄(r−s)1{t1<s≤r≤t2}

∥∥∥2

H⊗2

=

∫
t1<s1≤r1≤t2

∫
t1<s2≤r2≤t2

e−γ̄(r1−s1)−γ(r2−s2)φ(r1, r2)φ(s1, s2)ds1ds2dr1dr2

≤
∫
t1<s1≤r1≤t2

∫
t1<s2≤r2≤t2

φ(r1, r2)φ(s1, s2)ds1ds2dr1dr2 = (t2 − t1)4H .

The hypercontractivity of multiple Wiener-Itô integrals implies that for any p ≥ 2
and any n ≤ t1 ≤ t2 ≤ n+ 1,

E[|Xt2 −Xt1 |
p
] ≤ (p− 1)pE[|Xt2 −Xt1 |

2
]
p
2

≤ (p− 1)p(t2 − t1)2pH .
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Take Ψ(x) = xp and ρ(x) = x2H . The above inequality yields

E(Bn) = E
[ ∫ n+1

n

∫ n+1

n

Ψ
( |Xt −Xs|
ρ(|t− s|)

)
dsdt

]
≤ (p− 1)p. (3.7)

For any q > 1, we have

E

( ∞∑
n=1

Bn
nq

)
=

∞∑
n=1

E(Bn)

nq
<∞ .

This implies that

∞∑
n=1

Bn
nq
≤ Rp,q for some random constant Rp,q .

Or we have

Bn ≤ Rp,qnq for all positive number q > 1 and integer n ≥ 1 . (3.8)

An application of the Garsia-Rodemich-Rumsey inequality, see e.g. Hu (2017, The-
orem 2.1)), implies that

|Xt −Xs| ≤ 8

∫ |t−s|
0

Ψ−1(
4Bn
u2

)ρ′(u)du = 16H
(4Bn)1/p

2H − 2
p

|t− s|2H−
2
p ≤ cpB

1
p
n .

This combined with (3.8) proves the proposition. �

Denote

ht(r, s) = e−γ(−r+s)1{0≤r≤s≤t} . (3.9)

Lemma 3.5. Let H ∈ ( 1
2 ,

3
4 ). Then the following integrals are absolutely convergent

lim
T→∞

1

α2
HT

∫
[0,T ]4

ψT (t1, s1)ψT (t2, s2)φ(t1, t2)φ(s1, s2)dt1dt2ds1ds2 = σ2

lim
T→∞

1

α2
HT

∫
[0,T ]4

ψT (t1, s1)hT (t2, s2)φ(t1, t2)φ(s1, s2)dt1dt2ds1ds2 = c+ ib ,

where σ2 and c, b are defined by (1.5) and (1.6).

Proof : We only evaluate the first integral since the other one is similar. We divide
the domain {0 ≤ s1 ≤ t1 ≤ T, 0 ≤ s2 ≤ t2 ≤ T} into six disjoint regions according
to the distinct orders of s1, t1, s2, t2:

∆1 = {0 ≤ s2 ≤ t2 ≤ s1 ≤ t1 ≤ T} , ∆2 = {0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ T}
∆3 = {0 ≤ s1 ≤ s2 ≤ t1 ≤ t2 ≤ T} , ∆4 = {0 ≤ s2 ≤ s1 ≤ t2 ≤ t1 ≤ T} ,
∆5 = {0 ≤ s1 ≤ s2 ≤ t2 ≤ t1 ≤ T} , ∆6 = {0 ≤ s2 ≤ s1 ≤ t1 ≤ t2 ≤ T} .

We also denote Ii = 1
T

∫
∆i
ψT (t1, s1)ψT (t2, s2)φ(t1, t2)φ(s1, s2)dt1dt2ds1ds2, i =

1, · · · , 6.
Firstly, we consider I1. It follows from L’Hospital rule that

lim
T→∞

I1 = lim
T→∞

∫ T

0

ds1

∫ s1

0

dt2

∫ t2

0

ds2e
−γ̄(T−s1)e−γ(t2−s2)φ(T, t2)φ(s1, s2) .

(3.10)
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Making substitution a = t2 − s2, b = s1 − t2, c = T − s1, we have that as T →∞

lim
T→∞

I1 = α2
H lim
T→∞

∫
a,b,c≥0,a+b+c≤T

dadbdce−γ̄ce−γa[(b+ c)(a+ b)]2H−2

= α2
H

∫
[0,∞)3

dadbdc e−γ̄ce−γa[(b+ c)(a+ b)]2H−2. (3.11)

The above integral is absolutely convergent when H ∈ ( 1
2 ,

3
4 ). In fact, since

(b+ c)(a+ b) ≥ ac1[0,1](b) + b21[1,∞)(b),

we have that∣∣∣∣∣
∫

[0,∞)3
dadbdc e−γ̄ce−γa[(b+ c)(a+ b)]2H−2

∣∣∣∣∣
≤
∫

[0,∞)3
dadbdc e−λce−λa

[
b4H−41[1,∞) + (ac)2H−21[0,1](b)

]
=

1

(3− 4H)λ2
+
(Γ(2H − 1)

λ2H−1

)2
.

Substituting the equality of Gamma function
∫∞

0
e−xβxα−1 = Γ(α)

βα with α >

0, <β > 0 into (3.11), we have that∫
[0,∞)3

dadbdc e−γ̄ce−γa[(b+ c)(a+ b)]2H−2

=
1

Γ(2− 2H)2

∫
[0,∞)5

dadbdcdxdy e−γ̄ce−γae−x(b+c)x1−2He−y(a+b)y1−2H

=
1

Γ(2− 2H)2

∫
[0,∞)2

dxdy
(xy)1−2H

(x+ y)(x+ γ̄)(y + γ)
. (3.12)

It is easy to see that I2 = I1. In a similar way as for I1, we have

lim
T→∞

I3 = lim
T→∞

I4 =
α2
HΓ2(2H − 1)

2λ |γ|4H−2
, (3.13)

lim
T→∞

I5 =
α2
HΓ2(2H − 1)

2λγ̄4H−2
, (3.14)

lim
T→∞

I6 =
α2
HΓ2(2H − 1)

2λγ4H−2
. (3.15)

Finally, by adding (3.12)-(3.15) together, we get (1.5). �

Lemma 3.6. Let ψT , hT be as in (3.4) and (3.9) respectively. As T →∞, we have
that:

1

T
ψT ⊗0,1ψT → 0,

1

T
ψT ⊗1,0ψT → 0,

1

T
ψT⊗0,1hT → 0,

1

T
ψT⊗1,0hT → 0, in H⊗2.

(3.16)
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Proof : When 0 < t < s < T , we have that

1

αH
|ψT ⊗0,1 ψT (t, s)| =

∣∣∣∣∣
∫ t

0

du1

∫ T

s

du2e
−γ̄(t−u1)e−γ̄(u2−s) |u1 − u2|2H−2

∣∣∣∣∣
≤

∫ t

0

du1

∫ T

s

du2e
−λ(t−u1)e−λ(u2−s) |u2 − u1|2H−2

≤ (s− t)2H−2

∫ t

0

du1

∫ T

s

du2e
−λ(t−u1)e−λ(u2−s) ≤ 1

λ2
(s− t)2H−2 . (3.17)

When s < t, we have that

∫ t

0

du1

∫ T

s

du2e
−λ(t−u1)e−λ(u2−s) |u2 − u1|2H−2

=
(∫ s

0

du1

∫ T

s

du2 +

∫ t

s

du1

∫ t

s

du2 +

∫ t

s

du1

∫ T

t

du2

)
e−λ(t−u1)

e−λ(u2−s) |u2 − u1|2H−2
= I1(T ) + I2(T ) + I3(T ) .

For the first term, we have that

I1(T ) = e−λ(t−s)
∫ s

0

du1

∫ T−u1

s−u1

dze−λzz2H−2

= e−λ(t−s)
∫ T

0

dze−λzz2H−2

∫ s∧(T−z)

0∨(s−z)
du1

≤ e−λ(t−s)
∫ T

0

dze−λzz2H−2[s− (s− z)]

≤ e−λ(t−s) Γ(2H)

λ2H
≤ cλ,H |t− s|2H−2

,

where cλ,H is a constant independent of T . For the second term, we have that

I2(T ) = 2e−λ(t−s)
∫ t

s

du1

∫ u1

s

du2e
λ(u1−u2)(u1 − u2)2H−2

= 2e−λ(t−s)
∫ t

s

du1

∫ u1−s

0

dzeλzz2H−2

= 2e−λ(t−s)
∫ t−s

0

dzeλzz2H−2(t− s− z) ≤ cλ,H |t− s|2H−2
,

where cλ,H is a constant independent of T and the last inequality is by means of
L’Hospital rule. In fact, when H ∈ ( 1

2 , 1), then we have that

lim
x→∞

∫ x
0

dzeλzz2H−2(x− z)
eλxx2H−2

=
1

λ2
.
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For the third term, we have that

I3(T ) = e−λ(t−s)
∫ t

s

du1

∫ T−u1

t−u1

dze−λzz2H−2

= e−λ(t−s)
∫ T

0

dze−λzz2H−2

∫ t∧(T−z)

s∨(t−z)
du1

≤ e−λ(t−s)
∫ t−s

0

dze−λzz2H−2[t− (t− z)]

≤ e−λ(t−s) Γ(2H)

λ2H
≤ cλ,H |t− s|2H−2

,

where cλ,H is a constant independent of T . Thus, we have that∣∣∣∣∣
∫ t

0

du1

∫ T

s

du2e
−γ̄(t−u1)e−γ̄(u2−s) |u1 − u2|2H−2

∣∣∣∣∣ ≤ cλ,H |t− s|2H−2
. (3.18)

This inequality together with the inequality (3.17) implies that∥∥∥∥ 1

T
ψT ⊗0,1 ψT

∥∥∥∥2

H⊗2

≤
α2
Hc

2
λ,H

T 2
‖φ‖2H⊗2

=
α2
Hc

2
λ,H

T 2

∫
[0,T ]4

dt1dt2ds1ds2φ(t1, s1)φ(t2, s2)φ(t1, t2)φ(s1, s2).

As T → ∞, L’Hospital rule and the symmetric property of the above integrand
imply that when H ∈ ( 1

2 ,
3
4 ),

lim
T→∞

∥∥∥∥ 1

T
ψT ⊗0,1 ψT

∥∥∥∥2

H⊗2

≤ lim
T→∞

2α2
Hc

2
λ,H

T

∫
[0,T ]3

dt2ds1ds2φ(T, s1)φ(t2, s2)φ(T, t2)φ(s1, s2)

= lim
T→∞

2α2
Hc

2
λ,H

T 6−8H

∫
[0,1]3

dt2ds1ds2φ(1, s1)φ(t2, s2)φ(1, t2)φ(s1, s2)

= 0.

Finally, it is easy to obtain that ψT ⊗1,0ψT = fT ⊗0,1 fT . Thus 1
T ψT ⊗1,0ψT → 0

also holds as T →∞. In addition, it follows from Lemma 5.4 of web-only Appendix
of Hu and Nualart (2010) that both 1

T ψT⊗1,0hT → 0 and 1
T ψT⊗0,1hT → 0 hold. �

Proof of Theorem 1.1. Without loss of generality, we can suppose that Z0 = 0. By
(1.3), we obtain that

γ̂T − γ =
√
a

1
TXT

1
T

∫ T
0
|Zt|2 dt

. (3.19)

By Proposition 3.2, we need only to show 1
TXT converges to zero almost surely as

T →∞. Clearly, we have that∣∣∣∣ 1

T
XT

∣∣∣∣ ≤ 1

T
|XT −Xn|+

n

T

1

n
|Xn| . (3.20)
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where n = [T ] is the biggest integer less than or equal to a real number T . Using
Lemma 3.3 and since n/T is bounded, we see that the second term in (3.20) goes
to 0 almost surely as T →∞.

By Proposition 3.4, we see that the first term in (3.20) is bounded by 1
TRp,qn

q/p

for any p ≥ 2 and q > 1. Choosing q < p we see that the first term in (3.20) goes
to 0 as T →∞. This completes the proof of the first part of Theorem 1.1.

Now we turn to the proof of the second part. Denote FT = 1√
T
XT . Clearly,

F̄T =
1√
T

∫
[0,T ]2

e−γ(−r+s)1{r≤s}dζrdζ̄s =
1√
T
I1,1(hT (r, s)). (3.21)

From Theorem 1.3, Lemma 3.5 and Lemma 3.6, we see

FT converges in law to ζ ∼ N (0,
σ2
H

2 C),

where C as in Theorem 1.1. We write Equation (3.19) as

√
T (γ̂T − γ) =

√
a

FT
1
T

∫ T
0
|Zt|2 dt

.

Therefore, it follows from the above fact, Proposition 3.2, and Slutsky’s theorem
that

√
T (γ̂T−γ) converges in distribution to bivariate Gaussian law N (0, 1

2d2aC). �
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