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Abstract. The purpose of this paper is to construct the law of a Lévy process
conditioned to avoid zero, under mild technicals conditions, two of them being
that the point zero is regular for itself and the Lévy process is not a compound
Poisson process. Two constructions are proposed, the first lies on the method of
h-transformation, which requires a deep study of the associated excessive function;
while in the second it is obtained by conditioning the underlying Lévy process to
avoid zero up to an independent exponential time whose parameter tends to 0. The
former approach generalizes some of the results obtained by Yano (2010) in the
symmetric case and recovers some of main results in Yano (2013), while the latter
is reminiscent of Chaumont and Doney (2005). We give some properties of the
resulting process and we describe in some detail two examples: alpha stable and
spectrally negative Lévy processes.

1. Introduction

The aim of this work is to construct Lévy processes conditioned to avoid zero.
This question is relevant only when 0 is non-polar. Then the event “not hitting
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zero” has zero probability and hence a standard analytical approach consists on find-
ing an adequate excessive function for the process killed at the first hitting time
of zero and then use Doob’s h-transformation technique. A good understanding
of the associated excessive function allows us to establish analytical and pathwise
properties of the constructed process. This is the approach that has been used by
Yano (2010), under the assumption that the Lévy process is symmetric. The har-
monic function obtained by Yano (2010) has been used to construct Lévy processes
conditioned to avoid zero in the symmetric case. Recently, Yano (2013) carried a
similar study for asymmetric Lévy processes. The author in Yano (2013) gives some
additional conditions in order to prove the existence of the harmonic function and
he obtains an expression for it. Using a different approach, our work generalizes
the results obtained in Yano (2010) and recovers those ones concerning to harmonic
functions obtained in Yano (2013). Moreover, we propose a probabilistic approach
for constructing Lévy processes conditioned to avoid zero, it relies on the idea that
the construction can be performed by conditioning the process not to hit zero up
to an independent exponential time with parameter q, and then make q → 0, so
that the conditioning takes effect on the process all over the time interval [0,∞).
This is a generic approach that has been used in several contexts. See for instance
Chaumont and Doney (2005) and the reference therein, where the case of Lévy pro-
cesses conditioned to stay positive is investigated. We will prove that in our setting
this procedure gives a non-degenerate limit and that this and the construction via
Doob’s h-transformation technique coincide.

The paper is organized as follows. In Section 2 the main results are stated. Some
notations are introduced in section 2.1 and main results are stated in section 2.2.
Section 3 is divided in two parts. The first part concerns the study of a sequence
that defines as a limit the invariant function, some preliminary results and their
proofs are given in this section. The second part is devoted to the study of an
auxiliary needed function in most of the proofs in Section 4. Section 4 is devoted
to prove the main theorems. In Section 5 two examples are studied where it is
possible to compute explicitly the invariant function: the alpha-stable process and
that of spectrally negative Lévy process, i.e., processes with no positive jumps.

2. Preliminaries and main results

2.1. Notation. Let D[0,∞) be the space of càdlàg paths ω : [0,∞)→ R∪{∆} with
lifetime ζ(ω) = inf{s : ωs = ∆}, where ∆ is a cemetery point. The space D[0,∞)
is endowed with Skorohod’s topology and its Borel σ-field, F . Moreover, let P be
a reference probability measure on D[0,∞), under which the coordinate process
X = (Xt, t ≥ 0) is a Lévy process. We will denote by (Ft, t ≥ 0) the completed,
right continuous filtration generated by X. As usual Px denotes the law of X + x,
under P, for x ∈ R. We have P = P0 by definition. We will denote by θ the shift
operator and by k the killing operator, i.e., for ω ∈ D[0,∞), θtω(s) = ω(s + t),
s ≥ 0, and

ktω(s) =

 ω(s), s < t,

∆, s ≥ t.
For t ≥ 0, we use X ◦ θt, X ◦ kt to denote the functions in D[0,∞) given by θtω(·)
and ktω(·), ω ∈ D[0,∞), respectively. Throughout the paper ψ : R→ C will denote
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the characteristic exponent of (X,P), which is defined, for every λ ∈ R, by

ψ(λ) = −1

t
log(E[eiλXt ]) = iaλ+

σ2

2
λ2 +

∫
R

(1− eiλx + iλx1{|x|<1})π(dx), (2.1)

where a ∈ R, σ ≥ 0 and π denotes the Lévy measure, i.e., π is a measure satisfying
π({0}) = 0 and

∫
R(1∧x2)π(dx) <∞. We denote by Pt and Uq the transition kernel

at time t and the q-resolvent of the process (X,P), respectively.
We assume throughout the paper that

H.1 The origin is regular for itself.
H.2 (X,P) is not a compound Poisson process.
H.3 The characteristic exponent ψ satisfies∫

R

(
1

q +Re(ψ(λ))

)
dλ <∞, q > 0. (2.2)

H.4 The following integrability condition holds∫
R

∣∣∣∣Re(1− eiλ

ψ(λ)

)∣∣∣∣ dλ <∞. (2.3)

We quote the following classical result that provides an equivalent way to verify
the conditions H.1 and H.2 in terms of the characteristic exponent ψ.

Theorem 2.1 (Bretagnolle, 1971 and Kesten, 1969). The conditions H.1 and H.2
are satisfied if and only if∫

R
Re

(
1

q + ψ(λ)

)
dλ <∞, q > 0

and

either σ 6= 0 or

∫
|x|<1

|x|π(dx) =∞.

It is known that under these hypotheses, for any q > 0, there exists a density for
the resolvent kernel that we will denote by uq(x, y):

Uqf(x) =

∫
R
uq(x, y)f(y)dy, x ∈ R,

for all bounded Borel functions f . The density uq(x, y) equals uq(y − x), where uq
is a continuous function. We refer to chapter II in Bertoin (1996) for a proof of
these results. Furthermore, from the resolvent equation

Uq − Ur + (q − r)UqUr = 0, q, r > 0,

it can be deduced that the family of functions (uq, q > 0) satisfies, for all q, r > 0
with q 6= r,∫

R
uq(y − x)ur(z − y)dy =

1

q − r
[ur(z − x)− uq(z − x)], for all z, x ∈ R. (2.4)

For x ∈ R, let Tx be the first hitting time of x for X:

Tx = inf{t > 0 : Xt = x},
with inf{∅} =∞. The process killed at T0, X0 = X ◦ kT0

, is given by

X0
t =

 Xt, t < T0,

∆, t ≥ T0.
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For every x ∈ R, we will denote by P0
x the law of the killed process X0 under Px. We

use the notation P 0
t and U0

q for its transition kernel and q-resolvent, respectively.
From Bertoin (1996, Corollary 18, p. 64), it is known that,

Ex[e−qT0 ] =
uq(−x)

uq(0)
, q > 0, x ∈ R. (2.5)

Hence, with the help of the following well known identity:

Uqf(x) = U0
q f(x) + Ex[e−qT0 ]Uqf(0),

for all bounded Borel functions f and q > 0, we obtain the resolvent density for
X0, namely,

u0
q(x, y) = uq(y − x)− uq(−x)uq(y)

uq(0)
, x, y ∈ R. (2.6)

By P̂x we will denote the law of the dual process X̂ := −X under P−x, x ∈ R.
We will use the notation ̂ to specify the mathematical quantities related to the

dual process X̂. For instance, (P̂t, t ≥ 0), (Ûq, q > 0) are the semigroup and

the resolvent of the process X̂, respectively. It is known that the name “dual”
comes from the following duality identity. Let f , g be nonnegative and measurable
functions. Then, for every t ≥ 0∫

R
Ptf(x)g(x)dx =

∫
R
f(x)P̂tg(x)dx

and for every q > 0 ∫
R
Uqf(x)g(x)dx =

∫
R
f(x)Ûqg(x)dx.

For the semigroup and q-resolvent of the killed process we have as a consequence
of Hunt’s switching identity (see e.g. Bertoin, 1996, p. 47, Theorem 5):∫

R
g(x)P 0

t f(x)dx =

∫
R
f(x)P̂ 0

t g(x)dx

and for every q > 0 ∫
R
g(x)U0

q f(x)dx =

∫
R
f(x)Û0

q g(x)dx.

We observe that (X̂, P̂) satisfies also the hypotheses H.1 and H.2. Thus, for

any q > 0, there exists a continuous density ûq of the resolvent Ûq. Furthermore,
uq and ûq are related by the equation: ûq(x) = uq(−x), x ∈ R. Thereby, for any

q > 0, Êx[e−qT0 ] and the density of Û0
q can be written in terms of uq as follows

Êx[e−qT0 ] =
uq(x)

uq(0)
, q > 0, x ∈ R (2.7)

and

û0
q(x, y) = uq(x− y)− uq(x)uq(−y)

uq(0)
, x, y ∈ R.

Since the point zero is regular for itself, there exists a continuous local time at 0
(in fact, at any point x ∈ R). We denote by L = (Lt, t ≥ 0) the local time at zero,
which is normalized by E(

∫∞
0
e−tdLt) = 1, and by n the excursion measure away

from zero for X. The measure n is carried by the set of excursions away from zero:

D0 = {ε ∈ D[0,∞) : ε(t) 6= 0 for 0 < t < ζ(ε) and ε(t) = 0 for ζ(ε) ≤ t <∞} .
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A nice relation between the excursion measure n and the Laplace transform of

the law of T0 under P̂x can be found in Yano et al. (2009, Theorem 3.3) for Lévy
processes and in Fitzsimmons and Getoor (2006, eq. (3.22)), Chen et al. (2007, eq.
(2.8)) for general Markov processes. This is stated as follows, let f be a nonnegative
measurable function, then∫ ∞

0

e−qtn(f(Xt), t < ζ)dt =

∫
R
f(x)Êx[e−qT0 ]dx. (2.8)

In particular, if f ≡ 1,∫ ∞
0

e−qtn(ζ > t)dt =
1

quq(0)
, q > 0. (2.9)

2.2. Main results. Throughout the rest of this paper, and unless otherwise
stated, we assume that H.1–H.4 are satisfied. Under these assumptions we
have our first main result.

Theorem 2.2. For q > 0, let hq denote the function defined by

hq(x) = uq(0)− uq(−x), q > 0, x ∈ R. (2.10)

Then, the identity

hq(x) =
Px(T0 > eq)

n(ζ > eq)
, x ∈ R, (2.11)

holds, where eq is an exponential random variable with parameter q > 0 independent
of (X,P). The limit limq→0 hq(x) exists for all x ∈ R and the function h : R → R
defined by

h(x) = lim
q→0

hq(x), x ∈ R, (2.12)

is such that

(i) for every x ∈ R, 0 ≤ h(x) <∞ and it holds

h(x) =
1

2π

∫ ∞
−∞

Re

(
1− eiλx

ψ(λ)

)
dλ, x ∈ R. (2.13)

(ii) h is a subadditive, continuous function, which vanishes at the point x = 0.
(iii) h is invariant with respect to the semigroup of the Lévy process killed at T0,

i.e.,
P 0
t h(x) = h(x), t > 0, x ∈ R;

and furthermore

n(h(Xt), t < ζ) = 1, ∀ t > 0.

Remarks 2.3. (i) Under the assumptions H.1, H.2 and (X,P) is symmetric,
Yano (2010) showed that the function h defined by

h(x) = lim
q→0

[uq(0)− uq(x)], x ∈ R (2.14)

is a well defined invariant function for the semigroup of the Lévy process
killed at its first hitting time of zero. In the same paper it is shown that
the function h can be expressed in terms of the characteristic exponent of
X as

h(x) =
1

2π

∫
R

1− cosλx

θ(λ)
dλ, x ∈ R, (2.15)

where θ(λ) = Re(ψ(λ)). Theorem 2.2 extends (2.14) and (2.15).
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(ii) In Yano (2013) the formula (2.13) is obtained under the conditions H.3
and that the functions θ = Re(ψ), ω = Im(ψ) have measurable derivatives
on (0,∞) satisfying∫ ∞

0

(|θ′(λ)|+ |ω′(λ)|)(λ2 ∧ 1)

θ(λ)2 + ω(λ)2
dλ <∞.

Instead of the latter condition, we consider the hypothesis H.4 which seems
less restrictive.

The proof of (i) and (ii) in Theorem 2.2 will be given in section 3.1, as a con-
sequence of analogous results for the sequence of functions (hq)q>0. In order to
establish (iii) and other results, and due to technical issues, we will introduce an
auxiliary function h∗. The function h∗ dominates h and satisfies some integrability
conditions. This function, as its name indicates, will help us to prove the main
results, acting as a dominating function in an application of the dominated con-
vergence theorem. The function h∗ is closely related to the local time of the Lévy
process (X,P), namely, we have the expression

h∗(x) = E(LTx) = lim
q→0

E

(∫ Tx

0

e−qtdLt

)
, x ∈ R.

The function h∗ arises as a particular case of a general function h(·, ·) defined by

h(x, y) = Ex(LxTy ) = E0(L0
Ty−x) = h(0, y − x) = h∗(y − x),

where Lxt denotes the local time at the point x for the process (X,Px). The function
h(·, ·) has been used to establish continuity criteria for local times of Lévy processes,
see Barlow (1985, 1988) for this case and Eisenbaum and Kaspi (2007) for general
Borel right Markov processes.

Besides, in the present context, both Yano’s and our results can be seen as an
extension of the theory of invariant functions for killed Lévy processes that can
be found in Section 23 of the treatise by Port and Stone (1971) on the poten-
tial theory for Lévy processes in locally compact, non-compact, second countable
Abelian groups. Detailing the relation with that paper would require us to intro-
duce further notations and facts that will not be used later, so we do not provide
further details.

Having constructed the invariant function h, in the following definition we intro-
duce the associated h-process. We will show that the resulting probability measures
are such that the canonical process X never hits the point zero, and thus that we
refer to them as the law of the Lévy process conditioned to avoid zero. Theorem
2.6 below summarizes these properties. Let H and H0 be the sets given by

H = {x ∈ R : h(x) > 0}, H0 = H ∪ {0}.

The law of the Lévy process conditioned to avoid zero will be constructed on the
set H0.

Definition 2.4. We denote by (Plx, x ∈ H0) the h-transform of (P0
x, x ∈ H0)

associated to the invariant function h defined in Theorem 2.2 (iii). That is, (Plx, x ∈



On Lévy processes conditioned to avoid zero 663

H0) is the unique family of measures such that for x ∈ H0,

Plx(Λ) =


1

h(x)
E0
x(1Λh(Xt)), x ∈ H,

n(1Λh(Xt)1{t<ζ}), x = 0,

for all Λ ∈ Ft, for all t ≥ 0. We will refer to it as the law of X conditioned to avoid
0.

Remark 2.5. Note that from this definition and Theorem 2.2, Plx(T0 > t) = 1, for

all t > 0, x ∈ H0. Hence, Plx(T0 =∞) = 1, for all x ∈ H0.

Theorem 2.6. The family of measures (Plx)x∈R is Markovian and satisfies

(i) Plx(X0 = x) = 1, ∀x ∈ H0.

(ii) Plx(T0 =∞) = 1, ∀x ∈ H0.

The semigroup associated to (Plx)x∈R is given by

P
l
t (x, dy) :=

h(y)

h(x)
P 0
t (x, dy), x, y ∈ H, t ≥ 0.

The entrance law under Pl0 is given by

Pl0(Xt ∈ dy) = n(Xt ∈ dy, t < ζ)h(y).

We propose an alternative construction of the law of the Lévy process condi-
tioned to avoid zero. Our construction is inspired from Bertoin (1993); Chaumont
(1996); Chaumont and Doney (2005, 2008), where Lévy processes conditioned to
stay positive are constructed. This construction is given in Theorems 2.7 and 2.8
below.

The following theorem states that for x ∈ H, Plx is the limit, as q → 0, of the
law of the process X under Px conditioned to avoid zero, up to an independent
exponential time with parameter q > 0. Since an exponential random variable with
parameter q converges in distribution to infinity as its parameter converges to zero,

then this result confirms that, starting at x ∈ H, we can think of X under Plx, as
the process conditioned to avoid zero on the whole positive real line.

Theorem 2.7. Let eq be an exponential time with parameter q > 0, independent
of (X,P). Then for any x ∈ H, and t > 0,

lim
q→0

Px(Λ, t < eq | T0 > eq) = Plx(Λ), ∀Λ ∈ Ft.

In the case x = 0, the law Pl0 can also be obtained as a limit involving an
independent exponential time. Before stating the result, we point out that for
s > 0, we will denote by gs = sup{t ≤ s : Xt = 0}, the last zero of X before time s.

Theorem 2.8. Let eq be an exponential time with parameter q > 0, independent
of (X,P). Let Peq be the law of X ◦ keq−geq ◦ θgeq under P. Then, for t > 0,

lim
q→0

Peq (Λ, t < ζ) = Pl0(Λ) = n(1Λh(Xt)1{t<ζ}), ∀Λ ∈ Ft.

Another important property of the h-process is its transiency. This is given in
the following proposition.



664 H. Pant́ı

Proposition 2.9 (Transiency property). The process (X,Plx)x∈H0
is transient.

In Lemma 4.3 we will prove that for any x ∈ H, the point x is regular for itself

under Plx. Therefore, there exists a local time at any point x ∈ H, and we will

denote by n
l
x the excursion measure away from x for the process (X,Plx). In the

following proposition we establish a relationship between the excursion measure

away from zero for (X,P) and the excursion measure away from x for (X,Plx),
x ∈ H.

Proposition 2.10. For x ∈ H, let n
l
x be the excursion measure out from x for

(X,Plx) and n the excursion measure out from zero for (X,P). Then, for any
measurable and bounded functional H : D0 → R,

nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)

=
1

h(x)
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T−x>t}qe
−qtdt

)
.

3. Preliminary results

3.1. Some properties of hq and h. In order to prove the existence of h, we need the
following lemma.

Lemma 3.1. Let (X,P) be a Lévy process with characteristic exponent ψ. Assume
that (X,P) satisfies the hypotheses H.1 and H.2, then ψ(λ) 6= 0, for all λ 6= 0 and

lim
|λ|→∞

|ψ(λ)| =∞.

Furthermore, ∫
R

(1 ∧ λ2)Re

(
1

ψ(λ)

)
dλ <∞. (3.1)

Proof : The first part follows from the fact that (X,P), by assumption, it is not
a compound Poisson process (see e.g. Chung, 2001, Theorem 6.4.7). Now, since
1/(1 + ψ) is the Fourier transform of the integrable function u1, then from the
Riemann-Lebesgue theorem it follows that lim|λ|→∞ |ψ(λ)| =∞.

Using that lim|λ|→∞ |ψ(λ)| =∞, we deduce

Re

(
1

ψ(λ)

)
∼ Re

(
1

1 + ψ(λ)

)
, |λ| → ∞.

The latter and Theorem 2.1 imply that for all λ0 > 0,∫
|λ|>λ0

Re

(
1

ψ(λ)

)
dλ <∞. (3.2)

On the other hand, observe the elementary inequality

Re

(
λ2

ψ(λ)

)
= λ2Re(ψ(λ))

|ψ(λ)|2
= λ2Re(ψ(λ))

|ψ(λ)|2
≤ λ2

Re(ψ(λ))
.
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Notice that in the last inequality we use that Re(ψ(λ)) > 0, which easily follows
from (2.1). Thus,[

Re

(
λ2

ψ(λ)

)]−1

≥ Re(ψ(λ))

λ2

≥ σ2 +

∫
|y|<1

(1− cosλy)

λ2
π(dy)

−→ σ2 +

∫
|y|<1

y2π(dy) > 0, as λ→ 0.

The latter limit implies that there exists a λ0 such that,

Re

(
λ2

ψ(λ)

)
≤ C, for all |λ| < λ0, (3.3)

for some positive constant C. Then, from (3.2) and (3.3), we obtain (3.1). �

Remark 3.2. Assume that H.1, H.2 and H.3 hold. On the one hand, by Lemma
3.1, Re(ψ(λ))→∞ as |λ| → ∞, and hence

1

Re(ψ(λ))
∼ 1

1 +Re(ψ(λ))
, |λ| → ∞.

This shows that for all λ0 > 0,∫
|λ|>λ0

1

Re(ψ(λ))
dλ <∞.

On the other hand, if we proceed as in last part of the proof of Lemma 3.1, it can
be proved that there exists a λ0 such that,

λ2

Re(ψ(λ))
≤ C, for all |λ| < λ0,

for some positive constant C. Thus, under the assumptions H.1, H.2 and H.3, it
holds ∫

R

1 ∧ λ2

Re(ψ(λ))
dλ <∞.

To establish some properties of h, we recall the representation of hq given in
(2.11). Let eq be an exponential random variable with parameter q > 0 and inde-
pendent of (X,P). Using (2.5) and (2.9), we can write

hq(x) = uq(0)(1− Ex(e−qT0))

=
Px(T0 > eq)

n(ζ > eq)
,

(3.4)

where

n(ζ > eq) =

∫ ∞
0

qe−qtn(ζ > t)dt =
1

uq(0)
.

From the expression (3.4) follows that if (X,P) is transient, then

h(x) = lim
q→0

hq(x) = κ−1Px(T0 =∞), (3.5)

where κ = limq→0
1

uq(0) . Furthermore, (3.4) helps us to prove the following Lemma,

which summarizes some important properties of the sequence (hq)q>0.
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Lemma 3.3. For every q > 0, the function hq is subadditive on R and it is excessive
for the semigroup (P 0

t , t ≥ 0).

Proof : By Proposition 43.4 in Sato (1999), we have that for any q > 0 and x, y ∈ R,

Ex+y(e−qT0) ≥ Ex(e−qT0)Ey(e−qT0). (3.6)

Now, since

(1− Ex(e−qT0))(1− Ey(e−qT0)) ≥ 0,

then using (3.6), it follows

1− Ex(e−qT0) + 1− Ey(e−qT0) ≥ 1− Ex+y(e−qT0).

Hence, by (3.4)

hq(x+ y) ≤ hq(x) + hq(y), x, y ∈ R.
This shows that hq is subadditive on R.

In order to show that hq is excessive for P 0
t , we observe that by the Markov

property

Px(T0 > t+ eq) = Ex
(
1{T0>t+eq}

)
= Ex

(
PXt(T0 > eq)1{t<T0}

)
. (3.7)

The identities (3.7) and (3.4) imply

Ex(hq(Xt), t < T0) = Ex
(

1{T0>t+eq}

n(ζ > eq)

)
≤ Ex

(
1{T0>eq}

n(ζ > eq)

)
= hq(x).

The above expression also implies that limt→0 Ex(hq(Xt), t < T0) = hq(x), for
x ∈ R. This shows that hq is excessive for the semigroup (P 0

t , t ≥ 0). �

Before we proceed to the proof of (i) and (ii) in Theorem 2.2 we make a technical
remark.

Remark 3.4. Proceeding as in the proof of Theorem 19 p. 65 in Bertoin (1996), it
can be shown that

uq(x) =
1

2π

∫
R
Re

(
e−iλx

q + ψ(λ)

)
dλ, x ∈ R. (3.8)

Then,

2uq(0)− [uq(x) + uq(−x)] =
1

π

∫
R

(1− cosλx)Re

(
1

q + ψ(λ)

)
dλ.

On the other hand, making use of the inequality |1 − cos b| ≤ 2(1 ∧ b2) and (3.1),
we obtain ∫

R
(1− cosλx)Re

(
1

ψ(λ)

)
dλ <∞, x ∈ R.

Furthermore, since Re(ψ(λ)) > 0,∣∣∣∣(1− cosλx)Re

(
1

q + ψ(λ)

)∣∣∣∣ ≤ 2(1 ∧ (λx)2)

Re(ψ(λ))
.
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The right-hand function of latter inequality is integrable by Remark 3.2. Thus, by
the dominated convergence theorem, for all x ∈ R,

lim
q→0

(2uq(0)− [uq(x) + uq(−x)]) =
1

π

∫
R

(1− cosλx)Re

(
1

ψ(λ)

)
dλ (3.9)

is finite.

Proof of existence of h and claims (i) and (ii) in Theorem 2.2: That h is subaddi-
tive and excessive follows from Lemma 3.3 (since these properties are preserved
under limits of sequences of functions).

Using (3.8), we infer the following expression for hq,

hq(x) =
1

2π

∫ ∞
−∞

Re

(
1− eiλx

q + ψ(λ)

)
dλ.

We will deduce therefrom the identity (2.13). For that end, let x ∈ R fixed, and
denote by gx : R→ R the integrand in (2.13), that is,

gx(λ) = Re

(
1− eiλx

ψ(λ)

)
, λ ∈ R.

First, we will prove that the hypothesis H.4 implies gx ∈ L1, for any x ∈ R. Indeed,
we note that the equation (2.13) can be written as∫

R
Re

(
1− eiλx

ψ(λ)

)
dλ =

∫
R

(
(1− cos(λx))Re

(
1

ψ(λ)

)
− sin(λx)Im

(
1

ψ(λ)

))
dλ.

Thus, thanks to Lemma 3.1, to prove gx ∈ L1, it is suffices to show∫
R

∣∣∣∣sin(λx)Im

(
1

ψ(λ)

)∣∣∣∣ dλ <∞,
for all x ∈ R. Let

lx(λ) = sin(λx)Im

(
1

ψ(λ)

)
, x ∈ R, λ ∈ R.

Note that l0(λ) = 0 and by hypothesis H.4, l1 ∈ L1. Now, for x 6= 0, we have

lx(λ) ∼ xl1(λ), λ→ 0.

Hence, there exists λ0 > 0 such that
∫
|λ|≤λ0

lx(λ)dλ <∞. On the other hand,

|lx(λ)| ≤ |Im(ψ(λ))|
|ψ(λ)|2

≤ 1

2Re(ψ(λ))
.

The latter inequality and Remark 3.2 imply that for all λ0 > 0,∫
|λ|>λ0

lx(λ)dλ <∞.

We conclude lx ∈ L1 and hence gx ∈ L1. Furthermore, gx(λ) is related to the
integrand that defines hq through the equality

Re

(
1− eiλx

q + ψ(λ)

)
= gx(λ)

|ψ(λ)|2

|q + ψ(λ)|2
+ q

1− cos(λx)

|q + ψ(λ)|2
, q > 0, λ ∈ R.

Since for q > 0, λ ∈ R, we have

|ψ(λ)|2

|q + ψ(λ)|2
≤ 1
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and

|q + ψ(λ)|2 ≥ 2qRe(ψ(λ)),

we derive the following domination∣∣∣∣Re( 1− eiλx

q + ψ(λ)

)∣∣∣∣ ≤ |gx(λ)|+ (1 ∧ (λx)2)

Re(ψ(λ))
, q > 0, λ ∈ R.

The Remark 3.2 allow us to ensure that
∫∞
−∞

1∧(λx)2

Re(ψ(λ))dλ < ∞. This observation

together with the fact that gx ∈ L1 permit us to apply the dominated convergence
theorem to establish that for any x ∈ R the limit of hq(x) as q → 0 exists, is finite
and furthermore limq→0 hq(x) = h(x) with h as defined in (2.13).

Finally we prove the continuity of h. We note that for all q > 0, x ∈ R,

hq(x) ≤ 2uq(0)− [uq(x) + uq(−x)] =
1

π

∫ ∞
−∞

(1− cosλx)Re

(
1

q + ψ(λ)

)
dλ.

Then, by (3.9),

h(x) ≤ 1

π

∫ ∞
−∞

(1− cosλx)Re

(
1

ψ(λ)

)
dλ, x ∈ R. (3.10)

Now, observe that

(1− cosλx)Re

(
1

ψ(λ)

)
≤ 2(1 ∧ λ2)Re

(
1

ψ(λ)

)
, |x| ≤ 1, λ ∈ R.

Then, by (3.1) and the dominated convergence theorem, it follows that

lim
x→0

1

π

∫ ∞
−∞

(1− cosλx)Re

(
1

ψ(λ)

)
dλ = 0.

Hence, by (3.10), limx→0 h(x) = 0. This proves that h is continuous at zero.
Furthermore, since h is subadditive on R, the continuity of h at the point zero
implies the continuity on the whole real line (see e.g. Hille and Phillips, 1957,
Theorem 6.8.2). �

To end this section, we establish the behaviour of h at infinity.

Lemma 3.5. Let κ := limq→0
1

uq(0) . We have the following

(i) Suppose that X is transient. If 0 < µ := E(X1) ≤ ∞, then

lim
x→∞

h(x) =
1

κ
, lim

x→−∞
h(x) =

1

κ
− 1

µ
;

while if −∞ ≤ µ < 0, then

lim
x→∞

h(x) =
1

κ
+

1

µ
, lim

x→−∞
h(x) =

1

κ
.

(ii) Suppose that X is recurrent, then either

lim
x→∞

h(x) =∞ or lim
x→−∞

h(x) =∞.

Remark 3.6. The case where X is transient and E(X+
1 ) = E(X−1 ) = ∞ is not

covered by the latter Lemma, but could be analysed using (3.5).
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Proof of Lemma 3.5: We only prove (i) in the case 0 < µ ≤ ∞, the other case can
be proved similarly. Set f(x) = u1(x), x ∈ R. Note that u0(x) =

∑∞
n=1 f

∗n(x).
Indeed,

∞∑
n=1

f∗n(x)dx =

∞∑
n=1

∫ ∞
0

sn−1

(n− 1)!
e−sP(Xs ∈ dx)ds

=

∫ ∞
0

e−s
∞∑
n=1

sn−1

(n− 1)!
P(Xs ∈ dx)ds

=

∫ ∞
0

P(Xs ∈ dx)ds

= u0(x)dx.

Furthermore, the Fourier transform of f is given by f̂(λ) = 1/(1 +ψ(λ)), for every
λ ∈ R. Since h(x) = u0(0)− u0(−x), it suffices to compute the limit at infinity of∑∞
n=1 f

∗n(x). To that aim, we use the main result in Smith (1955), which states
that if

(a) lim|x|→∞ f(x) = 0,
(b) f is in L1+ε, for some ε > 0,

then
∞∑
n=1

f∗n(x)→ 1

µ
, as x→∞,

∞∑
n=1

f∗n(x)→ 0, as x→ −∞.

The condition (a) is obtained from the Riemann-Lebesgue theorem. To show that
(b) is satisfied we use Plancherel’s theorem (see Rudin, 1987, p. 186 and Widder,
1941, p. 202). Plancherel’s theorem allow us to ensure that f ∈ L2 if and only if

f̂ ∈ L2. This fact can be easily obtained from Theorem 2.1, since∫
R
|f̂(λ)|2dλ =

∫
R

1

|1 + ψ(λ)|2
dλ

≤
∫
R

Re(1 + ψ(λ))

|1 + ψ(λ)|2
dλ

=

∫
R
Re

(
1

1 + ψ(λ)

)
dλ <∞.

This concludes the first part of the lemma.
To prove the second part of the Lemma, we consider the function h∗ which is

defined in Section 3.2 below. There, it is shown that h∗(x) = h(x)+h(−x) = E(LTx)
(see (3.16) and (3.17) for details). We will prove that h∗(x) tends to infinity as
x → ∞ when X is recurrent and thus obtain (ii). The proof is as follows. Let eq
be an independent exponential time. Observe the elementary inequality

h∗(x) = E(LTx) ≥ E(LTx1{Tx≥eq}) ≥ E(Leq1{Tx≥eq}),

Hence, by Fatou’s lemma

lim inf
x→∞

h∗(x) ≥ E(Leq lim inf
x→∞

1{Tx≥eq}).

Now, by the Riemann-Lebesgue theorem

lim
x→∞

E(e−qTx) = lim
x→∞

uq(x)

uq(0)
= 0, ∀ q > 0.
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Hence, it follows that Tx converges weakly towards ∞ as x → ∞. On the other
hand, applying the Lemma 3 in Bertoin (1996, Chapter V),

uq(0) = E
(∫ ∞

0

e−qtdLt

)
= E

(∫ ∞
0

Ltqe
−qtdt

)
= E(Leq ), ∀ q > 0.

We have so proved that

lim inf
x→∞

h∗(x) ≥ E(Leq ) = uq(0), ∀ q > 0.

Letting q tend to 0 and using that in the recurrent case u0(0) =∞, we obtain

h∗(x) = h(x) + h(−x)→∞, x→∞.

�

3.2. An auxiliary function. Let (h∗q)q>0 be the increasing family of functions defined
by

h∗q(x) = E

(∫ Tx

0

e−qtdLt

)
, q > 0, x ∈ R.

The family (h∗q)q>0 satisfies the following properties.

Proposition 3.7. For any q > 0, the function h∗q is symmetric, nonnegative,
subadditive continuous, which can be expressed in terms of the q-resolvent density
as

h∗q(x) = uq(0)− uq(x)uq(−x)

uq(0)
, x ∈ R. (3.11)

Proof : By definition, h∗q is a nonnegative function. The continuity and symmetry
of h∗q is obtained from (3.11). Thus, it only remains to prove (3.11) and that h∗q is
subadditive.

First, we recall an expression that establishes a relation between resolvent den-
sities and local times, (see Lemma 3 and the commentary before Proposition 4 in
Bertoin (1996, Chapter V)):

uq(−x) = Ex
(∫ ∞

0

e−qtdLt

)
= E

(∫ ∞
0

e−qtdL(x, t)

)
, q > 0, x ∈ R, (3.12)

where (L(x, t), t ≥ 0) is the local time at point x for (X,P). Thus, using the latter
expression, we have

uq(0) = E
(∫ ∞

0

e−qtdLt

)
= h∗q(x) + E

(∫ ∞
Tx

e−qtdLt, Tx <∞
)
. (3.13)

On the other hand, by Markov and additivity properties of the local time, it follows

E
(∫ ∞

Tx

e−qtdLt, Tx <∞
)

= E
(
e−qTx

∫ ∞
0

e−qudLu+Tx , Tx <∞
)

= E(e−qTx , Tx <∞)Ex
(∫ ∞

0

e−qudLu

)
= Êx(e−qT0 , T0 <∞)Ex

(∫ ∞
0

e−qudLu

)
.
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Then, using (2.7) and (3.12), the equation (3.13) becomes

uq(0) = h∗q(x) +
uq(x)

uq(0)
uq(−x), x ∈ R,

from which (3.11) follows.
Now, we prove the subadditivity of h∗q . The procedure is similar to the one used

to prove the subadditivity of hq in Lemma 3.3. We repeat the arguments for clarity.
First, by (2.5) and (2.7) we can write (3.11) as

h∗q(x) = uq(0)(1− Ex(e−qT0)Êx(e−qT0)). (3.14)

Since, for any x ∈ R, Ex(e−qT0), Êx(e−qT0) ≤ 1, it follows

(1− Ex(e−qT0)Êx(e−qT0))(1− Ey(e−qT0)Êy(e−qT0)) ≥ 0, x, y ∈ R.
The latter relation and (3.6) imply

1− Ex(e−qT0)Êx(e−qT0) + 1− Ey(e−qT0)Êy(e−qT0)

≥ 1− Ex(e−qT0)Ey(e−qT0)Êx(e−qT0)Êy(e−qT0)

≥ 1− Ex+y(e−qT0)Êx+y(e−qT0),

for all x, y ∈ R. Hence, by (3.14)

h∗q(x) + h∗q(y) ≥ h∗q(x+ y), x, y ∈ R.
This ends the proof. �

Remark 3.8. With the help of the expression (3.11), h∗q can be written in terms of
the function hq as:

h∗q(x) = hq(x) + hq(−x)− 1

uq(0)
hq(x)hq(−x), x ∈ R. (3.15)

Now, define h∗ by
h∗(x) = lim

q→0
h∗q(x), x ∈ R.

Since h is finite, then (3.15) implies that h∗(x) is finite for all x ∈ R. Furthermore,
since

h∗q(x) = E

(∫ Tx

0

e−qtdLt

)
,

then
h∗(x) = E(LTx). (3.16)

It is known that LTx is the first time where an excursion from zero that hits x
appears. Thus, h∗(x) is the expected value of an exponential random variable. We
also note that by (3.15), in the recurrent symmetric case, h∗ corresponds to 2hY ,
where hY is the invariant function given in Yano (2010).

To state the following lemma let us introduce further notation that will be mainly
used in the next two proofs. Let Z = (Zt, t ≥ 0) be the process given by

Zt = Xt − Yt, t ≥ 0,

where X = (Xt, t ≥ 0) and Y = (Yt, t ≥ 0) are independent and identically
distributed Lévy processes both with characteristic exponent ψ under P. In other
words, (Zt, t ≥ 0) is the symmetric Lévy process obtained by symmetrisation of
X. A straightforward computation shows that the characteristic exponent of Z is
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2Re(ψ). The objects associated to Z will be denoted with a tilde, so ũq will denote

its q-resolvent density and h̃q(x) = ũq(0)− ũq(−x), for q > 0, x ∈ R.

Lemma 3.9. (i) For any x ∈ R, limq→0 quq(x) = 0.
(ii) For any q, r > 0, x ∈ R, we have the following identity∫

R
uq(y − x)ur(y)dy =

∫
R
ũq+r(y)[ur(x− y) + uq(y − x)]dy.

Proof : Recall the identity

uq(x)

uq(0)
= Êx(e−qT0), x ∈ R.

Hence, quq(x) ∼ P̂x(T0 < ∞)quq(0) as q ↓ 0. Thus, it suffices to prove the case
x = 0. Thanks to (3.8), we have

quq(0) =
1

2π

∫
R
Re

(
q

q + ψ(λ)

)
dλ.

For every q > 0, let jq be the integrand in the above display. Now, we observe the
following

jq(λ) = Re

(
q

q + ψ(λ)

)
=

q(q +Re(ψ(λ)))

[q +Re(ψ(λ))]2 + [Im(ψ(λ))]2

=

[
1 +

Reψ(λ)

q
+

(Imψ(λ))2

q(q +Reψ(λ))

]−1

, q > 0, λ ∈ R.

Hence, jq ↓ 0, as q ↓ 0. Thus, 0 ≤ jq(λ) ≤ j1(λ), 0 < q < 1, λ ∈ R and
j1 is integrable by Theorem 2.1. Then, by the dominated convergence theorem
limq→0 quq(0) = 0. This shows (i).

Now, let f be a positive, bounded, measurable function. By construction we
have ∫

R

∫
R
uq(y − x)ur(y)f(x)dydx =

∫
R

∫
R
f(y − z)uq(z)ur(y)dydz

=
1

rq
E
(
f(Xer − Yeq )

)
=

1

rq
E
(
f(Xer − Yeq )1{er>eq}

)
+

1

rq
E
(
f(−(Yeq −Xer ))1{eq>er}

)
,

where eq, er are exponential random variables with parameters q > 0 and r > 0,
respectively, such that eq, er, Y and X are independent under P. Applying the
independence and stationarity property of the increments of X, we observe that
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the first term in the latter equation becomes

1

rq
E
(
f(Xer − Yeq )1{er>eq}

)
=

1

rq
E
(
f(Xer −Xeq + Zeq )1{er>eq}

)
=

∫ ∞
0

∫ ∞
s

E(f(Xt −Xs + Zs))e
−rte−qsdtds

=

∫ ∞
0

∫ ∞
s

E(f(Wt−s + Zs))e
−r(t−s)e−(r+q)sdtds,

where W = (Wt, t ≥ 0) has the same law as X and is independent of Z under P.
Thus,

1

rq
E
(
f(Xer − Yeq )1{er>eq}

)
=

∫ ∞
0

∫ ∞
s

e−r(t−s)E(f(Wt−s + Zs))e
−(r+q)sdtds

=

∫ ∞
0

∫ ∞
0

e−rtE(f(Wt + Zs))e
−(q+r)sdtds

=

∫
R

∫
R
f(z + y)ur(z)ũq+r(y)dydz

=

∫
R

∫
R
ũq+r(y)ur(x− y)f(x)dydx.

In the same way, it can be verified that

1

rq
E
(
f(−(Yeq −Xer ))1{eq>er}

)
=

1

rq
E
(
f(−(Yeq − Yer ) + Zer )1{eq>er}

)
=

∫
R

∫
R
ũq+r(y)uq(y − x)f(x)dydx.

Thus, we have∫
R

∫
R
uq(y − x)ur(y)f(x)dydx =

∫
R

∫
R
ũq+r(y) [ur(x− y) + uq(y − x)] f(x)dydx,

for all positive, bounded, measurable function f . By the continuity and boundeness
of ur and uq, we conclude that∫

R
uq(y − x)ur(y)dy =

∫
R
ũq+r(y)[ur(x− y) + uq(y − x)]dy,

for any q, r > 0, x ∈ R. �

Some properties of the function h∗ are summarized in the following lemma.

Lemma 3.10. The function h∗ is a symmetric, nonnegative, subadditive, conti-
nuous function which vanishes only at the point x = 0 and lim|x|→∞ h∗(x) = κ−1.
Furthermore, h∗ is integrable with respect to semigroup of the process killed at T0,
i.e., P 0

t h
∗(x) <∞, for all t > 0, x ∈ R.

Proof : From the definition of h∗q and (3.11) the non negativity and symmetry of
h∗ follows. The subadditivity of h∗ is obtained from subadditivity of the sequence
(h∗q)q>0. We observe that from (3.15), we can write h∗ in terms of h as

h∗(x) = h(x) + h(−x)− κh(x)h(−x), (3.17)

where κ = limq→0
1

uq(0) . Hence, h∗ is continuous.

Now, we prove that lim|x|→∞ h∗(x) = κ−1. In Lemma 3.5 it has been proved
that if X is recurrent then limx→∞ h∗(x) = ∞. Since h∗ is a symmetric function,
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the same limit is obtained as x → −∞. Then, lim|x|→∞ h∗(x) = κ−1 when X is
recurrent. Suppose that X is transient. In Lemma 3.5 we established that

lim inf
x→∞

h∗(x) ≥ uq(0), ∀ q > 0,

without further assumptions. Hence, letting q tends to 0, we obtain,

lim inf
x→∞

h∗(x) ≥ κ−1.

On the other hand, taking eq an exponential independent time with parameter q,
we have

E(LTx) = E(LTx1{Tx≥eq}) + E(LTx1{Tx<eq})

≤ E
(
LTx

(
1− e−qTx

))
+ E(Leq )

= E
(
LTx

(
1− e−qTx

))
+ uq(0), x ∈ R.

Then, since X is transient, E(LTx) < ∞. Thus, by the dominated convergence
theorem

h∗(x) = E(LTx) ≤ κ−1.

Hence, lim supx→∞ h∗(x) ≤ κ−1. Therefore, limx→∞ h∗(x) = κ−1 if X is tran-
sient. Since h∗(x) is a symmetric function the same limit is obtained as x→ −∞.
Therefore, lim|x|→∞ h∗(x) = κ−1.

From the defintion, h∗(0) = 0. To prove that x = 0 is the only point where h∗

vanishes, we proceed by contradiction. Suppose that h∗(x0) = 0, for some x0 6= 0.
Using the subadditivity and symmetry of h∗, and making induction we get that
h∗(kx0) = 0 for all k ∈ Z. Since lim|x|→∞ h∗(x) = κ−1 > 0, the claim h∗(kx0) = 0,
for all k ∈ Z is a contradiction. Therefore, h∗(x) > 0, for all x 6= 0.

Finally, we prove that h∗ is P 0
t -integrable. For x ∈ R, we write ĥq(x) = hq(−x),

q > 0, and ĥ(x) = limq→0 ĥq(x). Let S be the function defined by

S(x) = h(x) + ĥ(x), x ∈ R.

By (3.17), h∗(x) ≤ S(x), x ∈ R. Thus, it suffices to show that S is P 0
t -integrable.

Now, by (2.4), the following identities hold for 0 < r < q ,

Uqhr(x) =

∫
R
uq(y − x)hr(y)dy

=

∫
R
uq(y − x){ur(0)− ur(−y)}dy

=
ur(0)

q
−
∫
R
uq(y − x)ur(−y)dy

=
ur(0)

q
− 1

q − r
{ur(−x)− uq(−x)}

=
hr(x)

q
− rur(−x)

q(q − r)
+
uq(−x)

q − r
. (3.18)

Thanks to Lemma 3.9 (i), hr(x)→ h(x) as r → 0 and Fatou’s lemma, we obtain

Uqh(x) ≤ h(x) + uq(−x)

q
, q > 0, x ∈ R. (3.19)
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Now, we will obtain a bound for Uqĥ in terms of the process Z, the symmetrisation

of X, and the sequence (h̃r) introduced before Lemma 3.9. We note that since the
characteristic exponent of Z is 2Re(ψ), then by (2.14)

h̃r(x) = ũr(0)− ũr(−x) =
1

2π

∫
R

1− cos(λx)

r + 2Re(ψ(λ))
dλ, r > 0, x ∈ R.

Furthermore, by monotone convergence theorem and Remark 3.2

lim
r→0

h̃r(x) =
1

2π

∫
R

1− cos(λx)

2Re(ψ(λ))
dλ ≤ 1

2π

∫
R

1 ∧ (λx)2

Re(ψ(λ))
dλ <∞, x ∈ R.

On the other hand, for all r > 0, x ∈ R, it holds

ur(0)− ur(x) ≤ hr(x) + hr(−x)

=
1

2π

∫
R

1− cos(λx)

|r + ψ(λ)|2
[r +Re(ψ(λ))]dλ

≤ 1

2π

∫
R

1− cos(λx)

r +Re(ψ(λ))
dλ

= 2

(
1

2π

∫
R

1− cos(λx)

2r + 2Re(ψ(λ))
dλ

)
= 2h̃2r(x).

Proceeding as in (3.18) and with the help of Lemma 3.9 (ii), we obtain

Uqĥr(x) =
1

q
ur(0)− Uqur(x) =

1

q
ur(0)−

∫
R
uq(y − x)ur(y)dy

=

∫
R
ũq+r(y) [ur(0)− ur(x− y)] dy

+
r

q
ur(0)

∫
R
ũq+r(y)dy −

∫
R
ũq+r(y)uq(y − x)dy

=

∫
R
ũq+r(y) [ur(0)− ur(x− y)] dy

+
r

q(q + r)
ur(0)− 1

q + r
E(uq(Zeq+r − x))

≤ 2

∫
R
ũq+r(y)h̃2r(x− y)dy +

r

q(q + r)
ur(0)− 1

q + r
E(uq(Zeq+r − x))

= 2

[
h̃2r(x)

q + r
− (2r)ũ2r(−x)

(q + r)(q − r)
+
ũq+r(−x)

q − r

]
+

r

q(q + r)
ur(0)

− 1

q + r
E(uq(Zeq+r − x)),

notice that in the final identity we applied the identity (3.18) for the process Z.
For the last term in the above equality, we have that since

ũq+r(x) =
1

2π

∫
R

cos(λx)

q + r + 2Re(ψ(λ))
dλ,
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it follows ũq+r(x) ↑ ũq(x), as r → 0, for any x ∈ R. Hence by the monotone
convergence theorem

lim
r→0

1

q + r
E(uq(Zeq+r − x)) = lim

r→0

∫
R
ũq+r(y)uq(y − x)dy

=

∫
R
ũq(y)uq(y − x)dy

=
1

q
E(uq(Zeq − x)),

which is finite since uq is a bounded function. Thus, using again Lemma 3.9 (i),

ĥr(x)→ ĥ(x), h̃r(x)→ h̃(x) as r → 0, and Fatou’s lemma, it follows that

Uqĥ(x) ≤ 2

[
h̃(x)

q
+
ũq(−x)

q

]
− 1

q
E(uq(Zeq − x)) (3.20)

is finite for all q > 0, x ∈ R. Adding (3.19) and (3.20), we obtain that for any
q > 0, x ∈ R,

qUqS(x) ≤ h(x) + uq(−x) + 2[h̃(x) + ũq(−x)]− E(uq(Zeq − x)) (3.21)

is finite. Hence, the function S is Pt-integrable and therefore P 0
t -integrable. �

Remark 3.11. By (3.4) and (3.14), we have hq(x) ≤ h∗q(x) ≤ h∗(x) ≤ S(x), for all
q > 0, x ∈ R. On the other hand, the Lemma 3.10 and its proof ensure that h∗

satisfies that P 0
t h
∗(x) is finite for all t > 0, x ∈ R and

qUqh
∗(x) ≤ αq(x), q > 0, x ∈ R, (3.22)

where αq(x) is the function in the right hand side of (3.21). The latter inequality
will be useful in the proofs of Lemma 3.12 and assertion (iii) in Theorem 2.2.

The next lemma ensures that the inequality obtained in (3.19) in fact is an
equality. This result was established in Yano (2010) in the symmetric case.

Lemma 3.12. For any q > 0, x ∈ R,

Uqh(x) =
h(x) + uq(−x)

q
.

Proof : Remark 3.11 states that the function h∗ satisfies hq(x) ≤ h∗(x) and Uqh
∗(x)

is finite, for all q > 0, x ∈ R. Then, by the dominated convergence theorem and
(3.18), it follows

Uqh(x) = lim
r→0

Uqhr(x) =
h(x) + uq(−x)

q
.

�

4. Proofs of the main results

We will first prove Theorem 2.2. Recall that in Section 3.1 we proved the claims
in (i) and (ii). Here we will prove (iii).
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Proof of (iii) in Theorem 2.2: The first part of the proof is inspired by the proof
of Lemma 1 in Chaumont and Doney (2005). Let eq be an exponential random
variable with parameter q > 0, and independent of (X,P). We claim that for q > 0,
x ∈ R,

Ex(PXt(T0 > eq)1{T0>t}) = eqt
(
Px(T0 > eq)−

∫ t

0

Px(T0 > s)qe−qsds

)
. (4.1)

Indeed, by (3.7), we have

Ex
(
PXt(T0 > eq)1{t<T0}

)
= Px(T0 > t+ eq).

Now, making the change of variables u = t+ s, we obtain

Px(T0 > t+ eq) =

∫ ∞
0

Px(T0 > t+ s)q−qsds

= eqt
∫ ∞
t

Px(T0 > u)qe−qudu

= eqt
(∫ ∞

0

Px(T0 > u)qe−qudu−
∫ t

0

Px(T0 > u)qe−qudu

)
= eqt

(
Px(T0 > eq)−

∫ t

0

Px(T0 > u)qe−qudu

)
.

Hence, (4.1) follows.
By Remark 3.11 and Lemma 3.10, we derive that the sequence (hq)q>0 is domi-

nated by h∗ and h∗ is integrable with respect to P 0
t for any t > 0. Then, using

dominated convergence theorem, (3.4) and (4.1), it follows

Ex (h(Xt), t < T0) = Ex
(

lim
q→0

hq(Xt), t < T0

)
= lim
q→0

Ex
(
PXt(T0 > eq)

n(ζ > eq)
1{t<T0}

)
= lim
q→0

eqt
(
Px(T0 > eq)

n(ζ > eq)
−
∫ t

0

Px(T0 > u)

n(ζ > eq)
qe−qudu

)
= h(x)− 1

n(ζ)

∫ t

0

Px(T0 > u)du,

where n(ζ) = limq→0

∫∞
0
e−qtn(ζ > t)dt. On the other hand, Lemma 3.9 (i) and

(2.9) imply n(ζ) = limq→0[quq(0)]−1 =∞. Therefore, we conclude

Ex (h(Xt), t < T0) = h(x), t > 0, x ∈ R.

Now, we prove the second part of (iii) in Theorem 2.2. To that aim we compute
the Laplace transform of n(h(Xt), t < ζ). From (2.8) and Lemma 3.12, we obtain
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that the Laplace transform of n(h(Xt), t < ζ) is given by∫ ∞
0

e−qtn(h(Xt), t < ζ)dt =

∫
R
h(x)Êx[e−qT0 ]dx

=

∫
R
h(x)

uq(x)

uq(0)
dx

=
1

uq(0)
Uqh(0)

=
1

q
.

Hence, the claim follows. �

We will next prove Theorem 2.6.

Proof of Theorem 2.6: The only thing which has to be proved is the fact that Pl0 is

a Markovian probability measure with the same semigroup as under Plx, x ∈ H and

that Pl0(X0 = 0) = 1. Recall n is a Markovian measure (σ-finite) with semigroup
(P 0
t , t ≥ 0). Let g be any bounded Borel function and Λ ∈ Ft and t, s > 0:

El0(1Λg(Xt+s)) = n(1Λh(Xt+s)g(Xt+s)1{t<ζ})

= n(1ΛE0
Xt(h(Xs)g(Xs))1{t<ζ})

= n(1Λh(Xt)ElXt(g(Xs))1{t<ζ})

= El0(1ΛElXt(g(Xs))).

This shows the first part. Now, we prove that Pl0(X0 = 0) = 1. Since X is right
continuous at 0, it suffices to prove that for any z > 0,

Pl0(|Xε| < z)→ 1,

as ε→ 0. The latter is equivalent to prove

lim
ε→0

n(1{|Xε|>z}h(Xε)1{ε<ζ}) = 0.

Since for s > 0, n(h(Xs), s < ζ) = 1, the measure defined on Fs by

Qs(·) := n(·, h(Xs), s < ζ),

is a probability measure. Then, from the Markov property, Pl0(|Xε| < z) =
Qs(1{|Xε|<z}), for all ε < s. Using that excursions of the Lévy process (X,P) leave 0
continuously, because 0 is assumed to be regular for itself, we derive 1{|Xε|<z} → 1,
Qs-a.s. as ε→ 0. The result follows from the dominated converge theorem. �

Proof of Theorem 2.7: We proceed as in Chaumont and Doney (2005). Let x ∈ H,
Λ ∈ Ft, t > 0. With the help of the Markov property and since eq is independent
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of (X,P), we can deduce the following

Ex
(
1Λ1{t<eq}1{T0>eq}

)
=

∫ ∞
0

Ex
(
1Λ1{t<T0}1{T0>s}

)
1{t<s}qe

−qsds

=

∫ ∞
0

Ex
(
1Λ1{t<T0}Ex

(
1{T0>s} ◦ θt | Ft

))
1{t<s}qe

−qsds

=

∫ ∞
0

Ex
(
1Λ1{t<T0∧s}PXt(T0 > s)

)
qe−qsds

= Ex
(
1Λ1{t<T0∧eq}PXt(T0 > eq)

)
= n(ζ > eq)Ex

(
1Λ1{t<T0∧eq}hq(Xt)

)
=

1

hq(x)
Ex
(
1Λ1{t<T0∧eq}hq(Xt)

)
Px(T0 > eq).

The latter shows that for Λ ∈ Ft,

Px(Λ, t < eq | T0 > eq) =
1

hq(x)
Ex
(
1Λhq(Xt)1{t<T0∧eq}

)
. (4.2)

Now, recall that hq(x) ≤ h∗q(x) ≤ h∗(x), q > 0, x ∈ R. Thus,

1{t<T0∧eq}hq(Xt) ≤ 1{t<T0}h
∗(Xt) a.s.

Furthermore, by Lemma 3.10, Ex(h∗(Xt), t < T0) is finite. Then, letting q → 0,
with the help of the dominated convergence theorem in (4.2), we obtain the desired
result. �

Proof of Theorem 2.8: For every s > 0, we consider ds = inf{u > s : Xu = 0},
gs = sup{u ≤ s : Xu = 0} and G = {gu : gu 6= du, u > 0}. By definition, for every
q > 0, Λ ∈ Ft, we have

Peq (Λ, t < ζ) = E(1Λ ◦ keq−geq ◦ θgeq1{t<eq−geq})

= E
(∫ ∞

0

1Λ ◦ ku−gu ◦ θgu1{t<u−gu}qe
−qudu

)
= E

(∑
s∈G

e−qs
∫ ds

s

qe−q(u−s)1Λ ◦ ku−s ◦ θs1{t<u−s}du

)
.

Now, using the compensation formula in excursion theory (see e.g. Bertoin, 1996,
Maisonneuve, 1975) and the Markov property of n, we obtain

E

(∑
s∈G

e−qs
∫ ds

s

qe−q(u−s)1Λ ◦ ku−s ◦ θs1{t<u−s}du

)

= E
(∫ ∞

0

e−qsdLs

)
n(1Λ1{t<eq<ζ})

= E
(∫ ∞

0

e−qsdLs

)
n(1ΛPXt(T0 > eq)1{t<ζ}).

Using (2.9) and (3.13) we deduce

E
(∫ ∞

0

e−qsdLs

)
= uq(0) =

1

n(ζ > eq)
.
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Thus, we obtain

Peq (Λ, t < ζ) =
n(1Λ1{t<eq<ζ})

n(ζ > eq)
= n(1Λhq(Xt)1{t<ζ}). (4.3)

First, we will prove that

lim
q→0

Peq (t < ζ) = 1.

The first equality of (4.3) can be written as follows

Peq (t < ζ) =
n(t < eq < ζ)

n(ζ > eq)

=
n(ζ > eq, eq > t)

n(ζ > eq)

=
n(ζ > eq)

n(ζ > eq)
− n(ζ > eq, eq ≤ t)

n(ζ > eq)

= 1− q

n(ζ > eq)
n

(
1− e−q(t∧ζ)

q

)
.

By (2.9) and Lemma 3.9 (i),

lim
q→0

q

n(ζ > eq)
= lim
q→0

quq(0) = 0.

Using the inequality 1− e−x ≤ x, for x > 0 and since n(t∧ ζ) <∞, the dominated
convergence theorem implies

lim
q→0

n

(
1− e−q(t∧ζ)

q

)
= n(t ∧ ζ) <∞.

Thus, we conclude

lim
q→0

Peq (t < ζ) = 1− lim
q→0

q

n(ζ > eq)
n

(
1− e−q(t∧ζ)

q

)
= 1.

Now, we prove that

lim
q→0

Peq (Λ, t < ζ) = n(1Λh(Xt)1{t<ζ}).

Fatou’s lemma and (4.3) imply that for any t > 0 and Λ ∈ Ft
lim inf
q→0

Peq (Λ, t < ζ) ≥ n(1Λh(Xt)1{t<ζ}).

Furthermore, since n(h(Xt), t < ζ) = 1 for all t > 0 and Peq (t < ζ) → 1 as q → 0,
it follows that

lim sup
q→0

Peq (Λ, t < ζ) = lim sup
q→0

Peq (t < ζ)− lim inf
q→0

Peq (Λc, t < ζ)

= 1− lim inf
q→0

Peq (Λc, t < ζ)

≤ 1− n(1Λch(Xt)1{t<ζ})

= n(1Λh(Xt)1{t<ζ}).

Putting the pieces together we conclude that

lim
q→0

Peq (Λ, t < ζ) = n(1Λh(Xt)1{t<ζ}).

�
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We will now establish the claims in Proposition 2.9 and Proposition 2.10. For

that aim, let U
l
q be the q-resolvent for the processXl = (X,Plx)x∈H0

, with Ul = U
l
0 .

To prove that Xl is transient, we compute the density of Ul. For x, y ∈ H and
q > 0, we have

ulq(x, y) =
h(y)

h(x)
u0
q(x, y). (4.4)

From (2.8) it can be deduced that for y ∈ H, q > 0,

ulq(0, y)dy =

∫ ∞
0

e−qtn(h(Xt)1{Xt∈dy}, t < ζ)dt

= h(y)Êy[e−qT0 ]dy

= h(y)
uq(y)

uq(0)
dy. (4.5)

Finally, by Theorem 2.6 (ii), u
l
q(x, 0) = 0, for all x ∈ H0. Thus, from the above

equations, the density of Ul can be obtained. This is stated in the following lemma.

Lemma 4.1. Let u
l
0(x, y) = limq→0 u

l
q(x, y), x, y ∈ H0. Then u

l
0(x, 0) = 0, for all

x ∈ H0,

0 ≤ ul0(x, y) =
h(y)

h(x)
[h(x)+h(−y)−h(x−y)−κh(x)h(−y)], x ∈ H, y ∈ H, (4.6)

and for y ∈ H,

u
l
0(0, y) = h(y)(1− κh(−y)) = h∗(y)− h(−y). (4.7)

Proof : An easy computation gives

uq(−x)uq(y)

uq(0)
=
hq(x)hq(−y)

uq(0)
− hq(x)− hq(−y) + uq(0), x ∈ H, y ∈ H.

Using this and (2.6) it follows

u0
q(x, y) = hq(x) + hq(−y)− hq(x− y)− hq(x)hq(−y)

uq(0)
, x ∈ H, y ∈ H. (4.8)

Letting q → 0 in (4.4) and with help of (4.8), we obtain (4.6). The first equality in
(4.7) is obtained from (4.5) recalling that for all y,

lim
q→0

uq(y)

uq(0)
= lim
q→0

[1− (uq(0))−1hq(−y)] = 1− κh(−y).

The second one follows from (3.17). �

Remark 4.2. Note that from (3.15) and (4.8) we have u
l
q(x, x) = u0

q(x, x) = h∗q(x),

x ∈ H, which implies u
l
0(x, x) = h∗(x), x ∈ H.

Proof of Proposition 2.9: To obtain the transiency property of Xl, we use Theo-
rem 3.7.2 in Chung and Walsh (2005), which states the following. If the conditions:

(i) Ulg is lower semi-continuous, for any nonnegative function g with compact
support;

(ii) there exists a nonnegative function f such that 0 < Ulf <∞ on H0;
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are satisfied, then the process Xl is transient.

Since h is continuous, from Lemma 4.1 it follows limx→x′ u
l
0(x, y) = u

l
0(x′, y), for

all y ∈ H0. Let g be a nonnegative function with compact support K. By Fatou’s
lemma, we have

lim inf
x→x′

∫
K

g(y)u
l
0(x, y)dy ≥

∫
R
g(y) lim inf

x→x′
[u
l
0(x, y)1K ]dy =

∫
K

g(y)u
l
0(x′, y)dy.

This shows that for any nonnegative function g with compact support, the function

x 7−→
∫
R
g(y)u

l
0(x, y)dy

is lower semi-continuous. Thus, condition (i) is satisfied. Now, we will find a
nonnegative function f : R→ R+ such that 0 < Ulf(x) <∞. Let f be given by

f(y) =


1

[h∗(1)]2
, |y| ≤ 1,

1

y2[h∗(y)]2
, |y| > 1.

Since f is continuous and lim|x|→∞ h∗(x) = κ−1, then f , fh∗ and f(h∗)2 are
integrable with respect to Lebesgue measure. On the other hand, h is dominated
by the symmetric function h∗, then the integrability of fh∗ and f(h∗)2 imply∫

R
f(y)h(y)dy <∞,

∫
R
f(y)h(y)h(−y)dy <∞.

Furthermore, since h is subadditive and f is symmetric, it follows∫
R
f(y)h(x− y)dy ≤

∫
R
f(y)h(x)dy +

∫
R
f(y)h(y)dy <∞.

Thus, for x ∈ H,

Ulf(x) =

∫
R
f(y)u

l
0(x, y)dy <∞.

Finally, using the symmetry of f and h∗ we obtain

Ulf(0) =

∫
R
f(y)ul(0, y)dy =

∫
R
f(y)(h∗(y)− h(y))dy <∞.

This concludes the proof. �

The Lemma 4.3 below states that any x ∈ H is regular for itself under Plx. The
latter implies the existence of a continuous local time at point x ∈ H for the process

(X,Plx), see Blumenthal and Getoor (1968, Theorem 3.12, p. 216). We will denote
by (Ll(x, t), t ≥ 0) the local time at point x aforementioned and by τl(x, t) the
right continuous inverse of Ll(x, t), i.e.,

τl(x, t) = inf{s > 0 : Ll(x, s) > t}, t ≥ 0.

It is well known that (τl(x, t), t ≥ 0) is a subordinator killed at an exponential
random time independent of τl(x, ·) with Laplace exponent Φx,l satisfying

Ex(e−qτ
l(x,t)) = e−tΦ

x,l(q) = e−t/u
l
q(x,x), t ≥ 0, (4.9)
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see e.g. Blumenthal and Getoor (1968, Theorem 3.17, p. 218). Furthermore, using
the compensation formula in excursion theory it can be established that for any
q > 0,

Φx,l(q) =
1

u
l
q(x, x)

= nlx(ζ > eq) + axq

= nlx(ζ =∞) +

∫ ∞
0

(1− e−qt)nlx(ζ ∈ dt) + axq,

(4.10)

where ax satisfies ∫ t

0

1{Xs=x}ds = axLl(x, t). (4.11)

By Remark 4.2, limq→0 u
l
q(x, x) = h∗(x) > 0, for x ∈ H, then (τl(x, t), t ≥ 0) is

a subordinator killed at an exponential time with parameter 1/h∗(x) > 0. This

also confirms the transiency of (X,Plx), since by (4.10), there exists an excursion of
infinite length.

To state the following lemma, we introduce additional notation. For every x ∈ R,
define dxs = inf{u > s : Xt = x}, gxs = sup{u ≤ s : Xt = x} and Gx = {gxu : gxu 6=
dxu, u > 0}.

Lemma 4.3. (i) For x ∈ H, x is regular for itself for (X,Plx).
(ii) Let eq be an exponential random variable with parameter q > 0, indepen-

dent of (X, (Plx)x∈H). Then, for every x ∈ H, the processes (Xu, u < gxeq )

and X ◦keq−gxeq ◦θgxeq are Plx independent. Furthermore, their laws are cha-

racterized as follows: let F and H be measurable and bounded functionals,
then

Elx
(
F (Xu, u < gxeq )

)
= Elx

(∫ ∞
0

F (Xu, u < s)e−qsdLl(x, s)

)[
nlx(ζ > eq) + axq

] (4.12)

and

Elx
(
H(X ◦ keq−gxeq ◦ θgxeq )

)
= ulq(x, x)

[
nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
+ axqH(x̄)

]
,

(4.13)

where ax is the constant in (4.11).

Proof : Let x ∈ H. By Fatou’s lemma and the definition of Plx, we have

Plx(Tx = 0) = lim inf
t→0

Plx(Tx ≤ t)

≥ 1

h(x)
Ex
(

lim inf
t→0

1{Tx≤t<T0}h(Xt)
)

=
1

h(x)
Ex
(
1{Tx=0}1{T0>0}h(X0)

)
= 1,

where the latter equality was obtained using the facts that {x} is regular for itself
under Px and Px(T0 > 0) = 1. This proves (i).
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Before we prove (ii), we recall the following. Since τl(x, ·) is the inverse of the
local time (Ll(x, t), t ≥ 0) with Laplace exponent given by (4.9), then

Elx
(∫ ∞

0

e−qtdLl(x, t)

)
= Elx

(∫ ∞
0

e−qτ
l(x,t)dt

)
=

∫ ∞
0

Elx(e−qτ
l(x,t))dt

= ulq(x, x).

(4.14)

We will denote x̄ the path which is identically equal to x and with lifetime zero.
Thus, for F and H measurable and bounded functionals, using the compensation
formula in excursion theory (see e.g. Bertoin, 1996, Maisonneuve, 1975), it follows

Elx
(
F (Xu, u < gxeq )H(X ◦ keq−gxeq ◦ θgxeq )

)
= Elx

(∑
s∈Gx

F (Xu, u < s)e−qs
∫ ds

s

H(X ◦ kt−s ◦ θs)qe−q(t−s)dt

)

+ Elx
(∫ ∞

0

F (Xu, u < t)H(x̄)qe−qt1{Xt=x}dt

)
= Elx

(∫ ∞
0

F (Xu, u < s)e−qsdLl(x, s)

)
×

[
nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
+ axqH(x̄)

]
, (4.15)

where ax is the constant in (4.11). Taking H ≡ 1 in (4.15), it follows

Elx
(
F (Xu, u < gxeq )

)
= Elx

(∫ ∞
0

F (Xu, u < s)e−qsdLl(x, s)

)[
nlx(ζ > eq) + axq

]
.

In the same way, if we take F ≡ 1 in (4.15) and we use (4.14), we can obtain

Elx
(
H(X ◦ keq−gxeq ◦ θgxeq )

)
= ulq(x, x)

[
nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
+ axqH(x̄)

]
.

The latter two displays are (4.12) and (4.13), respectively.

Finally, by (4.10), u
l
q(x, x) = [n

l
x(ζ > eq) + axq]−1. Using this fact, (4.12) and

(4.13), we conclude

Elx
(
F (Xu, u < gxeq ) (H(X ◦ keq−gxeq ◦ θgxeq )

)
= Elx

(
F (Xu, u < gxeq )

)
Elx
(
H(X ◦ keq−gxeq ◦ θgxeq )

)
.

This shows the independence property in (ii). �

Now, we will prove that the drift coefficient in (4.10) does not depend on x, and
is equal to δ.
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Lemma 4.4. Let δ be the drift coefficient of the inverse local time at the point zero

for the Lévy process (X,P). Then for all x ∈ H, Plx-a.s.,
∫ t

0
1{Xs=0}ds = δLl(x, t).

That is, ax = δ, for all x ∈ H.

Proof : If both δ, ax are zero, the claim holds. Suppose that ax 6= 0. Using (4.14),

the definition of ax and Plx, we obtain

axulq(x, x) = Elx
(∫ ∞

0

e−qtd[axLl(x, t)]

)
=

∫ ∞
0

Elx
(
1{Xt=x}

)
e−qtdt

=

∫ ∞
0

1

h(x)
Ex
(
1{Xt=x}h(Xt)1{T0>t}

)
e−qtdt

= Ex
(∫ ∞

0

1{T0>t}e
−qt1{Xt=x}dt

)
. (4.16)

Using that (X,Px) is equal in distribution to (X +x,P), the definition of δ and the
symmetry of h∗q(x), it follows that the right-hand side in (4.16) is

E
(∫ ∞

0

1{T−x>t}e
−qt1{Xt=0}dt

)
= δE

(∫ ∞
0

1{T−x>t}e
−qtdLt

)
= δh∗q(x).

To conclude the proof recall that h∗q(x) = u
l
q(x, x). �

Proof of Proposition 2.10: Let H : D0 → R be a bounded and measurable func-
tional. To simplify we write Xq for the path X ◦keq−gxeq ◦θgxeq . Using the definition

of Plx, we obtain

h(x)Elx (H(Xq))

= E
(∫ ∞

0

H((X + x) ◦ kt−gt ◦ θgt)h(Xt + x)1{T−x>t}qe
−qtdt

)
.

(4.17)

We note that 1{T−x>t} = 1{T−x◦θgt>t−gt}1{T−x>gt} and h(Xt + x) = h((Xt−gt +

x) ◦ θgt). Then, with the help of the compensation formula in excursion theory
(Bertoin, 1996, Maisonneuve, 1975), the right-hand side in (4.17) can be written as

E
(∫ ∞

0

1{T−x>gt}H((X + x) ◦ kt−gt ◦ θgt)

h((Xt−gt + x) ◦ θgt)1{T−x◦θgt>t−gt}qe
−qtdt

)
= E

(∑
s∈G

1{T−x>s}

∫ ds

s

H((X + x) ◦ kt−s ◦ θs)

h((Xt−s + x) ◦ θs)1{T−x◦θs>t−s}qe
−qtdt

)

+ E
(∫ ∞

0

1{T−x>t}H(x̄)h(x)qe−qt1{Xt=0}dt

)
= E

(∫ ∞
0

1{T−x>t}e
−qtdLt

)
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T−x>t}qe
−qtdt

)
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+ qδH(x̄)h(x)E
(∫ ∞

0

1{T−x>t}e
−qtdLt

)
= h∗q(x)

[
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T−x>t}qe
−qtdt

)

+ qδH(x̄)h(x)

]
, (4.18)

where δ is such that
∫ t

0
1{Xs=0} = δLt under P. Using Lemma 4.4 and h∗(x) =

u
l
q(x, x) in (4.18), we verify

Elx (H(Xq)) = ulq(x, x)

[
1

h(x)
n

(∫ ζ

0

H(εu + x, u < t)

h(Xt + x)1{T{−x}>t}qe
−qtdt

)
+ axqH(x̄)

]
.

(4.19)

Comparing (4.19) with (4.13), the result follows. �

5. Two examples

The expression (2.13) in Theorem 2.2 (i) allows us to compute explicitly the
function h in the particular case when (X,P) is an α-stable process.

Example 5.1. Suppose that (X,P) is an α-stable process. Then, (X,P) satisfies
H.1 and H.2 if and only if α ∈ (1, 2]. It is well known that the resolvent density

of Brownian motion is uq(x) = (
√

2q)−1e−
√

2q|x|, hence

h(x) = lim
q→0

[uq(0)− uq(−x)] = |x|.

Now, let α ∈ (1, 2). In this case the function h takes the following form

h(x) = K(α)(1− βsgn(x))|x|α−1, (5.1)

where

K(α) =
Γ(2− α) sin(απ/2)

cπ(α− 1)(1 + β2 tan2(απ/2))

and

c = − (c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
. (5.2)

Notice that if β = 1 (c− = 0), then h(x) = 0, for all x ≥ 0, and if β = −1 (c+ = 0),
then h(x) = 0, for all x ≤ 0.

The aforementioned expression for h has been obtained in Yano (2013). For sake
of completeness, we give more detailed computations considering the hypotheses
H.1 to H.4.

Before obtaining (5.1) we will verify hypotheses H.3 and H.4, respectively. Re-
call that the characteristic exponent of (X,P) can be written as

ψ(λ) = c|λ|α(1− iβsgn(λ) tan(απ/2)),

where c and β are as in (5.2). Notice that H.3 is satisfied because the integral∫
R

1

q + c|λ|α
dλ
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is finite for all q > 0. On the other hand, using the expression of ψ(λ) we obtain

Re

(
1− eiλx

ψ(λ)

)
=

1− cos(λx) + β tan(απ/2)sgn(λ) sin(λx)

c|λ|α(1 + β2 tan2(απ/2))
.

From the latter equaility, we have∣∣∣∣Re(1− eiλ

ψ(λ)

)∣∣∣∣ ≤ 1

c

(
1− cos(λ)

|λ|α(1 + β2 tan2(απ/2))
+
|β tan(απ/2)|| sin(λ)|
|λ|α(1 + β2 tan2(απ/2))

)
≤ 1

c

(
2(1 ∧ |λ|2)

|λ|α
+

1 ∧ |λ|
|λ|α

)
.

Now, since 1 < α < 2,∫
R

1 ∧ |λ|2

|λ|α
dλ = 2

∫ ∞
0

1 ∧ λ2

λα
dλ =

4

(3− α)(α− 1)

and ∫
R

1 ∧ |λ|
|λ|α

dλ = 2

∫ ∞
0

1 ∧ λ
λα

dλ =
2

(2− α)(α− 1)

are finites. Thus, H.4 is verified.
Next, we obtain (5.1). Since the function sgn(λ) sin(λx) as function of λ is even,

we have∫ ∞
−∞

Re

(
1− eiλx

ψ(λ)

)
dλ

=
1

c(1 + β2 tan2(απ/2))

(
2πhs(x) + 2β tan(απ/2)

∫ ∞
0

sin(λx)

λα
dλ

)
,

where hs(x) is the function h obtained in the symmetric case (see example 1.1 in
Yano, 2010), namely

hs(x) =
Γ(2− α)

π(α− 1)
sin(απ/2)|x|α−1.

On the other hand, with the help of formula (14.18) of Lemma 14.11 in Sato (1999),
we obtain∫ ∞

0

sin(λx)

λα
dλ = sgn(x)|x|α−1

∫ ∞
0

sinu

uα
du = −Γ(2− α)

α− 1
cos(απ/2)sgn(x)|x|α−1.

The latter equality implies (5.1).
For reference, we point out that similar calculations are performed in Kogan

et al. (2011, Lemma 5.4) to determine uT0
(x, y) := Ex(LyT0

), where Lyt is the local
time at the point y for the process (X,Px). The function uT0(x, y) is related to h∗

through the formula uT0(x, x) = Ex(LxT0
) = E(LT−x) = h∗(−x) = h∗(x).

Recall that LTx is an exponential random variable with parameter [h∗(x)]−1,
then by (3.17), in the case when (X,P) is an α-stable process with α ∈ (1, 2], LTx
is an exponential random variable with parameter 1/[2K(α)|x|α−1].

As was mentioned in the above example, depending on if β = 1 or β = −1,
the function h vanishes at some points different from zero. The case β = −1
corresponds to a spectrally negative α-stable process. In the following example
an expression for the function h is obtained for spectrally negative Lévy processes
satisfying the hypothesis H1 and H2. In Pardo et al. (2017+) is used this example
to give a detailed description of the excursion measure away from zero for spectrally
negative Lévy processes.
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Example 5.2. Let (X,P) be a spectrally negative Lévy process, i.e., the Lévy mea-
sure of (X,P) satisfies π(0,∞) = 0. Suppose that H.1 and H.2 hold. Let Ψ be the
Laplace exponent of the process (X,P), i.e.,

Ψ(λ) = log(E[eλX1 ]) = −ψ(−iλ)

= −aλ+
σ2

2
λ2 +

∫
(−∞,0)

(eλx − 1− λx1{x>−1})π(dx).

It is well known that Ψ′(0+) = E(X1) ∈ [−∞,∞) determines the long run be-
haviour of X. To be precise, if Ψ′(0+) > 0 then limt→∞Xt = ∞, if Ψ′(0+) < 0
then limt→∞Xt = −∞, while if Ψ′(0+) = 0 the process X oscillates.

Now, for q ≥ 0, let Φ(q) be the largest root of the equation Ψ(λ) = q, i.e.,

Φ(q) = sup{λ ≥ 0 : Ψ(λ) = q}.

For the spectrally negative Lévy processes (X,P) with Laplace exponent Ψ, we
consider the q-scale functions {W (q), q ≥ 0}, the family of functions satisfying the
following: for every q ≥ 0, W (q)(x) = 0, for x < 0 and W (q)(x) ≥ 0, for x ≥ 0.
Furthermore, W (q) is determined by its Laplace transform in the following way∫ ∞

0

e−θxW (q)(x)dx =
1

Ψ(θ)− q
, θ > Φ(q).

For a complete account on q-scale functions for spectrally negative Lévy processes
see Cohen et al. (2012).

An important fact on spectrally Lévy processes is that the resolvent density, uq,

can be written in terms of the q-scale function W (q) as follows

uq(x) = Φ′(q)e−Φ(q)x −W (q)(−x), q > 0, x ∈ R.

Furthermore, if (X,P) has unbounded variation, W (q)(0) = 0, see Corollary 8.9 and
Lemma 8.6 in Kyprianou (2006) for details. Now, Corollary 5 in Chapter VII in
Bertoin (1996) ensures that under H.1 and H.2, X has unbounded variation. The
latter facts imply,

hq(x) = uq(0)− uq(−x) = Φ′(q)(1− eΦ(q)x) +W (q)(x), q > 0, x ∈ R.

Thus, letting q → 0, we obtain

h(x) =


1

Ψ′(Φ(0)+)
(1− eΦ(0)x) +W (x), if lim

t→∞
Xt = −∞,

−x
Ψ′′(0+)

+W (x), if lim sup
t→∞

Xt = − lim inf
t→∞

Xt =∞,

W (x), if lim
t→∞

Xt =∞,

where W = W (0). So the function h on this setting can be defined only with the
hypotheses H.1 and H.2. Observe that when X oscillates and Ψ′′(0+) = ∞ we
have h(x) = W (x) and hence h(x) = 0 for x < 0.
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