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Laboratoire d’Analyse et Mathématiques Appliquées (UMR CNRS 8050),
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Abstract. In this note, we study the long time behavior of Lotka-Volterra systems
whose coefficients vary randomly. Benäım and Lobry (2016) recently established
that randomly switching between two environments that are both favorable to the
same species may lead to different regimes: extinction of one species or the other,
or persistence of both species. Our purpose here is to describe more accurately
the range of parameters leading to these regimes, and the support of the invariant
probability measure in case of persistence.

1. Introduction

1.1. The model. The aim of the present paper is to study the ergodicity of a piece-
wise deterministic Markov process (PDMP) linked to Lotka-Volterra type dynamics.
These lines can be seen as a companion paper to Benäım and Lobry (2016) since
we go one step further in the description of different regimes of the process and
the support of the invariant measures. Let us first provide an overview of the main
results in Benäım and Lobry (2016) before stating our contribution.
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For a given set of positive parameters E = (a, b, c, d, α, β), consider the Lotka-
Volterra differential system in R2

+, given by
ẋ = αx(1− ax− by)

ẏ = βy(1− cx− dy)

(x0, y0) ∈ R2
+.

(1.1)

This system modelizes the evolution of the populations of two species (x of type x
and y of type y). The populations grow logistically — as encoded by the αx(1−ax)
and βy(1−dy) terms — and compete with each other, which gives rise to the cross
terms αbxy and βcxy. We denote by FE the associated vector field: (ẋ, ẏ) =
FE(x, y). In the sequel, the variable z stands for (x, y) and we will sometimes write
FE(z) instead of FE(x, y). This ODE system, taken alone, is easy to analyze. In
particular it has only a finite number of equilibrium points, towards which the
dynamics converges. These equilibria may be on the coordinate axes — meaning
that one of the species gets extinct — or inside the positive quadrant. The position
and nature of the equilibria turn out to depend only on the signs of c−a and d− b.
A complete picture will be given in Section 2; let us note already that when a < c
and b < d, the point (1/a, 0) attracts any path starting in (0,+∞)2. We say in this
case that the environnement is favorable to species x ; it leads to the extinction of
species y.

Consider now two such systems, labeled 0 and 1, with environments Ei =
(ai, bi, ci, di, αi, βi)i=0,1. We make the following standing assumption:

Assumption 1.1. The environments E0 and E1 are both favorable to x: ai < ci
and bi < di for i = 0, 1. In particular, taken alone, each system leads to the
extinction of the second species, that is, yt converges to 0 and lim supxt > 0 as
soon as x0 > 0.

Finally, introduce the random process obtained by switching between these two
deterministic dynamics, at rates (λi)i=0,1. More precisely, we consider the process
(Z, I) on R2 × {0, 1} driven by the infinitesimal generator

Lf(z, i) = FEi(z) · ∇zf(z, i) + λi(f(z, 1− i)− f(z, i)).

In other words, I jumps from i to 1 − i after a random time with an exponential
distribution of parameter λi, and while It is equal to i, Z evolves deterministically
by Żt = FEi(Zt). The coordinates of Zt are denoted by Xt and Yt. We refer
to Benäım and Lobry (2016) for a detailed biological motivation.

It is shown in Benäım and Lobry (2016) that, depending on the environments
E0, E1 and the jump rates λ0, λ1, one of the following four things occur almost
surely:

• extinction of species x: Xt → 0 and lim supYt > 0,
• extinction of species y: Yt → 0 and lim supXt > 0,
• extinction of one of the two species, chosen randomly,
• persistence: the empirical occupation measure (and, in many cases, the

distribution) of (Xt, Yt)t>0 converges to a probability measure on (0,+∞)2

that is absolutely continuous with respect to the Lebesgue measure.

Moreover, one or more of these regimes may occur when the jump rates (λ0, λ1) vary,
the environments (E0, E1) being fixed. Similar surprising behaviors for switched
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processes have been studied for linear ODEs in Benäım et al. (2014); Lawley et al.
(2014).

1.2. The frequent jumps asymptotics and the averaged vector field. Recall that λ0,
λ1 are the jump rates from one environment to the other. Note that the index pro-
cess (It)t>0 is Markov by itself, and its invariant measure is a Bernoulli distribution
with parameter λ0/(λ0 +λ1). As a consequence, it will be convenient to choose the
alternative parametrization

(s, t) ∈ [0, 1]× (0,+∞) 7→ (st, (1− s)t) (1.2)

for the jump rates, that is, let t be the sum λ0 +λ1 and s be the ratio λ0/(λ0 +λ1).

Remark 1.2 (Length of interjump times I). Notice that the expectations of the
interjump times are given by (st)−1 and ((1 − s)t)−1. If t is small, the jumps are
rare and the jump times are large in average; as t grows the jumps become more
frequent and the jump times shorter on average.

As the parameter t goes to infinity — the frequent jumps asymptotics — it can
be shown that the stochastic process (Zt)t>0 converges to the solution of

żt = Fs(zt) where Fs = (1− s)FE0 + sFE1 .

As noticed in Benäım and Lobry (2016), for any s ∈ [0, 1], the vector field Fs is itself
associated to a Lotka-Volterra system in an environment Es = (as, bs, cs, ds, αs, βs),
where

αs = (1− s)α0 + sα1, βs = (1− s)β0 + sβ1,

as =
(1− s)α0a0 + sα1a1

αs
, bs =

(1− s)α0b0 + sα1b1
αs

,

cs =
(1− s)β0c0 + sβ1c1

βs
, ds =

(1− s)β0d0 + sβ1d1
βs

.

(1.3)

Recall that by our standing assumption, ai < ci and bi < di for i = 0, 1. The key
point is that these inequalities may be reversed for the averaged environment Es; in
some situations Es may even be unfavorable to species x !

Definition 1.3 (Critical parameter regions). Two critical (possibly empty) param-
eter regions are defined in Benäım and Lobry (2016) by:

I = (s1, s2) = {s ∈ [0, 1], as > cs}, J = (s3, s4) = {s ∈ [0, 1], bs > ds}. (1.4)

The fact that I and J are indeed intervals is obvious from the definition of as,
bs, cs and ds by (1.3). As we have seen, the relevance of these intervals stems from
the fact that they correspond to different types for the averaged environment Es.
For example, the vector field Fs always has two stationary points on the coordinate
axes, but their nature vary:

• the stationary point (1/as, 0) is a well if s /∈ I and a saddle point if s ∈ I,
• the stationary point (0, 1/ds) is a saddle point if s /∈ J and a well if s ∈ J .

Remark 1.4. Notice that if a0 = a1 then the interval I is empty. In the sequel we
will focus on the case when a0 6= a1 and without loss of generality we will assume
that a0 < a1.

More details and a complete description of the phase portrait of the Lotka-Volterra
system will be given below (see Section 2).
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Λy > 0 Λy < 0
Λx > 0 persistence of the two species extinction of species y
Λx < 0 extinction of species x Extinction of a randomly chosen species

Table 1.1.

1.3. Invasion rates. It is shown in Benäım and Lobry (2016) that the regime of
the process (Z, I) is determined by the the signs of two quantities, called invasion
rates, Λx and Λy. These quantities are obtained by considering the system where
one of the species, say y, is almost extinct: y � 1. In this case, remark two things:

• if the current environment is i, the growth rate ẏ
y of species y is approxi-

mately βi(1− cix), by (1.1);
• while y stays negligible, the evolution of (X, I) looks like the dynamics of

the Markov process on [0,∞)× {0, 1} driven by the generator

Lxf(x, i) = αix(1− aix)∂xf(x, i) + λi(f(x, 1− i)− f(x, i)),

which turns out to be ergodic with an invariant measure µx on [0,∞)×{0, 1}
that depends on the jump rates (λ0, λ1) = (st, (1− s)t).

Over a long period of time, the growth rate of y is therefore obtained by averaging
βi(1− cix) with respect to the invariant measure µx: this leads to the definition of
the invasion rate Λy by

Λy(s, t) =

∫
[0,∞)×{0,1}

βi(1− cix)µx(dx, di).

When Λy is positive (respectively negative) species y tends to increase (respectively
decrease) from low density. Similarly, one can define

Λx(s, t) =

∫
[0,∞)×{0,1}

αi(1− biy)µy(dy, di).

where µy is the invariant probability measure of the stochastic process on R×{0, 1}
with generator

Lyf(y, i) = βiy(1− diy)∂yf(y, i) + λi(f(y, 1− i)− f(y, i)),

The main result in Benäım and Lobry (2016) ensures that the long time behavior
of the Markov process (Zt, It) is characterized by the sign of these invasion rates,
as summed up in the following table (see Theorems 3.1, 3.3, 3.4 and 4.1 of Benäım
and Lobry, 2016 for precise statements).

1.4. Our contribution. In view of the previous result, the study of the model is
reduced to finding the sign of the invasion rates, depending on the parameters of
the environment and on the jump rates. To state our results, we need to introduce
a second parametrization for the jump rates (λ0, λ1) ∈ (0,+∞)2 slightly different
from (1.2):

(u, v) ∈ [0, 1]× (0,+∞) 7→ (α0uv, α1(1− u)v)

in such a way that

u = γ0/(γ0 + γ1) and v = γ0 + γ1 where γi = λi/αi for i = 0, 1. (1.5)
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The change of parameters (u, v) = ξ(s, t) is triangular in the sense that u only
depends on s:

(u, v) = ξ(s, t) =

(
sα1

(1− s)α0 + sα1
,

t

α0α1
((1− s)α0 + sα1)

)
.

Remark 1.5 (Length of interjump times II). Notice that the new parameter v is
proportional to t when u (or s) is fixed. As a consequence, as in Remark 1.2, the
interjump times are short when v is large and large when v is small.

Definition 1.6 (Reparametrized invasion rates). The invasion rates in the (u, v)
coordinates are denoted by

Λ̃x(u, v) = Λx(ξ−1(u, v)) and Λ̃y(u, v) = Λy(ξ−1(u, v)).

Similarly, Ĩ (resp. J̃) is the image of I (resp. J) for the other parametrization.

Note that Ĩ and J̃ still are (possibly empty) intervals.

Remark 1.7. The parameter u is already implicitly considered in Benäım and Lobry
(2016), where it appears in the computations leading to the explicit conditions for
the non-emptyness of I (which are equivalent to the positivity of a second degree
polynomial).

Our first result is an explicit formula for Λ̃y, suited both to fast numerical com-
putations and theoretical study.

Lemma 1.8 (Expression of Λ̃y). Assume that a0 < a1 (see Remark 1.4). Let (u, v)

given by (1.5). The quantity Λ̃y can be rewritten as:

Λ̃y(u, v) =
1

(a1 − a0)
(

1
α0

(1− u) + 1
α1
u
)E [φ(Uu,v)] ,

where φ : [0, 1]→ R is defined by

φ(y) =
1

a0 + (a1 − a0)y
P (a0 + (a1 − a0)y)

for some explicit second degree polynomial P , and the random variable Uu,v follows
a Beta distribution Beta(uv, (1− u)v).

Moreover, φ has the following properties:

• If Ĩ = ∅ then φ is nonpositive on [0, 1];

• If Ĩ = (u1, u2) 6= ∅ then φ is concave, negative on (0, u1) ∪ (u2, 1) and

positive on Ĩ.

Recall that a function f is called quasi convex on (a, b) if its level sets {f 6 t}
are convex, that is, f decreases on (a, c) and increases on (c, b) for some c ∈ [a, b].

Our main result describes more precisely the region of positivity for Λx and Λy.

Theorem 1.9 (Shape of the regions). There exists a function u 7→ vy(u) from

(0, 1) → [0,∞], with domain Ĩ, such that Λ̃y(u, v) < 0 when v < vy(u) and

Λ̃y(u, v) > 0 when v > vy(u).

Moreover vy is quasi-convex, continuous on its domain Ĩ, and tends to +∞ on

the endpoints of Ĩ.
Similarly, there exists a function s 7→ ty(s) ∈ [0,∞], with domain I, going to

infinity at the endpoints of I, such that:
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• Λy(s, t) < 0 if t < ty(s),
• Λy(s, t) = 0 if t = ty(s),
• Λy(s, t) > 0 if t > ty(s).

The same statement holds in the parameters (s, t) for the function (−Λx) with I
replaced by J and with a critical function tx(s).

Remark 1.10. Numerical computations suggest that both vy and ty are in fact

smooth and convex on Ĩ and I respectively.

Remark 1.11. This result is cited in Benäım and Lobry (2016, Proposition 2.5),
since it answers a conjecture that appeared in a preprint version of Benäım and
Lobry (2016).

For an illustration of Theorem 1.9 and Remark 1.10, see Figure 1.1.
Finally, our last results are dedicated to the support of the non-trivial invariant

probability measure in the persistence regime. In Benäım and Lobry (2016), it is
shown that this measure has a density with respect to the Lebesgue measure on
the quadrant. Theorem 5.1 provides a full description of its support when the set
I ∩ J is not empty. Since a precise statement requires several notations introduced
in Section 2, we postpone it to the last section of the document.

The remainder of the paper is organized as follows. In Section 2 we describe the
various phase portraits for Lotka-Volterra vector fields, and narrow down the choices
of E0, E1 that lead to interesting behaviour. In Section 3 we prove Lemma 1.8; the
main result is proved in Section 4. The final section is dedicated to the description
of the support of invariant measures in the persistence regime.

2. Deterministic picture

2.1. Phase portraits of Lotka-Volterra vector field. We consider here the ODE (1.1)
in an environment E = (a, b, c, d, α, β) and describe its possible qualitative be-
haviours. Much of this description can be found in Benäım and Lobry (2016), we
give it here for the sake of clarity.

Barring limit cases that we will not consider, there are essentially four different
phase portraits for the system, that are depicted in Figure 2.2. These four regimes
are obtained as follows.

Notice first that the vector FE(x, y) is horizontal if y = 0 or cx+ dy = 1: we call
the line cx+dy = 1 the horizontal isocline. Similarly FE(x, y) is vertical if x = 0 or
if (x, y) is on the vertical isocline ax+ by = 1. These isoclines are the bold straight
lines in Figure 2.2.

Each axis is invariant that why in the sequel we are only interested in initial
conditions with positive coordinates. The three points (0, 0), (0, 1/d) and (1/a, 0)
are stationary for FE . The origin is always a source. The nature of the other points
and the existence of a fourth stationary point depends on the parameters; this gives
rise to the four types announced above.

Type 1. If a < c and b < d, species y gets extinct.

• The point (1/a, 0) is the unique global attractor: any solution of the ODE
starting from a point with positive coordinates converges to (1/a, 0).

• The point (0, 1/d) is a hyperbolic saddle point. Its stable manifold is the
vertical axis. We denote by Σ the intersection of its unstable manifold with
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These plots represent the “critical” functions ty and tx for different choices of the en-
vironments. Denoting environments by the couple ( αβ ); ( a bc d ), the functions are plotted
with

E0 =

(
1
5

)
;

(
1 1
2 2

)
(top plot) or

(
1
2

)
;

(
1 2/3
2 4/3

)
(bottom plot); E1 =

(
5
1

)
;

(
3 3
4 ρ

)
for various values of the parameter ρ appearing in the definition of the environment E1.
The black curve in both plots is ty, and does not depend on the value of ρ. The colored
curves are tx. The respective domains of these curves are the intervals I and J . All
configurations are possible: I ∩ J may be empty (bottom plot, ρ = 6.8), a strict subset
of I and J (bottom plot, ρ = 6.2) or may be I or J itself (top plot). Thanks to the
results of Benäım and Lobry (2016) summarized in the Table 1.1, these plots describe
exactly what regimes are possible when the jump rates (parametrized by s and t) vary,
for a given choice of the environments. For example the top plot for ρ = 5.5 has three
regimes: extinction of x (above the red curve), persistence (between the red and the black
curves) and extinction of y (below the black curve). For ρ = 4.5 there is an additional
zone (above the yellow curve and below the black one) of extinction of a random species.
In particular, the knowledge of the relative positions of I and J is not enough to determine
the possible regimes. All these plots are computed by finding, for a fixed s, the zero of
the function t 7→ Λ(s, t); this is done by a simple root finding algorithm, using the explicit
formula given in Lemma 1.8 to evaluate Λ(s, t).

Figure 1.1. Shape of positivity regions for Λx and Λy



740 F. Malrieu and P.-A. Zitt

the positive quadrant: Σ is the curve made of points (x0, y0) such that the
solution (xt, yt) starting at (x0, y0) satisfies

(xt, yt) −−−−→
t→−∞

(0, 1/d).

We may compute explicitly some characteristics of Σ: in particular, it leaves

(0, 1/d) with a slope −α(d−b)+βdβc and ends in (1/a, 0) with a possibly degen-

erate slope min
(

0,−β(a−c)+αaαb

)
. Moreover, Σ lies in between the horizontal

and vertical isoclines.

Type 2. If a > c and b > d, species x gets extinct. (0, 1/d) is the unique sink and
(1/a, 0) is a saddle point. This is the same as Type 1 except that the two species
x and y are swapped.

Type 3. If a > c and b > d, both species survive. The points (1/a, 0) and (0, 1/d)
are saddle points. The isoclines meet at the sink (x̄, ȳ) = (ad− bc)−1(a− c, b− d),
which is the unique global attractor.

Type 4. If a > c and b < d, one of the two species gets extinct depending on the
starting point. The meeting point of the isoclines (x̄, ȳ) = (ad− bc)−1(a− c, d− b)
is now a saddle point, and (non trivial) trajectories converge to one of the two sinks
on the axes, (1/a, 0) and (0, 1/d).

2.2. Relative positions of the two environments. Recall that the vector fields FE0
and FE1 are assumed favorable to species x: ai < ci and bi < di for i = 0, 1. Without
loss of generality, we suppose that a0 < a1. The switched system may present a
surprising behavior if the interval I defined in Equation (1.4) is not empty. This
requires that c0 < a1. As a consequence, we impose in the sequel that

a0 < c0 < a1 < c1, b0 < d0 and b1 < d1.

Lemma 2.1. If the set J is not empty then d1 < b0 or d0 < b1. Moreover, if I ∩ J
is non empty then

a0 < c0 < a1 < c1 and b0 < d0 < b1 < d1. (2.1)

Proof : The first point is clear from the definition of J . As a consequence, two
configurations are compatible with I and J non empty: (2.1) and

a0 < c0 < a1 < c1 and b1 < d1 < b0 < d0.

Suppose, to derive a contradiction, that we are in the latter configuration. Define
the points Ci = (1/ci, 0) and Di = (0, 1/di) for i = 0, 1. If M = (x̃, ỹ) is the
intersection of the lines (C0D0) and (C1D1) then the set [x̃,+∞)× [0, ỹ] is strongly
positively invariant under the action by F0 and F1. Furthermore, if I ∩ J is not
empty, this means that there exists s0 ∈ (0, 1) such that FEs0 is of Type 2. In

particular, the point (0, 1/ds) is accessible. This is incompatible with the previous
remark. As a consequence, I ∩ J is empty for this configuration. �

3. Expression of the invasion rate

Let us first recall the expression of Λy derived in Benäım and Lobry (2016).
Letting pi = 1/ai, Λy is given by

Λy = p0p1C

∫ p1

p0

P (x)θ(x) dx
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1/a1/c

1/b

1/d

a < c, b < d
(s ∈ Ic ∩ Jc)

1/a1/c

1/b

1/d

a < c, b > d
(s ∈ Ic ∩ J)

1/a 1/c

1/b

1/d

a > c, b < d
(s ∈ I ∩ Jc)

1/a 1/c

1/b

1/d

a > c, b > d
(s ∈ I ∩ J)

In each picture the bold lines are the horizontal and vertical isoclines, the gray
lines are trajectories of the ODE. Sources, sinks and saddle points are pictured
respectively by white circles, black circles and crosses. Type 1 environments
correspond to the upper left picture, Type 2 to the bottom right one. In Type 3
environments (bottom left), the intersection of the isoclines attracts the whole
quadrant. In Type 4 environments (upper right) one species or the other gets
extinct depending on the starting point. For fixed environments E0, E1 of Type 1,
the mixed environment Es may be of any of the four types, depending on whether s
belongs to the intervals I and J .

Figure 2.2. The four possible deterministic regimes for a given environment

where

C−1 =
p1
α1

∫ max(p0,p1)

min(p0,p1)

|x− p0|γ0 |p1 − x|γ1−1
xγ0+γ1+1

dx

+
p0
α0

∫ max(p0,p1)

min(p0,p1)

|x− p0|γ0−1|p1 − x|γ1
xγ0+γ1+1

dx,

θ(x) =
|x− p0|γ0−1|p1 − x|γ1−1

xγ0+γ1+1
,

P (x) =

[
β1
α1

(1− c1x)(1− a0x)− β0
α0

(1− c0x)(1− a1x)

]
a1 − a0
|a1 − a0|

.

This quantity is obtained by averaging the growth rate of the second species with
respect to the invariant measure of the one-dimensional PDMP (X, I) on [0,∞)×
{0, 1} driven by

Lf(x, i) = αix(1− aix)∂xf(x, i) + λi(f(x, 1− i)− f(x, i)),



742 F. Malrieu and P.-A. Zitt

which corresponds to the dynamics of species x when species y is gone. In the
sequel, we assume that a0 < a1 and set δ = a1−a0. It is obvious that the recurrent
set of (X, I) is [p1, p0]× {0, 1}.

In Benäım and Lobry (2016), the continuous part [p1, p0] of the state space is
parametrized by a mapping [0, 1] 3 s 7→ ps given by ps = 1/as, where as = (sα1a1+
(1− s)α0a0)/(sα1 + (1− s)α0). It is interesting to look at another parametrization
[0, 1] 3 u 7→ p̃(u), where p̃(u) = ã(u)−1 = 1

a0+δu
. These parametrizations are

summed up in the following diagram:

[a0, a1]

I ⊂ [0, 1] [0, 1] ⊃ Ĩ

[p1, p0]

s 7→ as u 7→ ã(u)

s 7→ ps u 7→ p̃(u)

x 7→ 1/x

This parameter u is the one given in the introduction and corresponds to a ratio
of the γ, when s corresponds to a ratio of λ, in the sense that:

p̃

(
γ0

γ0 + γ1

)
= p

(
λ0

λ0 + λ1

)
.

Remark 3.1. As already mentioned above, the parameter u and the interval Ĩ are
used implicitly in Benäım and Lobry (2016): u appears in Remark 1, and the map S
defined at the beginning of Section 4 is given in our notation by S(u) = p−1(p̃(u)).

Let us study the integral
∫ p0
p1
P (x)θ(x)dx. Set y = p̃−1(x), so that:

x = p̃(y) =
1

ã(y)
=

1

a0 + δy
, dx = −δp̃(y)2dy

p0 − x = δp0yp̃(y), x− p1 = δp1(1− y)p̃(y).

Changing variables in the integral yields:∫ p0

p1

P (x)θ(x)dx

=

∫ 1

0

P (p̃(y))(δp0yp̃(y))
γ0−1(δp1(1− y)p̃(y))

γ1−1p̃(y)−γ0−γ1−1δp̃(y)2dy

= δγ0+γ1−1pγ0−10 pγ1−11

∫ 1

0

P (p̃(y))
1

p̃(y)
yγ0−1(1− y)γ1−1dy

= δγ0+γ1−1pγ0−10 pγ1−11

∫ 1

0

φ(y)yγ0−1(1− y)γ1−1dy

= δγ0+γ1−1pγ0−10 pγ1−11 B(uv, (1− u)v)E [φ(Uu,v)] .

since φ(y) = 1
p̃(y)P (p̃(y)). A similar computation gives the exact formula

C−1 =
(
δγ0+γ1−1pγ0−10 pγ1−11 B(uv, (1− u)v)

)
p0p1δ

(
1

α0
(1− u) +

1

α1
u

)
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for the normalization constant C. Therefore

Λy(γ0, γ1) =
1

δ
(

1
α0

(1− u) + 1
α1
u
)E [φ(Uu,v)] .

Let us study φ more precisely. Since P is a second-degree polynomial, let us
write it down as P (x) = A2x

2 +A1x+A0. Then

φ(y) =
A2

a0 + δy
+A1 +A0(a0 + δy).

The second derivative is

φ′′(y) =
2A2δ

2

(a0 + δy)3
,

which has the sign of A2 on [0, 1], so φ is either strictly convex or strictly concave.
However, the proof of the first item of Proposition 2.2 in Benäım and Lobry (2016)

shows that (still in the case a0 < a1) P (ps) = βs

α1s
(1 − a0/as)(1 − cs/as) has the

same sign as as − cs, that is, P (ps) is positive iff s ∈ I. If I is empty, so is Ĩ,

and φ is negative on ]0, 1[. If I is not empty, so is Ĩ, and φ is positive on Ĩ (and

nonpositive outside Ĩ), therefore φ must be concave.

4. Shape of the positivity region

We begin with a lemma, which is proved in the next two sections. The existence
and properties of vc and tc stated in Theorem 1.9 are deduced from this lemma in
Section 4.3.

Lemma 4.1. If I is non empty, the map (u, v) 7→ E [φ(Uu,v)] is (strictly) increasing
in v and concave in u.

4.1. Monotonicity in v. We wish to compare E [φ(Uu,v)] for different values of v.
Since the function ψ = (−φ) is convex, a natural idea is to compare the distributions
of Uu,v for various v in the convex order. Let us first recall the definition of this
order.

Definition 4.2 (Convex order). Let X and Y be two random variables. If the
inequality

E [ψ(X)] 6 E [ψ(Y )]

holds for all convex functions ψ such that the expectations exist, X is said to be
smaller than Y in the convex order. We denote by X 6cvx Y this relation.

The convex order admits the following characterization in terms of cumulative
distribution functions (Shaked and Shanthikumar, 2007, Theorem 3.A.1).

Theorem 4.3 (Convex order and distribution functions). The variables X and Y
satisfy X 6cvx Y if and only if E [X] = E [Y ] and, for all x,∫ x

−∞
FX(t)dt 6

∫ x

−∞
FY (t)dt <∞, (4.1)

where FX and FY are the cumulative distribution functions of X and Y .
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Remark 4.4 (Terminology). The convex order is one possible way of formalizing
the idea that Y is “more variable/more spread out” than X. Note in particular if
X 6cvx Y then Var (X) 6 Var (Y ). For details on the convex order, a survey of
other formalizations of variability and many other notions of stochastic order we
refer to Shaked and Shanthikumar (2007).

Let us also note that, when (4.1) holds (without assuming E [X] = E [Y ]), X
is said to second-order stochastically dominate Y ; this is equivalent to asking the
inequality E [ψ(X)] 6 E [ψ(Y )] for any non-increasing convex function ψ. We refer
to Marshall et al. (2011, Appendix B.19) for a proof, additional discussion, and
references to the literature.

We will need the following easy fact.

Theorem 4.5. If X 6cvx Y and E [ψ(X)] = E [ψ(Y )] for some strongly convex ψ,
then X and Y have the same distribution.

Proof : Suppose that X and Y satisfy the hypotheses. By a classical characteriza-
tion of the convex order (Shaked and Shanthikumar, 2007, Theorem 3.A.4) there
exists a couple (X,Z) such that E [Z|X] = 0 and X + Z has the same distribution
as Y . Since ψ is strongly convex, there exists an m > 0 such that for all t ∈ [0, 1],

ψ(X + tZ) = ψ((1− t)X + t(X + Z)) 6 (1− t)ψ(X) + tψ(X + Z)− mt(1− t)
2

Z2.

Taking expectations we get

E [ψ(X)] 6 E [ψ(X + tZ)] 6 (1− t)E [ψ(X)] + tE [ψ(Y )]− mt(1− t)
2

E
[
Z2
]
,

where the first inequality comes from Jensen’s inequality and E [Z|X] = 0. Since
E [ψ(Y )] = E [ψ(X)], Z must be zero almost surely, so X and Y have the same
distribution. �

Theorem 4.6 (Orderings between Beta r.v.). Let X ∼ Beta(α, β) and X ′ ∼
Beta(α′, β′). If α < α′, β < β′ and α/(α+ β) = α′/(α′ + β′), then X ′ 6cvx X.

Proof : Call fα,β , fα′,β′ the densities of the distributions. Compute their ratio:

fα′,β′(x)

fα,β(x)
= Cα,β,α′,β′xα

′−α(1− x)β
′−β .

In the first case, this ratio starts and ends in zero, is strictly increasing on [0, x0]
and strictly decreasing on [x0, 1]. Since the two functions are densities, the ratio
must cross 1 exactly twice, say in x1, x2. Therefore

d(x) = fα′,β′ − fα,β
is positive on (x1, x2) and negative on (0, x1) and (x2, 1). Therefore

D(x) = FX′(x)− FX(x)

starts at zero, decreases on [0, x1], increases on [x1, x2] and decreases on [x2, 1], so
D(x) is negative on [0, x3] and positive on [x3, 1] (since it ends at zero). Integrating
once more, ∫ x

0

D(t)dt

starts and ends at zero (since E [X] = E [X ′]) and is decreasing-increasing, therefore
it is non- positive. Thanks to Theorem 4.3, this implies X ′ 6cvx X. �
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Proof of the monotonicity in v: Suppose v < v′ and put α = uv, α′ = uv′, β =
(1− u)v, β′ = (1− u)v′. The theorem shows that Uu,v′ 6cvx Uu,v. Since ψ = (−φ)
is strongly convex, this implies

E [φ(Uu,v)] < E [φ(Uu,v′)] ,

by Theorem 4.5, so v 7→ E [φ(Vu,v)] is (strictly) increasing. �

4.2. Concavity in u. Even though φ is concave and the r.v. Uu,v, Uu′,v are stochas-
tically comparable (for the usual stochastic order), this is not enough to show the
concavity of u 7→ E [φ(Uu,v)]. We prove it by elementary means. First, recalling
the explicit expression of φ we write:

E [φ(Uu,v)] = AE
[

1

a0 + δUu,v

]
+B + CE [a0 + δUu,v]

= AE
[

1

a0 + δUu,v

]
+B + C(a0 + δu).

Since A is negative (see the proof of Lemma 1.8) and the last term is linear, it is
enough to show that

g : u 7→ E
[

1

a0 + δUu,v

]
is convex. It is a bit easier to use the symmetry of Beta random variables (Uu,v
and 1− U1−u,v have the same distribution) and look at

h : u 7→ E
[

1

a1 − δUu,v

]
.

Since g(u) = h(1 − u), g will be convex if h is convex. Now, recalling that δ =
(a1 − a0) < a1, we write the series development:

h(u) =
1

a1
E

[ ∞∑
k=0

(
δ

a1

)k
Uku,v

]
=

1

a1

∞∑
k=0

(
δ

a1

)k
E
[
Uku,v

]
so h is a mixture of the functions hk given by:

hk(u) = E
[
Uku,v

]
=

k−1∏
r=0

uv + r

v + r
=

1∏k−1
r=0(v + r)

(uv)(uv + 1) · · · (uv + k − 1).

This is a polynomial function of u with positive coefficients, therefore it is convex
on [0, 1]. This concludes the proof.

4.3. Properties of the frontier. We have just shown that v 7→ Λ̃y(u, v) is increasing.
From Benäım and Lobry (2016, Proposition 2.2) and the fact that in the change
of variables (s, t)↔ (u, v), u only depends on s, and for fixed u, v is an increasing
function of t, we know additionally that it admits:

• negative limits at 0 and ∞ if u does not belong to the closure of Ĩ,
• a negative limit at 0 and a positive limit at ∞ if u ∈ Ĩ.

Since Λ̃y has the same sign as E [φ(Uu,v)], this justifies the existence of vc, and we
have

Λ̃y(u, v) = 0 ⇐⇒ u ∈ Ĩ , v = vc(u).

Let us prove that vc is quasi-convex. Let a < b < c be three points in (0, 1). If

a or c are not in Ĩ, vc(b) is less than max(vc(a), vc(c)) = ∞. If a and c are in Ĩ,
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let M > max(vc(a), vc(c)). Since Λ̃y(u, ·) is increasing, Λ̃y(a,M) and Λ̃y(c,M) are

positive. Since u 7→ Eφ(Uu,v) is concave, Λ̃y(b,M) is positive. Therefore vc(c) 6M .
Sending M to max(vc(a), vc(b)) yields the quasi-convexity of vc.

Let us now show the regularity properties. Let un be an increasing sequence in
Ĩ, converging to some u ∈ (0, 1). Since vc is quasi-convex, vn = vc(un) is eventually
monotone, so it converges to some v ∈ [0,∞]. If v is finite, since the zero set of Λy

is closed, by continuity, v = vc(u), so u must be in Ĩ. Conversely, if u ∈ Ĩ, vc is
bounded on a neighborhood of u by quasi-convexity, so v is finite. This shows that
vc is continuous on Ĩ and converges to ∞ at the endpoints.

The properties of the change of variables (s, t) ↔ (u, v) show that vc is well-
defined and continuous with the correct limits.

5. Support of the invariant measure

Note that the stochastic Lotka-Volterra process has at least two invariant prob-
ability measures, supported on the coordinate axes. In the persistence regime, we
are interested in the third invariant measure, whose support Γ×{0, 1} is such that
Γ has non empty interior. Several properties of Γ are established in Benäım and
Lobry (2016) (see below). In this section, we aim at providing a full description of
Γ. Its shape essentially depends on the fact that I ∩ J is empty or not.

5.1. Persistence with “full support”. In this subsection, we assume that I∩J is not
empty. According to Lemma 2.1, the vector fields FE0 and FE1 are such that (2.1)
holds. Let us denote by Σi the intersection of [0,∞)2 and the unstable manifold of
(0, 1/di) and Γ′ the bounded subset of [0,+∞)2 with border

Σ1 ∪ {(x, 0) : 1/a1 6 x 6 1/a0} ∪ Σ0 ∪ {(0, y) : 1/d1 6 x 6 1/d0}.
Theorem 5.1. Suppose that I ∩ J 6= ∅. Then, for any (s, t) ∈ [0, 1]× (0,∞) such
that Λx(s, t) > 0 and Λy(s, t) > 0, then Γ′ = Γ.

Proof : Firstly, notice that the set Γ′ is positively invariant for each flow since both
vector fields FE0 and FE1 point inside Γ′.

Pick an s ∈ I ∩ J . The isoclines and the unstable manifold of the saddle point
for the three environments E0, E1 and Es are necessarily in the position depicted
in Figure 5.3. Denote by Σs the intersection of the unstable manifold of (1/as, 0)
with the upper right quadrant.

First step: the set Σs is contained in the support. Indeed, pick a point (x, y)
in the interior of the support (such a point exists by Benäım and Lobry, 2016,
Remark 6). The loop formed by the trajectories starting from (x, y) with both
flows (converging to A1 : (1/a1, 0) and A0 : (1/a0, 0) and the line segment [A0, A1]
is included in the support (by positive invariance). As a consequence, the support
must contain a closed half ball centered on As — let us call it B. Now pick a point
(x, y) ∈ Σs: by definition its Es flow converges for t→ −∞ to 1/as. By continuity
there exists a point in the past of (x, y) which is in B. Running the time forward
again, the point (x, y) must be in the support.

Second step: any point (strictly) between Σ1 and Σs is in Γ. Starting from such
a point (x, y), run the E1 flow in reverse time. The trajectory must cross Σs. So
(x, y) is in the future of a point in Σs ⊂ Γ, and (x, y) ∈ Γ by positive invariance.
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A0C0

D0

A1C1

B1

D1

AsCs

Bs

Ds

The isoclines (straight lines) and unstable manifolds (curved lines) for the three
environments E0 (bottom left, in blue), Es (middle, in purple) and E1 (upper right,
in red). Note how the isoclines are “swapped” for Es, a Type 2 environment.

Figure 5.3. Full support case: isoclines and unstable manifolds

The outer curves are Σ0 and Σ1. The region between these curves is positively
invariant. The inner curves are the two trajectories coming from the unique point
z ∈ T : they form the boundary of the support. The sample trajectory shows that
the invariant measure is in practice often concentrated on a smaller subset.

Figure 5.4. Support away from the y axis
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Third step: any point between Σ0 and Σs is in Γ. This step is similar to the
previous one and is omitted.

Similarly, any point between Σ1 and Σs is in Γ. �

5.2. Support away from the y axis. We suppose in the sequel that I ∩ J is empty.
Let us introduce the set where the two vector fields F0 and F1 are collinear:

C =
{
z ∈ R2

+ : det(F0(z), F1(z)) = 0
}
.

This set is the union of {(0, y) : y > 0}, {(x, 0) : x > 0}, and

C̃ =
{

(x, y) ∈ R2
+ : G(x, y) = 0

}
where G is a polynomial of degree 2. As a consequence, the set C̃ is a subset of a
conic. It is easy to see that C̃ is also the set of non-degenerate equilibrium points
for the vector field FEs , as s varies from 0 to 1. When s ∈ I, Es is of Type 3 so the

equilibrium point is stable and globally attractive. Therefore the part of C̃ that
corresponds to s ∈ I must be included in Γ, as well as all trajectories (for both
flows) starting from it.

Numerical experiments suggest that there is a unique “extremal point” on this
part of C̃, such that the trajectories starting from this point form the boundary of
Γ. See Figure 5.4.

To describe it more precisely, consider the subset of C̃ made of the points where
F0 (or F1) is tangent to the curve C̃. This set is given by

T =
{

(x, y) ∈ R2
+ : G(x, y) = 0 and (F0 · ∇G)(x, y) = 0

}
.

Since G and F0 · ∇G are polynomials with respective degrees 2 and 3, T is made
of at most six points according to Bezout’s Theorem.

For any z ∈ T let us define C(z) the bounded region enclosed by the Jordan
curve {

ϕ0
z(t) : t ∈ [0,∞)

}
∪
{
ϕ1
z(t) : t ∈ [0,∞)

}
∪ [1/a1, 1/a0]× {0},

where t 7→ ϕiz(t) is the flow associated to the vector field Fi for i = 0, 1.

Conjecture 5.2. The set T is a singleton {z0} and the support of the invariant
measure which is not supported by one of the two axes is C(z0)× {0, 1}.
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