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Abstract. We establish a recurrence criterion for a model of inhomogeneous ran-
dom walk in Zd+1 in environment stratified by parallel affine hyperplanes. The
asymptotics of the random walk is governed by some notion of directional flux
variance, describing the dispersive power of some associated average flow. Some
examples are presented, as well as a geometric interpretation of the criterion, in
relation with the level lines of some diffusion picture.

1. Introduction

An important problem in the study of the asymptotical behaviour of Markov
chains on a lattice concerns the recurrence/transience of random walks in an het-
erogeneous environment. We focus in this article on the case where the transition
laws depend on a single coordinate, extending some former work (Brémont, 2016).
Examples of planar random walks of this type, in environment with oriented hor-
izontal lines, were first proposed by Campanino and Petritis (2003) in 2003, as
simplified probabilistic versions of PDE transport models in stratified porous me-
dia by Matheron and De Marsily (1980).

Let us detail the model. We consider a Markov chain (Sn)n≥0 in Zd × Z, with
d ≥ 1, starting at 0. We write Sn = (S1

n, S
2
n) ∈ Zd × Z. Quantities relative

to the second coordinate are said “vertical”. The family of transitions laws is
assumed to be stratified with respect to the affine hyperplanes (Zd × {n})n∈Z,
without hypothesis on the relative dependence between distinct levels. For the
whole text, we fix Euclidean Norms and denote scalar product by a dot. Vectors
are written in columns and At is the transpose of the matrix A.

For each vertical n ∈ Z, assume to be given reals pn, qn, rn with pn+ qn+ rn = 1
and a probability measure µn with support in Zd. We suppose satisfied the following
conditions:
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Hypotheses 1.1. For some δ > 0 and all n ∈ Z:

1) min{pn, qn, rn} ≥ δ,
2)
∑
k∈Zd ‖k‖max(d,3)µn(k) ≤ 1/δ,

3) the eigenvalues of the real symmetric matrix
∑
k∈Zd kk

t µn(k) are ≥ δ.

The last condition can be equivalently rewritten as:∑
k∈Zd

(t.k)2µn(k) ≥ δ‖t‖2, t ∈ Rd.

In particular the subgroup of (Zd,+) generated by supp(µn) is d-dimensional. The
transition laws are then defined, for all (m,n) ∈ Zd × Z and k ∈ Zd, by:

P(m,n),(m,n+1) = pn, P(m,n),(m,n−1) = qn, P(m,n),(m+k,n) = rnµn(k).

Z

rnµn(k)pn

(m+ k, n)
qn

(m,n)

Zd

The model of Campanino and Petritis (2003) corresponds to taking d = 1, with
pn = qn = p ∈ (0, 1) and µn = δεn , fixing some sequence (εn)n∈Z of ±1 modeling
the orientation of the horizontal lines. Campanino and Petritis show the recurrence
of the random walk when εn = (−1)n and its transience for εn = 1n≥0 − 1n<0

or when the (εn) are typical realizations of i.i.d. random variables with law (δ1 +
δ−1)/2. Staying close to this setting, several variations, extensions and second
order questions were subsequently considered by different authors; see for example
Campanino and Petritis (2014) for a review. For the model introduced above in
the case d = 1, under the local vertical symmetries pn = qn, n ∈ Z, a complete
characterization of the qualitative asymptotics of the random walk was recently
given in Brémont (2016). A corollary of the study is that in this family of random
walks, simple planar random walk, hardly recurrent, is the most recurrent one. This
explains the prevalence of transience results in the litterature on the Campanino-
Petritis model. For example, a growth condition larger than log n on ε1 + · · ·+ εn
is sufficient to ensure transience.

Pushing to some natural limit the method used in Brémont (2016), we establish
in the present article a recurrence criterion for the model described above. This
furnishes a large class of recurrent random walks in Z2 and Z3. The mechanism
governing the asymptotical behaviour of the random walk incidentally reveals some
familiarity with classical Electromagnetism, involving notions such as flux varia-
tions. The latter represent the dispersive properties of some horizontal average
flow associated with the random walk. Variations are measured in a probabilis-
tic way, via empirical variances. We finally present some examples and provide
a geometrical interpretation of the recurrence criterion, leading to considering the
volume of some kind of anisotropic pseudosphere when d = 2.

2. Statement of the result

Let us fix some notations for the sequel.
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Definition 2.1.
1) For n ∈ Z, let mn =

∑
k∈Zd kµn(k) be the expectation of µn.

2) For n ∈ Z, set:

p′n =
pn

pn + qn
, q′n =

qn
pn + qn

, an =
q′n
p′n

=
qn
pn

and bn =
1

p′n
= 1 + an.

3) Set:

ρn =

 a1 · · · an, n ≥ 1,
1, n = 0,

(1/an+1) · · · (1/a−1)(1/a0) n ≤ −1.

4) For n ≥ 0, let:

v+(n) =
∑

0≤k≤n

ρk and v−(n) = a0

∑
−n−1≤k≤−1

ρk.

We denote by θ the “left shift” on indices. Given a function f =
f((pi, qi, ri, µi)i∈Z), we write θf for f((pi+1, qi+1, ri+1, µi+1)i∈Z). In particular we
have the cocycle relation:

∀(n, k) ∈ Z2, ρn+k = ρnθ
nρk.

For two functions f(x) and g(x), we shall write f � g if there exists an absolute
constant C > 0 to that for all x, (1/C)f(x) ≤ g(x) ≤ Cf(x).

We next define the reciprocal function of a non-negative non-decreasing function
defined on the set of integers N = {0, 1, · · · }.

Definition 2.2. Let f : N → R ∪ {+∞} be non-decreasing. For x ∈ R+, let
f−1(x) = sup{n ∈ N | f(n) ≤ x}, with the convention that sup∅ = 0 and supN =
+∞.

The analysis developed below runs as follows. Due to the stratification of the en-
vironment, when restricting the random walk to its vertical movements, the vertical
coordinate is a Markov chain. This is a very special situation for a multidimensional
inhomogeneous Markov chain. The treatment of the recurrence/transience of the
vertical coordinate is standard and we rapidly focus on the case when the vertical
component is recurrent. In this case and when d = 1, the only possible direction
of escape is the horizontal one. We consider the sequence of return times on the
horizontal axis, which is an i.i.d. random walk with heavy-tailed jump. Informally,
considering this sub-random walk appears to be equivalent to considering the prop-
erties of the flux of some horizontal flow. When d ≥ 1, this flow lies in Zd and can
be desintegrated in directional fluxes.

Let us now introduce some definitions concerning the variations of directional
fluxes. These may be considered as directional macrodispersion coefficients. Re-
lated longitudinal macrodispersion coefficients already appear since a long time in
Physics, see for example in Matheron and De Marsily (1980), when d = 1.

Definition 2.3.
1) Let Sd−1

+ = {x ∈ Rd | ‖x‖ = 1, x1 ≥ 0} be a half unit Euclidean sphere of Rd.
It is a compact space. We naturally write du for standard Lebesgue measure on
Sd−1

+ .
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2) Define for n ≥ 0 the structure function, depending only on the vertical:

Φstr(n) =

n ∑
−v−1
− (n)≤k≤v−1

+ (n)

1

ρk


1/2

.

3) For u ∈ Sd−1
+ and m ≥ 0, n ≥ 0, introduce:

Φu(−m,n) =

 ∑
−v−1
− (m)≤k≤l≤v−1

+ (n)

ρkρl

 1

ρ2
k

+
1

ρ2
l

+

(
l∑

s=k

rsms.u

psρs

)2



1/2

∈ [0,+∞].

For n ≥ 0, set Φu(n) = Φu(−n, n) and Φu,+(n) =
√

Φ2
u(−n, 0) + Φ2

u(0, n) .

The essential aim of the article is to prove the following result.

Theorem 2.4. The random walk is recurrent if and only if:∑
n≥1

n−d−1

∫
Sd−1
+

(Φ−1
u (n))2

Φ−1
u,+(n)

du = +∞.

The meaning of the criterion will be clarified in the last section. For each fixed
u ∈ Sd−1

+ the general term appearing above is related to a diffusion property of the
level lines of the map (m,n) 7−→ Φu(−m,n), with m ≥ 0, n ≥ 0. When d = 2,
the global integral is essentially the volume in R3 of an object looking like some
two-sided top.

We shall deduce the following consequences, making the recurrence criterion
easier to use in many classical situations.

Proposition 2.5.
1) A sufficient condition for transience is:∑

n≥1

∫
Sd−1
+

(Φu(n))−d du < +∞.

The latter is satisfied when
∑
n≥1(Φstr(n))−d < +∞. There is thus transience

when:

i) d ≥ 3.
ii) d = 2 and Φstr(n) ≥

√
n (log n)1/2+ε. This is true if pn = qn, n ∈ Z.

iii) d = 1 and Φstr(n) ≥ n(log n)1+ε.

2) When mn = 0 for all n ∈ Z, the random walk is transient if and only if:∑
n≥1

(Φstr(n))−d < +∞.

3) (Antisymmetry). When (p−n, q−n, r−n,m−n) = (qn, pn, rn,−mn), for n ≥ 0 (in
particular m0 = 0 and p0 = q0), the random walk is transient if and only if:∑

n≥1

∫
Sd−1
+

(Φu(0, n))−d du < +∞.
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Remark 2.6. The vertical coordinate (restricting to vertical movements) is the
Markov chain on Z with jump probabilities Pn,n+1 = p′n and Pn,n−1 = q′n. For
an observer at 0 of this one-dimensional random walk, the quantity ρn can be con-
sidered as the level of the sea at site n ∈ Z. The global effort for going from 0 to n
is somehow measured by v+(n). This is some kind of asymmetric distance between
0 and n. The point v−1

+ (n) is somehow the point at distance n from 0 for some new
metric. It is classical (we reprove it below) that this random walk is recurrent if
and only if v+(n) → +∞ and v−(n) → +∞, as n → +∞, meaning that the effort
for going either North or South is infinite. This may also be seen classically by the
fact that this one-dimensional random walk is reversible; for example the quantity
v+(n) is the effective resistance from 0 to n. More important, 1/ρn is reminiscent
of some invariant measure. We shall interpret it as a conductivity, acting multi-
plicatively. When ρn is small then 1/ρn is large. The quantity rsms.u/(psρs) in
Φu(−m,n) then essentially corresponds to what flows in the horizontal direction u
at the vertical s ∈ Z. The main contributions in Φu(−m,n) correspond to deep
valleys: k and l with large ρk and ρl and some u ∈ [k, l] with small ρu.

Remark 2.7. We shall discuss in section 7 the case when
∑
n∈Z(1/ρn) < +∞. The

random walk is then pushed very strongly towards the horizontal subspace Zd and
the vertical component (restricted to vertical jumps) is positive recurrent. As we
shall see, when d = 1, the recurrence/transience is decided by the value of a single
number.

Remark 2.8. In the present setting, (v+(n))n≥0 and (v−(n))n≥0 can be bounded.

In the first case, with our convention, this implies that v−1
+ (n) = +∞ for n large

enough. As for k = l, the term ρkρl(1/ρ
2
k + 1/ρ2

l ) has order at least one, Φu(n) and

Φu,+(n) are equal to +∞ for n large enough, uniformly in u ∈ Sd−1
+ . The same is

true for Φstr(n), since ρk → 0, as k → +∞, in this case. We come back on this
later.

Remark 2.9. When mn = 0 for all n ∈ Z, then Φu(n) and Φu,+(n) do not depend

on u ∈ Sd−1
+ and essentially equal Φstr(n), which can be considered as a structure

function independent of what may flow horizontally. In the general case, both
Φu(n) and Φu,+(n) are always larger than Φstr(n).

Remark 2.10. Using the classical formula for the variance of a random variable Z,
Var(Z) = E((Z − Z ′)2)/2, where Z ′ is independent of Z and with the same law,
we observe that:∑

0≤k≤l≤v−1
+ (n)

ρkρl

( l∑
s=k

rsms.u

psρs

)2
 � n2Var

(
X∑
s=0

rsms.u

psρs

)
,

when (rsms.u/(psρs))s is considered as a fixed sequence and X is a random integer
in [0, v−1

+ (n)], with density proportional to ρk. The same is true for the second

part of Φ2
u(n) in [−v−1

− (n), v−1
+ (n)], when using cocycles notations (that we haven’t

introduced).

Plan of the article. In section 3, we develop preliminaries about a special type
of complex continued fractions that will be central in this text. We next discuss
the asymptotics of the vertical component. In section 4, reducing the analysis
to the case when the vertical component is recurrent, we focus on the sequence
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of return times on Zd. This leads to considering some i.i.d. heavy-tailed random
walk. For such a random walk a recurrence is available, the strong Chung-Fuchs
recurrence criterion. This requires the estimation of the behaviour at the origin of
some characteristic function. A preliminary analysis is started at the end of section
4, where this characteristic function is naturally developed in continued fraction.
Detailed computations are completed in section 5. In section 6, with all ingredients
in hand we make the proof of theorem 2.4 and proposition 2.5. In section 7, we
detail concrete examples, discuss some variations in the hypotheses and present a
geometrical interpretation of the recurrence criterion.

3. Preliminaries

3.1. Sleszynski-Pringsheim continued fractions. In the sequel, a general formal fi-
nite continued fraction is written as follows:

[(c1, d1); (c2, d2); · · · ; (cn, dn)] =
c1

d1 +
c2

d2 +
· · ·

· · ·+
cn

dn

.

We shall consider in this article SP-continued fractions (for Sleszynski-
Pringsheim, cf Beardon and Lorentzen, 2001). Finite SP-continued fractions cor-
respond to finitely many applications to some z0 ∈ C with |z| ≤ 1 of maps of the
form z 7−→ c/(d+z), with complex numbers c 6= 0 and d so that |c|+1 ≤ |d|, hence
preserving the unit disk. Finite SP-continued are therefore well defined. Infinite
SP-continued fractions, written as:

[(c1, d1); (c2, d2); · · · ] =
c1

d1 +
c2

d2 + · · ·

,

also converge. This is the Sleszynski-Pringsheim theorem (see
Lorentzen and Waadeland, 1992), essentially reproved below.

Let us recall some classical facts from the theory of continued fractions. Formally,
for all n ≥ 0, any finite continued fraction can be reduced as:

[(c1, d1); (c2, d2); · · · ; (cn, dn)] =
An
Bn

.

The (An) and (Bn) satisfy the same recursive relation, with different initial data: An = dnAn−1 + cnAn−2, n ≥ 1, with A−1 = 1, A0 = 0,

Bn = dnBn−1 + cnBn−2, n ≥ 1, with B−1 = 0, B0 = 1.
(3.1)

We shall require the following classical determinant. For n ≥ 1:

AnBn−1 −An−1Bn = (−1)n+1c1 · · · cn. (3.2)

This is a consequence of the relation AnBn−1 − An−1Bn = (−cn)(An−1Bn−2 −
An−2Bn−1), for n ≥ 1, and the initial data of (An) and (Bn). This furnishes a
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representation as a series:

[(c1, d1); (c2, d2); · · · ; (cn, dn)] =
An
Bn

=

n∑
k=1

(
Ak
Bk
− Ak−1

Bk−1

)
=

n∑
k=1

(−1)k+1c1 · · · ck
BkBk−1

.

(3.3)
A particular class of SP-continued fractions will appear frequently in the text.

We state a general lemma to which we shall often refer to.

Lemma 3.1. Assume that v+(n)→ +∞, as n→ +∞.

(1) Let sequences of complex numbers (γn)n≥1 and (γ′n)n≥1 be such that 0 <
|γn| ≤ 1, |γ′n| ≤ 1. Then the following is a well-defined SP-continued
fraction:

[(a1, b1/γ1); (−a2, b2/γ2); · · · ; (−an−1, bn−1/γn−1); (−an, bn/γn − γ′n)].

As n→ +∞, it converges to the infinite SP-continued fraction:

[(a1, b1/γ1); (−a2, b2/γ2); · · · ; (−an, bn/γn); · · · ].

Moreover, the latter is the limit of An/Bn, as n→ +∞, where:
An =

bn
γn
An−1 − anAn−2, n ≥ 2, with A−1 = 1, A0 = 0, A1 = a1,

Bn =
bn
γn
Bn−1 − anBn−2, n ≥ 2, with B−1 = 0, B0 = 1, B1 = b1/γ1.

(3.4)
(2) Let v+(−1) = 0. Then the solutions (Bn) of (3.4) check:

|Bn| − |Bn−1| ≥ an(|Bn−1| − |Bn−2|), n ≥ 1.

As a result:

|Bn| ≥ v+(n), n ≥ −1.

If the 0 < γn ≤ 1 are reals, then Bn > Bn−1 > · · · > B−1 = 0. When
γn = 1, n ≥ 1, then:

Bn = v+(n), n ≥ −1 and An = v+(n)− 1, n ≥ 0

(3) In (3.4), the map n 7−→ |Bn|/v+(n), n ≥ 0, is non-decreasing. Also:∑
k>n

ρk
|BkBk−1|

≤ v+(n)

|Bn|2
≤ 1

|Bn|
, for n ≥ 0.

Proof : As a preliminary remark, observe that the solutions (Bk) of the second
recursive relation in (3.4) check |Bn| ≥ bn|Bn−1| − an|Bn−2|, n ≥ 1. Hence:

|Bn| − |Bn−1| ≥ an(|Bn−1| − |Bn−2|), n ≥ 1.

Iterating, we get |Bn| − |Bn−1| ≥ ρn. Thus |Bn| ≥ v+(n), for all n ≥ −1.
In point 1., the finite SP-continued fraction is well-defined because ak 6= 0,

|bk/γk| − ak ≥ bk − ak = 1 and |γ′n| ≤ 1 for the last term. From the system (3.1),
the system (3.4) is verified. Then via (3.3), using that the kth determinant is ρk:

[(a1, b1/γ1); (−a2, b2/γ2); · · · ; (−an, bn/γn−γ′n)] =

n−1∑
k=1

ρk
BkBk−1

+
ρn

Bn−1B̃n
, (3.5)
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where B̃n = (bn/γn − γ′n)Bn−1 − anBn−2. We get:

|B̃n| ≥ (bn − 1)|Bn−1| − an|Bn−2| ≥ an(|Bn−1| − |Bn−2|) ≥ anρn−1 = ρn.

In (3.5), observe first that the first term in the right-hand side is absolutely con-
vergent. Indeed, using that |Bk| ≥ v+(k):∑

k≥1

ρk
|BkBk−1|

≤
∑
k≥1

ρk
v+(k)v+(k − 1)

=
∑
k≥1

(
1

v+(k − 1)
− 1

v+(k)

)
= 1.

As |Bn−1| ≥ v+(n−1)→ +∞ and |B̄| ≥ ρn, the second term in the right-hand side
in (3.5) converges to 0, so the right-hand side converges to

∑
k≥1 ρk/(BkBk−1).

To complete point 2., suppose that the 0 < γn ≤ 1 are real. We have:

Bn −Bn−1 =
(1− γn)bn

γn
Bn−1 + an(Bn−1 −Bn−2), n ≥ 2.

The condition “Bn > Bn−1 ≥ 0” is then transmitted recursively. If γn = 1, then
Bn − Bn−1 = an(Bn−1 − Bn−2), giving Bn − Bn−1 = ρn and thus Bn = v+(n),
n ≥ 0. Similarly:

An −An−1 = an(An−1 −An−2) = · · · = an · · · a2(A1 −A0) = ρn.

As A0 = 0, we obtain An = v+(n)− 1, n ≥ 0.
Concerning point 3., we first show that n 7−→ |Bn|/v+(n), n ≥ 0, is non-

decreasing. We will require it in the equivalent form |Bn|/(|Bn+1| − |Bn|) ≤
v+(n)/(v+(n+ 1)− v+(n)). Write:

v+(n)|Bn+1| − v+(n+ 1)|Bn| ≥ v+(n) (bn+1|Bn| − an+1|Bn−1|)− v+(n+ 1)|Bn|
≥ an+1 (v+(n− 1)|Bn| − v+(n)|Bn−1|)
≥ · · · ≥ ρn+1 (|B0|v+(−1)− v+(0)|B−1|) = 0.

For the last inequalities, using the previous results, for n ≥ 0:∑
k>n

ρk
|BkBk−1|

=
∑
k>n

ρk

(
1

|Bk−1|
− 1

|Bk|

)
1

|Bk| − |Bk−1|

≤
∑
k>n

ρk

(
1

|Bk−1|
− 1

|Bk|

)
1

ak · · · an+2(|Bn+1| − |Bn|)

≤ ρn+1

|Bn+1| − |Bn|
∑
k>n

(
1

|Bk−1|
− 1

|Bk|

)
≤ v+(n+ 1)− v+(n)

|Bn+1| − |Bn|
1

|Bn|
≤ v+(n)

|Bn|2
.

This completes the proof of the lemma. �

3.2. Behavior of the vertical component. Let us first focus on the vertical compo-
nent of the random walk. As already mentioned, when restricting the random walk
to the subsequence of its vertical movements, the vertical component is a Markov
Chain on Z with transition probabilities Pn,n−1 = q′n and Pn,n+1 = p′n, n ∈ Z. The
question of its recurrence/transience is classical in the study of birth and death
processes.
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Lemma 3.2. Let the Markov chain on Z with transition probabilities Pn,n+1 = p′n
and Pn,n−1 = q′n, n ∈ Z. Then it is recurrent if and only if v+(n) → +∞ and
v−(n)→ +∞, as n→ +∞.

Proof : Fix N > 1 and let f(k) = Pk(exit [0, N ] on the left side), 0 ≤ k ≤ N . By
the Markov property, k 7−→ f(k) is harmonic, so for 1 ≤ k ≤ N − 1:

f(k) = p′kf(k + 1) + q′kf(k − 1).

Let g(k) = f(k) − f(k − 1), 1 ≤ k ≤ N . We obtain g(k) = (pk/qk)g(k + 1) and
therefore g(k) = ρk−1g(1), 1 ≤ k ≤ N . As a result:

−1 =

N∑
k=1

g(k) = −P1(exit [0, N ] at N)
∑

1≤k≤N

ρk−1.

Hence P1(reach 0) = 1⇔ limn→+∞ v+(n) = +∞. In the same way P−1(reach 0) =
1⇔ limn→+∞ v−(n) = +∞. This furnishes the desired result. �

We shall use the previous criterion in a reformulation using trees. We say that a
random variableX has the geometrical law G(p), 0 < p < 1, if P(X = n) = pn(1−p),
n ≥ 0.

Lemma 3.3. Let (Z+
n )n≥1 be the Galton-Watson tree with Z+

1 = 1 and such that
the law of the number of children at level n + 1 of an individual at level n ≥ 1 is
G(p′n), independently. Then this tree is finite almost-surely if and only if v+(n)→
+∞, as n→ +∞.

Proof : Since {Z+
n = 0} ⊂ {Z+

n+1 = 0}, the almost-sure finiteness is equivalent to
P(Z+

n = 0)→ 1, as n→ +∞. Fix 0 < s < 1 and note that:

E(sZ
+
n )− s ≤ P(Z+

n = 0) ≤ E(sZ
+
n ).

Taking n ≥ 2, the construction of the Galton-Watson tree implies that:

E
(
sZ

+
n

)
= E

[(
1− p′n−1

1− sp′n−1

)Z+
n−1

]
= E

[(
an−1

bn−1 − s

)Z+
n−1

]
.

Iterating the procedure, i.e. using an−1/(bn−1 − s) in place of s, we obtain the
following SP-continued fraction:

E
(
sZ

+
n

)
= [(a1, b1); (−a2, b2); · · · ; (−an−2, bn−2); (−an−1, bn−1 − s)] .

This corresponds to γk = 1 and γ′n = s in the first point of lemma 3.1. Lemma 3.1,
relation (3.5), and the computation of the partial quotients now furnish:

E
(
sZ

+
n

)
=
v+(n− 2)− 1

v+(n− 2)
+

ρn−1

v+(n− 1)B̃n−1

,

with B̃n−1 = (bn−1 − s)v+(n− 2)− an−1v+(n− 3). Observe that both:

B̃n−1 ≥ ρn−1 and B̃n−1 ≥ (1− s)v+(n− 2).

- If v+(n)→ +∞, then E(sZ
+
n )→ 1 uniformly in 0 < s < 1, so P(Z+

n = 0)→ 1.
- If v+(n) →n→+∞ b ∈ (0,+∞), then first ρn → 0. Also for fixed 0 < s < 1 we

have lim infn B̃n−1 ≥ (1 − s)b > 0, so that E(sZ
+
n ) tends to (b − 1)/b < 1, giving

limn P(Z+
n = 0) = (b− 1)/b < 1. �
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Remark 3.4. Symmetrically for the Southern direction of the vertical component,
one introduces, with decreasing indices n ≤ −1, the Galton-Watson tree (Z−n )n≤−1

with Z−−1 = 1 such that, independently, the law of the number of children at level
n−1 of an individual at level n is G(q′n). In the same way, the tree is almost-surely
finite if and only if limk→+∞ v−(k) = +∞.

4. An i.i.d. random walk in Zd

4.1. Reduction of the problem. As a first step, we reduce the analysis to the case
when the vertical component is recurrent. Indeed, the transience of the vertical
component implies the transience of the random walk. From the previous sec-
tion the transience of the vertical component is equivalent to the finiteness of
limn→+∞ v+(n) or limn→+∞ v−(n). Suppose for example that v+(n) is bounded in
+∞. With our convention, v−1

+ (n) = +∞ for n large enough. Thus, for n large

enough, uniformly in u ∈ Sd−1
+ :

Φ2
u(0, n) ≥

∞∑
k=0

ρ2
k

(
2

ρ2
k

)
= +∞.

Hence, Φ−1
u (n) and Φ−1

u,+(n) are bounded, uniformly in u and n. As a result the

sum appearing in theorem 2.4 is less than
∑
n≥1 n

−1−d × C < +∞, as d ≥ 1.
We now assume for the rest of the article that the vertical component is recur-

rent. Equivalently, limn→+∞ v±(n) = +∞. This allows to introduce the following
random times 0 = σ0 < τ0 < σ1 < τ1 < · · · , where, for k ≥ 0:

τk = min{n > σk | S2
n 6= 0}, σk+1 = min{n > τk | S2

n = 0}.
Define the Zd-displacement:

Dn = S1
σn − S

1
σn−1

.

The key point, consequence of the fact that the environment is invariant under
Zd-translations, is just that the (Dn)n≥1 are globally independent and identically
distributed. The following lemma is essentially taken from Campanino and Petritis
(2003).

Lemma 4.1. Let T0 = 0 and Tn = D1 + · · · + Dn, n ≥ 1. The random walk
(Sn)n≥0 is recurrent in Zd+1 if and only if (Tn)n≥0 is recurrent in Zd.

Proof : If (Tn)n≥0 is recurrent in Zd, then (Sn) is recurrent in Zd+1, as Sσn =
(Tn, 0). When (Tn) is transient, the standard properties of the Green function and
the invariance of the environment under Zd-translations give:

∃C, ∀x ∈ Zd,
∑
n≥1

P (Tn = x) ≤ C. (4.1)

Let Γ ∼ G(r0) and ξk ∼ µ0, for k ≥ 1, so that ((ξk)k≥1,Γ) are globally independent
and also independent from the sequence (Tn). Remark that (S1

l )l∈[σk,τk) and (Tk +∑
1≤m≤l ξm)0≤l≤Γ have the same law. Define the real random variable:

H =
∑

1≤k≤Γ

‖ξk‖.

Observe that Sn can be 0 only for n in some [σk, τk). Now:

P(∃n ∈ [σk, τk), Sn = 0) ≤ P(H ≥ ‖Tk‖).
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This provides, making use of (4.1):∑
k≥1

P(∃n ∈ [σk, τk), Sn = 0) ≤
∑
k≥1

P(H ≥ ‖Tk‖) ≤
∑
x∈Zd

∑
k≥1

P(Tk = x)P (H ≥ ‖x‖)

≤ C
∑
x∈Zd

P(H ≥ ‖x‖) ≤ C ′E(Hd),

for another constant C ′. We will show that the last term is finite. By the Borel-
Cantelli lemma, this will imply that (Sn) is transient. We have:

E(Hd) =
∑
n≥0

P(Γ = n)E

[( ∑
1≤k≤n

‖ξk‖

)d]
≤ (1− r0)

∑
n≥0

rn0n
d−1E

( ∑
1≤k≤n

‖ξk‖d
)

≤ (1− r0)
∑
n≥0

rn0n
dE(‖ξ1‖d) <∞,

using hypothesis 1.1 on the moments of µ0. This completes the proof of the lemma.
�

The previous lemma reduces the problem of the recurrence of (Sn) to that of
(Tn). We have gained one dimension and the fact that Tn = D1 + · · ·+Dn, where
(Dn) are i.i.d.. The counterpart is that the law of D1 is complicated and heavy-
tailed. Set:

D = D1 and χD(t) = E(eit.D), t ∈ Rd.
The following theorem gives an analytical recurrence criterion for any i.i.d. random
walk in Zd, without moment conditions. It is named the strong form of the Chung-
Fuchs recurrence criterion. For a proof, see Spitzer (1976). Recall that Sd−1

+ denotes
the half unit sphere. We write Bd(0, η) for the ball of center 0 and radius η > 0 in
Rd.

Theorem 4.2. Let (Xn)n≥1 be i.i.d Zd-valued random variables such that the
subgroup of (Zd,+) generated by the support of the law of X1 is Zd. Let Sn =
X1 + · · ·+Xn, n ≥ 1, and χ(t) = E(eit.X1), t ∈ Rd. Then the random walk (Sn)n≥0

is transient if and only if for some η > 0:∫
Bd(0,η)

Re

(
1

1− χ(x)

)
dx < +∞. (4.2)

We shall apply the previous result to (Tn). Notice that from our assumptions,
we only have that the subgroup GD of (Zd,+) generated by the support of the
law of D is d-dimensional. The random walk (Tn) lives in GD. As GD admits a
basis over Z, a reparametrization of GD corresponds to making an injective linear
change of variables in the integral in (4.2), with χ replaced by χD. The properties
of dominated variations shown in lemma 6.2 below imply that we can assume that
GD = Zd from the beginning and this is what we do in the sequel.

The only singularity of 1/(1−χD) in Rd/Zd is now 0. The symmetry coming from
conjugation inside the real part in (4.2) implies that we can restrict the integral to

the half unit ball {x | 0 < ‖x‖ ≤ η, x/‖x‖ ∈ Sd−1
+ }. Forgetting the multiplicative

constant coming from the change of variables in polar coordinates, we decompose
the integral in (4.2) in the form:∫

(u,t)∈Sd−1
+ ×]0,η[

Re

(
1

1− χD(ut)

)
td−1dudt. (4.3)
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Fixing 0 < η < 1/2 small enough, we take u ∈ Sd−1
+ and 0 < t < η.

4.2. Local time and contour of a Galton-Watson tree. For u ∈ Sd−1
+ we shall study

the behavior as t → 0+ of t 7−→ χD(ut). We require a description of D. In this
direction, in order to detail the vertical component (S2

n)n≥0 of the random walk
restricted to vertical jumps, introduce as in section 3.2 the one-dimensional Markov
chain (Yn)n≥0 on Z with Y0 = 0 and Pn,n−1 = q′n, Pn,n+1 = p′n, for n ∈ Z. Let also
σ = min{k ≥ 1 | Yk = 0} be the return time to 0 of this random walk.

Grouping in packets the successive Zd-steps of the random walk, we observe that
D can be decomposed as:

D =

σ−1∑
k=0

(
Γk∑
m=1

ξ(k)
m

)
. (4.4)

Conditionally on the (Yl)l≥0, the ((ξ
(k)
m )m≥1,k≥0, (Γk)k≥0) are independent, with

ξ
(k)
m ∼ µYk and Γk ∼ (G(rYk)), for all k ≥ 0. The level of complexity of the model

of random walk under study is somehow condensed in the last formula.

Definition 4.3. Introduce for n ∈ Z the characteristic function:

ϕn(ut) = E

(
exp

(
itu.

Γ∑
m=1

ξm

))
, u ∈ Sd−1

+ , t ∈ R, (4.5)

with random variables Γ ∼ G(rn) and ξm ∼ µn, for m ≥ 1, being all independent.

Conditioning on the (Yl)l≥0 in (4.4), we obtain the equality:

χD(ut) = E

(
σ−1∏
k=0

ϕYk(ut)

)
= ϕ0(ut)E

(
σ−1∏
k=1

ϕYk(ut)

)
.

Observe that the only remaining alea is that of the (Yl)l≥0. Introduce the condi-
tional expectations:

E+(.) = E(. | Y1 = 1) and E−(.) = E(. | Y1 = −1).

We set χ±D(ut) = E±
(∏σ−1

k=1 ϕYk(ut)
)

. This leads to:

χD(ut) = ϕ0(ut)(p′0χ
+
D(ut) + q′0χ

−
D(ut)). (4.6)

We restrict the analysis to χ+
D, the case of χ−D being symmetric. Introducing the

local times Nn = #{1 ≤ k ≤ σ− 1, Yk = n}, n ≥ 1, of (Yl) on a positive excursion,
we obtain:

χ+
D(ut) = E+

∏
n≥1

(ϕn(ut))Nn

 .

The alea is now transferred on the (Nn)n≥1. To describe these local times, one clas-
sically introduces (cf Le Gall, 2005 for instance) the Galton-Watson tree (Z+

n )n≥1

with Z+
1 = 1 and such that, independently, the law of the number of children at

level n+ 1 of an individual at level n is G(p′n). This tree, introduced in section 3.2,
is almost-surely finite, from the hypothesis limn→+∞ v+(n) = +∞.
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1
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σ − 1

We next make the contour process of the tree, starting from the root and turning
clockwise. This is the left-hand side of the picture. We associate to each ascend-
ing/descending movement a +1/− 1 step. This gives the picture on the right-hand
side, where we recover a positive excursion of the random walk (Yl) in the time
interval [1, σ − 1]. It is a simple observation that the total number of visits of the
random walk at level n ≥ 1 is Nn = Z+

n + Z+
n+1. This furnishes:∏

n≥1

(ϕn(ut))Nn =
∏
n≥1

(ϕn(ut))Z
+
n+Z+

n+1 = ϕ1(ut)
∏
n≥1

[ϕn(ut)ϕn+1(ut)]Z
+
n+1 .

Finally we obtain the following formula for χ+
D(ut):

χ+
D(ut) = ϕ1(ut)E+

∏
n≥1

[ϕn(ut)ϕn+1(ut)]Z
+
n+1

 .

4.3. Development of χ+
D in SP-continued fraction. We now see that χ+

D can be
naturally expressed as a SP-continued fraction. For N ≥ 1, introduce the truncated
version:

χ+,N
D (ut) = ϕ1(ut)E+

(
N∏
n=1

[ϕn(ut)ϕn+1(ut)]Z
+
n+1

)
. (4.7)

Observe that χ+,N
D converges pointwise to χ+

D, by dominated convergence inside
the expectation.

We now use the classical description of the Galton-Watson tree (Z+
n )n≥1. Let

(Rk,n)n≥1,k≥1 be independent random variables such that Rk,n ∼ G(p′n). Then we
have:

Z+
1 = 1, Z+

n+1 =

Z+
n∑

k=1

Rk,n, n ≥ 1.

Recall that the generating function of G(p′n) is s 7−→ q′n/(1 − p′ns) = an/(bn − s),
0 ≤ s ≤ 1. Conditioning in the middle step below, this allows to write:

χ+,N
D (ut) = ϕ1(ut)E+

(
N−1∏
n=1

[ϕn(ut)ϕn+1(ut)]Z
+
n+1(ϕN (ut)ϕN+1(ut))Z

+
N+1

)

= ϕ1(ut)E+

(
N−1∏
n=1

[ϕn(ut)ϕn+1(ut)]Z
+
n+1

(
aN

bN − ϕN (ut)ϕN+1(ut)

)Z+
N

)

= ϕ1(ut)E+

(
N−2∏
n=1

[ϕn(ut)ϕn+1(ut)]Z
+
n+1

(
aNϕN−1(ut)ϕN (ut)

bN − ϕN (ut)ϕN+1(ut)

)Z+
N

)
.
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Iterating the procedure, replacing ϕNϕN+1 of the first line by
aNϕN−1ϕN
bN − ϕNϕN+1

, we

obtain:

χ+,N
D =

ϕ1a1

b1 −
ϕ1ϕ2a2

b2 · · · −
ϕN−1ϕNaN

bN − ϕNϕN+1

.

Notice that the ϕn are close to 1, hence not 0, uniformly in n and u ∈ Sd−1
+ for small

t. This follows from hypothesis 1.1, giving a second order expansion of ϕk(ut) with
uniform remainder term (see the beginning of the next section for more details).
Dividing above by ϕ1, · · · , ϕN at each successive level, we get:

χ+,N
D (ut) = [(a1, b1/ϕ1(ut)); (−a2, b2/ϕ2(ut)); · · · ; (−aN , bN/ϕN (ut)− ϕN+1(ut))].

From the pointwise convergence of χ+,N
D and lemma 3.1, we conclude that:

χ+
D(ut) = [(a1, b1/ϕ1(ut)); (−a2, b2/ϕ2(ut)); · · · ; (−an, bn/ϕn(ut)) · · · ].

Naturally, a similar expression is true for χ−D(ut). We may observe that we have in
fact established something slightly stronger:

Lemma 4.4. Let (γn)n≥1 be a sequence of complex numbers with 0 < |γn| ≤ 1,
n ≥ 1. Then:

E+
σ−1∏
k=1

γYk = γ1E+
∏
n≥1

[γnγn+1]Z
+
n+1

= [(a1, b1/γ1); (−a2, b2/γ2); · · · ; (−an, bn/γn); · · · ].

This is shown by simply replacing (ϕn(ut))n≥1 by (γn)n≥1 in the previous proof.

4.4. Another reduction. Let µ̂n(ut) =
∑
k∈Zd e

itu.kµn(k), u ∈ Sd−1
+ , t ∈ R. From

(4.5), we obtain:
ϕn(ut) = (1− rn)/(1− rnµ̂n(ut)).

As a result, we have the following expansion:

1

ϕn(ut)
= 1 + itu.mn

rn
1− rn

+O(t2),

with O uniform in n and u ∈ Sd−1
+ .

Definition 4.5.
1) For n ∈ Z, let ηn = rnmn/pn.

2) For n ∈ Z, u ∈ Sd−1
+ and t ∈ R small enough (uniformly in n and u, by hypothesis

1.1), set:
1

ψn(ut)
= 1 + itu.ηn

pn
1− rn

= 1 + itu.ηn/bn.

Our aim is to replace below the ϕn(ut) by the ψn(ut) in the recursive relation
(3.4) satisfied by the denominators (Bn) of the partial quotients of the SP-continued
fraction expansion of χ+

D(ut).

Lemma 4.6. Let c = δ3/4 > 0 (where δ comes from hypothesis 1.1). For small

t > 0, uniformly in n and u ∈ Sd−1
+ , we have the inequality:

|ϕn(ut)| ≤ 1− ct2. (4.8)
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Proof : Let M2,n(u) =
∑
k∈Zd(k.u)2µn(k), mn(u) = mn.u and V arn(u) =

M2,n(u)− (mn(u))2. A computation gives:

|ϕn(ut)| = 1− t2

2

rn
(1− rn)2

(M2,n(u)− rnV arn(u)) +O(t3),

with O uniform in n and u ∈ Sd−1, due to the uniformly bounded third moment of
µn. Using the hypotheses, we have δ2 ≤ δM2,n(u) ≤M2,n(u)− rnV arn(u). Hence:

|ϕn(ut)| ≤ 1− t2δ3

2
+O(t3) ≤ 1− t2δ3

4
,

for t small enough, uniformly in n and u ∈ Sd−1
+ . �

Let us now introduce some definitions.

Definition 4.7.
1) Introduce for n ≥ 0:

w+(n) =
∑

0≤k≤n

(1/ρk) and w−(n) = (1/a0)
∑

−n−1≤k≤−1

(1/ρk).

2) Let F+(n) = (nw+ ◦ v−1
+ (n))1/2, n ≥ 0.

3) Let R+(t) = 1− E+((1− t2)σ−1) and f+(ut) = E+(
∏σ−1
k=1 ψYk(ut)).

The main result of this section is the following.

Lemma 4.8.
1) For C ≥ 1 and large enough x > 0: F−1

+ (Cx) ≤ 2C2F−1
+ (x).

2) There exists α ≥ 1 so that for small t > 0:

1

α
≤ R+(t)F−1

+ (1/t) ≤ α.

3) There exist constants C1 > 0, C2 > 0 so that for small t > 0, uniformly in

u ∈ Sd−1
+ :

1− |χ+
D(ut)| ≥ C1R

+(t) and
∣∣χ+
D(ut)− f+(ut)

∣∣ ≤ C2R
+(t).

Proof : 1) Note that F+(n) → +∞, as n → +∞ and that n 7−→ F 2
+(n)/n is non-

decreasing. Let C ≥ 1 and x > 0. Set n = F−1
+ (x) and suppose that n ≥ 1. By

definition, F+(n) ≤ x < F+(n+ 1). Similarly, let n+ p = F−1
+ (Cx). Then:

F−1
+ (Cx)

F−1
+ (x)

=
n+ p

n
≤ 2

n+ p

n+ 1
≤ 2

F 2
+(n+ p)

F 2
+(n+ 1)

≤ 2
C2x2

x2
= 2C2.

This completes the proof of the assertion.
As a preliminary remark for what follows, set now, for n ≥ 1, Θ+(n) =

(
∑

1≤k≤l≤n(ρl/ρk))1/2. Let c > 0 be such that for all k ≥ 1:

w+(k) ≤ c
∑

1≤u≤k

(1/ρu), v+(k + 1) ≤ cv+(k) and Θ+(k + 1) ≤ cΘ+(k).

We claim that there exists C ≥ 1 so that for all x > 0 large enough:

(1/C)v+ ◦Θ−1
+ (x) ≤ F−1

+ (x) ≤ Cv+ ◦Θ−1
+ (x).
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For x > 0, let n = Θ−1
+ (x), so that Θ+(n) ≤ x < Θ+(n + 1). We have, using that

n = v−1
+ (v+(n)) and denoting the by dye the smallest integer ≥ y:

x2

c2
≤ Θ2

+(n) ≤ v+(n)
∑

0≤l≤n

(1/ρl)

≤ cv+(n)w+(n) ≤ cdv+(n)ew+ ◦ v−1
+ (dv+(n)e) = cF 2

+(dv+(n)e).

As a result, for large n, v+(n) ≥ dv+(n)e/2 ≥ F−1
+ (xc−3/2)/2 ≥ KF−1

+ (x), by

the first point. On the other hand, let m = v−1
+ (v+(n)/2). We have v+(m) ≤

v+(n)/2 < v+(m+ 1). This gives:

x2 ≥ Θ2
+(n) ≥

∑
1≤k≤m

(1/ρk)
∑

m≤l≤n

ρl

≥ 1

c
w+(m)(v+(n)− v+(m)) ≥ 1

c
F 2

+(bv+(n)/2c),

introducing the integer part byc. To conclude, for n large enough, v+(n) ≤
3bv+(n)/2c ≤ 3F−1

+ (xc1/2) ≤ K ′F−1
+ (x), by the first point.

2) Let us turn to the evaluation of R+(t). Using lemmas 4.4 and 3.1 we have:

E+((1− t2)σ−1) = lim
n→+∞

αn(t)

βn(t)
=
∑
n≥1

ρn
βnβn−1

,

where β−1 = 0, β0 = 1, β1 = b1/(1−t2) and βn = (bn/(1−t2))βn−1−anβn−2, n ≥ 2.
We omit the dependence in t. The (αn) satisfy the same recursive relation with
this time α−1 = 1, α0 = 0 and α1 = a1. First of all, as Θ+(n)→ +∞, as n→ +∞,
and there is a constant C > 0 so that for all n ≥ 1, Θ+(n) ≤ Θ+(n+ 1) ≤ CΘ+(n),
we deduce that for any constant c > 0 (chosen later), there exists a constant c′ > 0
so that for small enough t > 0 there is an integer N(t) so that:

c′

t2
≤ Θ2

+(N(t)) ≤ c

t2
.

This next furnishes, using lemma 3.1:∣∣∣∣R+(t)−
(
βN(t)(t)− αN(t)(t)

βN(t)(t)

)∣∣∣∣ ≤ ∑
n>N(t)

ρn
βn(t)βn−1(t)

≤ 1

βN(t)
. (4.9)

We shall show that there exists a constant ε > 0 so that 1+ε ≤ βN(t)(t)−αN(t)(t) ≤
1/ε and next that v+(N(t)) ≤ βN(t)(t) ≤ v+(N(t))/ε. These two properties imply

that R+(t) has exact order 1/v+(N(t)) and so 1/F−1
+ (1/t), by the first point.

We have bn/(1 − t2) = bn + t2cn(t), with (1/α) ≤ cn(t) ≤ α, for some constant
α > 0. Next:(

βn
βn−1

)
=

(
bn + t2cn(t) −an

1 0

)
· · ·
(
b1 + t2c1(t) −a1

1 0

)(
1
0

)
, n ≥ 0.

Introduce now Cn =

(
bn −an
1 0

)
, B =

(
1 0
0 0

)
. Since βn(0) = v+(n) and for

k, l ≥ 0 we have 〈e1, Ck+l · · ·Ck+1e1〉 = θkv+(l), when developing the product we
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obtain for n ≥ 0:

βn =

= v+(n) +

n∑
r=1

t2r
∑

1≤k1<···<kr≤n

ck1(t) · · · ckr (t)〈e1, Cn · · ·Ckr+1B · · ·BCk1−1 · · ·C1e1〉

= v+(n) +

n∑
r=1

t2r
∑

1≤k1<···<kr≤n

ck1(t) · · · ckr (t)〈e1, Cn · · ·Ckr+1e1〉 · · · 〈e1, Ck1−1 · · ·C1e1〉

= v+(n)

+

n∑
r=1

t2r
∑

1≤k1<···<kr≤n

(ck1 · · · ckr )(t)v+(k1 − 1)θk1v+(k2 − k1 − 1) · · · θkrv+(n− kr).

Idem, since αn(0) = v+(n) − 1 and αn = a1θβn−1, for n ≥ 0, as follows from the
recursive relation:

αn = v+(n)− 1

+

n∑
r=1

t2r
∑

2≤k1<···<kr≤n

(ck1 · · · ckr )(t)(v+(k1 − 1)− 1)θk1v+(k2 − k1 − 1) · · · θkrv+(n− kr).

This furnishes:

βn − αn = 1 +

n∑
r=1

t2r
∑

1≤k1<···<kr≤n

(ck1 · · · ckr )(t)θk1v+(k2 − k1 − 1) · · · θkrv+(n− kr).

As a result, the equality for βn gives βn ≤ v+(n)(1+
∑

1≤r≤n α
rt2r(Θ2

+(n))r). Also,

by the above, βn − αn ≥ 1 + t2Θ2
+(n)/α, because:∑

1≤k≤n

θkv+(n− k) = Θ+(n).

According to the previous discussion, we simply choose 0 < c ≤ α/2 to get the
desired result.

3) We have χ+
D(ut) = E+(

∏σ−1
k=1 ϕYk(ut)). By (4.8), |χ+

D(ut)| ≤ E+((1− ct2)σ−1) =
1 − R+(

√
c t). This gives the first inequality, as the first point of the lemma says

that R+(
√
c t) ≤ CR+(t), for some constant C depending on c. Concerning the

second inequality:

∣∣χ+
D(ut)− f+(ut)

∣∣ =

∣∣∣∣∣E+

(
σ−1∏
k=1

ϕYk(ut)

)
− E+

(
σ−1∏
k=1

ψYk(ut)

)∣∣∣∣∣
=

∣∣∣∣∣E+

(
σ−1∑
k=1

(
k−1∏
l=1

ϕYl(ut)(ϕYk(ut)− ψYk(ut))

σ−1∏
l=k+1

ψYl(ut)

))∣∣∣∣∣ .
≤ E+

(
σ−1∑
k=1

(
k−1∏
l=1

|ϕYl(ut)||ϕYk(ut)− ψYk(ut)|
σ−1∏
l=k+1

|ψYl(ut)|

))
.

Using now that for some C > 0 and small enough t > 0, uniformly in n and
u ∈ Sd−1

+ , |ϕn(ut)− ψn(ut)| ≤ Ct2, as well as |ϕn(ut)| ≤ 1− ct2 and |ψn(ut)| ≤ 1,
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we get for small t > 0:

∣∣χ+
D(ut)− f+(ut)

∣∣ ≤ Ct2E+

(
σ−1∑
k=1

(1− ct2)k−1

)

= Ct2E+

(
1− (1− ct2)σ−1

ct2

)
=
C

c
R+(
√
c t).

The conclusion now comes from the first point of the lemma. �

5. Precise analysis of some convergents

A summary of the previous section is that as t→ 0+, uniformly in u ∈ Sd−1
+ :

χ+
D(ut) = f+(ut) +O(R+(t)),

with f+(ut) = limn→+∞An(ut)/Bn(ut), where now:(
Bn(ut)
Bn−1(ut)

)
=

(
bn − itu.ηn −an

1 0

)
· · ·
(
b1 − itu.η1 −a1

1 0

)(
1
0

)
, n ≥ 0, (5.1)

together with An(ut) = a1θBn−1(ut), n ≥ 0. The aim of the present section is to
study in detail (An(ut)) and (Bn(ut)). Let us introduce the following definitions.

Definition 5.1. Let u ∈ Sd−1
+ . For k ∈ Z, let ηuk = ηk.u. For k ≤ l in Z, set:

Rlk(u) =
∑
k≤r≤l

ηur (ρl/ρr) and T lk(u) = (Rlk(u))2ρk−1/ρl.

These quantities depend only in the data in [k, l]. For 0 ≤ r ≤ n, introduce also:

∆n
r (u) =

∑
1≤k1<···<kr≤n

Rk11 (u)Rk2k1+1(u) · · ·Rkrkr−1+1(u),

with the convention that ∆n
0 (u) = 1 and ∆n

r (u) = 0 if r > n or r < 0.

We first proceed exactly as in the proof of the second point of lemma 4.8. Fixing
u ∈ Sd−1

+ , we develop (5.1) and obtain for n ≥ 0:

Bn(ut) = v+(n)

+

n∑
r=1

(−it)r
∑

1≤k1<···<kr≤n

ηuk1 · · · η
u
krv+(k1 − 1)θk1v+(k2 − k1 − 1) · · · θkrv+(n− kr),

An(ut) = v+(n)− 1

+

n∑
r=1

(−it)r
∑

2≤k1<···<kr≤n

ηuk1 · · · η
u
kr (v+(k1 − 1)− 1)θk1v+(k2 − k1 − 1) · · · θkrv+(n− kr).

We therefore deduce the equality:

Bn(ut)−An(ut) = 1+

n∑
r=1

(−it)r
∑

1≤k1<···<kr≤n

ηuk1 · · · η
u
krθ

k1v+(k2−k1−1) · · · θkrv+(n−kr).
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Let us consider the last sum. We first fix k2, · · · , kr and write:∑
1≤k1<k2

ηuk1θ
k1v+(k2 − k1 − 1) =

∑
1≤k1<k2

ηuk1

∑
k1≤l<k2

ρl
ρk1

=
∑

1≤l<k2

∑
1≤k1≤l

ηuk1
ρl
ρk1

=
∑

1≤l<k2

Rl1(u).

Successively iterate this manipulation for k2, · · · , kr in the formula for Bn(ut) −
An(ut). Then:

Bn(ut)−An(ut) = 1 +

n∑
r=1

(−it)r
∑

1≤k1<···<kr≤n

Rk11 (u)Rk2k1+1(u) · · ·Rkrkr−1+1(u)

=

n∑
r=0

(−it)r∆n
r (u).

Similarly, using as first step that
∑

1≤k1<k2 η
u
k1
v+(k1 − 1)θk1v+(k2 − k1 − 1) =∑

0≤s<l<k2 ρsR
l
s+1(u):

Bn(ut) = v+(n) +

n∑
r=1

(−it)r
∑

0≤k1<···<kr+1≤n

ρk1R
k2
k1+1(u) · · ·Rkr+1

kr+1(u)

=

n∑
r=0

(−it)r
∑

0≤k≤n

ρkθ
k∆n−k

r (u).

Proposition 5.2. Set 2(k,l) = 2 if k 6= l and 1 if k = l. We have the following
exact computations:

(1) |Bn(ut)−An(ut)|2 =
∑n
r=0 t

2rKu
r (n), with:

Ku
r (n) =

∑
1≤l1<k2≤l2<···<kr≤lr<kr+1≤n+1

T l11 (u) · · ·T lrkr (u)ρkr+1−12Hr((ki),(lj)),

where Hr((ki), (lj)) := #{1 ≤ i ≤ r | li + 1 < ki+1}.

(2) |Bn(ut)|2 =
∑n
r=0 t

2rLur (n), with:

Lur (n) =
∑

0≤k≤l≤n

ρkρl2
(k,l)θlKu

r (n− l).

(3) Re((Bn −An)B̄n)(ut) =
∑n
r=0 t

2rMu
r (n), with:

Mu
r (n) =

∑
0≤k≤n

ρkθ
kKu

r (n− k).

(4) Im(An(ut)B̄n(ut)) =
∑n−1
r=0 t

2r+1Nu
r (n), with:

Nu
r (n) =

∑
1≤k≤l≤n

Rk12(k,l)ρlθ
lKu

r (n− l).

When r > n or r < 0, set Ku
r (n) = Lur (n) = Mu

r (n) = 0. Idem Nu
r (n) = 0, r ≥ n

or r < 0.

Proof : In the following, we suppress the dependence in u of Rlk, T lk, Kr(n), Lr(n),
Mr(n), Nr(n) and ∆n

r to slightly lighten the notations.



770 J. Brémont

1. Since Bn(ut)−An(ut) =
∑

0≤r≤n(−it)r∆n
r , this gives:

|Bn(ut)−An(ut)|2 = (Bn(ut)−An(ut))(Bn(ut)−An(ut))

=

n∑
r=0

t2r
r∑

p=−r
∆n
r+p∆

n
r−p(−i)r+pir−p,

using the conventions for ∆n
r concerning the value of r with respect to n. Hence

|Bn(ut)−An(ut)|2 =
∑n
r=0 t

2rKr(n), with K0(n) = 1 and:

Kr(n) =

r∑
p=−r

(−1)p∆n
r+p∆

n
r−p, r ≥ 1.

We will show that the following recursive relations are verified:

K1(n) =
∑

1≤k≤l≤n

T k1 ρl2
(k,l), (5.2)

Kr(n) =
∑

1≤k≤l≤n

T k1 ρlθ
lKr−1(n− l)2(k,l), for r ≥ 2. (5.3)

This then gives the announced formula.
For the initial relation:

K1(n) = (∆n
1 )2 − 2∆n

2 =
( ∑

1≤k≤n

Rk1

)2

− 2
∑

1≤k<l≤n

Rk1R
l
k+1

=
∑

1≤k≤n

(Rk1)2 + 2
∑

1≤k<l≤n

Rk1(Rl1 −Rlk+1).

Observing that Rk1(Rl1 −Rlk+1) = (Rk1)2(ρl/ρk) = T k1 ρl, this proves (5.2).
Let us now turn to the proof of (5.3). Taking first general p ≥ 1 and q ≥ 1, we

write:

∆n
p∆n

q =
∑

1≤k1<···<kp≤n
1≤k′1<···<k

′
q≤n

(Rk11 · · ·R
kp
kp−1+1)(R

k′1
1 · · ·R

k′q
k′q−1+1).

Distinguishing the cases k1 = k′1, k1 < k′1 and k′1 < k1, we decompose:

∆n
p∆n

q =
∑

1≤k≤n

(Rk1)2θk∆n−k
p−1 θ

k∆n−k
q−1

+
∑

1≤k1<···<kp≤n
k1<k

′
1<···<k

′
q≤n

Rk11 (Rk2k1+1 · · ·R
kp
kp−1+1)(Rk11

ρk′1
ρk1

+R
k′1
k1+1)(R

k′2
k′1+1 · · ·R

k′q
k′q−1+1)

+
∑

1≤k′1<···<k
′
q≤n

k′1<k1<···<kp≤n

(R
k′1
1

ρk1
ρk′1

+Rk1k′1+1)(Rk2k1+1 · · ·R
kp
kp−1+1)(R

k′1
1 · · ·R

k′q
k′q−1+1).

Regrouping terms, this is rewritten as:

∆n
p∆n

q =
∑

1≤k≤n

(Rk1)2

θk∆n−k
p−1

∑
k≤l≤n

θl∆n−l
q−1

ρl
ρk

+ θk∆n−k
q−1

∑
k<l≤n

θl∆n−l
p−1

ρl
ρk


+

∑
1≤k≤n

Rk1
[
θk∆n−k

p−1 θ
k∆n−k

q + θk∆n−k
p θk∆n−k

q−1

]
.
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Taking r ≥ 2, insert the latter in Kr(n) =
∑

−r+1≤p≤r−1

(−1)p∆n
r+p∆

n
r−p + 2(−1)r∆n

2r

and get:

Kr(n) =
∑

1≤k≤n

(Rk1)2
∑

−r+1≤p≤r−1

(−1)p

[
θk∆n−k

r+p−1

∑
k≤l≤n

θl∆n−l
r−p−1

ρl
ρk

+ θk∆n−k
r−p−1

∑
k<l≤n

θl∆n−l
r+p−1

ρl
ρk

]

+ 2(−1)r∆n
2r + 2

∑
1≤k≤n

Rk1

 ∑
−r+1≤p≤r−1

(−1)pθk∆n−k
r+p−1θ

k∆n−k
r−p

 .
The last line is 2

∑
1≤k≤nR

k
1 [
∑
−r+1≤p≤r(−1)pθk∆n−k

r+p−1θ
k∆n−k

r−p ]. Each bracketed
sum is 0, as can be seen for instance when doing the change of variable p 7−→
−p+ 1. Separating now the term with k = l in the first sum above and recognizing
θkKr−1(n− k), we obtain:

Kr(n) =
∑

1≤k≤n

(Rk1)2

θkKr−1(n− k) + 2
∑

−r+1≤p≤r−1

(−1)pθk∆n−k
r+p−1

∑
k<l≤n

θl∆n−l
r−p−1

ρl
ρk

.
Setting m = n− k and Zr(m) =

∑
−r≤p≤r(−1)p∆m

r+p

∑
1≤l≤m θ

l∆m−l
r−p ρl, we there-

fore have:

Kr(n) =
∑

1≤k≤n

(Rk1)2
[
θkKr−1(n− k) + 2θkZr−1(n− k)

]
.

We shall show that:

Zr(m) =
∑

1≤k≤m

θkKr(m− k)ρk, r ≥ 1. (5.4)

To complete the proof of (5.3), we simply apply this to Zr−1(n−k) in the previous
equality. First of all, with 0 ≤ p ≤ r − 1:

∆m
r+p

∑
1≤l≤m

θl∆m−l
r−p ρl =

∑
1≤k1<···<kr+p≤m

1≤l1<l2<···<lr−p+1≤m

Rk11 · · ·R
kr+p
kr+p−1+1R

l2
l1+1 · · ·R

lr−p+1

lr−p+1ρl1

=
∑

1≤k1<···<kr+p≤m
k1≤l1<···<lr−p+1≤m

Rk11 Rk2k1+1 · · ·R
kr+p
kr+p−1+1R

l2
l1+1 · · ·R

lr−p+1

lr−p+1ρl1

+
∑

1≤l1<···<lr−p+1≤m
l1<k1<···<kr+p≤m

(Rl11
ρk1
ρl1

+Rk1l1+1)Rk2k1+1 · · ·R
kr+p
kr+p−1+1R

l2
l1+1 · · ·R

lr−p+1

lr−p+1ρl1 .
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Written in a more concise way:

∆m
r+p

∑
1≤l≤m

θl∆m−l
r−p ρl

=
∑

1≤k≤m

Rk1

θk∆m−k
r+p−1

∑
k≤l≤m

θl∆m−l
r−p ρl + θk∆m−k

r−p

∑
k<l≤m

θl∆m−l
r+p−1ρl


+

∑
1≤k≤m

θk∆m−k
r+p θ

k∆m−k
r−p ρk.

This allows to write:

Zr(m) = (−1)r

[
∆m

2r

∑
1≤l≤m

ρl +
∑

1≤l≤m

θl∆m−l
2r ρl

]
+

∑
1≤k≤m

∑
−r+1≤p≤r−1

(−1)pθk∆m−k
r+p θ

k∆m−k
r−p ρk

+
∑

1≤k≤m

Rk1
∑

−r+1≤p≤r−1

(−1)p

θk∆m−k
r+p−1

∑
k≤l≤m

θl∆m−l
r−p ρl + θk∆m−k

r−p

∑
k<l≤m

θl∆m−l
r+p−1ρl

 .
Recognizing some θkKr(m− k), we get:

Zr(m) = (−1)r

∆m
2r

∑
1≤l≤m

ρl −
∑

1≤l≤m

θl∆m−l
2r ρl

+
∑

1≤k≤m

θkKr(m− k)ρk

+
∑

1≤k≤m

Rk1
∑

−r+1≤p≤r−1

(−1)p

θk∆m−k
r+p−1

∑
k≤l≤m

θl∆m−l
r−p ρl


+

∑
1≤k≤m

Rk1
∑

−r+2≤p≤r

(−1)p+1

θk∆m−k
r+p−1

∑
k<l≤m

θl∆m−l
r−p ρl

 .
Consequently:

Zr(m) =
∑

1≤k≤m

θkKr(m− k)ρk + (−1)r

∆m
2r

∑
1≤l≤m

ρl −
∑

1≤l≤m

θl∆m−l
2r ρl


+ (−1)r+1

∑
1≤k≤m

Rk1

θk∆m−k
2r−1

∑
k≤l≤m

ρl +
∑

k<l≤m

θl∆m−l
2r−1ρl


+

∑
1≤k≤m

Rk1
∑

−r+1≤p≤r

(−1)p

θk∆m−k
r+p−1

∑
k≤l≤m

θl∆m−l
r−p ρl − θk∆m−k

r+p−1

∑
k<l≤m

θl∆m−l
r−p ρl

.
The last line is

∑
1≤k≤mR

k
1 [
∑
−r+1≤p≤r(−1)pθk∆m−k

r+p−1θ
k∆m−k

r−p ρk]. For the same
reason as before, the sums inside each brackets are 0. Therefore it finally remains
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to show that the sum of the second and third terms is also 0, in other words that:

∆m
2r

∑
1≤l≤m

ρl −
∑

1≤l≤m

θl∆m−l
2r ρl

−
∑

1≤k≤m

Rk1

θk∆m−k
2r−1

∑
k≤l≤m

ρl +
∑

k<l≤m

θl∆m−l
2r−1ρl

 = 0.

Equivalently:∑
1≤k≤m

Rk1θ
k∆m−k

2r−1

∑
1≤k<l

ρl −
∑

1≤l≤m

θl∆m−l
2r ρl −

∑
1≤k≤m

Rk1
∑

k<l≤m

θl∆m−l
2r−1ρl = 0.

In the last term, replace Rk1 by (Rl1 −Rlk+1)ρk/ρl. It remains to show that:

−
∑

1≤l≤m

θl∆m−l
2r ρl +

∑
1≤k≤m

Rk1θ
k∆m−k

2r−1

∑
1≤l<k

ρl

−
∑

1≤k<l≤m

Rl1θ
l∆m−l

2r−1ρk +
∑

1≤k<l≤m

Rlk+1θ
l∆m−l

2r−1ρk = 0.

As this is true, this completes the proof of this first point.

2. Let us define ∆̃n
r =

∑
0≤k≤n ρkθ

k∆n−k
r , so that Bn(ut) =

∑
0≤r≤n(−it)r∆̃n

r . As

for |Bn(ut)−An(ut)|2 in the first point, we have:

|Bn(ut)|2 =
∑

0≤r≤n

t2rLr(n), where Lr(n) =
∑

−r≤p≤r

(−1)p∆̃n
r+p∆̃

n
r−p.

In order to compute Lr(n), notice first that:

∆̃n
r+p∆̃

n
r−p =

∑
0≤k≤n

ρk

θk∆n−k
r+p

∑
k≤l≤n

θl∆n−l
r−pρl + θk∆n−k

r−p

∑
k<l≤n

θl∆n−l
r+pρl

 .
Replacing in Lr(n), this allows to write, using the expressions of Kr(n) and Zr(n)
given in (5.4):

Lr(n) =
∑

0≤k≤n

ρk
∑

−r≤p≤r

(−1)p

θk∆n−k
r+p

∑
k≤l≤n

ρlθ
l∆n−l

r−p + θk∆n−k
r−p

∑
k<l≤n

ρlθ
l∆n−l

r+p


=

∑
0≤k≤n

(ρk)2θkKr(n− k) + 2
∑

0≤k≤n

(ρk)2θkZr(n− k) (5.5)

=
∑

0≤k≤n

ρk

ρkθkKr(n− k) + 2
∑
k<l≤n

ρlθ
lKr(n− l)


=

∑
0≤k≤n

ρkθ
kKr(n− k)

∑
0≤l≤k

2(l,k)ρl.

This completes the proof of this point.

3. Directly, we obtain:

(Bn −An)(ut)Bn(ut) =
∑

0≤r≤n

(−it)r∆n
r

∑
0≤r′≤n

(it)r
′
∆̃n
r′ . (5.6)
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When developing and taking the real part, only terms with r + r′ even intervene.
This gives:

Re((Bn −An)Bn)(ut) =
∑

0≤r≤n

t2r

 ∑
−r≤p≤r

(−i)r+pir−p∆n
r+p∆̃

n
r−p


=

∑
0≤r≤n

t2rMr(n),

with this time:

Mr(n) =
∑

−r≤p≤r

(−1)p∆n
r+p∆̃

n
r−p.

Since ∆̃n
r = ∆n

r +
∑

1≤k≤n ρkθ
k∆n−k

r , using Kr(n) and the value of Zr(n) in (5.4),
we have:

Mr(n) = Kr(n) + Zr(n) =
∑

0≤k≤n

ρkθ
kKr(n− k).

This ends the proof of this point.

4. In the same way as for 3., when taking the imaginary part in (5.6), only terms
with r + r′ odd come into play. Consequently:

Im(AnBn)(ut) = −1

i

∑
0≤r≤n−1

t2r+1

 ∑
−r−1≤p≤r

(−i)r+p+1ir−p∆n
r+p+1∆̃n

r−p


=

∑
0≤r≤n−1

t2r+1Nr(n),

with this time:

Nr(n) =
∑

−r−1≤p≤r

(−1)p∆n
r+p+1∆̃n

r−p.

Using again that ∆̃n
r =

∑
0≤k≤n ρkθ

k∆n−k
r , we get:

Nr(n) =
∑

0≤k≤n

∑
−r−1≤p≤r

(−1)p∆n
r+p+1θ

k∆n−k
r−p ρk.

Notice that the term corresponding to k = 0 equals 0, for symmetry reasons as
before. It remains:

Nr(n) = (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1ρk +

∑
1≤l≤n

Rl1
∑

−r≤p≤r

(−1)pθl∆n−l
r+p

∑
l<k≤n

θk∆n−k
r−p ρk

+
∑

1≤k≤n

∑
−r≤p≤r

(−1)pθk∆n−k
r−p ρk

∑
k≤l≤n

Rl1θ
l∆n−l

r+p

=
∑

1≤k≤n

Rk1ρkθ
kKr(n− k) +

∑
1≤l≤n

Rl1ρlθ
lZr(n− l) +Or(n), (5.7)

where we introduce:

Or(n) = (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1ρk+

∑
1≤k≤n

∑
−r≤p≤r

(−1)pθk∆n−k
r−p ρk

∑
k<l≤n

Rl1θ
l∆n−l

r+p.
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To compute Or(n), in the last sum decompose Rl1 = Rk1(ρl/ρk)+Rlk+1. As a result:

Or(n) =
∑

1≤k≤n

Rk1
∑

−r≤p≤r

(−1)pθk∆n−k
r−p

∑
k<l≤n

θl∆n−l
r+pρl

+ (−1)r+1
∑

1≤k≤n

θk∆n−k
2r+1ρk +

∑
1≤k≤n

∑
−r≤p≤r

(−1)pθk∆n−k
r−p θ

k∆n−k
r+p+1ρk

=
∑

1≤k≤n

Rk1θ
kZr(n− k)ρk +

∑
1≤k≤n

∑
−r≤p≤r−1

(−1)pθk∆n−k
r−p θ

k∆n−k
r+p+1ρk.

One more time, the last term is 0. Together with (5.7) and (5.4) we obtain:

Nr(n) =
∑

1≤k≤n

ρkR
k
1(θkKr(n−k) + 2θkZr(n−k)) =

∑
1≤k≤l≤n

Rk1θ
lKr(n− l)ρl2(k,l).

This gives the announced formula and concludes the proof of the proposition.
�

6. Proof of the theorem

6.1. Definitions; dominated variation. We next introduce some definitions concern-
ing directional fluxes and their variations.

Definition 6.1.

1) For m ≥ 0, n ≥ 0, define F (−m,n) =
(
nw+ ◦ v−1

+ (n) +mw− ◦ v−1
− (m)

)1/2
.

Staying coherent with the previous definition of F+, set:

F (n) = F (−n, n), F+(n) = F (0, n), F−(n) = F (−n, 0).

2) For u ∈ Sd−1
+ , m ≥ 0, n ≥ 0, let:

Gu(−m,n) =

F 2(−m,n) +
∑

−v−1
− (m)≤k≤l≤v−1

+ (n)

T lk(u)


1/2

.

Introduce for n ≥ 0:

Gu(n) = Gu(−n, n) and Gu,+(n) =

F 2(−n, n) +
∑

−v−1
− (m)≤k≤l≤v−1

+ (n),kl>0

T lk(u)


1/2

.

A central point for what follows, is that the inverse functions n→ G−1
u,+(n) and

n → G−1
u (n) check a dominated variation property at infinity. This notion has

been introduced by Feller in 1969. A non-decreasing map f : R+ → R+ verifies
dominated variation if:

∃K > 0, ∀x > 0, f(2x) ≤ Kf(x).

By iteration, for any C ≥ 1, then ∀x > 0, f(Cx) ≤ K ′f(x), for some constant K ′.
Notice that dominated variation holds for F−1

+ and F−1
− , as shown in the first point

of lemma 4.8.

Lemma 6.2.
1. For any x ≥ 1 and K ≥ 1:

F−1(Kx) ≤ 2K2F−1(x).
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2. There exists a constant C(δ) > 0, so that for any u ∈ Sd−1
+ , any x ≥ 1 and

K ≥ 1:

G−1
u,+(Kx) ≤ 2K2

δ
G−1
u,+(x) and G−1

u (Kx) ≤ K2

C(δ)
G−1
u (x).

Proof : 1. We have F 2(n) = n
(
w+(n) ◦ v−1

+ (n) + w−(n) ◦ v−1
− (n)

)
. For x ≥ 1, let

n = F−1(x), ie F (n) ≤ x < F (n+ 1). This implies that:

F (K2(n+ 1)) ≥ KF (n+ 1) > Kx.

Hence F−1(Kx) ≤ K2(n+ 1) ≤ 2K2n = 2K2F−1(x).

2. Let ζlk(u) =
∑l
s=k η

u
s /ρs, with ζlk(u) = 0 if k > l. Set:

κu,+(n) =
∑

1≤k≤l≤n

T lk(u) =
∑

0≤k<l≤n

ρkρl(ζ
l
k+1(u))2.

We first claim that:

κu,+(n)

v+(n)
=
κu,+(n− 1)

v+(n− 1)
+

ρn
v+(n)v+(n− 1)

 ∑
0≤k<n

ρkζ
n
k+1(u)

2

.

In particular, this shows that n 7−→ κu,+(n)/v+(n) is non-decreasing. Indeed:

κu,+(n) =
∑

0≤k<l≤n

ρkρl(ζ
n
k+1(u))2 +

∑
0≤k<l≤n

ρkρl(ζ
n
l+1(u))2

− 2
∑

0≤k<l≤n

ρkρlζ
n
k+1(u)ζnl+1(u).

This is rewritten as:

κu,+(n) =
∑

0≤k<n

ρk(ζnk+1(u))2
∑
k<l≤n

ρl +
∑

1≤l≤n

ρl(ζ
n
l+1(u))2

∑
0≤k<l

ρk

−

 ∑
0≤k≤n

ρkζ
n
k+1(u)

2

+
∑

0≤k≤n

(ρk)2(ζnk+1(u))2.

In other words, using that ζnn+1(u) = 0:

κu,+(n) = v+(n)
∑

0≤k<n

ρk(ζnk+1(u))2 −

 ∑
0≤k<n

ρkζ
n
k+1(u)

2

.

Next, directly from the definition of κu,+(n), and then using the previous equality:

κu,+(n)− κu,+(n− 1) = ρn
∑

0≤k<n

ρk(ζnk+1(u))2

= ρn
κu,+(n) +

(∑
0≤k<n ρkζ

n
k+1(u)

)2

v+(n)
.

Observe that this is equivalent to the desired claim.
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We next use that for all n ≥ 0, δ ≤ ρn+1/ρn ≤ 1/δ, giving v+(n + 1) ≤
(2/δ)v+(n). As a result v+ ◦ v−1

+ (n) ≤ n ≤ (2/δ)v+ ◦ v−1
+ (n). Hence for x ≥ 1

and K ≥ 1:

κu,+ ◦ v−1
+ (Kx) ≥ κu,+ ◦ v−1

+ (x)
v+ ◦ v−1

+ (Kx)

v+ ◦ v−1
+ (x)

≥ δK

2
κu,+ ◦ v−1

+ (x).

A similar property is verified for some symmetrically defined function κu,− ◦ v−1
− .

Notice that:

G2
u,+(n) = F 2(n) + κu,+ ◦ v−1

+ (n) + κu,− ◦ v−1
− (n).

Remark that Gu,+(n)→ +∞, as n→ +∞. We showed in point one that F 2(Kx) ≥
KF 2(x). Putting everything together, we obtain that for x ≥ 1 and K ≥ 1:

Gu,+(Kx) ≥
√

(δK/2)Gu,+(x).

We conclude as in point one. Let next x ≥ 1, n = G−1
u,+(x) and K ≥ 1. From the

relation Gu,+(n) ≤ x < Gu,+(n+ 1), we deduce:

Gu,+((2K2/δ)(n+ 1)) ≥ KGu,+(n+ 1) > Kx.

Consequently G−1
u,+(Kx) ≤ ((2K2)/δ)G−1

u,+(x).
It finally remains to show the same result for Gu. This way, let κu(−m,n) =∑
−m≤k≤l≤n T

l
k(u), for m ≥ 1, n ≥ 1. Then, the computation on κu,+ shows that:

n 7−→ κu(−m,n)

(v−(m)/a0) + v+(n)
and m 7−→ κu(−m,n)

(v−(m)/a0) + v+(n)

are non-decreasing. This furnishes that for some constant C(δ) > 0:

κu(−v−1
− (Kx), v−1

+ (Kx)) ≥ C(δ)K

2
κu(−v−1

− (x), v−1
+ (x)).

As G2
u(n) = F 2(n) + κu(−v−1

− (n), v−1
+ (n)), we conclude once again as before. This

ends the proof of the lemma. �

Remark 6.3. As a consequence of the previous lemma, we can work with functions
verifying dominated variation up to multiplicative positive constants, outside the
function or in the argument. This will appear clearly. This will for example allow
to use frequently that, when f = g + h, all positive, non-decreasing and tending to
+∞ that for x > 0:

f(x) � max{g(x), h(x)}, f−1(x) � min{g−1(x), h−1(x)}, etc.

6.2. Order of Re(1−χD(ut)). With u ∈ Sd−1
+ and small t > 0, recall from relation

(4.6) the decomposition:

χD(ut) = ϕ0(ut)(p′0χ
+
D(ut) + q′0χ

−
D(ut)).

Also from lemma 4.8 we have that:

χ+
D(ut) = f+(ut) +O(R+(t)) and χ−D(ut) = f−(ut) +O(R−(t)),

where the O( ) are uniform in u ∈ Sd−1
+ . The terms R+(t) and R−(t) have respective

orders 1/F−1
+ (1/t) and 1/F−1

− (1/t), by lemma 4.8.

Definition 6.4. Let R(t) = R+(t) +R−(t).

The main preliminary result for estimating Re(1− χD(ut)) is as follows.
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Lemma 6.5.
1. We have χD(ut) = ϕ0(ut)(p′0f

+(ut) + q′0f
−(ut)) +O(R(t)).

2. We have t2 = O(R+(t)) and t2 = O(R−(t)).

3. We have tIm(1− f+(ut)) = O(R+(t)) and tIm(1− f−(ut)) = O(R−(t)).

4. We have χD(ut) = (1 + itm0.ur0/(1− r0))(p′0f
+(ut) + q′0f

−(ut)) +O(R(t)) and

Re(1− χD)(ut) = p′0Re(1− f+(ut)) + q′0Re(1− f−(ut)) +O(R(t)). (6.1)

5. There is a constant c > 0 so that for small t > 0, uniformly in u ∈ Sd−1
+ :

Re(1− χD(ut)) ≥ cR(t).

Proof :
1. This follows from χD(ut) = ϕ0(ut)(p′0χ

+
D(ut)+q′0χ

−
D(ut)) and χ±D(ut) = f±(ut)+

O(R±(t)).

2. As F 2
+(n) = nw+ ◦ v−1

+ (n), for some constant c > 0, we get F+(n2) ≥ cn.

As a result, F−1
+ (1/t) ≤ c′/t2, t > 0, for another constant c′ > 0. Thus t2 =

O(1/F−1
+ (1/t)) = O(R+(t)), using finally lemma 4.8. This gives the first property.

The other one is proved in the same way.

3. We make use of proposition 5.2 and lemma 3.1. Take any integer n ≥ 1. Since
f+(ut) = An(ut)/Bn(ut) +O(1/v+(n)) (where O( ) is independent on u and t), we
have:

Im(f+(ut)) =
Im(An(ut))B̄n(ut))

|Bn(ut)|2
+O(1/v+(n))

=

∑
0≤r≤n−1 t

2r+1Nu
r (n)∑

0≤r≤n t
2rLur (n)

+O(1/v+(n)).

Now, observe that:

Lur (n) =
∑

0≤l≤k≤n

ρkθ
kKu

r (n− k)2(l,k)ρl ≥
∑

1≤k≤n

ρkv+(k)θkKu
r (n− k) and

Nu
r (n) =

∑
1≤k≤l≤n

Rk1θ
lKu

r (n− l)ρl2(k,l) =
∑

1≤k≤n

 ∑
1≤s≤l≤k

ηus
ρs
ρl2

(l,k)

ρkθkKu
r (n− k).

As the ηun are uniformly bounded by some C/2, as n and u ∈ Sd−1
+ vary, we get:

|Nu
r (n)| ≤ Cw+(n)

∑
1≤k≤n

v+(k)ρkθ
kKu

r (n− k) ≤ Cw+(n)Lur (n).

We finally obtain:

|Im(f+(ut))| ≤ tw+(n) +O(1/v+(n)).

Let n′ = F−1
+ (1/t) and n = v−1

+ (n′). By definition of F+, we have n′w+(n) ≤ 1/t2.
We obtain |Im(f+(ut))| ≤ 1/(tn′) + O(1/n′). This is the desired result. The case
of t|Im(f−(ut))| is similar.

4. Write ϕ0(ut) = 1 + itm0.ur0/(1 − r0) + O(t2), with O( ) uniform in u ∈ Sd−1
+ .

Using the second point of the lemma, we get:

χD(ut) =

(
1 +

itm0.ur0

1− r0

)
(p′0f

+(ut) + q′0f
−(ut)) +O(R(t)),
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with again an error term uniform in u ∈ Sd−1
+ . Therefore:

1− χD(ut) = p′0(1− f+(ut)) + q′0(1− f−(ut))

− itm0.ur0

1− r0
(p′0f

+(ut) + q′0f
−(ut)) +O(R(t)).

Taking the real part:

Re(1− χD(ut)) = p′0Re(1− f+(ut)) + q′0Re(1− f−(ut))

+
tm0.ur0

1− r0

(
p′0Im(f+(ut)) + q′0Im(f−(ut))

)
+O(R(t)).

The third point of the lemma then gives (6.1).

5. By lemma 4.8, for a constant c1 > 0 independent on u ∈ Sd−1
+ , we have for small

t > 0, 1 − |χ+
D(ut)| ≥ c1R

+(ut). Idem, for some c2 > 0, we get 1 − |χ−D(ut)| ≥
c2R

−(ut). As χD(ut) = ϕ0(ut)(p′0χ
+
D(ut) + q′0χ

−
D(ut)) and |ϕ0(ut)| ≤ 1:

Re(1− χD(ut)) ≥ 1− |χD(ut)| ≥ 1− |p′0χ+
D(ut) + q′0χ

−
D(ut)|

≥ p′0(1− |χ+
D(ut)|) + q′0(1− |χ−D(ut)|)

≥ c1p
′
0R

+(t) + c2q
′
0R
−(t) ≥ cR(t),

for some constant c > 0. This completes the proof of the lemma.
�

Remark 6.6. It may be noticed that in the flat case treated in Brémont (2016)
one always had t = O(R+(t)). This is not true anymore here. For example if∑
k≥1(1/ρk) <∞, then F+(n) has order

√
n , so that R+(t) has order t2, as t→ 0.

The main result of this section is the following one.

Proposition 6.7. There is a constant C ≥ 1 so that for t > 0 small enough,
uniformly in u ∈ Sd−1

+ :

1

C
≤ G−1

u,+(1/t)Re(1− χD(ut)) ≤ C.

Proof : We still fix u ∈ Sd−1
+ and t > 0. Recall that f+(ut) = lim

n→+∞
An(ut)/Bn(ut),

where (Bn(ut)) and (An(ut)) check relation (5.1) with An(ut) = a1θBn−1(ut) and
satisfy proposition 5.2.

Fixing some n ≥ 1, we use proposition 5.2 and lemma 3.1:

Re(1− f+(ut))

= Re(1−An(ut)/Bn(ut))− Re

(∑
k>n

ρk
Bk(ut)Bk−1(ut)

)

≤ Re((Bn(ut)−An(ut))B̄n(ut))

|Bn(ut)|2
+

1

v+(n)

≤
v+(n) +

∑
1≤r≤n t

2rMu
r (n)

v+(n)2 +
∑n
r=1 t

2rLur (n)
+

1

v+(n)
≤ 1

v+(n)

2 +
∑

1≤r≤n

t2r
Mu
r (n)

v+(n)

 ,

By the formula for Mu
r (n) and Ku

r (n) given in proposition 5.2, we have the inequal-
ities Mu

r (n) ≤ (
∑

1≤k≤l≤n T
l
k(u))r2rv+(n), for r ≥ 1. Hence:

Mu
r (v−1

+ (n)) ≤ n2rG2r
u,+(n).
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As a result, for some constant C > 0 independent on u and any n ≥ 1:

Re(1− f+(ut)) ≤ C

n

1 +
∑

1≤r≤v−1
+ (n)

(2t2)rG2r
u,+(n)

 .
Choose n = nu(t) = G−1

u,+(1/(2t)). In particular G2
u,+(n) ≤ 1/(4t2). We arrive at:

Re(1− f+(ut)) ≤ C

n

1 +
∑
r≥1

2−r

 ≤ 2C

n
=

2C

G−1
u,+(1/(2t))

≤ C ′

G−1
u,+(1/t)

,

for some constant C ′ independent on u, using lemma 6.2. Idem, Re(1− f−(ut)) ≤
C ′/G−1

u,+(1/t). Now, by (6.1) and using that:

R±(t) = O(1/F−1
± (1/t)) = O(1/G−1

u,+(1/t)),

we obtain the right-hand side inequality of the proposition.

Consider next the other direction. Starting in the same way, for any n ≥ 1, via
proposition 5.2 and lemma 3.1 (third point):

Re(1− f+(ut)) = Re(1−An(ut)/Bn(ut))− Re

(∑
k>n

ρk
Bk(ut)Bk−1(ut)

)

≥ Re((Bn(ut)−An(ut))B̄n(ut))

|Bn(ut)|2
− v+(n)

|Bn(ut)|2

=
v+(n) +

∑
1≤r≤n t

2rMu
r (n)

|Bn(ut)|2
− v+(n)

|Bn(ut)|2

=

∑
1≤r≤n t

2rMu
r (n)

v+(n)2 +
∑

1≤r≤n t
2rLur (n)

.

By proposition 5.2:

Mu
r (n) =

∑
0≤k≤n

ρkθ
kKu

r (n− k) and Lur (n) =
∑

0≤l≤k≤n

2(l,k)ρlρkθ
kKu

r (n− k).

Therefore we have Lur (n) ≤ 2v+(n)Mu
r (n). Hence, using in the last step below that

x 7−→ x/(1 + 2x) is increasing (x > 0):

Re(1− f+(ut)) ≥ 1

v+(n)

∑
1≤r≤n t

2rMu
r (n)/v+(n)

1 + 2
∑

1≤r≤nM
u
r (n)/v+(n)

≥ 1

v+(n)

t2Mu
1 (n)/v+(n)

1 + 2t2Mu
1 (n)/v+(n)

, (6.2)

As a result, for some constant c > 0 independent on u and all n ≥ 1:

Re(1− f+(ut)) ≥ c

n

ct2Mu
1 (v−1

+ (n))/n

1 + 2ct2Mu
1 (v−1

+ (n))/n
.

Let κu,+(m) =
∑

1≤k≤l≤m T
l
k(u). Assume first that limm→+∞ κu,+(m) = +∞.

Note, using proposition 5.2, that:

Mu
1 (n) ≥

∑
1≤m≤n

ρmκu,+(m), so Mu
1 (v−1

+ (n)) ≥
∑

1≤m≤v−1
+ (n)

ρmκu,+(m).
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Let c0 ≥ 2 be such that for all n, v+(n+1) ≤ c0v+(n). Notice that supv∈Sd−1
+
{κv,+◦

v−1
+ (1)} is evidently finite, so (κu,+◦v−1

+ )−1(1/t2) ≥ 1 for t small enough, uniformly

in u ∈ Sd−1
+ .

For small t, set mu(t) = (κu,+ ◦ v−1
+ )−1(1/t2) ≥ 1 and next choose nu(t) =

c20(mu(t) + 1). Let s = v−1
+ (mu(t) + 1) and s′ = v−1

+ (nu(t)). This gives:

v+(s) ≤ mu(t) + 1 < v+(s+ 1) ≤ c0v+(s) and

v+(s′) ≤ c20(mu(t) + 1) < v+(s′ + 1) ≤ c0v+(s′).

As a result, c20(mu(t) + 1) ≥ v+(s′) − v+(s) ≥ c0(mu(t) + 1) − (mu(t) + 1) ≥
(c0 − 1)(mu(t) + 1). Also mu(t) + 1 ≥ v+(s) ≥ (mu(t) + 1)/c0. This furnishes the
inequalities:

Mu
1 (v−1

+ (nu(t)))

nu(t)
≥
∑
s<m≤s′ ρmκ+(m)

nu(t)

≥ κu,+(s)
v+(s′)− v+(s)

nu(t)
≥ α

t2
with α = (c0 − 1)/c20.

Consequently, with α′ = (c2α)/(2c20(1 + 2cα)):

Re(1− f+(ut)) ≥ c

nu(t)

cα

1 + 2cα
=

α′

(κu,+ ◦ v−1
+ )−1(1/t2)

.

If now m 7−→ κu,+(m) is bounded, the previous inequality is valid as long as

(κu,+ ◦ v−1
+ )−1(1/t2) is defined. For smaller t, (κu,+ ◦ v−1

+ )−1(1/t2) = +∞ and the
previous lower-bound becomes trivial.

In the same way, with κu,−(m) =
∑
−m≤k≤l≤−1 T

l
k(u), we have:

Re(1− f−(ut)) ≥ α′/(κu,− ◦ v−1
− )−1(1/t2).

To prove a lower bound, we use (6.1), giving for some constant c3 > 0 independent
on u:

Re(1− χD(ut)) ≥ p′0Re(1− f+(ut)) + q′0Re(1− f−(ut))− c3/F−1(1/t). (6.3)

Recall that G2
u,+ = F 2 + κu,+ ◦ v−1

+ + κu,− ◦ v−1
− . Then, for some constant β > 0

independent on u and t, we have:

β ≤
G−1
u,+(1/t)

min{F−1(1/t), (κu,+ ◦ v−1
+ )−1(1/t2), (κu,− ◦ v−1

− )−1(1/t2)}
≤ 1.

Fix t > 0 and suppose for example that (κu,+◦v−1
+ )−1(1/t2) ≤ (κu,−◦v−1

− )−1(1/t2).
This leads to the following discussion:

– If (1/F−1(1/t)) ≤ p′0Re(1− f+(ut))/(2c3) and F−1(1/t) ≥ (κu,+ ◦ v−1
+ )−1(1/t2),

then:

Re(1− χD(ut)) ≥ (p′0/2)Re(1− f+(ut)) ≥ p′0α
′/2

(κu,+ ◦ v−1
+ )−1(1/t2)

≥ βp′0α
′/2

G−1
u,+(1/t)

.

– If (1/F−1(1/t)) ≤ p′0Re(1− f+(ut))/(2c3) and F−1(1/t) ≤ (κu,+ ◦ v−1
+ )−1(1/t2),

then, by lemma 6.5 and proposition 4.8, for absolute constants c > 0 and c′ > 0:

Re(1− χD(ut)) ≥ cR(ut) ≥ c′/F−1(1/t) ≥ βc′/G−1
u,+(1/t).
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– If (1/G−1
u,+(1/t)) > p′0Re(1− f+(ut))/(2c3), then F−1(1/t) < (2c3/(p

′
0α
′))(κu,+ ◦

v−1
+ )−1(1/t2). We obtain the inequality:

β

G−1
u,+(1/t)

≤ 1

F−1(1/t) min{p′0α′/(2c3), 1}
.

We conclude as in the previous case, via Re(1− χD(ut)) ≥ cR(ut) ≥ c′/F−1(1/t).
This completes the proof of the proposition.

�

6.3. Preliminaries for estimating |1 − χD(ut)|. We shall prove a similar result for

|1 − χD(ut)|, but the details are a little more delicate. We still fix u ∈ Sd−1
+ and

t > 0.
We use proposition 5.2 concerning f+ and its symmetric analogue for f−. To

precise the dependency with respect to f+ or f−, we put a superscript (+ or −)
on An, Bn, etc. For example:

f+(ut) = lim
n→+∞

A+
n (ut)/B+

n (ut).

Keeping the same sets of summation, the expressions corresponding to Ku,−
r (n),

Lu,−r (n), etc, are deduced from Ku,+
r (n), Lu,+r (n) by replacing in proposition 5.2

all (qk, pk) by (p−k, q−k). Any ρk becomes ρ−k−1q0/p0. A very important point is

that T lk(u) is simply transformed into T−k−l (u).
Let us begin with a formal computation on reversed continued fractions.

Lemma 6.8. Let n ≥ 1 and consider the formal reduced continued fraction:

Un
Vn

= [(−c1, d1); (−c2, d2); · · · ; (−cn, dn)].

Consider the reduced reversed continued fraction:

Ũn

Ṽn
= [(−1/cn, dn/cn); (−1/cn−1, dn−1/cn−1); · · · ; (−1/c1, d1/c1)].

Then we have the relation Vn = c1 · · · cnṼn.

Proof : Rereading if necessary section 3.1, we have:

Vn = 〈e1,

(
dn −cn
1 0

)
· · ·
(
d1 −c1
1 0

)
e1〉.

Transposing and next conjugating the matrices with diag(1,−1), which preserve
the first vector e1 of the canonical basis:

Vn = 〈e1,

(
d1 1
−c1 0

)
· · ·
(
dn 1
−cn 0

)
e1〉

= 〈e1,

(
d1 −1
c1 0

)
· · ·
(
dn −1
cn 0

)
e1〉

= c1 · · · cn〈e1,

(
d1/c1 −1/c1

1 0

)
· · ·
(
dn/cn −1/cn

1 0

)
e1〉.

Hence Vn = c1 · · · cnṼn. This proves the lemma. �
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Let us start from relation (4.6):

χD(ut) = ϕ0(ut)(p′0χ
+
D(ut) + q′0χ

−
D(ut)) = (ϕ0(ut)/b0)(χ+

D(ut) + a0χ
−
D(ut)).

This gives, using lemmas 4.8 and 6.5 and taking t > 0 small, independently on u:

χD(ut)− 1 =
ϕ0(ut)

b0
(χ+
D(ut) + a0χ

−
D(ut)− b0/ϕ0(ut))

=
ϕ0(ut)

b0
(f+(ut) + a0f

−(ut)− b0/ψ0(ut)) +O(R(t))

=
ϕ0(ut)

b0

(
A+
n (ut)

B+
n (ut)

+ a0
A−m(ut)

B−m(ut)
− b0/ψ0(ut)

)
+
ϕ0(ut)

b0

(∑
k>n

ρk

B+
k (ut)B+

k−1(ut)
+
∑
k>m

a2
0ρ−k−1

B−k (ut)B−k−1(ut)

)
+O(R(t)),

with O( ) uniform in u and arbitrary n ≥ 1, m ≥ 1. As a result:

χD(ut)− 1

=
ϕ0(ut)

b0B
+
n (ut)B−m(ut)

(
A+
n (ut)B−m(ut) + a0A

−
m(ut)B+

n (ut)

− (b0/ψ0(ut))B+
n (ut)B−m(ut)

)
+
ϕ0(ut)

b0
R−m,n(ut) +O(R(t)), (6.4)

with some error term |R−m,n(ut)| ≤ (v+(n)/|B+
n (ut)|2) +a0(v−(m)/|B−m(ut)|2), by

lemma 3.1, and also O( ) uniform in u ∈ Sd−1
+ .

Lemma 6.9. Let n ≥ 1, m ≥ 1 and consider the following reduced continued
fraction:

Ãm+n+1(ut)

B̃m+n+1(ut)
=

= [(−a−m, b−m/ψ−m(ut)); (−a−m+1, b−m+1/ψ−m+1(ut)); · · · ; (−an, bn/ψn(ut))].

Then we have the following expression:

B̃m+n+1(ut) =

− a−1 · · · a−m(A+
n (ut)B−m(ut) + a0A

−
m(ut)B+

n (ut)− (b0/ψ0(ut))B+
n (ut)B−m(ut)).

Proof : Fix m ≥ 1. We now observe that the two functions:

n 7−→ −B̃m+n+1(ut)/(a−1 · · · a−m) and

n 7−→ A+
n (ut)B−m(ut) + a0A

−
m(ut)B+

n (ut)− (b0/ψ0(ut))B+
n (ut)B−m(ut)

check the same recursive relation Xn = (bn/ψn(ut))Xn−1−anXn−2, for n ≥ 1. We
just verify that they coincide for the values n = 0 and n = 1.

First of all, B̃m(ut)/(a−1 · · · a−m) = B−m(ut) and:

A−m(ut) = (1/a−1)θ−1B−m−1(ut) = B̃m−1(ut)/(a−1 · · · a−m),

by lemma 6.8. For n = 0 we have −B̃m+1(ut)/(a−1 · · · a−m) and a0A
−
m(ut) −

(b0/ψ0(ut))B−m(ut). Since one has:

B̃m+1(ut) = (b0/ψ0(ut))B̃m(ut)− a0B̃m−1(ut),
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this gives the result for n = 0. Concerning n = 1, we have:

B̃m+2(ut) =
b1

ψ1(ut)
B̃m+1(ut)− a1B̃m(ut)

=

(
b1

ψ1(ut)

b0
ψ0(ut)

− a1

)
B̃m(ut)− b1

ψ1(ut)
a0B̃m−1(ut).

This has to be compared with a1B
−
m(ut) + a0(b1/ψ1(ut))A−m(ut)

−(b0/ψ0(ut))(b1/ψ1(ut))B−m(ut). As this is equal, the conclusion of the lemma
now follows. �

As a consequence of this lemma, we obtain:

χD(ut)− 1 = −ϕ0(ut)

b0

(
a0ρ−m−1

B̃m+n+1(ut)

B+
n (ut)B−m(ut)

−R−m,n(ut)

)
+O(R(t)). (6.5)

It now follows from proposition 5.2 that:

|B+
n (ut)|2 =

n∑
r=0

t2rLu,+r (n),

with Hr((ki), (lj)) := #{0 ≤ i ≤ r | li + 1 < ki+1} and:

Lu,+r (n) =
∑

0≤l0<k1≤l1<···<kr≤lr<kr+1≤n+1

ρl0T
l1
k1

(u) · · ·T lrkr (u)ρkr+1−12Hr((ki),(lj)).

As a result, setting W−m,n(ut) = a0ρ−m−1B̃m+n+1(ut), we have:

|W−m,n(ut)|2 =
∑

0≤r≤n+m+1

t2rUr(u),

with Hr((ki), (li)) = #{0 ≤ i ≤ r | li + 1 < ki+1} and:

Ur(u) = a2
0ρ

2
−m−1

∑
−m−1≤l0<k1≤l1<···<ks≤ls<ks+1≤n+1

θ−m−1 ρl0+m+1T
l1
k1

(u) · · ·T lsks(u)θ−m−1

× ρks+1−1+m+12Hs((ki),(li)).

After a cocycle simplification we arrive at:

Ur(u) = a2
0

∑
−m−1≤l0<k1≤l1<···<ks≤ls<ks+1≤n+1

ρl0T
l1
k1

(u) · · ·T lsks(u)ρks+1−12Hs((ki),(li)). (6.6)

6.4. Order of |1− χD(ut)|. Our aim in this section is to show the following result.

Proposition 6.10. There is a constant C ≥ 1 so that for t > 0 small enough,
uniformly in u ∈ Sd−1

+ :

1

C
≤ G−1

u (1/t)|1− χD(ut)| ≤ C.

Proof : Let us start from (6.5). Set:

F(ut) =
W−m,n(ut)

B+
n (ut)B−m(ut)

−R−m,n(ut).

Recall that F(ut) is independent from m ≥ 1 and n ≥ 1, see (6.5). We then have:

χD(ut)− 1 = −(ϕ0(ut)/b0)F(ut) +O(R(t)),
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where the last term is uniform in u ∈ Sd−1
+ . The integers m ≥ 1, n ≥ 1 are arbitrary

for the moment. Using the upper-bound on R−m,n(ut) recalled in the last section,
consequence of lemma 3.1, we get:

|F(ut)| ≥ |W−m,n(ut)|
|B+
n (ut)||B−m(ut)|

− v+(n)

|B+
n (ut)|2

− a0
v−(m)

|B−m(ut)|2

≥ 1

|B+
n (ut)||B−m(ut)|

(
|W−m,n(ut)| − v+(n)

|B−m(ut)|
|B+
n (ut)|

− a0v−(m)
|B+
n (ut)|

|B−m(ut)|

)
.

Recall that W 2
−m,n(ut) =

∑
0≤r≤n+m+1 t

2rUr(u), with Us(u) given by (6.6). In

particular:

U0(u) = a2
0

 ∑
−m−1≤l≤n

ρl

2

= (v−(m) + a0v+(n))2.

Introduce Z2
−m,n(t) such that:

|W−m,n(ut)|2 − (a2
0|B+

n (ut)|2 + |B−m(ut)|2)− 2a0v+(n)v−(m) = Z2
−m,n(ut).

Then Z2
−m,n(ut) =

∑
1≤s≤n+m+1 t

2sVs(u), where:

Vs(u) = a2
0

∑
−m−1≤l0<k1≤l1<···<ks≤ls<ks+1≤n+1

l0<0<ks+1

ρl0T
l1
k1

(u) · · ·T lsks(u)ρks+1−12Hs((ki),(li)). (6.7)

Observe now that:(
v+(n)

|B−m(ut)|
|B+
n (ut)|

+ a0v−(m)
|B+
n (ut)|

|B−m(ut)|

)2

= v2
+(n)

|B−m(ut)|2

|B+
n (ut)|2

+ a2
0v

2
−(m)

|B+
n (ut)|2

|B−m(ut)|2
+ 2a0v+(n)v−(m)

≤ |B−m(ut)|2 + a2
0|B+

n (ut)|2 + 2a0v+(n)v−(m)

≤ |W−m,n(ut)|2 − Z2
−m,n(ut) ≤ |W−m,n(ut)|2. (6.8)

This allows to write:

|F(ut)| ≥ 1

|B+
n (ut)||B−m(ut)|

(
|W−m,n(ut)| − v+(n)

|B−m(ut)|
|B+
n (ut)|

− a0v−(m)
|B+
n (ut)|

|B−m(ut)|

)

≥
|W−m,n(ut)|2 −

(
v+(n)

|B−m(ut)|
|B+
n (ut)| + a0v−(m)

|B+
n (ut)|

|B−m(ut)|

)2

2|W−m,n(ut)||B+
n (ut)||B−m(ut)|

≥
Z2
−m,n(ut)

2|W−m,n(ut)||B+
n (ut)||B−m(ut)|

. (6.9)

We now give upper-bounds on |W−m,n(ut)| and |B+
n (ut)||B−m(ut)|. Observe first

that Lu,+r (n) ≤ Vr(u)v+(n)/(a0v−(m)), for r ≥ 1, so that:

|B+
n (ut)|2 − v+(n)2 ≤ v+(n)

a0v−(m)
.
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Similarly, |B−m(ut)|2 − v−(m)2 ≤ Z2
−m,n(ut)v−(m)/(a0v+(n)). We obtain:

|W−m,n(ut)|2

=(v−(m)+a0v+(n))2+a2
0(|B+

n (ut)|2 − v+(n)2)+(|B−m(ut)|2−v−(m)2)+Z2
−m,n(ut)

≤ (v−(m) + a0v+(n))2 + (a0v+(n)/v−(m) + v−(m)/(a0v+(n)) + 1)Z2
−m,n(ut)

≤ (v−(m) + a0v+(n))2

[
1 +

1

a0v−(m)v+(n)
Z2
−m,n(ut)

]
. (6.10)

In the same way:

|B+
n (ut)|2|B−m(ut)|2

= v+(n)2v−(m)2

1 +
∑

1≤r≤n

t2r
Lu,+r (n)

v+(n)2

1 +
∑

1≤r≤m

t2r
Lu,−r (n)

v−(m)2


= v+(n)2v−(m)2

1 +
∑

1≤s≤m+n

t2s
∑

0≤r≤s

Lu,+r (n)Lu,−s−r(m)

v+(n)2v−(m)2

 .

Notice that
∑

0≤r≤s L
u,+
r (n)Lu,−s−r(m) ≤ Vs(u)v+(n)v−(m)/a0. Therefore:

|B+
n (ut)|2|B−m(ut)|2 ≤ v+(n)2v−(m)2

(
1 +

Z2
−m,n(ut)

a0v+(n)v−(m)

)
Inserting these two upper-bounds in (6.9) and using in the last step that the function
x 7−→ x/(1 + x) is increasing, we obtain:

|F(ut)| ≥ 1

2(v−(m)/a0 + v+(n))

Z2
−m,n(ut)/(a0v+(n)v−(m))

1 + Z2
−m,n(ut)/(a0v+(n)v−(m))

≥ 1

2(v−(m)/a0 + v+(n))

t2V1(u)/(a0v+(n)v−(m))

1 + t2V1(u)/(a0v+(n)v−(m))
.

Let us now focus on V1(u) that we write V1(u) = Vu,1(−m,n). Set κu(r, s) =∑
r≤k≤l≤s T

l
k(u), for r ≤ s. We assume first that

∑
−∞<k≤l<+∞ T lk(u) = +∞. We

obtain:

Vu,1(−m,n) = a2
0

∑
−m−1≤l0<k1≤l1<k2≤n+1

l0<0<k2

ρl0T
l1
k1

(u)ρk2−12H1((ki),(li))

≥ a2
0

∑
−m≤l0≤0≤k2≤n

ρl0−1ρk2κu(l0, k2).

We next have the existence of a constant c > 0 independent on u ∈ Sd−1
+ so that

for all n ≥ 1:

|F(ut)| ≥ c

n

(ct2/n2)Vu,1(−v−1
− (n), v−1

+ (n))

1 + (ct2/n2)Vu,1(−v−1
− (n), v−1

+ (n))
.

Let c0 ≥ 2 be such that for all n ≥ 0, v+(n+1) ≤ c0v+(n) and v−(n+1) ≤ c0v−(n).
Taking t > 0, set mu(t) = κu(−v−1

− (.), v−1
+ (.))−1(1/t2). As

supv∈Sd−1
+
{κu(−v−1

− (1), v−1
+ (1))} is clearly finite, we have mu(t) ≥ 1 for small

enough t, uniformly in u ∈ Sd−1
+ . Choose next nu(t) = c20(mu(t) + 1). Let
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r = v−1
+ (mu(t) + 1), s = v−1

− (mu(t) + 1) and r′ = v−1
+ (nu(t)), s′ = v−1

− (nu(t)).
This gives:

v+(r) ≤ mu(t) + 1 < v+(r + 1) ≤ c0v+(r) and

v+(r′) ≤ c20(mu(t) + 1) < v+(r′ + 1) ≤ c0v+(r′).

As a result, c20(mu(t)+1) ≥ v+(r′)−v+(r) ≥ (c0−1)(mu(t)+1) and (mu(t)+1) ≥
v+(r) ≥ (mu(t) + 1)/c0. In the same way, we have:

v−(s) ≤ mu(t) + 1 < v−(s+ 1) ≤ c0v−(s) and

v−(s′) ≤ c20(mu(t) + 1) < v+(s′ + 1) ≤ c0v+(s′).

Also, c20(mu(t) + 1) ≥ v−(s′) − v−(s) ≥ (c0 − 1)(mu(t) + 1) and (mu(t) + 1) ≥
v−(s) ≥ (mu(t) + 1)/c0.

We obtain:

Vu,1(−v−1
− (nu(t)), v−1

+ (nu(t)))

nu(t)2
≥ a2

0

∑
r<l≤r′,s<k≤s′ ρ−k−1ρlκu(−k, l)

nu(t)2

≥ a0κu(−s, r) (v+(r′)− v+(r))(v−(s′)− v−(s))

nu(t)2

≥ a0(c0 − 1)2(mu(t) + 1)2

t2nu(t)2
=
α

t2
,

where α = a0(c0 − 1)2/c20. At this point, the conclusion is that there is a constant

c′ > 0 so that for small enough t > 0, uniformly in u ∈ Sd−1
+ :

|F(ut)| ≥ c′

κu(−v−1
− (.), v−1

+ (.))−1(1/t2)
.

When
∑
−∞<k≤l<+∞ T lk is bounded, the inequality is verified, as

κu(v−1
− (.), v−1

+ (.))−1(1/t2) = +∞, for small enough t > 0. The previous lower-
bound is then obvious in that case.

In order to draw the conclusion, recall thatG2
u(n) = F 2(n)+κu(−v−1

− (n), v−1
+ (n))

and 1−χD(ut) = (ϕ0(ut)/b0)F(ut)+O(R(t)), with O( ) uniform in u ∈ Sd−1
+ . Also,

by lemma 6.5:
|1− χD(ut)| ≥ Re(1− χD(ut)) ≥ c1R(ut),

for some absolute constant c1 > 0. Similarly, for constants c2 > 0 and c3 > 0,
we have the inequalities c2 ≤ R(t)F−1(1/t) ≤ c3. Then, for constants β > 0 and

c4 > 0 independent on u ∈ Sd−1
+ , for small t > 0:

β ≤ G−1
u (1/t)

min{F−1(1/t), κu(−v−1
− (.), v−1

+ (.))−1(1/t2)}
and:

|1− χD(ut)| ≥ 1

2b0
|F(ut)| − c4R(t) ≥ c′

2b0κu(−v−1
− (.), v−1

+ (.))−1(1/t2)
− c4c3
F−1(1/t)

.

Fixing t > 0, we then have the following discussion:

– If c′/(2b0κu(−v−1
− (.), v−1

+ (.))−1(1/t2)) ≥ 2c3c4/F
−1(1/t) and

κu(−v−1
− (.), v−1

+ (.))−1(1/t2) ≤ F−1(1/t):

|1− χD(ut)| ≥ c′

4b0κu(−v−1
− (.), v−1

+ (.))−1(1/t2)
≥ c′β

4b0G
−1
u (1/t)

.
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– If c′/(2b0κu(−v−1
− (.), v−1

+ (.))−1(1/t2)) ≥ 2c3c4/F
−1(1/t) and

κu(−v−1
− (.), v−1

+ (.))−1(1/t2) > F−1(1/t):

|1− χD(ut)| ≥ c1c2/ψ−1(1/t) ≥ c1c2β/G−1
u (1/t).

– If c′/(2b0κu(−v−1
− (.), v−1

+ (.))−1(1/t2)) < 2c3c4/F
−1(1/t), then for some absolute

constant c5 > 0 (independent on u), 1/F−1(1/t) ≥ c5/G−1
u (1/t). Then, as above:

|1− χD(ut)| ≥ c1c2/F−1(1/t) ≥ c1c2c5G−1
u (1/t).

This completes the proof of the lower bound. We next turn to the proof of the
upper-bound. Let us start from the following inequality, for any m ≥ 1, n ≥ 1,
using lemma 3.1:

|1− χD(ut)| ≤ 1

b0
|F(ut)|+O(R(t))

≤ |W−m,n(ut)|
b0|B+

n (ut)||B−m(ut)|
+

v+(n)

|B+
n (ut)|2

+
a0v−(m)

|B−m(ut)|2
+O(R(t)),

with O( ) uniform in u ∈ Sd−1
+ . Observe that from the second line in (6.9):

v+(n)

|B+
n (ut)|2

+
a0v−(m)

|B−m(ut)|2
≤ 1

|B+
n (ut)||B−m(ut)|

(
v+(n)

|B−m(ut)|
|B+
n (ut)|

+ a0v−(m)
|B+
n (ut)|

|B−m(ut)|

)

≤ |W−m,n(ut)|
|B+
n (ut)||B−n (ut)|

.

Since R(t) = O(1/F−1(1/t)) = O(1/G−1
u (1/t)), uniformly on u ∈ Sd−1

+ , there exists
some absolute constant C > 0 such that for small t > 0 and all m ≥ 1 and n ≥ 1:

|1− χD(ut)| ≤ C |W−m,n(ut)|
|B+
n (ut)||B−m(ut)|

+
C

G−1
u (1/t)

.

From (6.10) and lemma 3.1, we have:

|W−m,n(ut)|
|B+
n (ut)||B−m(ut)|

≤
(v−(m) + a0v+(n))

√
1 + Z2

−m,n(ut)/(a0v−(m)v+(n))

v+(n)v−(m)
.

Let us recall that Z2
−m,n(ut) =

∑
1≤s≤m+n+1 t

2sVs(u), where Vs(u) is given by re-

lation (6.7), so checks Vs(u) ≤ a0v−(m)v+(n)κu(−m,n)s, still setting κu(−m,n) =∑
−m≤k≤l≤n T

l
k(u). As a result, for another constant C > 0 independent on

u ∈ Sd−1
+ , small t > 0 and any n ≥ 1:

|1− χD(ut)| ≤

≤ C

n

√√√√1 +
∑

1≤s≤v−1
− (n)+v−1

+ (n)+1

t2s(κu(−v−1
− (n), v−1

+ (n)))s +
C

G−1
u (1/t)

≤ C

n

√√√√1 +
∑

1≤s≤v−1
− (n)+v−1

+ (n)+1

t2sG2s
u (n) +

C

G−1
u (1/t)

.

Choose n = G−1
u (1/2t). In particular, Gu(n) ≤ 1/(2t). This gives:

|1− χD(ut)| ≤ C

G−1
u (1/(2t))

√
1 +

∑
s≥1

(1/2)2s +
C

G−1
u (1/t)

.



Markov chains in a stratified environment 789

By lemma 6.2, there is a constant C ′ independent on u ∈ Sd−1
+ so that for small

t > 0:

|1− χD(ut)| ≤ C ′

G−1
u (1/t)

.

This concludes the proof of the proposition. �

6.5. Conclusion. Let us now prove theorem 2.4. Recall that we use the notation
� to denote the fact that two quantities are equal up to absolute multiplicative
positive constants.

First of all, for n ≥ 1:∑
−v−1
− (n)≤k≤l≤v−1

+ (n)

ρkρl

(
1

ρ2
k

+
1

ρ2
l

)
�

∑
−v−1
− (n)≤k≤v−1

+ (n)

ρk
∑

−v−1
− (n)≤k≤v−1

+ (n)

1/ρk

� F 2(n).

From this it is immediate to deduce that Φstr(n) � F (n). In a similar way, one
obtains Gu,+(n) � Φu,+(n) and Gu(n) � Φu(n).

By propositions 6.7, 6.10 and theorem 4.2, writing the integral as in (4.3) and
using the fact that Re(1/(1−z)) = Re(1−z)/|1−z|2, the random walk is recurrent
if and only if:∫

(u,t)∈Sd−1
+ ×(0,η)

(Φ−1
u (1/t))2

Φ−1
u,+(1/t)

td−1dudt = +∞, for some η > 0. (6.11)

Let n0 be such that 1/n0 ≤ η. Uniformly in u ∈ Sd−1
+ , on each interval [1/(n +

1), 1/n], n ≥ n0:

(Φ−1
u (1/t))2

Φ−1
u,+(1/t)

td−1 � (Φ−1
u (n))2

Φ−1
u,+(n)

n−d+1,

by lemma 6.2. Cutting (0, η) in the contiguous intervals [1/(n + 1), 1/n], n ≥ n0,
each one of length of order 1/n2, the condition is equivalent to the one given in the
statement of theorem 2.4.

Concerning proposition 2.5, we first show the following lemma:

Lemma 6.11. When there exists C > 0 so that for all n ≥ 1 and all u ∈ Sd−1
+ ,

Φu(n) ≤ CΦu,+(n), the random walk is recurrent if and only if:∑
n≥1

∫
u∈Sd−1

+

(Φu,+(n))−d du = +∞.

Proof : By lemma 6.2, Φ−1
u � Φ−1

u,+, uniformly in u ∈ Sd−1
+ . From (6.11), the

criterion for recurrence can be written in the reduced form:∫
Sd−1
+ ×(0,η)

Φ−1
u,+(1/t)td−1dudt = +∞. (6.12)

Let n0 be so that φstr(n0) ≥ 1/η. Recall that for all u ∈ Sd−1
+ , Φu,+(n) ≥ Φstr(n).

Since Φu,+(n0) is clearly bounded in u ∈ Sd−1
+ , using also lemma 6.2, the divergence
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of the previous integral is equivalent to that of:∑
n≥n0

∫
Sd−1
+

∫ 1/Φu,+(n)

1/Φu,+(n+1)

Φ−1
u,+(1/t)td−1 dtdu

�
∑
n≥n0

n

∫
Sd−1
+

∫ 1/Φu,+(n)

1/Φu,+(n+1)

td−1 dtdu

�
∫
Sd−1
+

∑
n≥n0

n

(
1

(Φu,+(n))d
− 1

(Φu,+(n+ 1))d

)
du.

�
∫
Sd−1
+

lim
N→+∞

N∑
n=n0

(
1

(Φu,+(n))d
− 1

(Φu,+(N + 1))d

)
du,

using an Abel transform. Now if
∫
Sd−1
+

∑
n≥1(Φu,+(n))−ddu < +∞, then the pre-

vious integral is finite. If it is infinite, then applying Fatou’s lemma (as N → +∞),
the integral is also infinite. �

Concerning proposition 2.5, we always have Φ−1
u ≤ Φ−1

u,+, so a sufficient condition
for showing the finiteness of the integral in (6.11) is to show that of (6.12). As
proved above, this is also equivalent to the finiteness of the integral appearing in
the statement of lemma 6.11.

Another sufficient condition comes from the remark that Φu,+ ≥ Φstr, indepen-

dent of u in the compact set Sd−1
+ . This gives the sufficient conditions stated for

transience in the proposition, using that Φstr(n) always has at least order
√
n for

the case d ≥ 3. When d = 2 and ρn = 1, for all n ∈ Z, then Φstr(n) has order n.
When mn = 0 for all n ∈ Z, then Φu = Φu,+ = Φstr and we can apply lemma

6.11. In the antisymmetric case, observe that:

Φ2
u(n) = Φ2

u,+(n) +
∑

−v−1
− (n)≤k≤0≤l≤v−1

+ (n)

T lk(u)

= Φ2
u,+(n) + 2

∑
0≤k,l≤v−1

+ (n)

T
max(k,l)
min(k,l)+1(u) ≤ 4Φ2

u,+(n).

We can next apply lemma 6.11, using finally that Φu(0, n) ≤ Φu,+(0) ≤ 2Φu(0, n).
This completes the proof of the proposition.

7. Examples and remarks; interpretation of the criterion

7.1. Flat case (ρn = 1, n ∈ Z). For simple random walk in Zd+1, we can apply the
second point of proposition 2.5, as mn = 0 for all n ∈ Z. Then Φstr(n) � n and the
random walk is recurrent if and only if

∑
n≥1 n

−d = +∞, hence d = 1, as expected.

Let us now complement with a remark the study made in Brémont (2016) for
the Campanino-Petritis model when the orientations (εn)n∈Z are quasi-periodic.

Proposition 7.1. Let d = 1 and for n ∈ Z, pn = qn = rn = 1/3 and µn = δεn
where εn = 1[0,1/2)(nα) − 1[1/2,1)(nα), where nα is taken modulo 1. Then for
almost-every α, the random walk is recurrent.
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Proof : Recurrence is shown in Brémont (2016), proposition 1.5, for any irrational
α having a continued fraction expansion [a1, a2, · · · ] verifying:∑

n≥1

log(1 + an)

a1 + · · ·+ an
= +∞.

In fact,
∑
n≥1 1/(a1 + · · · + an) = +∞ already for almost-every α. This is an old

theorem of Khintchine (1935), consequence of the classical result that (a1 + · · · +
an)/(n log n) converges in probability to 1/ log 2. The latter follows from a weak
form of the exponential mixing for the Gauss map.

�

7.2. General case. Let us begin with a simple example.

Proposition 7.2. Let d = 1. Let δ > 0 with for all n ∈ Z, δ ≤ pn ≤ 1/2 − δ.
Set qn = 1/2 − pn, rn = 1/2 and µn = (δ1 + δ−1)/2. Suppose that ρn � |n|α± , as
n→ ±∞, for constants α± ∈ R.

pn

(m,n) 1/41/4

qn

In this case, both coordinates are recurrent if and only if min{α−, α+} ≥ −1. The
random walk is recurrent if and only if min{α−, α+} ≥ 0.

Proof : The first coordinate is always recurrent. We have v+(n) � n1+α+ or log n
if α+ = −1, idem for v−(n). The vertical coordinate is recurrent if and only if
v±(n) → +∞, ie α± ≥ −1. Next, by the second point of proposition 2.5, the
random walk is recurrent if and only if

∑
n≥1(1/Φstr(n)) = +∞. Let α± ≥ −1,

different from ±1. We have v+(n) � n1+α+ and w+(n) � n1−α+ . Hence, Φ2
str(n) �

n1+(1−α+)/(1+α+) + n1+(1−α−)/(1+α−). Divergence holds for α± ≥ 0. The cases
when α± are +1 or −1 are treated in the same way. �

Let us now turn towards an antisymmetric situation.

Proposition 7.3. Consider the antisymmetric case of proposition 2.5, point 3).
Suppose that mn = c 6= 0, for n ≥ 1, and that ρn � nα, as n → +∞ ≥ 0, where
α ∈ R. Then:

– When d = 1, the random walk is recurrent if and only if α ≥ 1.
– When d = 2, the random walk is recurrent if and only if α ≥ 3.

Remark 7.4. When d = 1 and in the particular antisymmetric case when µn = δ1,
µ−n = δ−1, for n ≥ 1, and µ0 = 1/2(δ1 + δ−1), notice that horizontal steps are
restricted to +1 in the Northern part and to −1 in the Southern part. Conse-
quently the random walk can be either recurrent or transient, but necessarily its
trajectory makes some spirals. In the flat case (giving α = 0), the random walk is
transient. This confirms the remark made in Campanino and Petritis (2004) that
these parameters lie deeply within the transience regime.

Proof : If α < −1, the random walk is transient, as (v+(n)) is bounded. If α = −1,
then w+(n) � n2 and v+(n) � lnn. As a result, Φ2

str(n) ≥ necn, for some c > 0,
giving transience, by proposition 2.5.
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– Supposing −1 < α < 1, we show transience. First of all, w+(n) � n1−α and
v+(n) � n1+α.

∑
1≤k<l≤n

ρkρl

 ∑
k≤s≤l

1/ρs

2

�
∫

1≤x≤y≤n
xαyα

(∫ y

x

t−α dt

)2

dxdy

� n2α+2

∫
1/n≤x≤y≤1

xαyα
(∫ ny

nx

t−α dt

)2

dxdy

� n4

∫
1/n≤x≤y≤1

xαyα
(∫ y

x

t−α dt

)2

dxdy � n4.

As a result Φ2
u(0, n) � n1+(1−α)/(1+α) + (c.u)2n4/(1+α), giving:

Φu(0, n) � n1/(1+α) + |c.u|n2/(1+α).

When d = 1, we have |c.u| = |c|, so Φu(0, n) � n2/(1+α). When d ≥ 2, (Φu(0, n))d ≥
Cnd/(1+α). The exponents are > 1 in each case. The random walk is transient, by
proposition 2.5.

– Let now α > 1. Then w+(n) � 1, v+(n) � n1+α. If d = 1, then Φ2
u(0, n) ≤

C(n+(c, u)2n2), so Φu(0, n) = O(n) uniformly in u, so the random walk is recurrent,
by proposition 2.5. When d = 2, consider first the expression:(∫ n

1

xα dx

)∫ n

1

xα
(∫ +∞

x

t−α dt

)2

dx−
(∫ n

1

xα
∫ +∞

x

t−αdt dx

)2

�
(∫ n

1

xα dx

)(∫ n

1

x2−α
)
−
(∫ n

1

x dx

)2

,

since the integration coefficients are equal for each term on the right. When 1 < α <
3, this term is equivalent to 1/[(α+ 1)(3−α)]−1/4 = (α−1)2/[(α+ 1)(3−α)] 6= 0
times n4. As a result:

Φ2
u(0, n) � n+ (c.u)2

∫
1≤x≤y≤n1/(1+α)

xαyα
(∫ y

x

t−α dt

)2

dxdy

� n+ (c.u)2n4/(1+α).

In order to show transience, by proposition 2.5, we need to control the following
quantity: ∑

n≥1

∫
u∈S1

+

1

Φ2
u(0, n)

�
∑
n≥1

∫ π/2

0

1

n+ θ2n4/(1+α)
dθ.

Simply set θ = n1/2−2/(1+α)x, where 1/2− 2/(1 + α) < 0. It remains:∑
n≥1

1

n
n1/2−2/(1+α)

∫ (π/2)n2/(1+α)−1/2

0

1

1 + x2
dx �

∑
n≥1

1

n1/2+2/(1+α)
< +∞,

as 1/2+2/(1+α) = (5+α)/(2+2α) > 1. If α = 3, then Φ2
u(0, n) � n+(c.u)2n lnn ≤

Cn lnn, uniformly in u. When α > 3, Φ2
u(0, n) � n + (c.u)2n ≤ Cn, uniformly in

u. In any case
∑

1≥1(1/Φ2
u(0, n)) = +∞, giving recurrence.

– If finally α = 1, then w+(n) � lnn, v+(n) � n2. When d = 1, Φ2
u(0, n) ≤

C(n lnn+ n2(lnn)2), giving Φu(0, n) = O(n lnn), uniformly in u, and the random



Markov chains in a stratified environment 793

walk is recurrent. When d = 2:

Φ2
u(0, n) ≥ K(n lnn+ (c.u)2n2), for some K > 0.

In order to show transience, we just need to prove the finiteness of:∑
n≥1

∫ π/2

0

1

n lnn+ θ2n2
dθ =

∑
n≥1

1

n lnn

∫ (π/2)
√
n/ lnn

0

dx

1 + x2

√
(lnn)/n < +∞.

This completes the proof of the proposition. �

7.3. The half-pipe. Contrary to the flat case (pn = qn, n ∈ Z), one can somehow
“suppress” the vertical dimension for some values of the parameters, indeed when∑
n∈Z(1/ρn) < +∞. In this case the environment strongly pushes towards Zd and

the vertical component is positive recurrent (this is a kind of random walk in a
half-pipe when d = 1). The random walk is then “essentially” d-dimensional. This
explains the critical values of d appearing in proposition 2.5 and that the random
walk, in Zd+1, can be recurrent when d = 2.

Proposition 7.5. Suppose that
∑
n∈Z 1/ρn < +∞. In this situation:

– If
∑
n∈Z

rnmn

pnρn
6= 0, then the random walk is transient.

– If d = 1 and
∑
n∈Z

rnmn

pnρn
= 0, then the random walk is recurrent.

Remark 7.6. Let
∑
n∈Z(1/ρn) < +∞ and suppose for example that the (mn)n∈Z

are a typical realization of some independent uniformly bounded random variables,
at least one having a density. Then, almost-surely, the associated random walk
is transient. Indeed, the random variable ω 7−→

∑
n∈Z(rnmn(ω))/(pnρn) has a

density, so equals 0 with zero probability.

Proof of the proposition 7.5: One can use the recurrence criterion that we have es-
tablished, but in this situation we fall in a classical context. Indeed, by lemma 4.1,
the random walk is recurrent if and only if (Tn) is recurrent with Tn = D1+· · ·+Dn,
where the (Dk) are i.i.d. with the same law as D, where D is given in (4.4).
The point is that σ is integrable, thus also D. Hence E(D) 6= 0 implies tran-
sience because there is a LLN with non-zero speed for (Tn). When d = 1 and
E(D) = 0, it is classical that (Tn) is then recurrent (when d = 2 the situation
is more complicated). We leave to the reader the computation, using trees, that
E(D) =

∑
n∈Z(rnmn)/(pnρn). �

Remark 7.7. When
∑
n∈Z 1/ρn < +∞, modifying (preserving the Z-invariance)

the environment on a single line can change the asymptotics of the random walk
(a single mn0 can make

∑
n∈Z rnmn/(pnρn) equal 0 or not). This is not true if∑

n∈Z 1/ρn = +∞. As discussed in the introduction of Brémont (2016), in the flat
case pn = qn, n ∈ Z, changing the environment on a single horizontal line did not
modify the asymptotics.

7.4. Non-uniform non-elliptic environment on a single line. Taking d = 1, let us
briefly discuss what happens when the medium is Z-invariant (satisfying hypotheses
1.1), except on one line, where ellipticity is also broken. Consider the following
example.
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Proposition 7.8. Take at (m,n), with n 6= 0: pn = qn = rn = 1/3, with µn =
δ−sign(n). At (m, 0), with m ≥ 0, let p = 1. At (m, 0), with m < 0, let q = 1.

Then this random walk is recurrent.

Remark 7.9. If the environment on the horizontal line y = 0 is taken for example
to be the same as the one of a Northern line, then the random walk in transient.
This was proved originally in Campanino and Petritis (2003). This can be seen
directly here, as Φ1(0, n) � n2. This gives

∑
1/Φ1(0, n) < +∞ and the random

walk is transient by proposition 2.5.

Proof of the proposition 7.8: Consider the sequence of returns on the axis y = 0.
This is a Markov chain. On {0, 1, 2, · · · }, this walk jumps with −X, where X =∑

1≤k≤σ−1 Γk and P (Γk = m) = (2/3)(1/3)m, m ≥ 0. The (Γk) are independent

and σ is independent of (Γk) and has the law of min{k ≥ 1, Sk = 0}, where (Sk)
is simple random walk on Z starting at 0 (with i.i.d. jumps with law (δ1 + δ−1)/2).
On {−1,−2, · · · } one jumps with X instead of −X.

It is sufficient to restrict this random walk to the subsequence of non-zero jumps.
This means replacing the law of X by L(X | X > 0) = µ. This is an example of
oscillating random walk on Z in the sense of Kemperman (1974). By theorem 4.8
of Kemperman (1974), this random walk is recurrent if and only if for some ε > 0:∫ ε

0

|1− µ̂(θ)|−2 dθ = +∞. (7.1)

Let us examine µ̂ near the origin. Let p0 = P(X = 0) and χ(θ) = 2/(3 − eiθ) be
the characteristic function of Γ1. Then:

µ̂(θ) =
E(eiθX1X>0)

1− p0
=

E(eiθX)− p0

1− p0
=

E(χ(θ)σ−1)− p0

1− p0
.

Recall that E(sσ) = 1−
√

1− s2 , for real −1 < s < 1. This extends analytically to
|z| < 1, using the principal determination of the square root in the complex plane.
This gives:

µ̂(θ) =
χ(θ)−1(1−

√
1− χ(θ)2 )− p0

1− p0
.

Let θ > 0. At the first order, χ(θ) = 1 + iθ/2 + O(θ2). Thus
√

1− χ(θ)2 =√
θ e−iπ/4(1 +O(θ)). Consequently:

µ̂(θ) = 1−
√
θ e−iπ/4

1− p0
+O(θ).

This ensures that (7.1) is satisfied.
�



Markov chains in a stratified environment 795

7.5. Geometrical interpretation of the criterion. Let us first fix d = 1. We implicitly
use lemma 6.2. Setting Φ = Φ1 and Φ+ = Φ1,+, as S0

+ = {1}, we shall interpret
geometrically as a surface in R2 the integral involved in theorem 2.4:∫

0<t<1

(Φ−1(1/t))2

Φ−1
+ (1/t)

dt. (7.2)

In R3, consider the canonical basis (e1, e2, e3), corresponding to coordinates
(X,Y, Z). We look at the intervals on the Y -axis containing the point 0, ie all
[−a, b], with a ≥ 0 and b ≥ 0. We first parametrize points in the half plane
{X = 0, Z > 0} with polar coordinates (ρ, α) such that ρ > 0 and 0 ≤ α ≤ π in the
following way:

1/Φ(−ρ sin(α/2), ρ cos(α/2))

Z

Y
X

ρeiα

−ρ sin(α/2) ρ cos(α/2)

α

To each ρ > 0 and 0 ≤ α ≤ π we associate the interval [−ρ sin(α/2), ρ cos(α/2)]
containing 0 on the Y -axis. We next plug at ρeiα in the X-direction the value
1/Φ(−ρ sin(α/2), ρ cos(α/2)) (i.e. we take the point ρeiα + e1/Φ(−ρ sin(α/2),
ρ cos(α/2))).

This gives a surface above the plane (Y,Z) in the half space X ≥ 0. We now cut
it with the planes X = t, for t > 0, giving some level line Lt in the plane X = t.
Set Φ++(n) = Φ(0, n) and Φ+− = Φ(−n, 0). Fixing t > 0, the point on Lt with
zero Y -coordinate has up to constants (t, 0,Φ−1(1/t)) as components. Similarly the
extremities of Lt have components (t,−Φ−1

+−(1/t), 0) and (t,Φ−1
++(1/t), 0). Drawing

several level lines for some values of t > 0, the picture is as follows.

Φ−1
++(1/t)

Z

Y

More transient

More recurrent

X

Z

X

� Φ−1(1/t)

Lt Lt3

Lt2

Lt1

Y

−Φ−1
+−(1/t)

In each plane X = t, for t > 0, we then make some sort of stereographic projections:
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Φ−1
++(1/t)

Z

Y
−Φ−1

+−(1/t)

� Φ−1(1/t)

z+(t) � (Φ−1(1/t))2

Φ−1
++(1/t)z−(t) =� − (Φ−1(1/t))2

Φ−1
+−(1/t)

X = t

Back to the plane (X,Y ), we draw the graphs {(t, z+(t)) | 0 < t < 1} and
{(t, z−(t)) | 0 < t < 1} and obtain the following picture:

(t, z−(t))

X

Y

1

Z
t

(t, z+(t))

The hatched area above has the same order as (7.2), since the integral can be
decomposed into two parts, using the observation that:

1

Φ−1
+

� 1

Φ−1
++

+
1

Φ−1
+−

.

When d = 2, we draw for all u ∈ S1
+ the same picture in the plane (u, e3),

replacing e1 by u and e2 by e3, using the quantities relative to Φu(−a, b). Rotating
with respect to u in the half-circle S1

+ (we have just drawn below the hatched
surfaces corresponding to two vectors u and v), one gets a three-dimensional object
naively looking like some half anisotropic pseudosphere. Its volume equals, up to
multiplicative constants, the integral appearing in theorem 2.4.

0

Y

Area in direction u

Z

S1

v

u

X
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Remark 7.10. When the random walk goes “frankly” in some direction u ∈ S1,
then for all v ∈ S1

+ not orthogonal to u, some pinching effect occurs towards the
horizontal plane in the hatched surface in direction v, making its area (and thus
the global volume) smaller.

7.6. Concluding remarks. Examples more substantial than the ones presented here
deserve a specific study. A better understanding of the geometry underlying the
recurrence criterion would certainly be helpful. It would be interesting for instance
to consider the case when the (pn, qn, rn,mn) are a typical realization of an i.i.d.
process with mn independent of (pn, qn) and E(log(pn/qn)) = 0. Examples of a
quasi-periodic nature would also be desirable, for example when log ρn is an ergodic
sum over an irrational rotation on the circle of a centered function.

In another direction, one can think about the analogous model in Z×Z2 with a Z-
invariant environment. Restricting to vertical movements, the vertical component
is now a random walk in Z2. When the latter is simple random walk in Z2, one
may observe that there is not much room for recurrence. Indeed, if the horizontal
jump at (m,n) ∈ Z× Z2 is εn, where the εn are ±1, as in the Campanino-Petritis
model, rough estimates furnish that for any sequence (εn)n∈Z2 the random walk is
transient. When the vertical component is a more general recurrent random walk,
this may become very difficult. The main problem concerns the distribution of the
local time during an excursion of this random walk. There is no tree-structure
behind, as in the one-dimensional case, but a complicated graph with loops.

Related to the latter question, a first step seems to be the model in the plane,
where:

P(m,n),(m,n±1) = 1/4, P(m,n),(m±1,n) = p±(m,n)/2,

with p+(m,n) + p−(m,n) = 1. The vertical component is recurrent and the sub-
sequence of return times on the horizontal axis is a one-dimensional random walk
with unbounded jumps. Very few results are known on such a random walk. They
suppose a random environment and an integrable jump (Andjel, 1988), which is
not the case here.

Acknowledgments. We wish to thank for useful discussions Alexis Devulder, Jacques
Printems and Jon Aaronson.
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