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1. Introduction

In this article, we study the stochastic wave equation with multiplicative noise:
∂2u

∂t2
(t, x) = ∆u(t, x) + u(t, x)Ẇ (t, x), t > 0, x ∈ Rd

u(0, x) = 1, x ∈ Rd

∂u

∂t
(0, x) = 0, x ∈ Rd

(1.1)

This problem is also known in the literature as the Hyperbolic Anderson Model,
by analogy with the Parabolic Anderson Model in which the wave operator is re-
placed by the heat operator. We assume that the noise W is Gaussian with covari-
ance structure specified by two locally integrable non-negative definitive functions
γ : R → [0,∞] in time and f : Rd → [0,∞] in space. Since the noise is not a
martingale in time, the stochastic integral with respect to W cannot be defined in
the Itô sense. To define the concept of solution we use the divergence operator from
Malliavin calculus. We refer the reader to Section 2 below for the precise definitions
of the noise and the solution.

The Parabolic Anderson Model with the same noise W as in the present article
has been studied extensively in the recent years. These investigations culminated
with the recent impressive article Hu et al. (2015b), in which the authors have
obtained a Feynman-Kac formula for the moments of the solution (for general
covariance kernels γ and f), as well as exponential bounds for these moments (under
some quantitative conditions on γ and f). The exact asymptotics for these moments
were obtained in Chen et al. (2015). These extend some earlier results of Hu and
Nualart (2009) and Hu et al. (2011), in the case when the noise W was fractional
in space and time with index H > 1/2 in time, and indices H1, . . . ,Hd > 1/2 in
space.

These investigations originate in the seminal article Dawson and Salehi (1980)
which studied the Parabolic Anderson Model with spatially homogenous Gaussian
noise which was white in time. These authors were among the first who showed that
for an equation with multiplicative noise, the (mild) solution has an explicit chaos
expansion (i.e. it can be written as a series of a multiple integrals with respect to
the noise), and the solution exists if and only if this series converges in L2(Ω). Note
that in Dawson and Salehi (1980) it is assumed that f(x) =

∫
Rd e

−iξ·xµ(dξ) for a
finite measure µ. In this case, the noise is a bona-fide function in the space variable
x, whereas in the present article, the noise is a generalized function in x. (More
precisely, if the spectral measure µ is finite, the noise Wt(ϕ) := W (1[0,t]ϕ) can be

identified with a stationary random field {Vt(x)}x∈Rd via: Wt(ϕ) =
∫
Rd ϕ(x)Vt(x)dx

for all ϕ ∈ S(Rd).)
In contrast with its parabolic counterpart, the Hyperbolic Anderson Model with

noise W as above has received less attention in the literature. But there is a
large amount of literature dedicated to the stochastic wave equation with spatially-
homogeneous Gaussian noise which is white in time and has spectral covariance
measure µ in space. (The covariance kernel f is the Fourier transform of µ.) We
describe briefly the most important contributions in this area. In the landmark ar-
ticle Dalang (1999), Robert Dalang introduced an Itô-type stochastic integral with
respect to this noise (building upon the theory of martingale measures developed in
Walsh (1986)), and proved that the solution of the stochastic wave equation with
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this type of noise (and possibly a Lipschitz non-linear term σ(u) multiplying the
noise) exists in any dimension d = 1, 2, 3, provided that the measure µ satisfies
what is now called Dalang’s condition:∫

Rd

1

1 + |ξ|2
µ(dξ) <∞. (1.2)

This result was extended to any dimension d in Conus and Dalang (2008). In Conus
and Dalang (2008), it was also proved that the solution of the wave equation with
affine term σ(u) = u+ b is Hölder continuous, provided that µ satisfies:∫

Rd

(
1

1 + |ξ|2

)β
µ(dξ) <∞, for some β ∈ (0, 1). (1.3)

A deeper study of the Hölder continuity of the solution of the wave equation in
dimension d = 3 (with general Lipschitz function σ) was carried out in Dalang and
Sanz-Solé (2009) and Hu et al. (2014). Exponential bounds for the moments of the
solution of the Hyperbolic Anderson Model in dimension d = 3 were obtained in
Dalang and Mueller (2009). The fact that the solution of the wave equation (with
general Lipschitz function σ) has a density was proved in Sanz-Solé and Süß (2015)
for any dimension d. In Hu et al. (2015a), it was shown that this density is smooth
for dimensions d = 1, 2, 3.

The existence and Hölder continuity of the solution of equation (1.1) with noise
W which is fractional in time with index H > 1/2 and has a spatial covariance
function given by the Riesz kernel f(x) = |x|−α, 0 < α < d was proved in Balan
(2012) under the conditions α < 2, respectively α/2 < β < 1 (which are restate-
ments of conditions (1.2) and (1.3) for the Riesz kernel). The goal of this article
is to extend these results to the case of a Gaussian noise with general temporal
covariance kernel γ. In the case d ≥ 3, the definition of solution given in Balan
(2012) is incorrect since the product between the distribution G(t − s, x − ·) and
the function u(s, ·) is not well-defined. For this reason, we propose a new definition
of the solution, and we prove its existence and uniqueness.

This article is organized as follows. In Section 2, we gather some preliminary
results about the space of integrands with respect to the noise W , and conclude with
some elements of Malliavin calculus. In Section 3, we study the kernels fn(·, t, x)
which appear in the Wiener chaos representation of the solution, and we show that
the multiple Wiener integral In(fn(·, t, x)) is well-defined. In Section 4, we show
that the series

∑
n≥1 In(fn(·, t, x)) converges in L2(Ω). The existence of the solution

is proved in Section 5, for any temporal covariance function γ and for any spectral
measure µ which satisfies (1.2). In Section 6, we show that this solution is unique.
In Section 7, we show that the solution has uniformly bounded moments of order
p ≥ 2 and is continuous in Lp(Ω). Section 8, we prove that this solution is Hölder
continuous in time and space, provided that µ satisfies (1.3).

We specify the notation used in this article. We let DC(Rd) be the set of complex-
valued C∞ (i.e. infinitely differentiable) functions on Rd with compact support.
We let LpC(Rd) be the space of complex-valued functions ϕ on Rd such that |ϕ|p
is integrable with respect to the Lebesgue measure. We let SC(Rd) be the set of
complex-valued rapidly decreasing C∞ functions on Rd. We denote by S ′C(Rd) the
space of all complex-valued tempered distributions on Rd. Similar notations are
used for spaces of real-valued elements, with the subscript C omitted. We denote by

x ·y =
∑d
i=1 xiyi the inner product in Rd and by |x| = (x ·x)1/2 the Euclidean norm
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in Rd. We let Fϕ(ξ) =
∫
Rd e

−iξ·xϕ(x)dx be the Fourier transform of ϕ ∈ L1(Rd).
The inverse Fourier transform of ϕ ∈ S(Rd) is F−1ϕ = (2π)−dFϕ. We use F to
denote the Fourier transform of functions on R,Rd or Rd+1, but whenever there is
a risk of confusion, the notation will be clearly specified.

We end the introduction with some basic facts about distributions (see e.g.
Rudin, 1973). The Fourier transform of F ∈ S ′C(Rd) is a distribution FF de-
fined by (FF, φ) = (F,Fφ) for all φ ∈ S(Rd). For any F ∈ S ′(Rd) and x ∈ Rd,
F (x − ·) is the distribution in S ′(Rd) defined by

(
F (x − ·), φ

)
=
(
F, φ(x − ·)

)
for

all φ ∈ S(Rd). The product between a distribution F ∈ S ′(Rd) and a function
k ∈ S(Rd) is a distribution Fk ∈ S ′(Rd) defined by (Fk, φ) = (F, kφ) for all
φ ∈ S(Rd). The convolution between a distribution F ∈ S ′(Rd) and a function
φ ∈ S(Rd) is a C∞ function F ∗ φ ∈ S(Rd) with polynomial growth, defined by
(F ∗φ)(x) = (F (x−·), φ); its Fourier transform in S ′(Rd) is F(F ∗φ) = (FF )(Fφ).

2. Preliminaries

In this section, we give a rigorous definition of the noise W , we establish a
criterion for integrability with respect to W , and we introduce the basic elements
of Malliavin calculus.

We assume that W = {W (ϕ);ϕ ∈ D(R×Rd)} is a zero-mean Gaussian process,
defined on a complete probability space (Ω,F , P ), with covariance

E[W (ϕ1)W (ϕ2)] =

∫
R2×R2d

γ(t− s)f(x− y)ϕ1(t, x)ϕ2(s, y)dxdydtds =: J(ϕ1, ϕ2),

where γ : R → [0,∞] and f : Rd → [0,∞] are continuous, symmetric, locally
integrable functions, such that γ(t) <∞ a.e and f(x) <∞ a.e.

We denote by H the completion of D(R× Rd) with respect to 〈·, ·〉H defined by

〈ϕ1, ϕ2〉H = J(ϕ1, ϕ2).

We are mostly interested in variables W (ϕ) with ϕ ∈ D(R+ × Rd).
We assume that the functions γ and f are non-negative definite (in the sense of

distributions), i.e. for any φ ∈ S(R) and ϕ ∈ S(Rd)∫
R

(φ ∗ φ̃)(t)γ(t)dt ≥ 0 and

∫
Rd

(ϕ ∗ ϕ̃)(x)f(x)dx ≥ 0,

where φ̃(t) = φ(−t) and ϕ̃(x) = ϕ(−x).
By the Bochner-Schwartz Theorem, there exists a tempered measure ν on R such

that γ is the Fourier transform of ν in S ′C(R), i.e.∫
Rd
φ(t)γ(t)dt =

∫
R
Fφ(τ)ν(dτ) for all φ ∈ SC(R).

We identify two functions γ1 and γ2 such that γ1 = γ2 a.e. Similarly, there exists a
tempered measure µ on Rd such that f is the Fourier transform of µ in S ′C(Rd), i.e.∫

Rd
ϕ(x)f(x)dx =

∫
Rd
Fϕ(ξ)µ(dξ) for all ϕ ∈ SC(Rd). (2.1)

We identify two functions f1 and f2 such that f1 = f2 a.e.
It follows that for any functions φ1, φ2 ∈ SC(R) and ϕ1, ϕ2 ∈ SC(Rd)∫

R

∫
R
γ(t− s)φ1(t)φ2(s)dtds =

∫
R
Fφ1(τ)Fφ2(τ)ν(dτ) (2.2)
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and ∫
Rd

∫
Rd
f(x− y)ϕ1(x)ϕ2(y)dxdy =

∫
Rd
Fϕ1(ξ)Fϕ2(ξ)µ(dξ). (2.3)

The next result shows that the functional J has an alternative expression, in
terms of Fourier transforms. In particular, this shows that J is non-negative defi-
nite.

Lemma 2.1. For any ϕ1, ϕ2 ∈ D(R× Rd), we have:

J(ϕ1, ϕ2) =

∫
Rd+1

Fϕ1(τ, ξ)Fϕ2(τ, ξ)ν(dτ)µ(dξ), (2.4)

where F denotes the Fourier transform in both variables t and x. Moreover, J is
non-negative definite.

Proof : Since ϕk(t, ·) ∈ D(Rd) for any t ∈ R and k = 1, 2, by (2.3) we have:

J(ϕ1, ϕ2) =

∫
R

∫
R
γ(t− s)

(∫
Rd
Fϕ1(t, ·)(ξ)Fϕ2(s, ·)(ξ)µ(dξ)

)
dtds.

For any ξ ∈ Rd fixed, we denote φ
(k)
ξ (t) = Fϕk(t, ·)(ξ) =

∫
Rd e

−iξ·xϕk(t, x)dx. Note

that φ
(k)
ξ ∈ DC(R) for any ξ ∈ Rd and k = 1, 2. Hence, by Fubini’s theorem and

(2.2), we have

J(ϕ1, ϕ2) =

∫
Rd

(∫
R

∫
R
γ(t− s)φ(1)ξ (t)φ

(2)
ξ (ξ)dtds

)
µ(dξ)

=

∫
Rd

∫
R
Fφ(1)ξ (τ)φ

(2)
ξ (τ)ν(dτ)µ(dξ), (2.5)

where for any τ ∈ R and k = 1, 2, we denote

Fφ(k)ξ (τ) =

∫
R
e−iτ ·tφ

(k)
ξ (t)dt =

∫
R
e−iτ ·t

(∫
Rd
e−iξ·xϕk(t, x)dx

)
dt = Fϕk(τ, ξ).

This proves (2.4). Consequently, for any a1, . . . , an ∈ C and ϕ1, . . . , ϕn ∈ DC(R+×
Rd),

n∑
j,k=1

ajakJ(ϕj , ϕk) =

∫
Rd

∫
R

∣∣∣∣∣∣
n∑
j=1

ajFϕj(τ, ξ)

∣∣∣∣∣∣
2

ν(dτ)µ(dξ) ≥ 0.

This proves that J is non-negative definite. �

The map ϕ 7→W (ϕ) is an isometry which can be extended to H. For any ϕ ∈ H,
we say that W (ϕ) is the Wiener integral of ϕ with respect to W and we denote

W (ϕ) =

∫
R

∫
Rd
ϕ(t, x)W (dt, dx).

We note that the space H may contain distributions in S ′(Rd+1) (see Theorem 3.5.
of Basse-O’Connor et al., 2012 with F = ν × µ).

Let |H| be the set of measurable functions ϕ : R+×Rd → R such that ‖ϕ‖2|H| :=

J(|ϕ|, |ϕ|) <∞. Since |H| is a complete with respect to ‖ · ‖|H| and ‖ · ‖H ≤ ‖ ·‖|H|,

|H| ⊂ H. (2.6)

To obtain a criterion for integrability, we need the following approximation result.
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Lemma 2.2. If µ is a tempered measure on Rd, then F(D(Rd)) is dense in

L̃2
C(Rd, µ), where

L̃2
C(Rd, µ) = {ϕ ∈ L2

C(Rd, µ);ϕ(ξ) = ϕ(−ξ) for all ξ ∈ Rd}.

Proof : We refer the reader to the proof of Theorem 3.2 of Jolis (2010) for the case
d = 1. The same argument can be used for higher dimensions d. �

We also need the following result on the “energy” of a complex-valued function
ϕ with respect to a kernel κ.

Lemma 2.3. Let m be a tempered measure on Rd whose Fourier transform in
S ′C(Rd) is a locally integrable function κ : Rd → [0,∞] such that κ(x) < ∞ a.e.
Then for any bounded function ϕ : Rd → C with bounded support, which is contin-
uous a.e., we have:

Eκ(ϕ) :=

∫
Rd
κ(x− y)ϕ(x)ϕ(y)dxdy =

∫
Rd
|Fϕ(ξ)|2m(dξ). (2.7)

Remark 2.4. If we assume that κ is a kernel of positive type (i.e. the measure m
is absolutely continuous with respect to the Lebesgue measure), relation (2.7) can
be deduced from Lemma 5.6 of Khoshnevisan and Xiao (2009) for any function
ϕ ∈ L1

C(Rd) with Eκ(|ϕ|) < ∞. In the proof of Theorem 2.6 below, we will use
relation (2.7) for the kernel κ = γ on R and the measure m = ν. We do not
use the result of Khoshnevisan and Xiao (2009) since we do not assume that ν is
absolutely continuous with respect to the Lebesque measure. (Relation (2.7) will
also be used in the proof of Theorem 3.5 below for the kernel κ = γn on Rn, with
γn(t1, . . . , tn) =

∏n
i=1 γ(ti).)

Proof : (of Lemma 2.3) Suppose that ϕ = ϕ1 + iϕ2, |ϕ(x)| ≤ K for all x ∈ Rn
and the support of ϕ is contained in the set {x ∈ Rn; |x| ≤ M}. We proceed by
approximation. Let p ∈ D(Rn) be such that p ≥ 0,

∫
Rn p(x)dx = 1 and the support

of p is contained in {x ∈ Rn; |x| ≤ 1}. For any ε > 0, we define pε(x) = ε−dp(x/ε)
for all x ∈ Rd. Let

ϕε = ϕ ∗ pε = ϕε,1 + iϕε,2,

where ϕε,1 = ϕ1 ∗ pε and ϕε,2 = ϕ2 ∗ pε. Then ϕε ∈ DC(Rd), |ϕε(x)| ≤ K for
all x ∈ Rd, ϕε(x) → ϕ(x) for any continuity point x of ϕ, and the support of
ϕε is contained in the set {x ∈ Rd; |x| ≤ M + 1}, for any ε ∈ (0, 1). Moreover,
Fϕε = FϕFpε → Fϕ as ε ↓ 0 and |Fϕε| ≤ |Fϕ|. By the definition of the Fourier
transform in S ′C(Rd), for any ε > 0,∫

Rd

∫
Rd
κ(x− y)ϕε(x)ϕε(y)dxdy =

∫
Rd
|Fϕε(ξ)|2m(dξ). (2.8)

Note that

lim
ε↓0

∫
Rd

∫
Rd
κ(x− y)ϕε(x)ϕε(y)dxdy =

∫
Rd

∫
Rd
κ(x− y)ϕ(x)ϕ(y)dxdy. (2.9)

(This follows by applying the dominated convergence theorem to the real and imag-
inary part of the integrals above. In fact, since the integral on the right-hand side
of (2.8) is real-valued, the term on the left-hand side has to be real-valued for any
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ε > 0, and hence its limit as ε ↓ 0 is real-valued.) On the other hand, by Fatou’s
lemma, ∫

Rd
|Fϕ(ξ)|2m(dξ) ≤ lim inf

ε↓0

∫
Rd
|Fϕε(ξ)|2m(dξ). (2.10)

From (2.8), (2.9) and (2.10), we obtain that∫
Rd
|Fϕ(ξ)|2m(dξ) ≤

∫
Rd

∫
Rd
κ(x− y)ϕ(x)ϕ(y)dxdy.

Hence, if the right-hand side of (2.7) is infinite, so must be the left-hand side. If
the right-hand side of (2.7) is finite, then by the dominated convergence theorem,
we have: ∫

Rd
|Fϕ(ξ)|2m(dξ) = lim

ε↓0

∫
Rd
|Fϕε(ξ)|2m(dξ). (2.11)

In this case, relation (2.7) follows by (2.8), (2.9) and (2.11). �

Remark 2.5. Recall that the Fourier transform FS of a distribution S ∈ S ′(Rd) is
defined by

(
FS, ϕ

)
=
(
S,Fϕ

)
for all ϕ ∈ S(Rd). When S is a genuine distribution

and FS = g is a function, this means that∫
Rd
g(ξ)ϕ(ξ)dξ =

(
S,Fϕ

)
for all ϕ ∈ S(Rd). (2.12)

In this case, FS is understood as the equivalence class of all functions g which
satisfy (2.12). If g is an element of this class, we say that g is a version of the
Fourier transform FS. If g1 and g2 are versions of FS, then g1 = g2 a.e.

This leads us to the following hypothesis.

Hypothesis A. µ is absolutely continuous with respect to the Lebesgue measure.

Using the alternative expression given by (2.5) for the inner product 〈ϕ1, ϕ2〉H
and the previous lemmas, we obtain the following criterion for integrability with
respect to W .

Theorem 2.6. Let R 3 t 7→ S(t) ∈ S ′(Rd) be a deterministic function such that
FS(t, ·) is a function for all t ∈ R. If FS(t, ·) is uniquely determined only up to
a set of Lebesgue measure zero, we assume that µ satisfies Hypothesis A. Suppose
that:
(i) for each t ∈ R, there exists a version of FS(t, ·) such that (t, ξ) 7→ FS(t, ·)(ξ) =:
φξ(t) is measurable on R× Rd;
(ii) for all ξ ∈ Rd,

∫
R |φξ(t)|dt <∞.

Then the following statements hold:
a) The function (τ, ξ) 7→ Fφξ(τ) is measurable on R × Rd, where Fφξ denotes

the Fourier transform of φξ, i.e. Fφξ(τ) =
∫
R e
−iτtφξ(t)dt, τ ∈ R.

b) If

‖S‖20 :=

∫
Rd

∫
R
|Fφξ(τ)|2ν(dτ)µ(dξ) <∞ (2.13)

then S ∈ H and ‖S‖2H = ‖S‖20.
c) Assume in addition that S(t, ·) = 0 for all t 6∈ [0, T ], for some T > 0. If for

every ξ ∈ Rd, the function t 7→ FS(t, ·)(ξ) is continuous a.e. and bounded on [0, T ],
and

IT :=

∫
Rd

∫ T

0

∫ T

0

γ(t− s)FS(t, ·)(ξ)FS(t, ·)(ξ)dtdsµ(dξ) <∞,
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then (2.13) holds, S ∈ H and ‖S‖2H = ‖S‖20 = IT .

Proof : a) This follows by Fubini’s theorem, using the fact that (t, τ, ξ) 7→ e−iτtφξ(t)
is measurable on R× R× Rd, by hypothesis (i).

b) Let a(τ, ξ) = Fφξ(τ). By (2.13) and part a), the function a lies in L2
C(Rd+1,Π),

where

Π(dτ, dξ) = ν(dτ)µ(dξ).

We denote L̃2
C(Rd+1,Π) = {ϕ ∈ L2

C(Rd+1,Π);ϕ(τ, ξ) = ϕ(−τ,−ξ) for all τ ∈ R, ξ ∈
Rd}. We observe that a ∈ L̃2

C(Rd+1,Π), since by Lemma 3.3 of Basse-O’Connor
et al. (2012),

φ−ξ(t) = FS(t, ·)(−ξ) = FS(t, ·)(ξ) = φξ(t) for all ξ ∈ Rd,

and hence

a(−τ,−ξ) =

∫
R
eiτtφ−ξ(t)dt =

∫
R
e−iτtφξ(t)dt = a(τ, ξ) for all τ ∈ R, ξ ∈ Rd.

By Lemma 2.2, F(D(Rd+1)) is dense in L̃2
C(Rd+1,Π). Hence, for any ε > 0,

there exists a function l = l(ε) ∈ D(Rd+1) such that∫
Rd+1

|a(τ, ξ)−F l(τ, ξ)|2Π(dτ, dξ) < ε2.

Note that the previous integral is
∫
Rd+1 |Fφξ(τ) − Fψξ(τ)|2Π(dτ, dξ) =: ‖S − l‖20,

where Fψξ is the Fourier transform of the function t 7→ ψξ(t) = F l(t, ·)(ξ). The
conclusion follows using expression (2.5) for the inner product in H.

c) For every ξ ∈ Rd fixed, we apply Lemma 2.3 to the bounded function φξ :
R→ C which is continuous a.e and has support contained in [0, T ]. We apply this
lemma for the measure m = ν and the kernel κ = γ on R. We obtain that, for any
ξ ∈ Rd, ∫ T

0

∫ T

0

γ(t− s)φξ(t)φξ(s)dtds =

∫
R
|Fφξ(τ)|2ν(dτ).

We integrate with respect to µ(dξ) and we multiply by (2π)−d. We obtain that

IT =

∫
Rd

∫
R
|Fφξ(τ)|2ν(dτ)µ(dξ) =: ‖S‖20.

Since IT <∞, it follows that ‖S‖20 <∞. The conclusion follows by part b). �

We are interested in applying Theorem 2.6 to the case when ϕ is related to the
fundamental solution G of the wave equation on R+ × Rd. We recall that:

G(t, x) =
1

2
1{|x|<t} if d = 1

G(t, x) =
1

2π

1√
t2 − |x|2

1{|x|<t} if d = 2

G(t, ·) =
1

4πt
σt, if d = 3,

where σt is the surface measure on the sphere {x ∈ R3; |x| = t}. If d = 1 or d = 2,
G(t, ·) is a non-negative function in L1(Rd), and if d = 3, G(t, ·) is a finite measure
in R3.
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If d ≥ 4 is even, G(t, ·) is a distribution with compact support in Rd given by:

G(t, ·) =
1

1 · 3 · . . . · (d− 1)

(
1

t

∂

∂t

)(d−2)/2

(td−1Υt),

Υt(ϕ) =
1

ωd+1

∫
B(0,1)

ϕ(ty)√
1− |x|2

dx,

and if d ≥ 5 is odd, G(t, ·) is a distribution with compact support in Rd given by:

G(t, ·) =
1

1 · 3 · . . . · (d− 2)

(
1

t

∂

∂t

)(d−3)/2

(td−2Σt),

Σt(ϕ) =
1

ωd

∫
∂B(0,1)

ϕ(tz)dσ(z),

where ωd is the surface area of the unit sphere ∂B(0, 1) in Rd, and σ is the surface
measure on ∂B(0, 1) (see e.g. Theorem (5.28), page 176 of Folland, 1995).

It is known that for any d ≥1, the Fourier transform of G(t, ·) is given by:

FG(t, ·)(ξ) =
sin(t|ξ|)
|ξ|

, ξ ∈ Rd. (2.14)

Note that when d = 1, 2, 3, the previous formula uniquely determines FG(t, ·) as
the Fourier transform of a function in L1(Rd) for d = 1, 2, or the Fourier transform
of a finite measure for d = 3. But when d ≥ 4, (2.14) is interpreted in the sense of
distributions, and the definition of FG(t, ·) is unique only up to a set of Lebesgue
measure zero.

We have the following result about the integrability of G.

Theorem 2.7. For any t > 0 and x ∈ Rd, we define gt,x(s, ·) = G(t−s, x−·)1[0,t](s)
for any s ∈ R. If d ≥ 4, we assume that µ satisfies Hypothesis A. Suppose that

It :=

∫
Rd

∫ t

0

∫ t

0

γ(r − s) sin((t− r)|ξ|) sin((t− s)|ξ|)
|ξ|2

drdsµ(dξ) <∞ (2.15)

for any t > 0. Then, for any t > 0 and x ∈ Rd, gt,x ∈ H, the stochastic integral

v(t, x) :=

∫ t

0

∫
R
G(t− s, x− y)W (ds, dy)

is well-defined and E|v(t, x)|2 = It. In particular, (2.15) holds for any t > 0 if the
measure µ satisfies (1.2). (Note that v is the solution of the linear wave equation
∂2v
∂x2 (t, x) = ∆v(t, x) + Ẇ (t, x), t > 0, x ∈ Rd with zero initial conditions.)

Proof : By applying Theorem 2.6.c) to the function S = gt,x we infer that gt,x ∈ H
and ‖gt,x‖2H = ‖gt,x‖20 = It. To see that gt,x satisfies the conditions of this theorem,
we note that, due to (2.14), for all s ∈ R and ξ ∈ Rd,

φξ(s) := Fgt,x(s, ·)(ξ) = e−iξ·x
sin((t− s)|ξ|)

|ξ|
1[0,t](s).

Then |φξ(s)| ≤ (t − s)1[0,t](s) ≤ t1[0,t](s) for all s ∈ R and ξ ∈ R. It follows that
gt,x satisfies conditions (i) and (ii) of Theorem 2.6. By the construction of the
stochastic integral, E|v(t, x)|2 = ‖gt,x‖20 = It.

Note that It coincides with the term α1(t) which appears in the series represen-
tation (7.1) of the second moment of the solution u(t, x) to equation (1.1). (See
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definition (4.12) of αn(t) below.) By relations (4.15) and (4.16) below, we see that
if (1.2) holds, α1(t) <∞. �

Remark 2.8. Theorem 2.6.c) can also be applied to the function S = gt,x where
gt,x(s, ·) = G(t− s, x− ·)1[0,t](s) and

G(t, x) =
1

(2πt)d/2
exp

(
−|x|

2

2t

)
(2.16)

is the fundamental solution of the heat equation ∂u
∂t = 1

2∆u on R+ × Rd. Since

gt,x(s, ·) ∈ L1(Rd), its Fourier transform is uniquely determined and we do not need
to assume that µ is absolutely continuous with respect to the Lebesgue measure.
Note that gt,x ∈ H provided that, for any t > 0,

It :=

∫
Rd

∫ t

0

∫ t

0

γ(r − s) exp

(
− (t− r)|ξ|2

2

)
exp

(
− (t− s)|ξ|2

2

)
drdsµ(dξ) <∞.

In this case, v(t, x) = W (gt,x) is the solution of ∂v∂t = 1
2∆v+Ẇ and E|v(t, x)|2 = It.

We conclude this section by recalling briefly some basic elements of Malliavin
calculus (see Nualart, 2006 for more details).

It is known that every square-integrable random variable F which is measurable
with respect to W , has the Wiener chaos expansion:

F = E(F ) +
∑
n≥1

Fn with Fn ∈ Hn,

where Hn is the n-th Wiener chaos space associated to W . Moreover, each Fn can
be represented as Fn = In(fn) for some fn ∈ H⊗n, where H⊗n is the n-th tensor
product of H and In : H⊗n → Hn is the multiple Wiener integral with respect to
W . By the orthogonality of the Wiener chaos spaces and an isometry-type property
of In, we obtain that

E|F |2 = (EF )2 +
∑
n≥1

E|In(fn)|2 = (EF )2 +
∑
n≥1

n!‖f̃n‖2H⊗n ,

where f̃n is the symmetrization of fn in all n variables. We note that the space
H⊗n may contain distributions in S ′(Rn(d+1)).

We denote by δ : Dom(δ) ⊂ L2(Ω;H) → L2(Ω) the divergence operator with
respect to W , defined as the adjoint of the Malliavin derivative D with respect to
W . If u ∈ Dom δ, we use the notation

δ(u) =

∫ ∞
0

∫
Rd
u(t, x)W (δt, δx),

and we say that δ(u) is the Skorohod integral of u with respect to W . In particular,
E[δ(u)] = 0.

3. The kernels fn

In this section, we give the definition of the kernels fn(·, t, x) which appear in
the Wiener chaos representation of the solution to equation (1.1), and we prove
that they are integrable with respect to the noise W .
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Let t1 > 0, . . . , tn > 0 be arbitrary. If d ≤ 2, for any x1, . . . , xn ∈ Rd, we define

fn(t1, x1, . . . , tn, xn, t, x) = 1{0<t1<...<tn<t}G(t− tn, x− xn) . . . G(t2 − t1, x2 − x1).
(3.1)

In this case, fn(t1, ·, . . . , tn, ·, t, x) is a function in L1(Rnd) whose Fourier transform
is

Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn) = (3.2)

= 1{0<t1<...<tn<t}e
−i(ξ1+...+ξn)·x

· FG(t2 − t1, ·)(ξ1)FG(t3 − t2, ·)(ξ1 + ξ2) . . .FG(t− tn, ·)(ξ1 + . . .+ ξn).

If d ≥ 3, we let fn(t1, ·, . . . , tn, ·, t, x) be the distribution in S ′(Rnd) whose Fourier
transform is given by (3.2). More precisely, the action of the fn(t1, ·, . . . , tn, ·, t, x)
on a test function φ ∈ S(Rnd) is given by:(
fn(t1, ·, . . . , tn, ·, t, x), φ

)
=
(
Ffn(t1, ·, . . . , tn, ·, t, x),F−1φ

)
= 1{0<t1<...<tn<t}

∫
Rnd

e−i(ξ1+...+ξn)·xFG(t2 − t1, ·)(ξ1) · FG(t3 − t2, ·)(ξ1 + ξ2) . . .

FG(t− tn, ·)(ξ1 + . . .+ ξn)F−1φ(ξ1, . . . , ξn)dξ1 . . . dξn.
(3.3)

Lemma 3.1. fn(t1, ·, . . . , tn, ·, t, x) is a well-defined distribution in S ′(Rnd).

Proof : First, note that for any t > 0 and ξ ∈ Rd, letting Ct = 2(t2 ∨ 1), we have:

|FG(t, ·)(ξ)|2 ≤ Ct
1

1 + |ξ|2
, (3.4)

since sin2(t|ξ|)
|ξ|2 ≤ t2 ≤ t2 2

1+|ξ|2 if |ξ| ≤ 1 and sin2(t|ξ|)
|ξ|2 ≤ 1

|ξ|2 ≤
2

1+|ξ|2 if |ξ| > 1.

The integral on the right-hand side of (3.3) is finite, since F−1φ is in L1(Rnd) and

|FG(t, ·)(ξ)| ≤ C1/2
t for any t > 0, ξ ∈ Rd. The map φ 7→

(
fn(t1, ·, . . . , tn, ·, t, x), φ

)
is clearly linear. To show that this map is continuous, assume that φk → φ in
S(Rnd) as k →∞. Then F−1φk → F−1φ in SC(Rnd) as k →∞, and hence for any
integer m > 0,

Tk := sup
ξ1,...,ξn∈Rd

(1+ |ξ1|2)m . . . (1+ |ξ1 + . . .+ ξn|2)m |F−1(φk−φ)(ξ1, . . . , ξn)| → 0,

as k → ∞. Using (3.4), we see that
∣∣∣(fn(t1, ·, . . . , tn, ·, t, x), φk − φ

)∣∣∣ is smaller

than

TkC
n/2
t 1{0<t1<...<tn<t}

∫
Rnd

( 1

1 + |ξ1|2
)m+1/2

. . .
( 1

1 + |ξ1 + . . .+ ξn|2
)m+1/2

dξ1 . . . dξn,

and hence converges to 0 as k →∞. The last integral is finite if 2m+ 1 > d. �

We will need the following result. Recall that for any t > 0, G(t, ·) is a distribu-
tion with compact support (hence is in S ′(Rd)).

Lemma 3.2. For any φ ∈ S(Rd), G(t, ·) ∗ φ is a well-defined function in S(Rd).
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Proof : We first show that G(t, ·) ∗ φ is well-defined. For any x ∈ Rd, we have

(G(t, ·) ∗ φ)(x) = (G(t, x− ·), φ) = (FG(t, x− ·),F−1φ)

=

∫
Rd
FG(t, x− ·)(ξ)F−1φ(ξ)dξ =

∫
Rd
e−iξ·x

sin(t|ξ|)
|ξ|

F−1φ(ξ)dξ. (3.5)

The function h(ξ) = sin(t|ξ|)
|ξ| , ξ ∈ Rd is analytic (hence infinitely differentiable), be-

ing the Fourier transform of a distribution with compact support (see e.g. Theorem
7.23 of Rudin, 1973). It can be shown that the partial derivatives of h are bounded.
Therefore, the function g(ξ) := h(ξ)F−1φ(ξ), ξ ∈ Rd is in S(Rd), and its Fourier

transform lies in SC(Rd). Since g(−ξ) = g(ξ) for any ξ ∈ Rd, the Fourier transform
of g is real-valued. �

The next result identifies the action of the distribution fn(t1, ·, . . . , tn, ·, t, x) on
a product test function φ = φ1⊗ . . .⊗φn, i.e. φ(x1, . . . , xn) = φ1(x1) . . . φn(xn) for
any x1, . . . , xn ∈ Rd.

Lemma 3.3. If φ = φ1 ⊗ . . .⊗ φn with φ1, . . . , φn ∈ S(Rd), then(
fn(t1, ·, . . . , tn, ·, t, x), φ

)
= ϕn(t1, . . . , tn, t, x),

where the pairs of functions (ψ1, ϕ1), . . . , (ψn, ϕn) are defined recursively as follows:

ψ1 = φ1, ϕ1(t1, t2, ·) = 1(0,t2)(t1)G(t2 − t1, ·) ∗ ψ1,

ψ2(t1, t2, ·) = φ2ϕ1(t1, t2, ·), ϕ2(t1, t2, t3, ·) = 1(0,t3)(t2)G(t3−t2, ·)∗ψ2(t1, t2, ·), . . . ,

ψn(t1, . . . , tn, ·) = φnϕn−1(t1, . . . , tn, ·),

ϕn(t1, . . . , tn, t, ·) = 1(0,t)(tn)G(t− tn, ·) ∗ ψn(t1, . . . , tn, ·).

Proof : The statement is clear for n = 1 since by (3.5),(
f1(t1, ·, t, x), φ1

)
= 1(0,t)(t1)

∫
Rd
e−iξ1·xFG(t− t1, ·)(ξ1)F−1φ1(ξ1)dξ1

= 1(0,t)(t1)(G(t− t1, ·) ∗ φ1)(x).

Assume that n ≥ 2. Note that F−1φ = h1 ⊗ . . . ⊗ hn where hi = F−1φi for
i = 1, . . . , n. Using the change of variables ηk = ξ1 + . . .+ ξk with k = 1, . . . , n, we
see that relation (3.3) can be written as(

fn(t1, ·, . . . , tn, ·, t, x), φ
)

= 1(0,t)(tn)

∫
Rd
e−iηn·xFG(t− tn, ·)(ηn) gn(t1, . . . , tn, ηn) dηn,

where

gk(t1, . . . , tk, ηk) = 1{0<t1<...<tk−1<tk}

∫
R(k−1)d

FG(tk − tk−1, ·)(ηk−1) . . .

FG(t2 − t1, ·)(η1)h1(η1)h2(η2 − η1) . . . hk(ηk − ηk−1)dη1 . . . dηk−1

for k = 2, . . . , n. We show that for

gk(t1, . . . , tk, ·) = F−1ψk(t1, . . . , tk, ·) for all k = 2, . . . , n. (3.6)
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This is proved by induction on k. For k = 2, we have:

F−1ψ2(t1, t2, ·)(η2) =
1

(2π)d

∫
Rd
eiη2·x2φ2(x2)ϕ1(t1, t2, x2)dx2

=
1

(2π)d

∫
Rd
eiη2·x2φ2(x2)1(0,t2)(t1)

(∫
Rd
e−iη1·x2FG(t2 − t1, ·)(η1)F−1φ1(η1)dη1

)
dx2

= 1(0,t2)(t1)

∫
Rd
FG(t2 − t1, ·)(η1)F−1φ1(η1)

( 1

(2π)d

∫
Rd
ei(η2−η1)·x2φ2(x2)dx2

)
dη1

= 1(0,t2)(t1)

∫
Rd
FG(t2 − t1, ·)(η1)F−1φ1(η1)F−1φ2(η2 − η1)dη1 = g2(t1, t2, η2),

where we used the definition of ϕ1 and (3.5) for the second equality. Assume that
the statement is true for k − 1. Then

F−1ψk(t1, . . . , tk, ·)(ηk) =
1

(2π)d

∫
Rd
eiηk·xkφk(xk)ϕk−1(t1, . . . , tk, xk)dxk

=
1

(2π)d

∫
Rd
eiηk·xkφk(xk)1(0,tk)(tk−1)

(∫
Rd
e−iηk−1·xkFG(tk − tk−1, ·)(ηk−1)

F−1ψk−1(t1, . . . , tk−1, ·)(ηk−1)dηk−1

)
dxk

= 1(0,tk)(tk−1)

∫
Rd
FG(tk − tk−1, ·)(ηk−1) F−1ψk−1(t1, . . . , tk, ·)(ηk−1)(

1

(2π)d

∫
Rd
ei(ηk−ηk−1)·xkφk(xk)dxk

)
dηk−1

=1(0,tk)(tk−1)

∫
Rd
FG(tk−tk−1, ·)(ηk−1) gk−1(t1,. . ., tk−1, ηk−1)F−1φk(ηk−ηk−1)dηk

= gk(t1, . . . , tk, ηk),

where we used the definition of ϕk−1 and (3.5) for the second equality, and the
induction hypothesis for the fourth equality. This concludes the proof of (3.6).

Using (3.6), it follows that(
fn(t1, ·, . . . , tn, ·, t, x), φ

)
= 1(0,t)(tn)

∫
Rd
e−iηn·xFG(t− tn, ·)(ηn)F−1ψn(t1, . . . , tn, ·)(ηn) dηn

= 1(0,t)(tn)
(
G(t− tn, ·) ∗ ψn(t1, . . . , tn, ·)

)
(x)

= ϕn(t1, . . . , tn, x),

where we used (3.5) for the second equality. �

Remark 3.4. Lemma 3.3 gives the relationship between the kernels fn+1 and fn:(
fn+1(t1, ·, . . . , tn+1, ·, t, x), φ1 ⊗ . . .⊗ φn ⊗ φn+1

)
=

1(0,t)(tn+1)
(
G(t− tn+1, x− ·), φn+1

(
fn(t1, ·, . . . , tn, ·, ∗), φ1 ⊗ . . .⊗ φn

))
,

where on the right-hand side we have the action of the distribution G(t−tn+1, x−·)
on the function y 7→ φn+1(y)

(
fn(t1, ·, . . . , tn, ·, y), φ1 ⊗ . . .⊗ φn

)
.

To check that the kernel fn(·, t, x) lies in H⊗n, we need the following result,
which is the counterpart of Theorem 2.6 for multiple Wiener integrals of order n.
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Theorem 3.5. Let Rn 3 (t1, . . . , tn) 7→ S(t1, ·, . . . , tn, ·) ∈ S ′(Rnd) be a determin-
istic function such that FS(t1, ·, . . . , tn, ·) is a function for all (t1, . . . , tn) ∈ Rn. If
FS(t1, ·, . . . , tn, ·) is uniquely determined only up to a set of Lebesgue measure zero,
we assume that µ satisfies Hypothesis A. Suppose that:
(i) for each (t1, . . . , tn) ∈ Rn, there exists a version of FS(t1, ·, . . . , tn, ·) such that
the function (t1, . . . , tn, ξ1, . . . , ξn) 7→ FS(t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) =:
φξ1,...,ξn(t1, . . . , tn) is measurable on Rn × Rnd;
(ii) for all ξ1, . . . , ξn ∈ Rd,

∫
Rn |φξ1,...,ξn(t1, . . . , tn)|dt1 . . . dtn <∞.

Then the following statements hold:
a) The function (τ1, . . . , τn, ξ1, . . . , ξn) 7→ Fφξ1,...,ξn(τ1, . . . , τn) is measurable on

Rn × Rnd, where Fφξ1,...,ξn denotes the Fourier transform of φξ1,...,ξn , i.e.

Fφξ1,...,ξn(τ1, . . . , τn) =

∫
Rn
e−i(τ1t1+...+τntn)φξ1,...,ξn(t1, . . . , tn)dt1 . . . dtn.

b) If

‖S‖20,n :=

∫
Rnd

∫
Rn
|Fφξ1,...,ξn(τ1, . . . , τn)|2ν(dτ1) . . . ν(dτn)µ(dξ1) . . . µ(dξn) <∞,

(3.7)
then S ∈ H⊗n and ‖S‖2H⊗n = ‖S‖20,n.

c) Assume in addition that S(t1, ·, . . . , tn, ·) = 0 for all (t1, . . . , tn) 6∈ [0, T ]n,
for some T > 0. If for every ξ1, . . . , ξn ∈ Rd, the function (t1, . . . , tn) 7→
FS(t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) is bounded and continuous a.e. on [0, T ]n, and

IT (n) :=

∫
Rnd

∫
[0,T ]2n

n∏
j=1

γ(tj − sj)FS(t1, ·, . . . , tn, ·)(ξ)

FS(s1, ·, . . . , sn, ·)(ξ)dtdsµn(dξ) <∞,

then (3.7) holds, S ∈ H⊗n and ‖S‖2H⊗n = IT (n). In the integral IT (n) above,
t = (t1, . . . , tn), s = (s1, . . . , sn) and µn(dξ1, . . . , dξn) =

∏n
j=1 µ(dξj) is a measure

on Rnd.

Proof : We argue as in the proof of Theorem 2.6. Part a) follows by Fubini’s

theorem and hypothesis (i). For b), we note that a ∈ L̃2
C(Rn(d+1),Πn), where

a(τ1, . . . , τn, ξ1, . . . , ξn) = Fφξ1,...,ξn(τ1, . . . , τn) and

Πn(dτ1, . . . , dτn, dξ1, . . . , dξn) = ν(dτ1) . . . ν(dτn)µ(dξ1) . . . µ(dξn).

By Lemma 2.2, F(D(Rn(d+1))) is dense in L̃2
C(Rn(d+1),Πn). Hence, for any ε > 0,

there exists a function l = l(ε) ∈ D(Rn(d+1)) such that

‖ϕ− l‖0,n :=

∫
Rn(d+1)

|a−F l|2dΠn < ε2.

The conclusion follows since H⊗n is the completion of D(Rn(d+1)) with respect to
the inner product 〈·, ·〉H⊗n defined by

〈ϕ1, ϕ2〉H⊗n =

∫
Rn(d+1)

Fφ(1)ξ1,...,ξn(τ1, . . . , τn)

· Fφ(2)ξ1,...,ξn(τ1, . . . , τn)Πn(dτ1, . . . , dτn, dξ1, . . . , dξn)

where φ
(k)
ξ1,...,ξn

(t1, . . . , tn) = Fϕ(t1, · . . . , tn, ·)(ξ1, . . . , ξn) for k = 1, 2.
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c) For every ξ1, . . . , ξn ∈ Rd fixed, we apply Lemma 2.3 to the bounded function
φξ1,...,ξn : Rn → C which is continuous a.e. and has support contained in [0, T ]n.
We apply this lemma for the measure m = νn and the kernel κ = γn on Rn, where
νn(dτ1, . . . , dτn) =

∏n
j=1 ν(dτj) and γn(t1, . . . , tn) =

∏n
j=1 γ(tj). We obtain that,

for any ξ1, . . . , ξn ∈ Rd,∫
[0,T ]2n

n∏
j=1

γ(tj − sj)φξ1,...,ξn(t)φξ1,...,ξn(s)dtds =

∫
Rn
|Fφξ1,...,ξn(τ1, . . . , τn)|2νn(dτ),

where t = (t1, . . . , tn) and s = (s1, . . . , sn). We integrate with respect to
µn(dξ1, . . . , dξn). We obtain that IT (n) = ‖S‖20,n. Since IT (n) < ∞, it follows
that (3.7) holds. The conclusion follows by part b). �

As a consequence of the previous theorem, we obtain the following result.

Theorem 3.6. Suppose that µ satisfies (1.2). If d ≥ 4, suppose in addition that
Hypothesis A holds. Then for any t > 0, x ∈ Rd and n ≥ 1,

fn(·, t, x) ∈ H⊗n and ‖fn(·, t, x)‖2H⊗n = It(n),

where

It(n)=

∫
Rnd

∫
[0,t]2n

sin((t2 − t1)|ξ1|)
|ξ1|

· sin((t3 − t2)|ξ1 + ξ2|)
|ξ1 + ξ2|

. . .
sin((t− tn)|ξ1 + . . .+ ξn|)

|ξ1 + . . .+ ξn|

sin((s2 − s1)|ξ1|)
|ξ1|

· sin((s3 − s2)|ξ1 + ξ2|)
|ξ1 + ξ2|

. . .
sin((t− sn)|ξ1 + . . .+ ξn|)

|ξ1 + . . .+ ξn|
n∏
j=1

γ(tj − sj)dt1 . . . dtnds1 . . . dsnµ(dξ1) . . . µ(dξn).

Proof : We apply Theorem 3.5.c) to the function S = fn(·, t, x) for fixed t > 0 and
x ∈ Rd, i.e. S(t1, . . . , tn) = fn(t1, ·, . . . , tn, ·, t, x). To see that fn(·, t, x) satisfies the
conditions of this theorem, recall that for any (t1, . . . , tn) ∈ R and ξ1, . . . , ξn ∈ Rd,

φξ1,...,ξn(t1, . . . , tn) := Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

= e−i(ξ1+...+ξn)·x

· FG(t2 − t1, ·)(ξ1)FG(t3 − t2, ·)(ξ1 + ξ2) . . .FG(t− tn, ·)(ξ1 + . . .+ ξn)

= e−i(ξ1+...+ξn)·x

· sin((t2 − t1)|ξ1|)
|ξ1|

· sin((t3 − t2)|ξ1 + ξ2|)
|ξ1 + ξ2|

. . .
sin((t− tn)|ξ1 + . . .+ ξn|)

|ξ1 + . . .+ ξn|

if 0 < t1 < . . . < tn < t and φξ1,...,ξn(t1, . . . , tn) = 0 otherwise. Hence,

|φξ1,...,ξn(t1, . . . , tn)| ≤ (t2 − t1) . . . (t− tn)1{0<t1<...<tn<t} ≤ t
n1[0,t]n .

It follows that fn(·, t, x) satisfies conditions (i) and (ii) of Theorem 3.5.
Similarly to the calculations done in the proof of Theorem 4.4 below, one can

prove that It(n) <∞, under condition (1.2). By Theorem 3.5.c), we conclude that
fn(·, t, x) ∈ H⊗n and ‖fn(·, t, x)‖2H⊗n = It(n). �
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Remark 3.7. Theorem 3.5.c) can also be applied to the function S = fn(·, t, x)
where fn(·, t, x) is defined by (3.1) and G is the fundamental solution of the heat
equation, given by (2.16). Using the same argument as in the proof of Theorem
3.6, we infer that, if µ satisfies (1.2), then fn(·, t, x) ∈ H⊗n for all t > 0 and x ∈ Rd.

4. Summability of the series

In this section, we show that under condition (1.2), for any t > 0 and x ∈ Rd,∑
n≥1

n! ‖f̃n(·, t, x)‖2H⊗n <∞, (4.1)

where f̃n(·, t, x) the symmetrization of fn(·, t, x) defined as follows. Let t1 >
0, . . . , tn > 0 be arbitrary. If d ≤ 2, for any x1, . . . , xn ∈ Rd, we let

f̃n(t1, x1, . . . , tn, xn, t, x) =
1

n!

∑
ρ∈Pn

fn(tρ(1), xρ(1), . . . , tρ(n), xρ(n), t, x),

where Pn is the set of all permutations of {1, . . . , n}. If d ≥ 3, we let

f̃n(t1, . . . , tn, ·, t, x) be the distribution in S ′(Rnd) defined as follows: for any ψ ∈
S(Rnd),(

f̃n(t1, ·, . . . , tn, ·, t, x), ψ
)

=
1

n!

∑
ρ∈Pn

(
fn(tρ(1), ·, . . . , tρ(n), ·, t, x), ψρ

)
, (4.2)

where

ψρ(x1, . . . , xn) = ψ(xρ−1(1), . . . , xρ−1(n)) for all x1, . . . , xn ∈ Rd. (4.3)

It follows that for any d ≥ 1, the Fourier transform of f̃n(t1, . . . , tn, ·, t, x) is the
function

F f̃n(t1, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

= e−i(ξ1·x1+...+ξn·xn) 1

n!

∑
ρ∈Pn

FG(tρ(2) − tρ(1), ·)(ξρ(1))

. . .FG(t− tρ(n), ·)(ξρ(1) + . . .+ ξρ(n)) 1{0<tρ(1)<...<tρ(n)<t}.

To prove (4.1), we need some preliminary results. The first result is based on
the fact that the function f is non-negative. (See also relation (3.4) of Dalang and
Mueller, 2003 for a related result.)

Lemma 4.1. Let µ be a tempered measure on Rd whose Fourier transform in
S ′C(Rd) is a locally-integrable function f : Rd → [0,∞] such that f(x) < ∞ a.e.
Then for any β > 0,

sup
η∈Rd

∫
Rd

(
1

1 + |ξ + η|2

)β
µ(dξ) =

∫
Rd

(
1

1 + |ξ|2

)β
µ(dξ). (4.4)

Proof : We prove the result in a similar way as in Remark 5.8 in Song (2017). We
assume that the right hand side of (4.4) is finite, otherwise it is trivial. Note that
for c > 0 and β > 0,

c−β =
1

Γ(β)

∫ ∞
0

tβ−1e−ctdt. (4.5)
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Fix η ∈ Rd. We apply (4.5) to c = 1 + |ξ + η|2 and then integrate µ(dξ). Using
Fubini’s theorem, we obtain:∫

Rd

(
1

1 + |ξ + η|2

)β
µ(dξ) =

1

Γ(β)

∫ ∞
0

tβ−1e−t
(∫

Rd
e−t|ξ+η|

2

µ(dξ)

)
dt.

Let pt(x) = (2πt)−d/2e−|x|
2/(2t). Note that for any ξ, η ∈ Rd,

F(e−iη·p2t)(ξ) =

∫
Rd
e−i(ξ+η)·xp2t(x)dx = Fp2t(ξ + η) = e−t|ξ+η|

2

.

By applying Parseval’s identity (2.1) to the function ϕ = e−iη·p2t ∈ SC(Rd), we see
that ∫

Rd
e−iη·xp2t(x)f(x)dx =

1

(2π)d

∫
Rd
e−t|ξ+η|

2

µ(dξ)

Hence, by applying Fubini’s theorem,∫
Rd

(
1

1 + |ξ + η|2

)β
µ(dξ) =

1

Γ(β)

∫ ∞
0

tβ−1e−t
(∫

Rd
e−iη·xp2t(x)f(x)dx

)
dt

=
1

Γ(β)

∫
Rd
e−iη·xGd,β(x)f(x)dx, (4.6)

where Gd,β is the Bessel kernel:

Gd,β(x) =
1

Γ(β)

∫ ∞
0

tβ−1e−tp2t(x)dt > 0.

We take the modulus on both sides of (4.6) and we use the fact that the left-hand
side of this relation is non-negative. We use the inequality |

∫
. . . | ≤

∫
| . . . | on the

right-hand side. Since |e−iη·x| = 1 and f is non-negative, we obtain that∫
Rd

(
1

1 + |ξ − η|2

)β
µ(dξ) ≤

∫
Rd
Gd,k(x)f(x)dx =

∫
Rd

(
1

1 + |ξ|2

)β
µ(dξ).

�

Based on the previous lemma, we obtain the following result.

Lemma 4.2. For any t > 0,

sup
η∈Rd

∫
Rd
|FG(t, ·)(ξ + η)|2µ(dξ) ≤ 4t2

∫
Rd

1

1 + t2|ξ|2
µ(dξ) (4.7)

and

sup
η∈Rd

∫
Rd
|FG(t, ·)(ξ + η)|2µ(dξ) ≤ 2(t2 ∨ 1)

∫
Rd

1

1 + |ξ|2
µ(dξ). (4.8)

Proof : We first prove (4.7). Note that | sin x|x ≤ 2
1+x for any x > 0. (This can be seen

as follows: if x ≤ 1, then | sin x|x ≤ 1 ≤ 2
1+x , and if x > 1, then | sin x|x ≤ 1

x ≤
2

1+x .)
Hence

|FG(t, ·)(ξ)|2 =
sin2(t|ξ|)
|ξ|2

≤ 4t2

(1 + t|ξ|)2
≤ 4t2

1 + t2|ξ|2
.
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It follows that

sup
η∈Rd

∫
Rd
|FG(t, ·)(ξ + η)|2µ(dξ) ≤ sup

η∈Rd

∫
Rd

4t2

1 + t2|ξ + η|2
µ(dξ) =

4t2 sup
η∈Rd

∫
Rd

1

1 + |tξ + η|2
µ(dξ) = 4t2 sup

η∈Rd

∫
Rd

1

1 + |ξ + η|2
µt(dξ),

where µt = µ ◦ h−1t and ht(ξ) = tξ. We now apply Lemma 4.1 (with β = 1) to
the measure µt. To justify the application of this result, we note that the Fourier
transform in S ′(Rd) of the measure µt is the non-negative definite function ft defined
by ft(x) = f(tx), x ∈ Rd, since for any ϕ ∈ S(Rd) we have:

∫
Rd
Fϕ(ξ)µt(dξ) =

∫
Rd
Fϕ(tξ)µ(dξ) =

∫
Rd
Fϕ(t)(ξ)µ(dξ)

=

∫
Rd
ϕ(t)(x)f(x)dx =

∫
Rd
ϕ(x)ft(x)dx,

where ϕ(t)(x) = t−dϕ(x/t). It follows that

sup
η∈Rd

∫
Rd

1

1 + |ξ + η|2
µt(dξ) =

∫
Rd

1

1 + |ξ|2
µt(dξ) =

∫
Rd

1

1 + t2|ξ|2
µ(dξ).

Inequality (4.8) follows similarly, using (3.4). �

We will need the following elementary result.

Lemma 4.3. For any n ≥ 1 and for any function h : [0, t]n → R which is either
non-negative or integrable,

∫
[0,t]n

∫
[0,t]n

n∏
j=1

γ(tj − sj)h(t1, . . . , tn)dt1 . . . dtnds1 . . . dsn

≤ Γnt

∫
[0,t]n

|h(t1, . . . , tn)|dt1 . . . dtn,
(4.9)

where Γt =
∫ t
−t γ(s)ds = 2

∫ t
0
γ(s)ds.

Proof : We consider only the case when h is a non-negative function. The proof for
an integrable function h is similar. We use an induction argument on n ≥ 1. For

n = 1, we note that
∫ t
0
γ(r − s)dr =

∫ t−s
−s γ(r)dr ≤ Γt and hence

∫ t

0

h(s)

(∫ t

0

γ(r − s)dr
)
ds ≤ Γt

∫ t

0

h(s)ds.
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For the induction step, we assume that the inequality holds for n− 1. Then∫ t

0

∫ t

0

γ(tn − sn)

∫
[0,t]2(n−1)

h(t1, . . . , tn)

n−1∏
j=1

γ(tj − sj)dt1ds1 . . . dtn−1dsn−1

dtndsn
≤
∫ t

0

∫ t

0

γ(tn − sn)

(
Γn−1t

∫
[0,t]n−1

h(t1, . . . , tn)dt1 . . . dtn−1

)
dtndsn

= Γn−1t

∫
[0,t]n−1

(∫ t

0

∫ t

0

γ(tn − sn)h(t1, . . . , tn)dtndsn

)
dt1 . . . dtn−1

≤ Γn−1t

∫
[0,t]n−1

(
Γt

∫ t

0

h(t1, . . . , tn)dtn

)
dt1 . . . dtn−1

where we used the induction hypothesis for the first inequality, and inequality (4.9)
for the case n = 1 for the last inequality. For the equality above, we used Fubini’s
theorem whose application is justified since h is non-negative. �

Theorem 4.4. Suppose that d ≥ 1 is arbitrary and µ satisfies (1.2). If d ≥ 4,
suppose in addition that Hypothesis A holds. Then relation (4.1) holds for any
t > 0 and x ∈ Rd.

Proof : We will prove that ∑
n≥0

1

n!
αn(t) <∞, (4.10)

where

αn(t) = E|Jn(t, x)|2 = E|In(fn(·, t, x))|2 = (n!)2‖f̃n(·, t, x)‖2H⊗n . (4.11)

For this, we proceed as in the proof of Theorem 3.2 of Hu et al. (2015b). In
the integrals below, we use the notation t = (t1, . . . , tn), s = (s1, . . . , sn), x =
(x1, . . . , xn) and y = (y1, . . . , yn). Then

αn(t) =

∫
[0,t]2n

n∏
j=1

γ(tj − sj)ψn(t, s)dtds, (4.12)

where

ψn(t, s) =

∫
Rnd
Fg(n)t (·, t, x)(ξ1, . . . , ξn)Fg(n)s (·, t, x)(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn)

and

g
(n)
t (·, t, x) = n!f̃n(t1, ·, . . . , tn, ·, t, x). (4.13)

If the permutation ρ of {1, . . . , n} is chosen such that tρ(1) < . . . < tρ(n), then

Fg(n)t (ξ1, . . . , ξn) = e−i
∑n
j=1 ξj ·xFG(tρ(2) − tρ(1), ·)(ξρ(1))

FG(tρ(3) − tρ(2), ·)(ξρ(1) + ξρ(2)) . . .FG(t− tρ(n), ·)(ξρ(1) + . . .+ ξρ(n)) (4.14)

By the Cauchy-Schwarz inequality and the inequality ab ≤ (a2+b2)/2, we obtain:

ψn(t, s) ≤ ψn(t, t)1/2ψn(s, s)1/2 ≤ 1

2

(
ψn(t, t) + ψn(s, s)

)
.
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Using (4.12) and the symmetry of the function γ, it follows that

αn(t) ≤
∫
[0,t]2n

n∏
j=1

γ(tj − sj)
ψn(t, t) + ψn(s, s)

2
dtds

=

∫
[0,t]2n

n∏
j=1

γ(tj − sj)ψn(t, t)dtds.

Using Lemma 4.3 for the function h(t) = ψn(t, t), we obtain:

αn(t) ≤ Γnt

∫
[0,t]n

ψn(t, t)dt. (4.15)

We now estimate ψn(t, t). We denote uj = tρ(j+1)− tρ(j) for j = 1, . . . , n, where
tρ(n+1) = t. We have:

ψn(t, t) =

∫
Rnd
|FG(u1, ·)(ξρ(1))|2 |FG(u2, ·)(ξρ(1) + ξρ(2))|2 . . .

|FG(un, ·)(ξρ(1) + . . .+ ξρ(n))|2µ(dξ1) . . . µ(dξn)

=

∫
Rd
µ(dξ′1)|FG(u1, ·)(ξ′1)|2

(∫
Rd
µ(dξ′2)|FG(u2, ·)(ξ′1 + ξ′2)|2 . . .(∫

Rd
|FG(un, ·)(ξ′1 + . . .+ ξ′n)|2µ(dξ′n)

)
. . .

)
,

where for the last equality we used the change of variable ξ′j = ξρ(j) for j = 1, . . . , n.
Using Lemma 4.2 it follows that

ψn(t, t) ≤
n∏
j=1

(
sup
η∈Rd

∫
Rd
|FG(uj , ·)(ξj + η)|2µ(dξj)

)
≤

n∏
j=1

∫
Rd

4u2j
1 + u2j |ξj |2

µ(dξj).

(4.16)
We now go back to the estimate (4.15) for αn(t). We decompose the set [0, t]n

into n! disjoint regions of the form tρ(1) < . . . < tρ(n) with ρ ∈ Pn. Using (4.16), it
follows that

αn(t) ≤ Γnt
∑
ρ∈Pn

∫
tρ(1)<...<tρ(n)

∫
Rnd

n∏
j=1

4(tρ(j+1) − tρ(j))2

1 + (tρ(j+1) − tρ(j))2|ξj |2
µ(dξ1) . . . µ(dξn)dt

= Γnt n!

∫
0<t1<...<tn<t

∫
Rnd

n∏
j=1

4(tj+1 − tj)2

1 + (tj+1 − tj)2|ξj |2
µ(dξ1) . . . µ(dξn)dt

= Γnt n!

∫
Rnd

∫
St,n

n∏
j=1

4w2
j

1 + w2
j |ξj |2

dwµ(dξ1) . . . µ(dξn)

=: Γnt n! I(n)(t) (4.17)

where St,n = {(w1, . . . , wn) ∈ [0, t]n;w1 + . . .+ wn ≤ t} and w = (w1, . . . , wn). As

in the proof of Lemma 3.3 of Hu et al. (2015b), since St,n ⊂ SIt × SI
c

t , the integral
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I(n)(t) is smaller than

J (n)(t) :=
∑

I⊂{1,...,n}

∫
Rd|I|

∏
j∈I

1{|ξj |≤N}

∫
SIt

∏
j∈I

4w2
j

1 + w2
j |ξj |2

dwI

∏
j∈I

µ(dξj)

∫
Rd|Ic|

∏
j∈Ic

1{|ξj |>N}

∫
SI
c
t

∏
j∈Ic

4w2
j

1 + w2
j |ξj |2

dwIc

 ∏
j∈Ic

µ(dξj),

(4.18)

where SIt = {wI = (wj)j∈I ;wj ≥ 0,
∑
j∈I wj ≤ t} and SI

c

t = {wIc = (wj)j∈Ic ;

wj ≥ 0,
∑
j∈Ic wj ≤ t}. Here |I| is the cardinality of I and N > 0 is arbitrary.

For the integral over the set SIt we use the bound

4w2
j

1 + w2
j |ξj |2

≤ 4w2
j ≤ 4t2,

and so, this integral is bounded by (4t2)|I|
∫
SIt
dwI = 4|I|t3|I|/|I|!. For the integral

over SI
c

t , we have:∫
SI
c
t

∏
j∈Ic

4w2
j

1 + w2
j |ξj |2

dwIc ≤
∏
j∈Ic

∫ t

0

4w2
j

1 + w2
j |ξj |2

dwj

≤
∏
j∈Ic

∫ t

0

4

|ξj |2
dwj = 4|I

c|t|I
c|
∏
j∈Ic

1

|ξj |2
.

We denote

CN =

∫
{|ξ|>N}

1

|ξ|2
µ(dξ) and DN =

∫
{|ξ|≤N}

µ(dξ).

It follows that

J (n)(t) ≤ 4n
∑

I⊂{1,...,n}

t3|I|

|I|!
D
|I|
N · t

|Ic|C
|Ic|
N = 4n

n∑
k=0

(
n
k

)
t3k

k!
Dk
N t

n−kCn−kN

≤ 4n
n∑
k=0

2n
tn+2k

k!
Dk
NC

n−k
N =: K(n)(t). (4.19)

Hence

αn(t) ≤ Γnt n!
1

(2π)nd
8n

n∑
k=0

tn+2k

k!
Dk
NC

n−k
N (4.20)

and∑
n≥0

1

n!
αn(t) ≤

∑
n≥0

Γnt 8n
n∑
k=0

tn+2k

k!
Dk
NC

n−k
N =

∑
k≥0

t2k

k!
Dk
NC
−k
N

∑
n≥k

(8CNΓtt)
n

=
∑
k≥0

t2k

k!
Dk
NC
−k
N (8CNΓtt)

k
∑
n≥0

(8CNΓtt)
n.

Due to condition (1.2), CN → 0 as N → ∞. Hence, there exists Nt > 0 such that
8CNΓtt < 1 for all N > Nt. We choose N > Nt arbitrary. We have:∑
n≥0

1

n!
αn(t) ≤ 1

1− 8CNΓtt

∑
k≥0

1

k!
(8DNΓtt

3)k =
1

1− 8CNΓtt
exp

(
8DNΓtt

3
)
<∞.
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This concludes the proof of (4.10). �

Remark 4.5. In the proof of Theorem 4.4, we expressed αn(t) as an integral which
depends on the measure µ (instead of the kernel f); see (4.12). However, the fact
that the Fourier transform of µ is the locally integrable non-negative function f was
used in Lemma 4.1.

5. Existence of the solution

In this section, we show that the process u = {u(t, x); t ≥ 0, x ∈ Rd} defined by:

u(t, x) = 1 +
∑
n≥1

In(fn(·, t, x)), t > 0, x ∈ Rd (5.1)

is a solution of (1.1). (Note that the series above converges in L2(Ω), due to (4.1).)
The results of Sections 3 and 4 (in particular, Theorem 3.5 which gives criteria

for integrability, and Theorem 4.4 which gives the summability of the series) play a
crucial role in the proof of the existence of solution. Generally speaking, a solution
of (1.1) is a process u which satisfies the equation:

u(t, x) = 1 +

∫ t

0

∫
Rd
G(t− s, x− y)u(s, y)W (δs, δy), (5.2)

where the integral is interpreted in the Skorohod sense. To give a rigorous meaning
to this equation, we need to discuss separately the cases d ≤ 2 and d ≥ 3.

5.1. The case d ≤ 2. In this case, the solution is defined exactly as in the case of
the Parabolic Anderson Model.

Definition 5.1. Assume that d ≤ 2. A square-integrable process u = {u(t, x); t ≥
0, x ∈ Rd} with u(0, x) = 1 for all x ∈ Rd and Wiener chaos expansion

u(t, x) = 1 +
∑
n≥1

In(kn(·, t, x)), t > 0, x ∈ Rd, (5.3)

for some symmetric non-negative functions kn(·, t, x) ∈ H⊗n, is a solution to
equation (1.1) if the following conditions are satisfied:

(a): u has a jointly measurable modification (denoted also by u) and

sup
(t,x)∈[0,T ]×Rd

E|u(t, x)|2 <∞ for all T > 0; (5.4)

(b): for any t > 0 and x ∈ Rd, v(t,x) ∈ Dom δ and u(t, x) = 1 + δ(v(t,x)) in
L2(Ω), where

v(t,x)(s, y) = 1(0,t)(s)G(t− s, x− y)u(s, y), s ≥ 0, y ∈ Rd. (5.5)

The proof of the existence of the solution is identical to the parabolic case. We
include it for the sake of completeness.

Theorem 5.2. Suppose that d ≤ 2 and condition (1.2) holds. Then the process
{u(t, x); t ≥ 0, x ∈ Rd} given by (5.1) is a solution of equation (1.1).

Proof : We apply Proposition A.1 (Appendix A) to the process v(t,x). For s ≥ 0, y ∈
Rd,

v(t,x)(s, y) =
∑
n≥0

In(g(t,x)n (·, s, y)) in L2(Ω),
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where g
(t,x)
n (·, s, y) = 1(0,t)(s)G(t− s, x− y)fn(·, s, y). We use Remark A.2 to verify

hypothesis (i) of Proposition A.1. By Theorem 7.1 below, u is L2(Ω)-continuous
and satisfies (5.4). By Theorem 30, Chapter IV of Dellacherie and Meyer (1975), u
has a jointly measurable modification. We work with this modification. It follows
that v(t,x) is also jointly measurable. Note that

E

[∫
(R+×Rd)2

γ(s− r)f(y − z)|v(t,x)(s, y)v(t,x)(r, z)|dsdydrdz

]

=

∫
((0,t)×Rd)2

γ(s− r)f(y − z)G(t− s, x− y)G(t− r, x− z)

· E|u(s, y)u(r, z)| ds dy dr dz <∞,

since by Cauchy-Schwarz inequality and (5.4), for any s ∈ (0, t), y ∈ Rd and z ∈ Rd,
E|u(s, y)u(r, z)| ≤

(
E|u(s, y)|2

)1/2(
E|u(r, z)|2

)1/2 ≤ Ct, where Ct > 0 is a constant

depending on t. Hypothesis (ii) of Proposition A.1 holds since g
(t,x)
n = fn+1(·, t, x) ∈

H⊗(n+1) by Theorem 3.6. By Theorem 4.4, V (t,x) :=
∑
n≥0 In+1(f̃n+1(·, t, x)) con-

verges in L2(Ω).
By Proposition A.1, it follows that v(t,x) ∈ Dom δ and δ(v(t,x)) = V (t,x). On the

other hand, by (5.1), u(t, x) = 1 + V (t,x) in L2(Ω). Hence u(t, x) = 1 + δ(v(t,x)) in
L2(Ω). �

5.2. The case d ≥ 3. In the case d ≥ 3, the definition of solution proposed in Balan
(2012) is incorrect since the product between the distribution G(t − s, x − ·) and
the (random) function u(s, ·) is not well-defined. We give below a new definition
of the solution, and we prove the existence of a solution. With this new definition,
we will also be able to prove the uniqueness of the solution in Section 6 below. In
this section, we assume that Hypothesis A holds.

If u = {u(ϕ);ϕ ∈ S(Rd)} and v = {v(ϕ);ϕ ∈ S(Rd)} are two collections of
random variables defined on the same probability space (Ω,F , P ), we say that u is
a modification of v if u(ϕ) = v(ϕ) a.s. for any ϕ ∈ S(Rd).

A distribution F ∈ S ′(Rnd) is symmetric if
(
F,ψ

)
=
(
F,ψρ

)
for any for any

ψ ∈ S(Rnd) and ρ ∈ Pn, where ψρ is defined by (4.3).

Definition 5.3. Assume that d ≥ 3. A square-integrable process u = {u(t, x); t ≥
0, x ∈ Rd} with u(0, x) = 1 for all x ∈ Rd and Wiener chaos expansion (5.3) with
kn(·, t, x) ∈ H⊗n, is a solution to equation (1.1) if the following conditions are
satisfied:

(a): for any s > 0 and t1 > 0, . . . , tn > 0, we have: (i) kn(t1, ·, . . . , tn, ·, s, x) is
a symmetric distribution in S ′(Rnd) for any x ∈ Rd; (ii) for any ψ ∈ S(Rnd)
the function

Rd 3 x 7→
(
kn(t1, ·, . . . , tn, ·, s, x), ψ

)
:= hψ(x) is in S(Rd);

(iii) the map ψ 7→ hψ is continuous from S(Rnd) to S(Rd);
(b): for any t > 0, x ∈ Rd, s > 0 and ϕ ∈ S(Rd), S(t,x,s,ϕ)

n ∈ H⊗n and

the series
∑
n≥1 In(S

(t,x,s,ϕ)
n ) converges in L2(Ω), where S

(t,x,s,ϕ)
n is de-

fined in Remark 5.4 below; for any t1, . . . , tn, the Fourier transform of

S
(t,x,s,ϕ)
n (t1, ·, . . . , tn, ·) is a function which has a version such that
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(t1, . . . , tn, ξ1, . . . , ξn) 7→ FS(t,x,s,ϕ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) is measurable

(see Remark 2.5 for the definition of a version of a Fourier transform);
(c): for any t > 0, x ∈ Rd and s > 0, the process {(v(t,x)(s, ·), ϕ);ϕ ∈ S(Rd)}

defined by

(v(t,x)(s, ·), ϕ) = (G(t− s, x− ·), ϕ) +
∑
n≥1

In(S(t,x,s,ϕ)
n ),

has a modification with values in S ′(Rd) which satisfies hypotheses (i)-(iv)
of Proposition A.4 (Appendix A);

(d): for any t > 0, x ∈ Rd, v(t,x) ∈ Dom δ and u(t, x) = 1+ δ(v(t,x)) in L2(Ω).

Remark 5.4. For any t1 > 0, . . . , tn > 0, s > 0 and ψ ∈ S(Rnd), we consider
the product between the distribution 1(0,t)(s)G(t − s, x − ·) and the function y 7→(
kn(t1, ·, . . . , tn, ·, s, y), ψ

)
. This product, which we denote by

(
g
(t,x)
n (t1, ·, . . . ,

tn, ·, s, ∗), ψ
)
, is a distribution in S ′(Rd) whose action on a test function ϕ ∈ S(Rd)

is given by:((
g(t,x)n (t1, ·, . . . , tn, ·, s, ∗), ψ

)
, ϕ
)

= 1(0,t)(s)
(
G(t− s, x− ∗), ϕ(∗)

(
kn(t1, ·, . . . , tn, ·, s, ∗), ψ(·)

))
.

Due to condition (a).(iii) in Definition 5.3, for each ϕ ∈ S(Rd) fixed, the map

S(Rnd) 3 ψ 7→
((
g(t,x)n (t1, ·, . . . , tn, ·, s, ∗), ψ

)
, ϕ
)

is a distribution in S ′(Rnd) which we denote by S
(t,x,s,ϕ)
n (t1, ·, . . . , tn, ·). This dis-

tribution is symmetric since kn(t1, ·, . . . , tn, ·, s, x) is symmetric for any x ∈ Rd.

Remark 5.5. Intuitively, the process v(t,x) given by Definition 5.3.(c) should satisfy
v(t,x)(s, ·) = G(t − s, x − ·)u(s, ·) where u is a solution. Since u(s, ·) may not be
a smooth function, this product is not well-defined. For this reason, we define the
process v(t,x) using its Wiener chaos expansion.

The following theorem establishes the existence of the solution. This result is a
correction to Theorem 2.8 of Balan (2012) whose proof is incorrect since the claim
on page 14, line 15 (that the convolution of the distribution G(t − s, ·) with the
infinite series

∑
n≥0 φJn(s, ·) is equal to the series

∑
n≥0(φJn(s, ·) ∗G(t− s, ·))(x))

cannot be justified.

Theorem 5.6. Suppose that d ≥ 3, µ satisfies (1.2) and Hypothesis A holds. Then
the process {u(t, x); t ≥ 0, x ∈ Rd} given by (5.1) is a solution of equation (1.1).

Proof : We show that u satisfies the conditions of Definition 5.3 with kn(·, t, x) =

f̃n(·, t, x).

Step 1. (Verification of condition (a)) From the definition of f̃n(·, t, x), we see
that it is enough to show that (a) holds when kn = fn. Property (a).(i) is clear.
To prove (a).(ii), note that hψ(x) = Hψ(x, . . . , x) for all x ∈ Rd, where

Hψ(x1, . . . , xn) := 1{0<t1<...<tn<s}

∫
Rnd

e−i(ξ1·x1+...+ξn·xn)FG(t2 − t1, ·)(ξ1) . . .

FG(s− tn, ·)(ξ1 + . . .+ ξn)F−1ψ(ξ1, . . . , ξn)dξ1, . . . dξn,
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for any x1, . . . , xn ∈ Rd and ψ ∈ S(Rnd). The function

F (ξ1, . . . , ξn) :=
sin((t2 − t1)|ξ1|)

|ξ1|
. . .

sin((s− tn)|ξ1 + . . .+ ξn|)
|ξ1 + . . .+ ξn|

, ξ1, . . . , ξn ∈ Rd

is infinitely differentiable on Rnd and has bounded partial derivatives of any or-
der. Hence the product FF−1ψ is a function in S(Rnd), and therefore Hψ =
1{0<t1<...<tn<s}F(FF−1ψ) is in S(Rnd). Consequently, hψ ∈ S(Rd). To prove

(a).(iii), note that if ψk → ψ in S(Rnd), then FF−1ψk → FF−1ψ in S(Rnd) and
Hψk → Hψ in S(Rnd), by the continuity of the Fourier transform. From this, we
deduce that hψk → hψ in S(Rd). This proves (a).(iii).

In the argument for (b) below, we will need the following fact. Using the change
of variables ηk = ξ1 + . . .+ ξk, k = 1, . . . , n, we see that

hψ = 1{0<t1<...<tn<s}F(FG(s− tn, ·)Vψ), (5.6)

where

Vψ(ηn) =

∫
Rn(d−1)

FG(t2 − t1, ·)(η1) . . .FG(tn − tn−1, ·)(ηn−1)

F−1ψ(η1, η2 − η1, . . . , ηn − ηn−1)dη1 . . . dηn−1, ηn ∈ Rd.
(5.7)

Since hψ ∈ S(Rd), it follows that FG(s− tn, ·)Vψ ∈ S(Rd).

Step 2. (Verification of condition (b)). We fix t > 0, x ∈ Rd, s ∈ (0, t), ϕ ∈
S(Rd). We first show that condition (b) holds when kn = fn. Since t, x, s and

ϕ are fixed in this step, we denote S
(t,x,s,ϕ)
n by Sn for simplicity. We prove that

Sn ∈ H⊗n using Theorem 3.5.b).
By definition, for any ψ ∈ S(Rnd), we have:(
Sn(t1, ·, . . . , tn, ·), ψ

)
=
(
G(t− s, x− ·), ϕ

(
fn(t1, ·, . . . , tn, ·, s, ∗), ψ

))
. (5.8)

We treat first the case n = 1. By definition, for any ψ ∈ S(Rd),(
S1(t1, ·), ψ

)
=
(
G(t− s, ·) ∗ ϕhψ

)
(x),

where hψ(y) =
(
f1(t1, ·, s, y), ψ

)
. We first show that the Fourier transform of

S1(t1, ·) in S ′(Rd) is a function and we identify this function. By (3.5), for any
ψ ∈ S(Rd), we have:(

FS1(t1, ·), ψ
)

=
(
S1(t1, ·),Fψ

)
=
(
G(t− s, ·) ∗ ϕhFψ

)
(x)

=

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1(ϕhFψ)(ξ) dξ

=

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

(
F−1ϕ ∗ F−1hFψ

)
(ξ) dξ.

Note that by the definition of f1(t1, ·, s, y) and (3.5),

hFψ(y) =
(
f1(t1, ·, s, y),Fψ

)
= 1(0,s)(t1)

(
G(s− t1, ·) ∗ Fψ

)
(y) =

1(0,s)(t1)

∫
Rd
e−iξ·y

sin((s− t1)|ξ|)
|ξ|

ψ(ξ)dξ = 1(0,s)(t1)F
(
FG(s− t1, ·)ψ

)
(y),
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and hence F−1hFψ = 1(0,s)(t1)FG(s− t1, ·)ψ. Therefore,(
FS1(t1, ·), ψ

)
= 1(0,s)(t1)

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

·
(∫

Rd
F−1ϕ(ξ − ξ1)

sin((s− t1)|ξ1|)
|ξ1|

ψ(ξ1)dξ1

)
dξ

= 1(0,s)(t1)

∫
Rd
ψ(ξ1)

sin((s− t1)|ξ1|)
|ξ1|

·
(∫

Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1(ϕe−iξ1·)(ξ)dξ

)
dξ1

= 1(0,s)(t1)

∫
Rd
ψ(ξ1)

sin((s− t1)|ξ1|)
|ξ1|

(
G(t− s, ·) ∗ ϕe−iξ1·

)
(x)dξ1,

where for the second equality we used Fubini’s theorem and the fact that

F−1ϕ(ξ − a) =
1

(2π)d

∫
Rd
ei(ξ−a)·xϕ(x)dx = F−1(ϕe−ia·)(ξ), (5.9)

and for the last equality we used (3.5). This proves that (a version of) the Fourier
transform of S1(t1, ·) is the function

FS(t1, ·)(ξ1) = 1(0,s)(t1)
sin((s− t1)|ξ1|)

|ξ1|
(
G(t− s, ·) ∗ ϕe−iξ1·

)
(x), ξ1 ∈ Rd.

To prove that S1 ∈ H, we apply Theorem 2.6.b). The function (t1, ξ1) 7→
φξ1(t1) := FS1(t1, ·)(ξ1) is measurable by Fubini’s theorem. The function t1 7→
φξ1(t1) is integrable on R and its Fourier transform is

Fφξ1(τ1) =

∫
Rd
e−iτ1t1φξ1(t1)dt1

=
(
G(t− s, ·) ∗ ϕe−iξ1·

)
(x)

∫ s

0

e−iτ1t1
sin((s− t1)|ξ1|)

|ξ1|
dt1.

We denote

‖S1‖20 :=
1

(2π)d+1

∫
Rd

∫
R
|Fφξ1(τ1)|2ν(dτ1)µ(dξ1).

By (3.4), for any ξ1 ∈ Rd,∣∣(G(t− s, ·) ∗ ϕe−iξ1·
)
(x)
∣∣ =

∣∣∣∣∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1ϕ(ξ − ξ1)dξ

∣∣∣∣
≤ t ‖F−1ϕ‖1 =: Ct,ϕ,

(5.10)

where ‖ · ‖1 denotes the norm in L1(Rd). Hence,

|Fφξ1(τ1)| ≤ Ct,ϕ
∣∣∣∣∫ s

0

e−iτ1t1
sin((s− t1)|ξ1|)

|ξ1|
dt1

∣∣∣∣ ,
and

‖S1‖20 ≤ C2
t,ϕ

1

(2π)d+1

∫
Rd

∫
R

∣∣∣∣∫ s

0

e−iτ1t1
sin((s− t1)|ξ1|)

|ξ1|
dt1

∣∣∣∣2 ν(dτ1)µ(dξ1)

= C2
t,ϕ ‖f1(·, s, y)‖2H <∞ for any y ∈ Rd,
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where the last equality is due to the fact that f1(t1, ·, s, y) = 1(0,s)(t1)G(s− t1, y −
·) =: gs,y(t1, ·) and in the proof of Theorem 2.7, we showed that ‖gs,y‖H = ‖gs,y‖0 =
α1(s). This proves that S1 ∈ H and ‖S1‖2H = ‖S1‖20 ≤ C2

t,ϕ‖f1(·, s, y)‖2H.

Next, we treat the case n ≥ 2. By definition, for any ψ ∈ S(Rnd),(
Sn(t1, ·, . . . , tn, ·), ψ

)
=
(
G(t− s, ·) ∗ ϕhψ

)
(x),

where hψ(y) =
(
fn(t1, ·, . . . , tn, ·, s, y), ψ

)
. First, we show that the Fourier trans-

form of Sn(t1, ·, . . . , tn, ·) in S ′(Rnd) is a function and we identify this function. By
(3.5), for any ψ ∈ S(Rnd), we have:(
FSn(t1, ·, . . . , tn, ·), ψ

)
=
(
Sn(t1, ·, . . . , tn, ·),Fψ

)
=
(
G(t− s, ·) ∗ ϕhFψ

)
(x)

=

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1(ϕhFψ) dξ

=

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

(
F−1ϕ ∗ F−1hFψ

)
(ξ) dξ.

By (5.6), F−1hFψ(ηn) = 1{0<t1<...<tn<s}FG(s− tn, ·)(ηn)Vψ(ηn). Therefore,

(
FSn(t1, ·, . . . , tn), ψ

)
= 1{0<t1<...<tn<s}

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|(∫

Rd
F−1ϕ(ξ − ηn)

sin((s− tn)|ηn|)
|ηn|

Vψ(ηn)dηn

)
dξ

= 1{0<t1<...<tn<s}

∫
Rd
Vψ(ηn)

sin((s− tn)|ηn|)
|ηn|(∫

Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1ϕ(ξ − ηn)dξ

)
dηn,

where the second equality is due to Fubini’s theorem. Using definition (5.7) of
Vψ(ηn), followed by the change of variables ξ1 = η1, ξk = ηk−ηk−1 for k = 2, . . . , n,
we obtain:(
FSn(t1, ·, . . . , tn, ·), ψ

)
= 1{0<t1<...<tn<s}

∫
Rnd

ψ(ξ1, . . . , ξn)
sin((t2 − t1)|ξ1|)

|ξ1|
. . .

sin((s− tn)|ξ1 + . . .+ ξn|)
|ξ1 + . . .+ ξn|

(∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1ϕ(ξ − ξ1 − . . .− ξn)dξ

)
dξ1 . . . dξn.

By (5.9) and (3.5), (a version of) the Fourier transform of Sn(t1, ·, . . . , tn, ·) is the
function:

FSn(t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) = 1{0<t1<...<tn<s}
sin((t2 − t1)|ξ1|)

|ξ1|
. . .

sin((s− tn)|ξ1 + . . .+ ξn|)
|ξ1 + . . .+ ξn|

(
G(t− s, ·) ∗ ϕe−i(ξ1+...+ξn)·

)
(x). (5.11)

To prove that Sn ∈ H⊗n, we apply Theorem 3.5.b). The function (t1, . . . , tn) 7→
φξ1,...,ξn(t1, . . . , tn) := FSn(t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) is integrable on Rn and its
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Fourier transform is

Fφξ1,...,ξn(τ1, . . . , τn) =

∫
Rd
e−i(τ1t1+...+τntn)φξ1,...,ξn(t1, . . . , tn)dt1 . . . dtn

=
(
G(t− s, ·) ∗ ϕe−i(ξ1+...+ξn)·

)
(x)

∫
{0<t1<...<tn<s}

e−i(τ1t1+...+τntn)

sin((t2 − t1)|ξ1|)
|ξ1|

. . .
sin((s− tn)|ξ1 + . . .+ ξn|)

|ξ1 + . . .+ ξn|
dt1 . . . dtn.

We consider the quantity ‖ · ‖0,n defined in Theorem 3.5. By (5.10) and the
calculation of ‖fn(·, s, y)‖2H⊗n given in the proof of Theorem 3.6, we see that

‖Sn‖20,n ≤ C2
t,ϕ‖fn(·, s, y)‖2H⊗n < ∞ for any y ∈ Rd. This proves that Sn ∈ H⊗n

and ‖Sn‖2H⊗n ≤ C
2
t,ϕ ‖fn(·, s, y)‖2H⊗n .

To show that condition (b) holds when kn = f̃n, we denote by S̃n(t1, · . . . , tn, ·)
the distribution in S ′(Rnd) given by: for any ψ ∈ S(Rnd),(

S̃n(t1, ·, . . . , tn, ·), ψ
)

=
(
G(t− s, x− ·), ϕ

(
f̃n(t1, ·, . . . , tn, ·, s, ∗), ψ

))
.

Note that S̃n is the symmetrization of Sn, i.e. for any ψ ∈ S(Rd),(
S̃n(t1, ·, . . . , tn, ·, t, x), ψ

)
=

1

n!

∑
ρ∈Pn

(
Sn(tρ(1), ·, . . . , tρ(n), ·, t, x), ψρ

)
,

where ψρ is defined by (4.3). Similarly to the case kn = fn, it can be proved that

S̃n ∈ H⊗n and for any y ∈ Rd,

‖S̃n‖2H⊗n ≤ C
2
t,ϕ ‖f̃n(·, s, y)‖2H⊗n . (5.12)

By (5.12) and Theorem 4.4,
∑
n≥1 n! ‖S̃n‖2H⊗n ≤ C

2
t,ϕ

∑
n≥1 n! ‖f̃n(·, s, y)‖2H⊗n <

∞, and therefore, the series
∑
n≥1 In(Sn) converges in L2(Ω).

Step 3. (Verification of condition (c)). In this step, we denote S
(t,x,s,ϕ)
n by

S
(s,ϕ)
n , since t and x are fixed. By the linearity of the multiple integrals In, the map
ϕ 7→

(
v(t,x)(s, ·), ϕ

)
is linear from S(Rd) to L2(Ω). This map is L2(Ω)-continuous,

since if ϕk → ϕ in S(Rd),

E
∣∣∣(v(t,x)(s, ·), ϕk − ϕ)∣∣∣2 = E

∣∣∣∣∣∣
∑
n≥0

In(S(s,ϕk−ϕ)
n )

∣∣∣∣∣∣
2

=
∑
n≥0

n! ‖S̃(s,ϕk−ϕ)
n ‖2H⊗n

≤ C2
t,ϕk−ϕ

∑
n≥1

‖f̃n(·, s, y)‖2H⊗n → 0 as k →∞,

where the inequality is due to (5.12), and we recall that Ct,ϕ = t ‖F−1ϕ‖1. By

Corollary 4.2 of Walsh (1986), the process {
(
v(t,x)(s, ·), ϕ

)
;ϕ ∈ S(Rd)} has a mod-

ification with values in S ′(Rd), which we denote also by v(t,x)(s, ·). We prove that
this modification satisfies hypotheses (i)-(iv) of Proposition A.4 (Appendix A).

Hypotheses (ii)-(iv) are easily verified. (ii) holds since by Remark 3.4 and defini-

tion (5.8) of S
(s,ϕ)
n , for any s ∈ (0, t), there is a distribution in S ′(R(n+1)d), namely

fn+1(t1, ·, . . . , tn, ·, s, ·, t, x), which satisfies(
fn+1(t1, ·, . . . , tn, ·, s, ·, t, x), ψ ⊗ ϕ

)
=
(
S(s,ϕ)
n (t1, ·, . . . , tn, ·), ψ

)
.
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(iii) is clear since Ffn+1(t1, ·, . . . , tn, ·, s, ·, t, x) is measurable in (t1, . . . , tn+1,
ξ1, . . . , ξn+1), bounded, continuous a.e. in (t1, . . . , tn+1) and ‖fn+1(·, t, x)‖H⊗(n+1) <
∞ (see the proof of Theorem 3.6). To check (iv), we need to prove that the function

h(ξ) := Ffn+1(t1, ·, . . . , tn, ·, s, ·, t, x)(ξ1, . . . , . . . , ξn, ξ)φ(ξ), ξ ∈ Rd

is in S(Rd), for any t1, . . . , tn, s ∈ (0, t), ξ1, . . . , ξn ∈ Rd and φ ∈ S(Rd). This

is clear since h(ξ) = Cg(ξ)φ(ξ), where g(ξ) = e−iξ·x sin((t−s)|ξ1+...+ξn+ξ|)
|ξ1+...+ξn+ξ| and C

is a constant depending on ξ1, . . . , ξn. (Since g is a C∞ function with bounded
derivatives, gφ ∈ S(Rd).)

It remains to check that the process v(t,x) has a modification which satisfies hy-
pothesis (i) of Proposition A.4. For this modification, we will show that
Fv(t,x)(ω, s, ·) is a function and we will identify this function. We know that the
Fourier transform of v(t,x)(ω, s, ·) is a distribution in S ′(Rd) which satisfies: for any
ϕ ∈ S(Rd),(

Fv(t,x)(s, ·), ϕ
)

=
(
v(t,x)(s, ·),Fϕ

)
=
∑
n≥0

In(S(s,Fϕ)
n ) in L2(Ω). (5.13)

For any t1, . . . , tn, s ∈ (0, t) and ξ ∈ Rd, we consider the distribution

F
(s,ξ)
n (t1, ·, . . . , tn, ·) in S ′(Rnd) whose Fourier transform is the function

FF (s,ξ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) = 1{0<t1<...<tn<s} e

−i(ξ1+...+ξn+ξ)·x

· sin((t2 − t1)|ξ1|)
|ξ1|

. . .
sin((s− tn)|ξ1 + . . .+ ξn|)

|ξ1 + . . .+ ξn|
· sin((t− s)|ξ1 + . . .+ ξn + ξ|)

|ξ1 + . . .+ ξn + ξ|

= Ffn(t1, ·, . . . , tn, ·, s, x)(ξ1, . . . , ξn)e−iξ·x
sin((t− s)|ξ1 + . . .+ ξn + ξ|)

|ξ1 + . . .+ ξn + ξ|
. (5.14)

Similarly to Lemma 3.1, it can be shown that F
(s,ξ)
n (t1, ·, . . . , tn, ·) is a well-

defined distribution in S ′(Rnd). Using inequality | sinx| ≤ |x| for the last term in

(5.14) and Theorem 3.5.b), we see that F
(s,ξ)
n ∈ H⊗n. The same argument can be

used to show that

‖F̃ (s,ξ)
n ‖2H⊗n ≤ t

2‖f̃n(·, s, x)‖2H⊗n , (5.15)

where F̃
(s,ξ)
n is the symmetrization of F

(s,ξ)
n defined similarly to (4.2).

Recall that In(F
(s,ξ)
n ) is a square-integrable random variable which is identified

with any other random variable that is equal to it in L2(Ω). It is possible to chose

the random variable In(F
(s,ξ)
n ) such that (ω, s, ξ) 7→ In(F

(s,ξ)
n ) is measurable.

We claim that

FS(s,Fϕ)
n (t1, . . . , tn)(ξ1, . . . , ξn) =

∫
Rd
FF (s,ξ)

n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)ϕ(ξ)dξ.

(5.16)
To see this, note that by (5.11),

FS(s,Fϕ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) = 1{0<t1<...<tn<s}

sin((t2 − t1)|ξ1|)
|ξ1|

. . .

sin((s− tn)|ξ1 + . . .+ ξn|)
|ξ1 + . . .+ ξn|

(
G(t− s, ·) ∗ (Fϕ)e−i(ξ1+...+ξn)·

)
(x),
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and by (3.5),(
G(t− s, ·) ∗ (Fϕ)e−i(ξ1+...+ξn)·

)
(x)

=

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

F−1
(
(Fϕ)e−i(ξ1+...+ξn)·

)
(ξ)dξ

=

∫
Rd
e−iξ·x

sin((t− s)|ξ|)
|ξ|

ϕ(ξ − ξ1 − . . .− ξn)dξ

since F−1(φ e−ia·)(ξ) = (F−1φ)(ξ − a) for any φ ∈ S(Rd) and a ∈ Rd. This proves
(5.16).

For any ψ ∈ S(Rnd), define

(
T (s,ϕ)
n (t1, ·, . . . , tn, ·), ψ

)
=

∫
Rd

(
F (s,ξ)
n (t1, ·, . . . , tn, ·), ψ

)
ϕ(ξ)dξ

=

∫
R(n+1)d

FF (s,ξ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)F−1ψ(ξ1, . . . , ξn)ϕ(ξ)dξ1 . . . dξndξ.

Similarly to Lemma 3.1, it can be shown that T
(s,ϕ)
n (t1, ·, . . . , tn, ·) is a well-defined

distribution in S ′(Rnd). Its Fourier transform is a distribution in S ′(Rnd) given by:(
FT (s,ϕ)

n (t1, ·, . . . , tn, ·), ψ
)

=
(
T (s,ϕ)
n (t1, ·, . . . , tn, ·),Fψ

)
=

∫
Rnd

(∫
Rd
FF (s,ξ)

n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)ϕ(ξ)dξ

)
ψ(ξ1, . . . , ξn)dξ1 . . . dξn

=

∫
Rnd
FS(s,Fϕ)

n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)ψ(ξ1, . . . , ξn)dξ1 . . . dξ,

for any ψ ∈ S(Rnd), where we used (5.16) for the last equality. This shows that the

Fourier transform of T
(s,ϕ)
n (t1, . . . , tn) is a function, namely FT (s,ϕ)

n (t1, . . . , tn) =

FS(s,Fϕ)
n (t1, . . . , tn). By Step 2 above, S

(s,Fϕ)
n ∈ H⊗n. Hence, T

(s,ϕ)
n ∈ H⊗n and

‖T (s,ϕ)
n − S(s,Fϕ)

n ‖2H⊗n = 0, which implies that In(T
(s,ϕ)
n ) = In(S

(s,Fϕ)
n ) in L2(Ω).

We claim that:

In(S(s,Fϕ)
n ) = In(T (s,ϕ)

n ) =

∫
Rd
In(F (s,ξ)

n )ϕ(ξ)dξ in L2(Ω). (5.17)

To see why the second equality holds, note first that E|In(T
(s,ϕ)
n )|2 =‖T (s,ϕ)

n ‖2H⊗n
= ‖S(s,Fϕ)

n ‖2H⊗n . By Fubini’s theorem,

E

∣∣∣∣∫
Rd
In(F (s,ξ)

n )ϕ(ξ)dξ

∣∣∣∣2 =

∫
R2d

E[In(F (s,ξ)
n )In(F (s,ξ′)

n )]ϕ(ξ)ϕ(ξ′)dξdξ′

=

∫
(R2

+×Rd)n

n∏
i=1

γ(ti − si)
(∫

Rd
FF (s,ξ)

n (t1, . . . , tn)(ξ1, . . . , ξn)ϕ(ξ)dξ

)
(∫

Rd
FF (s,ξ′)

n (t1, . . . , tn)(ξ1, . . . , ξn)ϕ(ξ′)dξ′
)
µ(dξ1) . . . µ(dξn)dtds

= ‖S(s,Fϕ)
n ‖2H⊗n ,
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where we used (5.16) for the second equality. To justify the application of Fubini’s
theorem, note that by Cauchy-Schwarz inequality and (5.15),

E|In(F (s,ξ)
n )In(F (s,ξ′)

n )| ≤
(
E|In(F (s,ξ)

n )|2
)1/2(

E|In(F (s,ξ′)
n )|2

)1/2
= n!‖F̃ (s,ξ)

n ‖H⊗n‖F̃ (s,ξ′)
n ‖H⊗n ≤ t2‖f̃n(·, s, x)‖2H⊗n

and the remaining term |ϕ(ξ)ϕ(ξ′)| is clearly dξdξ′ integrable. Similarly,

E
[
In(T

(s,ϕ)
n )

∫
Rd In(F

(s,ξ)
n )ϕ(ξ)dξ

]
= ‖S(s,Fϕ)

n ‖2H⊗n . By (5.13) and (5.17),(
Fvt,x(s, ·), ϕ

)
=
∑
n≥0

∫
Rd
In(F (s,ξ)

n )ϕ(ξ)dξ in L2(Ω). (5.18)

We claim that:∑
n≥0

∫
Rd
In(F (s,ξ)

n )ϕ(ξ)dξ =

∫
Rd

∑
n≥0

In(F (s,ξ)
n )ϕ(ξ)dξ in L2(Ω). (5.19)

To see this, we denote X =
∫
Rd
∑
n≥0 In(F

(s,ξ)
n )ϕ(ξ)dξ and Xn =

∫
Rd In(F

(s,ξ)
n )

ϕ(ξ)dξ. We first show that X is a random variable in L2(Ω). Note that∑
n≥0 In(F

(s,ξ)
n ) converges in L2(Ω) since∑

n≥0

n! ‖F̃ (s,ξ)
n ‖2H⊗n ≤ t

2
∑
n≥0

n! ‖f̃n(·, s, x)‖2H⊗n <∞

by Theorem 4.4. By Minkowski’s inequality, ‖X‖2 ≤
∫
Rd‖

∑
n≥0In(F

(s,ξ)
n )‖2|ϕ(ξ)|dξ

≤ t2Cs
∫
Rd |ϕ(ξ)|dξ <∞, where Cs =

∑
n≥0 n! ‖f̃n(·, s, x)‖2H⊗n . To show that X =∑

n≥0Xn in L2(Ω), it suffices to prove that E(GX) = E(GXn) for any G = In(g)

with g ∈ H⊗n symmetric. This is true since E(GXn) =
∫
RdE[In(g)In(F

(s,ξ)
n )]ϕ(ξ)dξ

=
∫
Rd n! 〈g, F̃n〉H⊗nϕ(ξ)dξ and

E(GX) = E

In(g)

∫
Rd

∑
m≥0

Im(F (s,ξ)
m )ϕ(ξ)dξ


=

∫
Rd
E

∑
m≥0

In(g)Im(F (s,ξ)
m )

ϕ(ξ)dξ

=

∫
Rd
n! 〈g, F̃n〉H⊗nϕ(ξ)dξ.

From (5.18) and (5.19), we obtain that for any ϕ ∈ S(Rd),(
Fvt,x(s, ·), ϕ

)
=

∫
Rd

∑
n≥0

In(F (s,ξ)
n )ϕ(ξ)dξ in L2(Ω). (5.20)

For any s ∈ (0, t) and ξ ∈ Rd, consider the random variable U(s, ξ) :=∑
n≥0 In(F

(s,ξ)
n ), and define(
v(t,x)(s, ·),Fϕ

)
=

∫
Rd
U(s, ξ)ϕ(ξ)dξ, for all ϕ ∈ S(Rd).

Due to (5.20), for any ϕ ∈ S(Rd),
(
v(t,x)(s, ·),Fϕ

)
=
(
v(t,x)(s, ·),Fϕ

)
in L2(Ω)

(hence a.s.). This proves that {
(
v(t,x)(s, ·), ϕ);ϕ ∈ S(Rd)} is a modification of
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{
(
v(t,x)(s, ·), ϕ

)
;ϕ ∈ S(Rd)} which we will denote also by v(t,x). For any ω ∈ Ω

and s ∈ (0, t), the Fourier transform of v(t,x)(ω, s, ·) is the function U(ω, s, ·). We
denote

φ
(t,x)
ξ (s) := Fv(t,x)(s, ·)(ξ) =

∑
n≥0

In(F (s,ξ)
n ).

The map s 7→ Fv(t,x)(ω, s, ·)(ξ) is square-integrable (hence integrable) on (0, t),
for almost all (ω, ξ) ∈ Ω × Rd. To see this, let ϕ ≥ 0 be an arbitrary function in
S(Rd). Then

E

∫
Rd
ϕ(ξ)

(∫ t

0

|Fv(t,x)(s, ·)(ξ)|2ds
)
dξ =

∫ t

0

∫
Rd
ϕ(ξ)

∑
n≥0

n! ‖F̃ (s,ξ)
n ‖2H⊗ndξds

≤
∫ t

0

(t− s)2
∫
Rd
ϕ(ξ)

∑
n≥0

n! ‖f̃n(·, s, x)‖2H⊗ndξds

≤ Ct
∫ t

0

(t− s)2
∫
Rd
ϕ(ξ)dξds <∞,

where for the first inequality we used (5.14) and the fact that sin2((t−s)|ξ1+...+ξn+ξ|)
|ξ1+...+ξn+ξ|2

≤ (t − s)2 for all ξ1, . . . , ξn, ξ ∈ Rd, and for the second inequality we used∑
n≥0 n! ‖f̃n(·, s, x)‖2H⊗n ≤ Cs where Cs > 0 is a non-decreasing function of s

(see the proof of Theorem 4.4).

For any τ ∈ R, we let Fφ(t,x)ξ (τ) =
∫ t
0
e−iτsFv(t,x)(s, ·)(ξ)ds. Similarly to (5.19),

it can be proved that for almost all (τ, ξ) ∈ Rd+1,

Fφ(t,x)ξ (τ) =
∑
n≥0

In(G(τ,ξ)
n ) in L2(Ω),

where G
(τ,ξ)
n ∈ H⊗n is such that for any t1, . . . , tn ∈ (0, s), G

(τ,ξ)
n (t1, ·, . . . , tn, ·) is a

distribution in S ′(Rnd) whose Fourier transform is the function:

FG(τ,ξ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) =

∫ t

0

e−iτsFF (s,ξ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)ds.

(5.21)
To see that condition (A.6) holds for the process v(t,x), we note that

I := E

[∫
Rd

∫
R
|Fφ(t,x)ξ (τ)|2ν(dτ)µ(dξ)

]
=

∫
Rd

∫
R

∑
n≥0

n! ‖G̃(τ,ξ)
n ‖2H⊗nν(dτ)µ(dξ),

(5.22)

where G̃
(τ,ξ)
n is the symmetrization of G

(τ,ξ)
n . We need to compute ‖G̃(τ,ξ)

n ‖2H⊗n . For

this, we define φ
(τ,ξ)
ξ1,...,ξn

(t1, . . . , tn) := FG̃(τ,ξ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn). By (5.14)

and (5.21),

φ
(τ,ξ)
ξ1,...,ξn

(t1, . . . , tn) =

∫ t

0

e−iτsF F̃ (s,ξ)
n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)ds

=

∫ t

0

e−iτsF f̃n(t1, ·, . . . , tn, ·, s, x)(ξ1, . . . , ξn)e−iξ·x
sin((t− s)|ξ1 + . . .+ ξn + ξ|)

|ξ1 + . . .+ ξn + ξ|
ds.
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For any t1, . . . , tn, s > 0, let f∗n+1(t1, ·, . . . , tn, ·, s, ·, t, x) be the distribution in

S ′(R(n+1)d) whose Fourier transform is the function

Ff∗n+1(t1, ·, . . . , tn, ·, s, ·, t, x)(ξ1, . . . , ξn, ξ)

= F f̃n(t1, ·, . . . , tn, ·, s, x)(ξ1, . . . , ξn)e−iξ·x
sin((t− s)|ξ1 + . . .+ ξn + ξ|)

|ξ1 + . . .+ ξn + ξ|
1{s<t}.

Note that f∗n+1(·, t, x) is similar to f̃n+1(·, t, x). Then

φ
(τ,ξ)
ξ1,...,ξn

(t1, . . . , tn) =

∫ t

0

e−iτsφ
(n+1),∗
ξ1,...,ξn,ξ

(t1, . . . , tn, s)ds,

where φ
(n+1),∗
ξ1,...,ξn,ξ

(t1, . . . , tn, s) = Ff∗n+1(t1, ·, . . . , tn, ·, s, ·, t, x)(ξ1, . . . , ξn, ξ). It fol-

lows that the Fourier transform of the function (t1, . . . , tn) 7→ φ
(τ,ξ)
ξ1,...,ξn

(t1, . . . , tn)
is

Fφ(τ,ξ)ξ1,...,ξn
(τ1, . . . , τn) =

∫
(0,s)n

e−i(τ1t1+...+τntn)φ
(τ,ξ)
ξ1,...,ξn

(t1, . . . , tn)dt

=

∫ t

0

e−iτs
∫
(0,s)n

e−i(τ1t1+...+τntn)φ
(n+1),∗
ξ1,...,ξn,ξ

(t1, . . . , tn)dtds

= Fφ(n+1),∗
ξ1,...,ξn,ξ

(τ1, . . . , τn, τ).

Coming back to (5.22), we see that

I =
∑
n≥0

n!

∫
R(n+1)d

∫
Rn+1

|Fφ(τ,ξ)ξ1,...,ξn
(τ1, . . . , τn)|2ν(dτ1) . . . ν(dτn)ν(dτ)

µ(dξ1) . . . µ(dξn)µ(dξ)

=
∑
n≥0

n!

∫
R(n+1)d

∫
Rn+1

|Fφ(n+1),∗
ξ1,...,ξn,ξ

(τ1, . . . , τn, τ)|2ν(dτ1) . . . ν(dτn)ν(dτ)

µ(dξ1) . . . µ(dξn)µ(dξ)

=
∑
n≥0

n! ‖f∗n+1(·, t, x)‖2H⊗(n+1) <∞.

(The last series converges by the same argument as in the proof of Theorem 4.4.)
This shows that the process v(t,x) satisfies hypothesis (i) of Proposition A.4.

Step 4. (Verification of condition (d)). We apply Proposition Proposition A.4
to the process v(t,x). Recall that hypothesis (ii) of this proposition holds for the
distribution fn+1(t1, ·, . . . , tn, ·, s, ·, t, x). The symmetrization of fn+1(·, t, x) in all

n+ 1 variables is f̃n+1(·, t, x). As in the last part of the proof of Theorem 5.2, we
conclude that v(t,x) ∈ Dom δ and u(t, x) = 1 + δ(v(t,x)) in L2(Ω). �

6. Uniqueness of the solution

In this section, we establish the uniqueness of the solution. We discuss separately
the cases d ≤ 2 and d ≥ 3.

In the case d ≤ 2, the proof of the uniqueness of the solution is the same as
for the Parabolic Anderson Model (see Section 4.1 of Hu and Nualart, 2009). We
include this proof for the sake of completeness.
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Theorem 6.1. If d ≤ 2 and µ satisfies (1.2), then the unique solution (up to a
modification) of equation (1.1) is the process u given by (5.1).

Proof : Let u be a solution of equation (1.1) with Wiener chaos expansion (5.3) for
some symmetric non-negative functions kn(·, t, x) ∈ H⊗n. We fix t > 0 and x ∈ Rd.
Let k0(t, x) = 1. We will show that kn(·, t, x) = f̃n(·, t, x) for any n ≥ 1. Let v(t,x)

be the process defined by (5.5).

For any s > 0 and y ∈ Rd, v(t,x)(s, y) =
∑
n≥0 In(g

(t,x)
n (·, s, y)), where

g(t,x)n (t1, x1, . . . , tn, xn, s, y) = 1(0,t)(s)G(t− s, x− y)kn(t1, x1, . . . , tn, xn, s, y).
(6.1)

We apply Proposition A.1 to the process v(t,x). Hypothesis (i) of this proposition

is verified as in the proof of Theorem 5.2. Hypothesis (ii) holds i.e. g
(t,x)
n ∈ H⊗(n+1),

since∑
n≥0

n! ‖g(t,x)n ‖2H⊗(n+1) =

∫
((0,t)×Rd)2

γ(s− r)f(y − z)G(t− s, x− y)G(t− r, x− z)

∑
n≥0

n! 〈kn(·, s, y), kn(·, r, z)〉H⊗ndsdydrdz

=

∫
((0,t)×Rd)2

γ(s− r)f(y − z)G(t− s, x− y)G(t− r, x− z)E[u(s, y)u(r, z)]dsdydrdz

≤ Ct
∫
((0,t)×Rd)2

γ(s− r)f(y − z)G(t− s, x− y)G(t− r, x− z)dsdydrdz <∞,

using Cauchy-Schwarz inequality and (5.4). (Since g
(t,x)
n is non-negative, it follows

that g
(t,x)
n ∈ |H⊗(n+1)| ⊂ H⊗(n+1), where the space |H⊗n| is defined similarly to

|H|; see (2.6).)
Since u is a solution, v(t,x) ∈ Dom δ and u(t, x) = 1 + δ(vt,x). On the other

hand, by Proposition A.1, δ(v(t,x)) =
∑
n≥0 In+1(g̃

(t,x)
n ), where g̃

(t,x)
0 = g

(t,x)
0 and

for n ≥ 1, g̃
(t,x)
n is the symmetrization of g

(t,x)
n in all n+ 1 variables, defined by:

g̃
(t,x)
n (t1, x1, . . . , tn, xn, s, y) =

1

n+ 1

[
g(t,x)n (t1, x1, . . . , tn, xn, s, y)+ (6.2)

n∑
i=1

g(t,x)n (t1, x1, . . . , ti−1, xi−1, s, y, ti+1, xi+1, . . . , tn, xn, ti, xi)
]
.

This shows that
∑
n≥0 In+1(kn+1(·, t, x)) = u(t, x) − 1 =

∑
n≥0 In+1(g̃

(t,x)
n ) in

L2(Ω). By the uniqueness of the Wiener chaos expansion with symmetric ker-
nels (see e.g. Theorem 1.1.2 of Nualart, 2006), it follows that for any n ≥ 0,

kn+1(·, t, x) = g̃
(t,x)
n , i.e.

kn+1(t1, x1, . . . , tn, xn, tn+1, xn+1, t, x) = g̃
(t,x)
n (t1, x1, . . . , tn, xn, tn+1, xn+1).

(6.3)
The functions kn(·, t, x) can now be found recursively. By (6.3) with n = 0, we

obtain:

k1(t1, x1, t, x) = g̃
(t,x)
0 (t1, x1) = g

(t,x)
0 (t1, x1) = 1(0,t)(t1)G(t− t1, x− x1).
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Using (6.3) with n = 1, followed by the definition of g̃
(t,x)
1 and relation (6.1), we

obtain:

k2(t1, x1, t2, x2, t, x) = g̃
(t,x)
1 (t1, x1, t2, x2)

=
1

2

[
g
(t,x)
1 (t1, x1, t2, x2) + g

(t,x)
1 (t2, x2, t1, x1)

]
=

1

2

[
1(0,t)(t2)G(t− t2, x− x2)k1(t1, x1, t2, x2)

+ 1(0,t)(t1)G(t− t1, x− x1)k1(t2, x2, t1, x1)
]
.

We now use the formula for k1 that we found above. This leads us to conclude that

k2(t1, x1, t2, x2, t, x) =
1

2

[
1(0,t)(t2)G(t− t2, x− x2)1(0,t2)(t1)G(t2 − t1, x2 − x1)

+ 1(0,t)(t1)G(t− t1, x− x1)1(0,t1)(t2)G(t1 − t2, x1 − x2)
]
,

that is k2(·, t, x) = f̃2(·, t, x). Iterating this procedure, we infer that kn(·, t, x) =

f̃n(·, t, x) for any n ≥ 1. �

The next result gives the uniqueness of the solution in the case d ≥ 3. For this,
we use Lemma 3.3.

Theorem 6.2. If d ≥ 3, µ satisfies (1.2) and Hypothesis A holds, then the unique
solution (up to a modification) of equation (1.1) is the process u given by (5.1).

Proof : Let u be a solution of equation (1.1) with Wiener chaos expansion (5.3) for
some elements kn(·, t, x) ∈ H⊗n as in Definition 5.3. We fix t > 0 and x ∈ Rd. Let

k0(t, x) = 1. We will show that kn(·, t, x) = f̃n(·, t, x) for any n ≥ 1.
By definition (see Remark 5.4), for any s > 0 and ϕ ∈ S(Rd),

(
v(t,x)(s, ·), ϕ

)
=∑

n≥0 In(S
(t,x,s,ϕ)
n ), where S

(t,x,s,ϕ)
0 = 1(0,t)(s)

(
G(t − s, x − ·), ϕ

)
and

S
(t,x,s,ϕ)
n (t1, ·, . . . , tn, ·) is a symmetric distribution in S ′(Rnd) which satisfies, for

any ψ ∈ S(Rnd),(
S(t,x,s,ϕ)
n (t1, ·, . . . , tn, ·), ψ

)
= 1(0,t)(s)

(
G(t−s, x−·), ϕ

(
kn(t1, ·, . . . , tn, ·, s, ∗), ψ

))
,

(6.4)
where ∗ denotes the missing argument of the function hψ(y)
=
(
kn(t1, ·, . . . , tn, ·, s, y), ψ

)
.

We apply Proposition A.4 to the process v(t,x). Hypotheses (i)-(iv) of this propo-
sition are verified due to condition (c) in Definition 5.3. In particular, by hypoth-
esis (ii), we know that for any t1, . . . , tn, s ∈ (0, t), there exists a distribution

in S ′(R(n+1)d), which we denote by g
(t,x)
n (t1, ·, . . . , tn, ·, s, ·), such that for any ψ ∈

S(Rnd) and ϕ ∈ S(Rd),
(
g
(t,x)
n (t1, ·, . . . , tn, ·, s, ·), ψ ⊗ ϕ

)
=(

S
(t,x,s,ϕ)
n (t1, ·, . . . , tn, ·), ψ

)
. Due to (6.4), this means that for any ψ ∈ S(Rnd)

and ϕ ∈ S(Rd),(
g(t,x)n (t1, ·, . . . , tn, ·, s, ·), ψ ⊗ ϕ

)
= 1(0,t)(s)

(
G(t− s, ·) ∗ ϕ

(
kn(t1, ·, . . . , tn, ·, s, ∗), ψ

))
(x).

(6.5)
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Since u is a solution, v(t,x) ∈ Dom δ and u(t, x) = 1 + δ(v(t,x)). On the other

hand, by Proposition A.4, δ(v(t,x)) =
∑
n≥0 In+1(g̃

(t,x)
n ), where g̃

(t,x)
0 = g

(t,x)
0 and

for n ≥ 1, g̃
(t,x)
n is the symmetrization of g

(t,x)
n in all n+ 1 variables. In particular,

for φ1, . . . , φn, φ ∈ S(Rd),(
g̃
(t,x)
n (t1, ·, . . . , tn, ·, s, ·), φ1 ⊗ . . .⊗ φn ⊗ φ

)
(6.6)

=
1

n+ 1

[(
g(t,x)n (t1, ·, . . . , tn, ·, s, ·), φ1 ⊗ . . .⊗ φn ⊗ φ

)
+

n∑
i=1

(
g(t,x)n (t1, ·, . . . , ti−1, ·, s, ·, ti+1, ·, . . . , tn, ·, ti, ·),

φ1 ⊗ . . .⊗ φi−1 ⊗ φ⊗ φi+1 ⊗ . . . φn ⊗ φi
)]
.

This shows that
∑
n≥0 In+1(kn+1(·, t, x)) = u(t, x) − 1 =

∑
n≥0 In+1(g̃

(t,x)
n )

in L2(Ω). By the uniqueness of the Wiener chaos expansion, for any n ≥ 0

kn+1(·, t, x) = g̃
(t,x)
n , i.e.

kn+1(t1, ·, . . . , tn, ·, tn+1, ·, t, x) = g̃
(t,x)
n (t1, ·, . . . , tn, ·, tn+1, ·). (6.7)

The elements kn(·, t, x) can now be found recursively. By (6.7) with n = 0, we
obtain:

k1(t1, ·, t, x) = g̃
(t,x)
0 (t1, ·) = g

(t,x)
0 (t1, ·) = 1[0,t](t1)G(t− t1, x− ·).

Using (6.7) with n = 1, followed by the definition of g̃
(t,x)
1 and relation (6.5), we

obtain: (
k2(t1, ·, t2, ·, t, x), φ1 ⊗ φ2

)
=
(
g̃
(t,x)
1 (t1, ·, t2, ·), φ1 ⊗ φ2

)
=

1

2

[(
g
(t,x)
1 (t1, ·, t2, ·), φ1 ⊗ φ2

)
+
(
g
(t,x)
1 (t2, ·, t1, ·), φ2 ⊗ φ1

)]
=

1

2

[
1(0,)](t2)

(
G(t− t2, ·) ∗ φ2

(
k1(t1, ·, t2, ∗), φ1

))
(x)+

1(0,t)(t1)
(
G(t− t1, ·) ∗ φ1

(
k1(t2, ·, t1, ∗), φ2

))
(x)
]
.

We now use the formula for k1 that we found above. Note that(
k1(t1, ·, t2, x2), φ1

)
= 1(0,t2)(t1)

(
G(t2 − t1, x2 − ·), φ1

)
= 1(0,t2)(t1)

(
G(t2 − t1, ·) ∗ φ1

)
(x2).

A similar formula holds for
(
k1(t2, ·, t1, ∗), φ2

)
. This leads us to conclude that(

k2(t1, ·, t2, ·, t, x), φ1 ⊗ φ2
)

=
1

2

[
1(0,t)(t2)1(0,t2)(t1)

(
G(t− t2, ·) ∗ φ2

(
G(t2 − t1, ·) ∗ φ1

))
(x)

+ 1(0,t)(t1)1(0,t1)(t2)
(
G(t− t1, ·) ∗ φ1

(
G(t1 − t2, ·) ∗ φ2

))
(x)
]
.

By Lemma 3.3, the last term above is exactly
(
f̃2(t1, ·, t2, ·, t, x), φ1 ⊗ φ2

)
. (Recall

definition (4.2) of f̃2(·, t, x).) Hence, k2(t1, ·, t2, ·, t, x) = f̃2(t1, ·, t2, ·, t, x) for any
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t1 > 0, t2 > 0. Iterating this procedure, we infer that kn(·, t, x) = f̃n(·, t, x) for any
n ≥ 1. �

7. Moments of the solution

In this section, we show that the solution to equation (1.1) is Lp(Ω)-continuous
and has uniformly bounded moments of order p, for any p ≥ 2. Similar results
exist for parabolic equations (see for instance, Theorem 3.2 of Hu et al., 2015b and
Theorem 5.2 of Song, 2017). Recall that

E|u(t, x)|2 =
∑
n≥0

1

n!
αn(t), (7.1)

where αn(t) is given by (4.11).

Theorem 7.1. Suppose that the measure µ satisfies condition (1.2). If d ≥ 4,
suppose in addition that µ satisfies Hypothesis A. Then for any p ≥ 2, the solution
u to equation (1.1) is Lp(Ω)-continuous, and

sup
(t,x)∈[0,T ]×Rd

E|u(t, x)|p <∞ for all T > 0.

Proof : Step 1. We show that the p-th moments of u are uniformly bounded.
We proceed as in the proof of Theorem 4.2 of Balan (2012). We denote by ‖ · ‖p

the Lp(Ω)-norm. We use the fact that for any F ∈ Hn and p ≥ 2,

‖F‖p ≤ (p− 1)n/2‖F‖2 (7.2)

(see last line of page 62 of Nualart, 2006). Using Minkowski’s inequality, applying
(7.2) for F = Jn(t, x), and invoking (4.11) and (4.20), we see that:

‖u(t, x)‖p ≤
∑
n≥0

‖Jn(t, x)‖p ≤
∑
n≥0

(p− 1)n/2‖Jn(t, x)‖2

=
∑
n≥0

(p− 1)n/2
(

1

n!
αn(t)

)1/2

≤
∑
n≥0

(p− 1)n/2Γ
n/2
t 8n/2

n∑
k=0

tn/2+k

(k!)1/2
D
k/2
N C

(n−k)/2
N .

The last term is uniformly bounded for (t, x) ∈ [0, T ]×Rd (using the same argument
as in the proof of Theorem 4.4).

Step 2. We show that u is Lp(Ω)-continuous.
The argument in Step 1 above shows that for any T > 0 and p ≥ 2,∑

n≥0

sup
(t,x)∈[0,T ]×Rd

‖Jn(t, x)‖p ≤ CT,p <∞.

Hence {un(t, x) =
∑n
k=0 Jk(t, x)}n≥1 converges to u(t, x) in Lp(Ω), uniformly in

(t, x) ∈ [0, T ]×Rd. By Lemma 7.2 below, Jn is Lp(Ω)-continuous, and hence un is
Lp(Ω)-continuous. Therefore, u is Lp(Ω)-continuous. �

The following result is an extension of Lemma 4.2 of Balan (2012) to the case of
an arbitrary covariance function γ(t).

Lemma 7.2. Under the conditions of the Theorem 7.1, we have:
a) for any p ≥ 2, n ≥ 1 and t > 0,

E|Jn(t+ h, x)− Jn(t, x)|p → 0 as h→ 0, uniformly in x ∈ Rd;
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b) for any p ≥ 2, n ≥ 1, t > 0 and x ∈ Rd

E|Jn(t, x+ z)− Jn(t, x)|p → 0 as |z| → 0, z ∈ Rd.

Proof : a) We assume that |h| ≤ 1 and h > 0. (The case h < 0 is similar.) By (7.2),

‖Jn(t+ h, x)− Jn(t, x)‖2p ≤ (p− 1)nE|Jn(t+ h, x)− Jn(t, x)|2

= (p− 1)nn! ‖f̃n(·, t+ h, x)− f̃n(·, t, x)‖2H⊗n

≤ (p− 1)n
2

n!
(An(t, h) +Bn(t, h)) , (7.3)

where

An(t, h) = (n!)2‖f̃n(·, t+ h, x)1[0,t]n − f̃n(·, t, x)‖2H⊗n (7.4)

Bn(t, h) = (n!)2‖f̃n(·, t+ h, x)1
[0,t+h]n\[0,t]n‖

2
H⊗n . (7.5)

We evaluate An(t, h) first. We have:

An(t, h) =

∫
[0,t]2n

n∏
j=1

γ(tj − sj)ψ(n)
t,h (t, s)dtds,

where

ψ
(n)
t,h (t, s) =

∫
Rnd
F
[
g
(n)
t (·, t+ h, x)− g(n)t (·, t, x)

]
(ξ1, . . . , ξn)

F
[
g
(n)
s (·, t+ h, x)− g(n)s (·, t, x)

]
(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn)

and g
(n)
t (·, t, x) is given by (4.13). By the Cauchy-Schwarz inequality and the

inequality ab ≤ (a2 + b2)/2,

ψ
(n)
t,h (t, s) ≤

(
ψ
(n)
t,h (t, t)

)1/2 (
ψ
(n)
t,h (s, s)

)1/2
≤ 1

2

(
ψ
(n)
t,h (t, t) + ψ

(n)
h (s, s)

)
.

Using the symmetry of the function γ and Lemma 4.3, it follows that

An(t, h) ≤
∫
[0,t]2n

n∏
j=1

γ(tj − sj)ψ(n)
t,h (t, t)dtds ≤ Γnt

∫
[0,t]n

ψ
(n)
t,h (t, t)dt. (7.6)

Using definition (4.14)) of the Fourier transform of g
(n)
t (·, t, x), we see that

ψ
(n)
t,h (t, t) =

∫
Rnd
|FG(u1, · )(ξρ(1))|2 . . . |FG(un−1, · )(ξρ(1) + . . .+ ξρ(n−1))|2

|F [G(un + h, · )−G(un, · )](ξρ(1) + . . .+ ξρ(n))|2µ(dξ1) . . . µ(dξn)

=

∫
Rnd
|FG(u1, · )(ξ′1)|2 . . . |FG(un−1, · )(ξ′1 + . . .+ ξ′n−1)|2

|F [G(un + h, · )−G(un, · )](ξ′1 + . . .+ ξ′n)|2µ(dξ′1) . . . µ(dξ′n), (7.7)

where uj = tρ(j+1) − tρ(j), ξ′j = ξρ(j) and 0 < tρ(1) < . . . < tρ(n) < t = tρ(n+1).
By the continuity of the function t 7→ FG(t, ·)(ξ) and the dominated convergence

theorem, ψ
(n)
t,h (t, t) → 0 as h → 0. To justify the application of this theorem, note

that by (3.4), |FG(uj , ·)(ξ′1 + . . .+ ξ′j)|2 ≤ Ct 1
1+|ξ′1+...+ξ′j |2

for j = 1, . . . , n− 1,

|F [G(un + h, · )−G(un, · )](ξ′1 + . . .+ ξ′n)|2 ≤ 4Ct
1

1 + |ξ′1 + . . .+ ξ′n|2
,
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and by Lemma 4.1 and condition (1.2),∫
Rd

1

1 + |ξ′1|2
. . .

(∫
Rd

1

1 + |ξ′1 + . . .+ ξ′n|2
µ(dξ′n)

)
. . . µ(dξ′1)

≤
(∫

Rd

1

1 + |ξ|2
µ(dξ)

)n
<∞.

We claim that ∫
[0,t]n

ψ
(n)
t,h (t, t)dt→ 0, as h→ 0, (7.8)

and hence, An(t, h) → 0 as h → 0, due to (7.6). To prove (7.8) we use the
dominated convergence theorem. To justify the application of this theorem, we use
some estimates borrowed from the proof of Theorem 4.4. First, note that from
(7.7), we infer that:

ψ
(n)
t,h (t, t) ≤

n−1∏
j=1

(
sup
η∈Rd

∫
Rd
|FG(uj , ·)(ξj + η)|2µ(dξj)

)
(7.9)

· sup
η∈Rd

∫
Rd
|FG(un + h, ·)(ξn + η)−FG(un, ·)(ξn + η)|2µ(dξn).

Using Lemma 4.2 and relation (3.4), it follows that

ψ
(n)
t,h (t, t) ≤

n−1∏
j=1

(∫
Rd

4u2j
1 + u2j |ξj |2

µ(dξj)

)
4Ct sup

η∈Rd

∫
Rd

1

1 + |ξn + η|2
µ(dξn)

=

n−1∏
j=1

(∫
Rd

4u2j
1 + u2j |ξj |2

µ(dξj)

)
4CtC, with C =

∫
Rd

1

1 + |ξ|2
µ(dξ).

The dt integral of the last term on [0, t]n is equal to

4CtCn!

∫ t

0

(∫
0<t1<...<tn−1<tn

n−1∏
j=1

(∫
Rd

4(tj+1 − tj)2

1 + (tj+1 − tj)2|ξj |2
µ(dξj)

)
dt1 . . . dtn−1

)
dtn

= 4CtC n!

∫ t

0

I(n−1)(tn)dtn, where I(n)(t) is defined by (4.17).

To see that the last integral is finite, we recall that I(n−1)(tn) ≤ J (n−1)(tn) ≤
K(n−1)(tn), where J (n)(t) and K(n)(t) are defined by (4.18), respectively (4.19).
This shows that the application of the dominated convergence theorem is justified
and concludes the proof of (7.8).

As for the term Bn(t, h), note that

Bn(t, h) =

∫
[0,t+h]2n

n∏
j=1

γ(tj − sj)γ(n)t,h (t, s)1Dt,h(t)1Dt,h(s)dtds,

where Dt,h = [0, t+ h]n\[0, t]n and

γ
(n)
t,h (t, s) =

∫
Rnd
Fg(n)t (· , t+ h, x)(ξ1, . . . , ξn)

· Fg(n)s (· , t+ h, x)(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn).
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By the Cauchy-Schwarz inequality and the inequality ab ≤ (a2 + b2)/2,

γ
(n)
t,h (t, s) ≤

(
γ
(n)
t,h (t, t)

)1/2 (
γ
(n)
t,h (s, s)

)1/2
≤ 1

2

(
γ
(n)
t,h (t, t) + γ

(n)
h (s, s)

)
.

Using the symmetry of the function γ and Lemma 4.3, it follows that:

Bn(t, h) ≤
∫
[0,t+h]2n

n∏
j=1

γ(tj − sj)γ(n)t,h (t, t)1Dt,h(t)1Dt,h(s)dtds

≤
∫
[0,t+h]2n

n∏
j=1

γ(tj − sj)γ(n)t,h (t, t)1Dt,h(t)dtds

≤ Γnt+h

∫
[0,t+h]n

γ
(n)
t,h (t, t)1Dt,h(t)dt. (7.10)

We observe that for any t = (t1, . . . , tn) ∈ [0, t+h]n, if we denote uj = tρ(j+1)−
tρ(j) for j = 1, . . . , n− 1 and un = t− tρ(n), where ρ ∈ Pn is such that 0 < tρ(1) <
. . . < tρ(n) < t+ h, then

γ
(n)
t,h (t, t) =

∫
Rnd
|FG(u1, ·)(ξρ(1))|2 . . . |FG(un−1, ·)(ξρ(1) + . . .+ ξρ(n−1))|2

|FG(un + h, ·)(ξρ(1) + . . .+ ξρ(n))|2µ(dξ1) . . . µ(dξn)

≤
n−1∏
j=1

(
sup
η∈Rd

∫
Rd
|FG(uj , ·)(ξj + η)|2µ(dξj)

)
(

sup
η∈Rd

∫
Rd
|FG(un + h, ·)(ξn + η)|2µ(dξn)

)
(7.11)

which is bounded by a constant of the form Cnt for any h ∈ [0, 1], due to (4.8). The
fact that Bn(t, h)→ 0 as h→ 0 follows from (7.10) by the dominated convergence
theorem, since Dt,h → ∅ as h→ 0.

b) By (7.2), we have:

‖Jn(t, x+ z)−Jn(x, z)‖2p ≤ (p− 1)nE|Jn(t, x+ z)−Jn(t, x)|2 = (p− 1)n
1

n!
Cn(t, z),

(7.12)
where

Cn(t, z) = (n!)2‖f̃n(·, t, x+ z)− f̃n(·, t, x)‖2H⊗n

=

∫
[0,t]2n

n∏
j=1

γ(tj − sj)ψ(n)
t,z (t, s)dtds (7.13)

and

ψ
(n)
t,z (t, s) =

∫
Rd
F
[
g
(n)
t (·, t, x+ z)− g(n)t (·, t, x)

]
(ξ1, . . . , ξn)

F
[
g
(n)
s (·, t, x+ z)− g(n)s (·, t, x)

]
(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn).

By the Cauchy-Schwarz inequality and the inequality ab ≤ (a2 + b2)/2,

ψ
(n)
t,z (t, s) ≤

(
ψ
(n)
t,z (t, t)

)1/2 (
ψ
(n)
t,z (s, s)

)1/2
≤ 1

2

(
ψ
(n)
t,z (t, t) + ψ

(n)
t,z (s, s)

)
.
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Using the symmetry of γ and Lemma 4.3, it follows that

Cn(t, z) ≤
∫
[0,t]2n

n∏
j=1

γ(tj − sj)ψ(n)
t,z (t, t)dtds ≤ Γnt

∫
[0,t]n

ψ
(n)
t,z (t, t)dt. (7.14)

Using the definition (4.14) of the Fourier transform of g
(n)
t (·, t, x), we see that

ψ
(n)
t,z (t, t) =

∫
Rnd
|FG(u1, ·)(ξρ(1))|2 . . . |FG(un−1, ·)(ξρ(1) + . . . ξρ(n−1))|2

|FG(un, ·)(ξρ(1) + . . . ξρ(n))|2|1− e−i(ξ1+...+ξn)·z|2µ(dξ1) . . . µ(dξn),(7.15)

where uj = tρ(j+1) − tρ(j) and 0 < tρ(1) < . . . < tρ(n) < t = tρ(n+1). By applying

twice the dominated convergence theorem, we conclude first that ψ
(n)
t,z (t, t) → 0

when |z| → 0, and then that Cn(t, z)→ 0 when |z| → 0. �

8. Hölder continuity

In this section, we assume that the spectral measure µ satisfies (1.3) and we show
that the solution of equation (1.1) has a Hölder continuous modification. Note that
(1.3) implies (1.2).

We will need the following results.

Proposition 8.1 (Proposition 7.4 of Conus and Dalang, 2008). Let G be the fun-
damental solution of the wave equation in dimension d ≥ 1. If µ satisfies (1.3),
then:
(i) for any T > 0 and M > 0, there exists a constant C > 0 depending on T, d,M, β
such that for any h ∈ R with |h| ≤M

sup
t∈[0,T∧(T−h)]

sup
η∈Rd

∫
Rd
|FG(t+h, ·)(ξ+η)−FG(t, ·)(ξ+η)|2µ(dξ) ≤ C|h|2−2β ; (8.1)

(ii) for any T > 0, there exists a constant C > 0 depending on T, d, β such that for
any t ∈ [0, T ]

sup
η∈Rd

∫
Rd
|FG(t, ·)(ξ + η)|2µ(dξ) ≤ Ct2−2β ; (8.2)

(iii) for any T > 0 and for any compact set K ⊂ Rd, there exists a constant C > 0
depending on T,K, d, β such that for any z ∈ K,

sup
t∈[0,T ]

sup
η∈Rd

∫
Rd
|FG(t, ·)(ξ + η)|2|1− e−i(ξ+η)·z|2µ(dξ) ≤ C|z|2−2β . (8.3)

Lemma 8.2. For any t > 0 and h > −1

In(t, h) :=

∫
0<t1<...<tn<t

n−1∏
j=1

(tj+1 − tj)h(t− tn)hdt =
Γ(1 + h)n+1

Γ(n(1 + h) + 1)
tn(1+h).

We are now ready to state our result about the Hölder continuity of the solution.

Theorem 8.3. Suppose that µ satisfies (1.3). If d ≥ 4, suppose in addition that µ
satisfies Hypothesis A. Let u be the solution of equation (1.1). Then:
a) for any p ≥ 2 and T > 0 there exists a constant C > 0 depending on p, T, d and
β such that for any t, t′ ∈ [0, T ] and for any x ∈ Rd,

‖u(t, x)− u(t′, x)‖p ≤ C|t− t′|1−β ; (8.4)
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b) for any p ≥ 2, T > 0 and compact set K ⊂ Rd, there exists a constant C > 0
depending on p, T,K, d and β such that for any t ∈ [0, T ] and for any x, x′ ∈ K,

‖u(t, x)− u(t, x′)‖p ≤ C|x− x′|1−β . (8.5)

Consequently, for any T > 0 and for any compact set K ⊂ Rd, the solution
{u(t, x); t ∈ [0, T ], x ∈ K} to equation (1.1) has a modification which is jointly
θ-Hölder continuous in time and space, for any θ ∈ (0, 1− β).

Remark 8.4. If f(x) = |x|−α is the Riesz kernel for some 0 < α < d, then the
spectral measure µ is given by µ(dξ) = Cα,d|ξ|−(d−α)dξ, where Cα,d > 0 is a
constant which depends on α and d. In this case, condition (1.2) holds for any
0 < α < 2 and condition (1.3) holds for any β with α/2 < β < 1. Therefore, for any
T > 0 and for any compact set K ⊂ Rd, the solution u = {u(t, x); t ∈ [0, T ], x ∈ K}
has a modification which is jointly θ-Hölder continuous in time and space, for any
θ ∈ (0, 2−α2 ). This result coincides with Theorem 5.1 of Balan (2012).

Proof : (of Theorem 8.3): a) Let t, t′ ∈ [0, T ] and x ∈ Rd be arbitrary. Assume that
h := t′ − t > 0. (The case h < 0 is similar.) By Minkowski’s inequality, (7.2) and
(7.3),

‖u(t+ h, x)− u(t, x)‖p ≤
∑
n≥0

(p− 1)n/2‖Jn(t+ h, x))− Jn(t, x)‖2

≤
∑
n≥0

(p− 1)n/2
(

2

n!
[An(t, h) +Bn(t, h)]

)1/2

,(8.6)

where An(t, h) and Bn(t, h) are given by (7.4), respectively (7.5).
To estimate An(t, h), we use (7.6). Note that by (7.9), (8.1) and (8.2), we have

ψ
(n)
t,h (t, t) ≤ Cn(u1 . . . un−1h)2−2β ,

where uj = tρ(j+1) − tρ(j) and 0 < tρ(1) < . . . < tρ(n) < t = tρ(n+1). By invoking
Lemma 8.2, it follows that

An(t, h) ≤ h2−2βΓnt C
nn!

∫
0<t1<...<tn<t

n−1∏
j=1

(tj+1 − tj)2−2βdt1 . . . dtn

= h2−2βΓnt C
nn!

∫ t

0

In−1(tn, 2− 2β)dtn

= h2−2βΓnt C
nn!

Γ(3− 2β)n

Γ((n− 1)(3− 2β) + 1)

∫ t

0

t(n−1)(3−2β)n dtn.

We now use the fact that for all a > 1 there exists a constant C > 0 such that

Γ(an+ 1) ≥ C(n!)a for all n ≥ 1. (8.7)

It follows that

An(t, h) ≤ h2−2βΓnt C
n 1

(n!)2−2β
t(n−1)(3−2β)+1. (8.8)

To estimate Bn(t, h), we use (7.10). First note that by (7.11) and (8.2),

γ
(n)
t,h (t, t) ≤ Cn[u1 . . . un−1(un + h)]2−2β ,
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where uj = tρ(j+1) − tρ(j) and 0 < tρ(1) < . . . < tρ(n) < t = tρ(n+1). We observe
that if (t1, . . . , tn) ∈ Dt,h = [0, t+ h]n\[0, t]n then there exists at least one index i
with ti > t. So,

Dt,h =
⋃
ρ∈Sn

{(t1, . . . , tn) : 0 ≤ tρ(1) ≤ . . . ≤ tρ(n−1) ≤ tρ(n), t < tρ(n) ≤ t+ h}.

By applying Lemma 8.2, it follows that

Bn(t, h) ≤ Γnt+hC
n
∑
ρ∈Sn

∫ t+h

t

∫
0<tρ(1)<...<tρ(n−1)<tρ(n)

n−1∏
j=1

(tρ(j+1) − tρ(j))2−2β(t+ h− tρ(n))2−2βdt

= Γnt+hC
nn!

∫ t+h

t

In−1(tn, 2− 2β) (t+ h− tn)2−2βdtn

= Γnt+hC
nn!

Γ(3− 2β)n

Γ((n− 1)(3− 2β) + 1)

∫ t+h

t

t(n−1)(3−2β)n (t+ h− tn)2−2βdtn

= Γnt+hC
nn!

Γ(3− 2β)n

Γ((n− 1)(3− 2β) + 1)

∫ h

0

(t+ h− u)(n−1)(3−2β) u2−2βdu

≤ ΓnTC
nn!

Γ(3− 2β)n

Γ((n− 1)(3− 2β) + 1)
T (n−1)(3−2β) 1

3− 2β
h3−2β .

Using (8.7), it follows that

Bn(t, h) ≤ h2−2βΓnTC
n 1

(n!)2−2β
T (n−1)(3−2β). (8.9)

Relation (8.4) follows from (8.6), (8.8) and (8.9).
b) Let t ∈ [0, T ] and x, x′ ∈ K be arbitrary. We denote z = x′ − x. By

Minkowski’s inequality, (7.2) and (7.12), we have:

‖u(t, x+ z)− u(t, x)‖p ≤
∑
n≥0

(p− 1)n/2‖Jn(t, x+ z)− Jn(t, x)‖2

=
∑
n≥0

(p− 1)n/2
(

1

n!
Cn(t, z)

)
,

where Cn(t, z) is defined by (7.13). To estimate Cn(t, z) we use (7.14). Note that
by (7.15), (8.2) and (8.3),

ψ
(n)
t,z (t, t) ≤ Cn|z|2−2β(u1 . . . un−1)2−2β ,

where uj = tρ(j+1) − tρ(j) and 0 < tρ(1) < . . . < tρ(n) < t = tρ(n+1). Hence

Cn(t, z) ≤ |z|2−2βCnΓnt n!

∫
0<t1<...<tn<t

n−1∏
j=1

(tj+1 − tj)2−2βdt.

Using the same estimate for the last integral as above, we infer that

Cn(t, z) ≤ |z|2−2βCnΓnt
1

(n!)2−2β
t(n−1)(3−2β)+1.

Relation (8.5) follows. The final statement is a consequence of Kolmogorov’s con-
tinuity theorem. �
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Appendix A. Malliavin calculus results

In this section, we give some results which allow us to compute the Skorohod
integral of a process u (which may be a distribution in the space variable) based on
its Wiener chaos expansion. The first result is the simplest one (when the kernels
are functions in all variables) and is used for proving the existence and uniqueness
of the solution to equation (1.1) in the case d ≤ 2. The last result is used in the
case d ≥ 3.

Proposition A.1. Let u = {u(t, x); t ≥ 0, x ∈ Rd} be a process defined on a
probability space (Ω,F , P ), such that for any t ≥ 0 and x ∈ Rd, E|u(t, x)|2 < ∞
and

u(t, x) =
∑
n≥0

In(fn(·, t, x)) in L2(Ω),

where f0(t, x) = E[u(t, x)] and for n ≥ 1, fn(·, t, x) is a symmetric function in
H⊗n.

Suppose that:
(i) u ∈ H a.s., the map ω 7→ ‖u(ω)‖H is measurable and E‖u‖2H <∞;

(ii) fn ∈ H⊗(n+1) for any n ≥ 0.

We denote by f̃n the symmetrization of fn in all n+1 variables. Then u ∈ Dom δ

if and only if V :=
∑
n≥0 In+1(f̃n) converges in L2(Ω). In this case, δ(u) = V .

Remark A.2. Due to (2.6), condition (i) above holds if u is jointly measurable and

E

[∫
(R+×Rd)2

γ(t− s)f(x− y)|u(t, x)u(s, y)|dtdxdsdy

]
<∞. (A.1)

Proof : (of Proposition A.1) We use the same argument as in white noise case
(see Proposition 1.3.7 of Nualart (2006)). We include the details for the sake of
completeness.

Step 1. We prove that for any G = In(g) with g a symmetric function in
D((R+ × Rd)n),

E[〈DG,u〉H] = E[GIn(f̃n−1)]. (A.2)

Since Ds,yG = nIn−1(g(·, s, y)), by the orthogonality of the Wiener chaos spaces,

E[u(t, x)Ds,yG] = n(n− 1)! 〈fn−1(·, t, x), g(·, s, y)〉H⊗(n−1) .

Hence,

E[〈DG,u〉H] =

∫
(R+×Rd)2

γ(t− s)f(x− y)E[u(t, x)Ds,yG]dxdydtds

= n!

∫
(R+×Rd)2

γ(t− s)f(x− y) 〈fn−1(·, t, x), g(·, s, y)〉H⊗(n−1)dxdydtds (A.3)

= n!

∫
(R+×Rd)2n

γ(t− s)f(x− y)

n−1∏
i=1

γ(ti − si)
n−1∏
i=1

f(xi − yi)

fn−1(t1, x1, . . . , tn−1, xn−1, t, x)g(s1, y1, . . . , sn−1, yn−1, s, y)dtdxdsdy

= n! 〈g, fn−1〉H⊗n = n! 〈g, f̃n−1〉H⊗n = E[GIn(f̃n−1)].

Step 2. We prove that relation (A.2) holds also for G = In(g) with g ∈ H⊗n
arbitrary. Since D((R+ × Rd)n) is dense in H⊗n, there exists a sequence (gk)k of
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functions in D((R+ × R)n) such that gk → g in H⊗n. Hence Gk = In(gk) → G =
In(g) in L2(Ω). By Step 1, relation (A.2) holds for Gk for any k. Letting k →∞,
we infer that this relation also holds for G. On the left-hand side, we use the fact
DGk → DG in L2(Ω;H). To see this, note that D is a closable operator from
L2(Ω) to L2(Ω;H) and (DGk)k converges in L2(Ω;H) (since E‖DGk −DGl‖2H =
nn!‖gk − gl‖2H⊗n → 0 as k, l→∞).

Step 3. Suppose that the series V converges in L2(Ω). We show that u ∈
Dom δ and δ(u) = V . Let F ∈ D1,2 be arbitrary. Say F =

∑
n≥0 In(gn) with

gn ∈ H⊗n symmetric. Let FN =
∑N
n=0 In(gn). Note that E‖DFN − DFM‖2H =∑M

n=N+1 nn!‖gn‖H⊗n → 0 as N,M → ∞ since
∑
n≥1 nE|In(gn)|2 < ∞ by Propo-

sition 1.2.2 of Nualart (2006). Hence (DFN )N converges in L2(Ω;H). Since D
is a closable operator from L2(Ω) to L2(Ω;H), DFN → DF ∈ L2(Ω;H). Let
Gk = Ik(gk) for k ≥ 1. For any k = 1, . . . , N , by (A.2), we have

E[V Ik(gk)] = E[Ik(f̃k−1)Ik(gk)] = E[〈DGk, u〉H].

For k = 0, E[V g0] = g0E(V ) = 0. The sum of these equations for k = 0, . . . , N ,
leads to E[V FN ] = E[〈DFN , u〉H]. Letting N →∞, we obtain:

E[V F ] = E[〈DF, u〉H],

using on the right-hand side, the fact that E‖u‖2H < ∞, which is hypothesis (i).
This shows that |E[〈DF, u〉H]| ≤ ‖V ‖2‖F‖2 for any F ∈ D1,2. Hence, u ∈ Dom δ
and δ(u) = V .

Step 4. Suppose that u ∈ Dom δ. By (A.2), for any G = In(g) with g ∈ H⊗n
symmetric,

E[Gδ(u)] = E[〈DG,u〉H] = E[GIn(f̃n−1)].

This shows that In(f̃n−1) is the projection of δ(u) onHn, i.e. δ(u) =
∑
n≥1 In(f̃n−1)

and the series converges in L2(Ω). �

The next result will be used in the proof of Proposition A.4 below, where it will
be applied to a regularization uε of the process u.

Proposition A.3. Let u = {u(t, x); t ≥ 0, x ∈ Rd} be a process defined on a
probability space (Ω,F , P ), such that for any t ≥ 0 and x ∈ Rd, E|u(t, x)|2 <∞,

u(t, x) =
∑
n≥0

In(fn(·, t, x)) in L2(Ω),

where f0(t, x) = E[u(t, x)] and for n ≥ 1, fn(·, t, x) ∈ H⊗n is such that
fn(t1, ·, . . . , tn, ·, t, x) is a symmetric distribution in S ′(Rnd) whose Fourier trans-
form is a function which has a version such that (t1, . . . , tn, ξ1, . . . , ξn) 7→
Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn) is measurable.

Suppose that u(t, ·) = 0 if t > T and:
(i) u ∈ H a.s., the map ω 7→ ‖u(ω)‖H is measurable and E‖u‖2H <∞;
(ii) for any n ≥ 1 and t1, . . . , tn, t ∈ [0, T ], there is a distribution

fn(t1, ·, . . . , tn, ·, t, ·) in S ′(R(n+1)d) such that for any ψ ∈ S(Rnd) and ϕ ∈ S(Rd),(
fn(t1, ·, . . . , tn, ·, t, ·), ψ ⊗ ϕ

)
=

∫
Rd

(
fn(t1, ·, . . . , tn, ·, t, x), ψ

)
ϕ(x)dx;

(iii) for any t1, . . . , tn, t ∈ [0, T ], the Fourier transform of fn(t1, ·, . . . , tn, ·, t, ·) is
a function which has a version such that (t1, . . . , tn, t, ξ1, . . . , ξn, ξ) 7→



844 R. M. Balan and J. Song

Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ) is measurable; for every ξ1, . . . , ξn, ξ ∈ Rd, the
function (t1, . . . , tn, t) 7→ Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ) is bounded, continu-
ous a.e. on [0, T ]n+1 and satisfies∫

([0,T ]2×Rd)n+1

n∏
i=1

γ(ti − si)γ(t− s)Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)

Ffn(s1, ·, . . . , sn, ·, s, ·)(ξ1, . . . , ξn, ξ)µ(dξ1) . . . µ(dξn)µ(dξ)dtdsdtds <∞.

(iv) for any t = (t1, . . . , tn) ∈ [0, T ]n and ξ = (ξ1, . . . , ξn) ∈ Rnd, the map

x 7→ Ffn(t1, ·, . . . , tn, ·, t, x) =: ϕt,ξ(x) is in S(Rd).
We denote by f̃n the symmetrization of fn in all n+1 variables. Then u ∈ Dom δ

if and only if V :=
∑
n≥0 In+1(f̃n) converges in L2(Ω). In this case, δ(u) = V .

Proof : We use the same argument as for Proposition A.1. We only need to show the
statement in Step 1, since Steps 2, 3 and 4 remain valid without any modification.

Hypothesis (iii) guarantees that fn ∈ H⊗(n+1) for any n ≥ 0, by Theorem 3.5.c).
Hypothesis (ii) implies that, for any ψ ∈ S(Rnd) and ϕ ∈ S(Rd),

(Ffn(t1, ·, . . . , tn, ·), ψ ⊗ ϕ) =

∫
Rd

(
fn(t1, ·, . . . , tn, ·, t, x),Fψ

)
Fϕ(x)dx

=

∫
Rd

∫
Rnd
Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)ψ(ξ1, . . . , ξn)Fϕ(x)dξ1 . . . dξndx

=

∫
Rnd

∫
Rd
Fϕt,ξ(ξ)ϕ(ξ)ψ(ξ1, . . . , ξn)dξ1 . . . dξndξ,

using Plancherel theorem and hypothesis (iv) for the last equality. This shows that
for almost all ξ1, . . . , ξn, ξ in Rd,

Fϕt,ξ(ξ) = Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn). (A.4)

Note that y 7→ Fg(s1, ·, . . . , sn, ·, s, y)(ξ1, . . . , ξn) is a function in S(Rd) whose
Fourier transform evaluated at ξ is equal to Fg(s1, ·, . . . , sn−1, ·, s, ·)(ξ1, . . . , ξn−1, ξ).

We use (A.3), but we express differently 〈fn−1(·, t, x), g(·, s, y)〉H⊗(n−1) using the
Fourier transforms in the space variables. Using also Fubini’s theorem, we obtain:

E[〈DG,u〉H] = n!

∫
R2n

+

γ(t− s)
n−1∏
i=1

γ(ti − si)
∫
R(n−1)d

µ(dξ1) . . . µ(dξn−1)

(∫
R2d

dxdyf(x− y)Ffn−1(t1, ·, . . . , tn−1, ·, t, x)(ξ1, . . . , ξn−1)

Fg(s1, ·, . . . , sn−1, ·, s, y)(ξ1, . . . , ξn−1)
)
dtdsdtds

=n!

∫
R2n

+

γ(t− s)
n−1∏
i=1

γ(ti − si)
∫
R(n−1)d

(∫
Rd
Ffn−1(t1, ·, . . . , tn−1, ·, t, ·)(ξ1, . . . , ξn−1, ξ)

Fg(s1, ·, . . . , sn−1, ·, s, ·)(ξ1, . . . , ξn−1, ξ)µ(dξ)
)
µ(dξ1) . . . µ(dξn−1)dtdsdtds

= n!〈g, fn−1〉H⊗n = n!〈g, f̃n−1〉H⊗n = E[GIn(f̃n−1)].

Note that the second equality above is justified by (A.4) and hypothesis (iv). �

The next result is used to prove the existence and uniqueness of the solution
to equation (1.1) in dimension d ≥ 3, being applied to the process v(t,x) given by
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Definition 5.3.(c). This result gives a correction to Proposition 2.5 of Balan (2012),
whose proof is incorrect since the second equality on page 12, line 18 (which states

that the action of the random distribution u(•) on ψε ∗ φ̃ is equal to the series∑
n≥0 In((fn(·, •), ψε ∗ φ̃))) cannot be justified.

Proposition A.4. Let u = {u(t, ·); t ≥ 0} be a process with values in S ′(Rd),
defined on a probability space (Ω,F , P ) such that for any t ≥ 0 and ϕ ∈ S(Rd),
E|(u(t, ·), ϕ)|2 <∞ and

(u(t, ·), ϕ) =
∑
n≥0

In(St,ϕn ) in L2(Ω), (A.5)

where St,ϕ0 = E[(u(t, ·), ϕ)], and for n ≥ 1, St,ϕn ∈ H⊗n is such that
St,ϕn (t1, ·, . . . , tn, ·) is a symmetric distribution in S ′(Rnd) whose Fourier transform
is a function which has a version such that (t1, . . . , tn, ξ1, . . . , ξn) 7→
FSt,ϕn (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn) is measurable.

Suppose that u(t, ·) = 0 if t > T and:
(i) for any (ω, t) ∈ Ω × [0, T ], the Fourier transform of u(ω, t, ·) is a function
which has a version such that (ω, t, ξ) 7→ Fu(ω, t, ·)(ξ) is measurable, the map
t 7→ Fu(ω, t, ·)(ξ) is integrable on [0, T ] for almost all (ω, ξ) ∈ Ω× Rd, and

E

∫
Rd

∫
R

∣∣∣∣∣
∫ T

0

e−iτtFu(t, ·)(ξ)dt

∣∣∣∣∣
2

ν(dτ)µ(dξ)

 <∞; (A.6)

(ii) for any n ≥ 1 and t1, . . . , tn, t ∈ [0, T ], there is a distribution
fn(t1, ·, . . . , tn, ·, t, ·) in S ′(R(n+1)d) such that for any ψ ∈ S(Rnd) and ϕ ∈ S(Rd),(

fn(t1, ·, . . . , tn, ·, t, ·), ψ ⊗ ϕ
)

=
(
St,ϕn (t1, ·, . . . , tn, ·), ψ

)
; (A.7)

(iii) fn(t1, ·, . . . , tn, ·, t, ·) satisfies assumption (iii) of Proposition A.3;
(iv) for any t1, . . . , tn, t ∈ [0, T ], ξ1, . . . , ξn ∈ Rd and φ ∈ S(Rd), the map ξ 7→

Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)φ(ξ) is in S(Rd).

We denote by f̃n the symmetrization of fn in all n+1 variables. Then u ∈ Dom δ

if and only if V :=
∑
n≥0 In+1(f̃n) converges in L2(Ω). In this case, δ(u) = V .

Proof : We use the same argument as in the proof of Proposition A.1. We only
need to show the statement in Step 1, since Steps 2, 3 and 4 remain valid without
any modification.

Hypothesis (i) guarantees that u ∈ H a.s. and E‖u‖2H <∞, by Theorem 2.6.b).
Similarly, hypothesis (iii) implies that fn ∈ H⊗n by Theorem 3.5.c).

We prove relation (A.2) by regularizing u in space. Let φ ∈ D(Rd) be such that
φ ≥ 0, the support of φ is included in the unit ball in Rd, and

∫
Rd φ(x)dx = 1.

For any ε > 0, let φε(x) = ε−dφ(x/ε) for all x ∈ Rd. Then Fφε(ξ) → 0 as ε → 0
and |Fφε(ξ)| ≤ 1 for all ξ ∈ Rd. For any ω ∈ Ω, t ∈ [0, T ] and x ∈ Rd, let
uε(ω, t, x) =

(
u(ω, t, ·) ∗ φε

)
(x). Then uε(ω, t, ·) is a C∞-function with polynomial

growth (hence a distribution in S ′(Rd)), whose Fourier transform is the function
Fu(ω, t, ·)(ξ) = Fu(ω, t, ·)(ξ)Fφε(ξ) (see Theorem 7.19 of Rudin, 1973). Hence∫ T
0
e−iτtFuε(t, ·)(ξ)dt = Fφε(ξ)

∫ T
0
e−iτtFu(t, ·)(ξ)dt for any τ ∈ R and ξ ∈ Rd.

This implies that E

[∫
Rd
∫
R

∣∣∣∫ T0 e−iτtFuε(t, ·)(ξ)dτ
∣∣∣2 ν(dτ)µ(dξ)

]
<∞ using (A.6)
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and the fact that |Fφε(ξ)| ≤ 1. By Theorem 2.6.b), uε ∈ H a.s. and E‖uε‖2H <∞.
Moreover, by the dominated convergence theorem and (A.6), as ε→ 0,

E‖uε − u‖2H = E

∫
Rd

∫
R
|Fφε(ξ)− 1|2

∣∣∣∣∣
∫ T

0

e−iτtFu(t, ·)(ξ)dt

∣∣∣∣∣
2

ν(dτ)µ(dξ)

→ 0.

By (A.5), uε(t, x) has the Wiener chaos expansion:

uε(t, x) =
(
u(t, ·), φε(x− ·)

)
=
∑
n≥0

In(fn,ε(·, t, x)) in L2(Ω),

where fn,ε(·, t, x) := S
t,φε(x−·)
n . The idea is to write relation (A.2) for the process

uε and let ε → 0. For this, we need to check that uε satisfies the hypotheses
of Proposition A.3. We have already proved that uε satisfies hypothesis (i) of
Proposition A.3. It remains to check hypotheses (ii)-(iv).

First, note that relation (A.7) allows us to compute Ffn,ε(t1, ·, . . . , tn, ·, t, x).
For any ψ ∈ S(Rnd) and ϕ ∈ S(Rd),

LHS of (A.7) =
(
Ffn(t1, ·, . . . , tn, ·, t, ·),F−1ψ ⊗F−1ϕ

)
=∫

Rnd

(∫
Rd
Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)F−1ϕ(ξ)dξ

)
F−1ψ(ξ1, . . . , ξn)dξ1 . . . dξn

and

RHS of (A.7) =
(
FSt,ϕn (t1, ·, . . . , tn, ·),F−1ψ

)
=∫

Rnd
FSt,ϕn (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)F−1ψ(ξ1, . . . , ξn)dξ1 . . . dξn.

Since this happens for any ψ ∈ S(Rnd), we infer that for any ϕ ∈ S(Rd),

FSt,ϕn (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)

=

∫
Rd
Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)F−1ϕ(ξ)dξ.

Recalling the definition of fn,ε, we obtain that:

Ffn,ε(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn) = FSt,φε(x−·)n (t1, ·, . . . , tn, ·)(ξ1, . . . , ξn)

=

∫
Rd
Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)F−1φε(x− ·)(ξ)dξ

=
1

(2π)d

∫
Rd
eiξ·xFfn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)Fφε(ξ)dξ (A.8)

= F−1
(
Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ∗)Fφε

)
(x), (A.9)

where for the last equality we used hypothesis (iv).
We show that fn,ε satisfies hypothesis (ii) of Proposition A.3. For any t1, . . . ,

tn, t ∈ [0, T ], let fn,ε(t1, ·, . . . , tn, ·, t, ·) be the distribution in S ′(R(n+1)d) whose
Fourier transform is the function

Ffn,ε(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)
:= Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)Fφε(ξ).

(A.10)
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More precisely, for any h ∈ S(R(n+1)d),

(
fn,ε(t1, ·, . . . , tn, ·, t, ·), h

)
=

∫
R(n+1)d

Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)Fφε(ξ)

F−1h(ξ1, . . . , ξn, ξ)dξ1 . . . dξndξ

=
(
fn(t1, ·, . . . , tn, ·, t, ·), Hh

)
,

where Hh ∈ S(R(n+1)d) is such that F−1Hh(ξ1, . . . , ξn, ξ) = Fφε(ξ)
·F−1h(ξ1, . . . , ξn, ξ).

We claim that for any ψ ∈ S(Rnd) and ϕ ∈ S(Rd),

(
fn,ε(t1, ·, . . . , tn, ·, t, ·), ψ ⊗ ϕ

)
=

∫
Rd

(
fn,ε(t1, ·, . . . , tn, ·, t, x), ψ

)
ϕ(x)dx. (A.11)

To prove this, note that the right-hand side of (A.11) is equal to∫
Rd

(
Ffn,ε(t1, ·, . . . , tn, ·, t, x),F−1ψ

)
ϕ(x)dx

=

∫
Rd

(∫
Rnd
Ffn,ε(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)F−1ψ(ξ1, . . . , ξn)dξ1 . . . dξn

)
ϕ(x)dx

=

∫
R(n+1)d

Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)Fφε(ξ)F−1ψ(ξ1, . . . , ξn)(
1

(2π)d

∫
Rd
eiξ·xϕ(x)dx

)
dξ1 . . . dξndξ

=

∫
R(n+1)d

Ffn(t1, ·, . . . , tn, ·, t, ·)(ξ1, . . . , ξn, ξ)Fφε(ξ)

F−1ψ(ξ1, . . . , ξn)F−1ϕ(ξ)dξ1 . . . dξndξ

=
(
fn,ε(t1, ·, . . . , tn, ·, t, ·), ψ ⊗ ϕ

)
,

where we used (A.8) for the second equality.
The fact that Ffn,ε(t1, ·, . . . , tn, ·, t, ·) satisfies hypothesis (iii) of Proposition A.3

follows from hypothesis (iii), (A.10) and the fact that |Fφε(ξ)| ≤ 1 for all ξ ∈ Rd.
Finally, fn,ε satisfies hypothesis (iv) of Proposition A.3 since for any t =

(t1, . . . , tn) ∈ [0, T ]n and ξ = (ξ1, . . . , ξn) ∈ Rnd, the map x 7→
Ffn,ε(t1, ·, . . . , tn, ·, t, x) =: ϕt,ξ(x) is in S(Rd) by (A.9) and hypothesis (iv). This

concludes the verification of hypotheses (i)-(iv) of Proposition A.3 for the process
uε.

By Theorem 3.5.c), we infer that fn,ε ∈ H⊗(n+1) for any n ≥ 0. By the domi-
nated convergence theorem and (A.10), ‖fn,ε − fn‖2H⊗(n+1) → 0 as ε→ 0.

We are now ready to conclude the proof. We write (A.2) for the process uε:

E[〈DG,uε〉H] = E[GIn(f̃n−1,ε)].

We let ε → 0. Using Cauchy-Schwarz inequality, we see that the left-hand side
converges to E[〈DG,u〉H], since E‖uε − u‖2H → 0 as ε → 0. Similarly, the right-

hand side converges to E[GIn(f̃n−1)], since ‖fn−1,ε − fn−1‖2H⊗n → 0 as ε → 0.
Relation (A.2) follows. �
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