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Abstract. We show that every symmetric random variable with log-concave tails
satisfies the convex infimum convolution inequality with an optimal cost function
(up to scaling). As a result, we obtain nearly optimal comparison of weak and
strong moments for symmetric random vectors with independent coordinates with
log-concave tails.

1. Introduction

Functional inequalities such as the Poincaré, log-Sobolev, or Marton-Talagrand
inequality to name a few, play a crucial role in studying concentration of measure,
an important cornerstone of the local theory of Banach spaces. In this paper we
focus on another example of such inequalities, the infimum convolution inequality,
introduced by Maurey (1991).

Let X be a random vector with values in Rn and let ϕ : Rn → [0,∞] be a mea-
surable function. We say that the pair (X,ϕ) satisfies the infimum convolution
inequality (ICI for short) if for every bounded measurable function f : Rn → R,

E ef�ϕ(X) E e−f(X) ≤ 1, (1.1)
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where f�ϕ denotes the infimum convolution of f and ϕ defined as f�ϕ(x) =
inf{f(y) + ϕ(x− y) : y ∈ Rn} for x ∈ Rn. The function ϕ is called a cost function
and f is called a test function. We also say that the pair (X,ϕ) satisfies the convex
infimum convolution inequality if (1.1) holds for every convex function f : Rn → R
bounded from below.

Maurey showed that Gaussian and exponential random variables satisfy the ICI
with a quadratic and quadratic-linear cost function respectively. Thanks to the
tensorisation property of the ICI, he recovered the Gaussian concentration inequal-
ity as well as the so-called Talagrand two-level concentration inequality for the
exponential product measure. Moreover, Maurey proved that bounded random
variables satisfy the convex ICI with a quadratic cost function (see Samson, 2007,
Equation (3) for an improvement and consult Samson, 2003, Lemma 2.3 for re-
sults for non-symmetric Bernoulli measures; see also Shu and Strzelecki, 2017+,
Lemma 3.2).

Later on, Maurey’s idea was developed further by Lata la and Wojtaszczyk (2008)
who studied comprehensively the ICI. By testing with linear functions, they ob-
served that the optimal cost function is given by the Legendre transform of the
cumulant-generating function (here optimal means largest possible, up to a scaling
constant, because the larger the cost function is, the better (1.1) gets). They intro-
duced the notion of optimal infimum convolution inequalities, established them for
log-concave product measures and uniform measures on `p-balls, and put forward
important, challenging and far-reaching conjectures (see also Lata la, 2017).

The recent works of Gozlan, Roberto, Samson and Tetali (2017) and Gozlan,
Roberto, Samson, Shu and Tetali (2017+) enable to view the ICI from a differ-
ent perspective. Gozlan et al. (2017) introduce weak transport-entropy inequalities
and establish their dual formulations. The dual formulations are exactly the convex
ICIs. Gozlan et al. (2017+) investigate extensively the weak transport cost inequal-
ities on the real line, obtaining a characterisation for arbitrary cost functions which
are convex and quadratic near zero, thus providing a tool for studying the convex
ICI. Around the same time, the convex ICI for the quadratic-linear cost function
was fully understood by Feldheim, Marsiglietti, Nayar and Wang (2018).

In this paper we go along Lata la and Wojtaszczyk’s line of research and study the
optimal convex ICI. Using the aforementioned novel tools (Gozlan et al., 2017+),
we show that product measures with symmetric marginals having log-concave tails
satisfy the optimal convex ICI, which complements Lata la and Wojtaszczyk’s re-
sult about log-concave product measures. This has applications to concentration
and moment comparison of any norm of such vectors in the spirit of celebrated
Paouris’ inequality (see Paouris, 2006 and Adamczak, Lata la, Litvak, Oleszkiewicz,
Pajor and Tomczak-Jaegermann, 2014) and addresses some questions posed lately
by Lata la and Strzelecka (2017+). We also offer an example showing that the
assumption of log-concave tails cannot be weakened substantially.

2. Main results

For a random vector X in Rn we define

Λ∗X(x) := LΛX(x) := sup
y∈Rn

{〈x, y〉 − lnE e〈y,X〉},
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which is the Legendre transform of the cumulant-generating function

ΛX(x) := lnE e〈x,X〉, x ∈ Rn.
If X is symmetric and the pair (X,ϕ) satisfies the ICI, then ϕ(x) ≤ Λ∗X(x) for

every x ∈ Rn (see Lata la and Wojtaszczyk, 2008, Remark 2.12). In other words, Λ∗X
is the optimal cost function ϕ for which the ICI can hold. Since this conclusion is
obtained by testing (1.1) with linear functions, the same holds for the convex ICI.
Following Lata la and Wojtaszczyk (2008) we shall say that X satisfies (convex)
IC(β) if the pair (X,Λ∗X(·/β)) satisfies the (convex) ICI.

We are ready to present our first main result.

Theorem 2.1. Let X be a symmetric random variable with log-concave tails, i.e.
such that the function

t 7→ N(t) := − lnP(|X| ≥ t), t ≥ 0,

is convex. Then there exists a universal constant β ≤ 1680e such that X satisfies
convex IC(β).

The (convex) ICI tensorises and, consequently, the property (convex) IC ten-
sorises: if independent random vectors Xi satisfy (convex) IC(βi), i = 1, . . . , n,
then the vector (X1, . . . , Xn) satisfies (convex) IC(maxβi) (see Maurey, 1991 and
Lata la and Wojtaszczyk, 2008). Therefore we have the following corollary.

Corollary 2.2. Let X be a symmetric random vector with values in Rn and in-
dependent coordinates with log-concave tails. Then X satisfies convex IC(β) with
a universal constant β ≤ 1680e.

Since, by the Prékopa–Leindler inequality, log-concave measures have log-concave
tails, the class of distributions from Corollary 2.2 is wider than the class of symmet-
ric log-concave product distributions considered by Lata la and Wojtaszczyk (2008).
Among others, it contains measures which do not have a connected support, e.g.
a symmetric Bernoulli random variable.

In order to comment on the relevance of the assumptions of Theorem 2.1 and
present applications to comparison of weak and strong moments, we need the fol-
lowing definition. Let X be a random vector with values in Rn. We say that the
moments of X grow α-regularly if for every p ≥ q ≥ 2 and every θ ∈ Sn−1 we have

‖〈X, θ〉‖p ≤ α
p

q
‖〈X, θ〉‖q,

where ‖Y ‖p := (E |Y |p)1/p is the p-th integral norm of a random variable Y . Clearly,
if the moments of X grow α-regularly, then α has to be at least 1 (unless X = 0
a.s.).

Remark 2.3. If X is a symmetric random variable with log-concave tails, then its
moments grow 1-regularly (this classical fact follows for instance from Guédon,
Nayar and Tkocz, 2014, Proposition 5.5 and Lata la and Wojtaszczyk, 2008, Proof
of Proposition 3.8).

The assumption of log-concave tails in Theorem 2.1 cannot be replaced by
a weaker one of α-regularity of moments: if X is a symmetric random variable
defined by

P(|X| > t) = 1[0,2)(t) +

∞∑
k=1

e−2k

1[2k,2k+1)(t), t ≥ 0, (2.1)
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then the moments of X grow α-regularly (for some α < ∞), but there does not
exist C > 0 such that the pair (X,x 7→ max{(Cx)2, C|x|}) satisfies the convex
ICI. All the more, X cannot satisfy convex IC(β) with any β < ∞ (see Section 5
for details). Thus it seems that the assumptions of Theorem 2.1 are not far from
necessary conditions for the convex ICI to hold with an optimal cost function (ran-
dom variables with moments growing regularly are akin to random variables with
log-concave tails as the former can essentially be sandwiched between the latter,
see Lata la and Tkocz, 2015, Inequality (4.6)).

Our second main result is an application of Theorem 2.1 to moment comparison.
Recall that for a random vector X its p-th weak moment associated with a norm
‖ · ‖ is the quantity defined as

σ‖·‖,X(p) := sup
‖t‖∗≤1

‖〈t,X〉‖p,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. The following version of Proposition 3.15 from
Lata la and Wojtaszczyk, 2008 holds (some non-trivial modifications of the proof
are necessary in order to deal with the fact that the inequality (1.1) only holds for
convex functions).

Theorem 2.4. Let X be a symmetric random vector with values in Rn which
moments grow α-regularly. Suppose moreover that X satisfies convex IC(β). Then
for every norm ‖ · ‖ on Rn and every p ≥ 2 we have(

E
∣∣‖X‖ − E‖X‖∣∣p)1/p

≤ Cαβσ‖·‖,X(p),

where C is a universal constant (one can take C = 4
√

2e < 16).

Immediately, in view of Corollary 2.2 and Remark 2.3, we obtain the following
corollary in the spirit of the results of Paouris (2006), Adamczak et al. (2014), Lata la
and Strzelecka (2017+, 2016). Similar inequalities for Rademacher sums with the
emphasis on exact values of constants have also been studied by Oleszkiewicz (2014,
Theorem 2.1).

Corollary 2.5. Let X be a symmetric random vector with values in Rn and with
independent coordinates which have log-concave tails. Then for every norm ‖ · ‖ on
Rn and every p ≥ 2 we have(

E ‖X‖p
)1/p ≤ E ‖X‖+Dσ‖·‖,X(p), (2.2)

where D is a universal constant (one can take D = 6720
√

2e2 < 70223).

Note that each of the terms on the right-hand side of (2.2) is, up to a constant,
dominated by the left-hand side of (2.2), so (2.2) yields the comparison of weak
and strong moments of the norms of X.

Note also that the constant standing at E ‖X‖ is equal to 1. If we only assume
that the coordinates of X are independent and their moments grow α-regularly,
then (2.2) does not always hold (the example here is a vector with independent
coordinates distributed like in (2.1); see Section 5 for details), although by The-
orem 1.1 from Lata la and Strzelecka, 2017+ it holds if we allow the constant at
E ‖X‖ to be greater than 1 and to depend on α. Hence Corollary 2.5 and exam-
ple (2.1) partially answer the following question raised by Lata la and Strzelecka
(2017+): “For which vectors does the comparison of weak and strong moments
hold with constant 1 at the first strong moment?”
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The organisation of the paper is the following. In Section 3 and 4 we present
the proofs of Theorem 2.1 and Theorem 2.4 respectively. In Section 5 we discuss
example (2.1) in details.

3. Proof of Theorem 2.1

Our approach is based on a characterisation – provided by Gozlan et al. (2017+)
– of measures on the real line which satisfy a weak transport-entropy inequality. We
emphasise that our optimal cost functions need not be quadratic near the origin,
therefore we cannot apply their characterisation as is, but have to first fine-tune
the cost functions a bit. We shall also need the following simple lemma.

Lemma 3.1. If X is a symmetric random variable and EX2 = β−2
1 , then

Λ∗X(x/β1) ≤ x2 for |x| ≤ 1.

Proof : Since X is symmetric, we have

E etX = 1 +

∞∑
k=1

‖X‖2k2kt2k

(2k)!
≥ 1 +

∞∑
k=1

‖X‖2k2 t2k

(2k)!
= 1 +

∞∑
k=1

β−2k
1 t2k

(2k)!
= cosh(β−1

1 |t|).

Moreover, L
(
ln cosh(·)

)
(|u|) ≤ |u|2 for |u| ≤ 1 (see for example Lata la and Woj-

taszczyk, 2008, Proof of Proposition 3.3). Therefore

Λ∗X(x/β1) = L(ΛX(β1·))(x) ≤ L(ln cosh(·))(x) ≤ x2 for |x| ≤ 1. �

Throughout the proof g−1 stands for the generalised inverse of a function g
defined as

g−1(y) := inf{x : g(x) ≥ y}.

Proof of Theorem 2.1: Note that N(0) = 0 and the function N is non-decreasing.
First we tweak the assumptions and change the assertion to a more straightforward
one.

Step 1 (first reduction). We claim that it suffices to prove the assertion for ran-
dom variables for which the function N is strictly increasing on the set where it is
finite (or, in other words, N(t) = 0 only for t = 0). Indeed, suppose we have done
this and let now X be any random variable satisfying the assumptions of the theo-
rem. Let Xε be a symmetric random variable such that P(|Xε| ≥ t) = exp(−Nε(t)),
where Nε(t) = N(t) ∨ εt. Consider versions of X and Xε on the probability space
(0, 1) (equipped with Lebesgue measure) constructed as the (generalised) inverses
of their cumulative distribution functions. Then |Xε| ≤ |X| a.s. (and also Xε → X
a.s. as ε→ 0+). Hence ΛXε ≤ ΛX and therefore also Λ∗Xε

≥ Λ∗X .
The theorem applied to the random variable Xε and the above inequality imply

that the pair (Xε,Λ
∗
X(·/β)) satisfies the convex ICI. Taking ε → 0+ we get the

assertion for X (in the second integral we just use the fact that the test function
f is bounded from below and thus e−f is bounded from above; for the first in-
tegral it suffices to prove the convergence of integrals on any interval [−M,M ],
and on such an interval we have f�Λ∗X(x/β) ≤ f(x) + Λ∗X(0) = f(x), and thus
exp(max[−M,M ] f) is a good majorant).

Step 2 (second reduction). We claim that it suffices to prove the assertion for
random variables such that ΛX < ∞. Indeed, suppose we have done this and
let X be any random variable satisfying the assumptions of the theorem. Let
Nε(t) = N(t)∨ε2t2 and let Xε be a symmetric random variable such that P(|Xε| ≥
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t) = exp(−Nε(t)). Then, similarly as in Step 1., ΛXε
≤ ΛY < ∞, where Y is

symmetric and P(|Y | ≥ t) = exp(−ε2t2). Thus we can apply the proposition to Xε

and we continue as in Step 1.
Step 3 (scaling). Due to the scaling properties of the Legendre transform, we

can fix the value of EX2 = β−2
1 . We choose β1 := 2e (the case where X ≡ 0 is

trivial), so that, by Markov’s inequality, e−N(1/2) = P(|X| ≥ 1
2 ) ≤ 4EX2 = e−2

and equivalently

N(1/2) ≥ 2. (3.1)

Step 4 (reformulation). For x ∈ R let

ϕ(x) :=
(
x21{|x|<1} + (2|x| − 1)1{|x|≥1}

)
∨ Λ∗X(x/(2β1)).

We claim that there exists a universal constant b̃ ≤ 1/420, such that the pair

(X,ϕ(̃b ·)) satisfies the convex infimum convolution inequality. Of course the asser-
tion follows immediately from that.

Note that ϕ is convex, increasing on [0,∞) (because Λ∗X(·/(2β1)) is convex and
symmetric and thus non-decreasing on [0,∞)). Crucially, ϕ(x) = x2 for x ∈ [0, 1]
(by Lemma 3.1), so the cost function ϕ is quadratic near zero. Moreover, by Lemma
3.1, ϕ−1(3) = 2.

Let U = F−1 ◦ Fν , where F , Fν are the distribution functions of X and the
symmetric exponential measure ν on R, respectively. By Gozlan et al., 2017+,
Theorem 1.1 we know that if there exists b > 0 such that for every x, y ∈ R we have∣∣U(x)− U(y)

∣∣ ≤ 1

b
ϕ−1

(
1 + |x− y|

)
, (3.2)

then the pair (X,ϕ(̃b ·)), where b̃ = b
210ϕ−1(2+12) = b

420 , satisfies the convex ICI.

We will show that (3.2) holds with b = 1.
Step 5 (further reformulation). Let a = inf{t > 0 : N(t) = ∞}. We have three

possibilities (recall that N is left-continuous):

• a = ∞. Then N is continuous, increasing, and transforms [0,∞] onto
[0,∞]. Also, F is increasing and therefore F−1 is the usual inverse of F .
• a < ∞ and N(a) < ∞. Then X has an atom at a. Moreover, N(a) =

limt→a− N(t).
• a <∞ and N(a) =∞ = limt→a− N(t).

Of course, in the first case one can extend N by putting N(a) = ∞, so that all
formulas below make sense.

Note that

F (t) =

{
1
2 exp(−N(|t|)) if t < 0,

1− 1
2 exp(−N+(t)) if t ≥ 0,

whereN+(t) denotes the right-sided limit ofN at t (which is different fromN(t) only
if t = a and X has an atom at a). Hence, F is continuous on the interval (−a, a),
the image of (−a, a) under F is the interval

(
1
2 exp(−N(a)), 1 − 1

2 exp(−N(a))
)
,

and we have F (−a) = 1
2 exp(−N(a)) and F (a) = 1. Since the image of R under

U is equal to the image of (0, 1) under F−1, we conclude that U(R) = (−a, a) if
N(a) =∞ and U(R) = [−a, a] if N(a) <∞. Denote A := U(R).

When N(a) < ∞, it suffices to check condition (3.2) for x, y ∈ [−N(a), N(a)]
(otherwise one can change x, y and decrease the right-hand side while not changing
the value of the left-hand side of (3.2)). For x ∈ [−N(a), N(a)] we can write
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U−1(x) = N(|x|) sgn(x) and U−1(x) ∈ R. When N(a) = ∞, U is a bijection (on
its image), so we can obviously write again U−1(x) = N(|x|) sgn(x) for any x ∈ R.

Therefore, in order to verify (3.2) we need to check that

|x− y| ≤ ϕ−1
(
1 +

∣∣N(|x|) sgn(x)−N(|y|) sgn(y)
∣∣) for x, y ∈ A. (3.3)

Since we consider the case when ΛX(t) is finite for every t ∈ R, the Chernoff
inequality applies, so for t ≥ EX = 0 we have

1

2
e−N(t) = P(X ≥ t) ≤ e−Λ∗

X(t),

so

N(t) ≥ Λ∗X(t)− ln 2. (3.4)

Note that ϕ(|x − y|) < ∞ for x, y ∈ A, since ϕ(|x − y|) = ∞ would imply
Λ∗X(|x − y|/(2β1)) = ∞, and hence Λ∗X(|x − y|/2) = ∞, and – by (3.4) – also
N(|x − y|/2) = ∞, but for x, y ∈ A we have |x − y|/2 ∈ [0, a) when N(a) = ∞
or |x − y|/2 ∈ [0, a] when N(a) < ∞ and in either case N(|x − y|/2) is finite.
Therefore for every x, y ∈ A we have ϕ(|x − y|) < ∞. Since ϕ−1(ϕ(z)) = z for z
such that ϕ(z) < ∞ (because ϕ is then continuous and increasing on [0, z]), the
condition (3.3) is implied by

ϕ
(
|x− y|

)
≤ 1 +

∣∣N(|x|) sgnx−N(|y|) sgn y
∣∣ for x, y ∈ A. (3.5)

In the next step we check that this is indeed satisfied.
Step 6 (checking the condition). Let x0 = inf{x ≥ 1 : 2x − 1 = Λ∗X( x

2β1
)} (if

x0 =∞ we simply do not have to consider Case 2 below). We consider three cases.
We repeatedly use the fact that uN(t) ≥ N(ut) for u ≤ 1, t ≥ 0, which follows by
the convexity of N and the property N(0) = 0.

Case 1. |x−y| ≤ 1. Then ϕ
(
|x−y|

)
= (x−y)2 ≤ 1, so (3.5) is trivially satisfied.

Case 2. |x − y| ≥ x0. Then ϕ
(
|x − y|

)
= Λ∗X( 1

2β1
|x − y|) ≤ Λ∗X(|x − y|/2).

Inequality (3.4) implies that in order to prove (3.5) it suffices to show that if x, y
are of the same sign, say x, y ≥ 0, then N

(
|x − y|/2) ≤ |N(x) − N(y)| and if x, y

have different signs, we have N
((
|x|+ |y|

)
/2
)
≤ N(|x|) +N(|y|).

By the convexity of N , for s, t ≥ 0 we have

N
(
(s+ t)/2

)
≤ 1

2
N(s) +

1

2
N(t) ≤ N(s) +N(t)

and

N(s/2) +N(t) ≤ N(s) +N(t) ≤ s

s+ t
N(s+ t) +

t

s+ t
N(s+ t) = N(s+ t).

This finishes the proof of (3.5) in Case 2.
Case 3. 1 ≤ |x − y| ≤ x0. Then ϕ

(
|x − y|

)
= 2|x − y| − 1. Consider two

sub-cases:

(i) x, y have different signs. Without loss of generality we may assume x ≥
|y| ≥ 0 ≥ y. Thus in order to obtain (3.5) it suffices to show that N(x) ≥
2x+ 2|y|. Note that 1 ≤ x+ |y| ≤ 2x, so x ≥ 1

2 . Thus

N(x) ≥ N(1/2)2x
(3.1)

≥ 4x ≥ 2x+ 2|y|,

which finishes the proof in case (i).
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(ii) x, y have the same sign. Without loss of generality we may assume x ≥ y ≥
0. Thus it suffices to show that 2(x− y) ≤ N(x)−N(y). Note that due to
the assumption of Case 3 we have x ≥ x− y ≥ 1 ≥ 1

2 , so by the convexity
of N we have

N(x)−N(y)

x− y
≥
N( 1

2 )−N(0)
1
2 − 0

(3.1)

≥ 4 ≥ 2

This ends the examination of case (ii) and the proof of the theorem. �

4. Comparison of weak and strong moments

The goal of this section is to establish the comparison of weak and strong mo-
ments with respect to any norm ‖ · ‖ for random vectors X with independent
coordinates having log-concave tails (Corollary 2.5). In view of Theorem 2.1 and
Remark 2.3, it is enough to show Theorem 2.4.

Our proof of Theorem 2.4 comprises three steps: first we exploit α-regularity of
moments of X to control the size of its cumulant-generating function ΛX , second
we bound from below the infimum convolution of the optimal cost function with
the convex test function being the norm ‖ · ‖ properly rescaled, and finally by the
property convex IC(β) we obtain exponential tail bounds which integrated out give
the desired moment inequality.

We start with two lemmas corresponding to the first two steps described above
and then we put everything together.

Lemma 4.1. Let p ≥ 2 and suppose that the moments of a random vector X in
Rn grow α-regularly. If for a vector u ∈ Rn we have ‖〈u,X〉‖p ≤ 1, then

ΛX((2eα)−1pu) ≤ p.

Proof : Let k0 be the smallest integer larger than p. If αe‖〈u,X〉‖p ≤ 1/2, then by
α-regularity we have

ΛX(pu) ≤ ln
(∑
k≥0

E |〈pu,X〉|k

k!

)
≤ ln

( ∑
0≤k≤p

pk
‖〈u,X〉‖kp

k!
+
∑
k>p

(αk)k
‖〈u,X〉‖kp

k!

)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+
∑
k>p

(
αe‖〈u,X〉‖p

)k)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+ 2(αe‖〈u,X〉‖p)k0
)

≤ ln
( ∑

0≤k≤p

pk‖〈u,X〉‖kp
k!

+
(2αep‖〈u,X〉‖p)k0

k0!

)
≤ ln

( ∑
0≤k≤k0

(2αep‖〈u,X〉‖p)k

k!

)
≤ 2αep‖〈u,X〉‖p ≤ p.

Replace u with (2eα)−1u to get the assertion. �

Lemma 4.2. Let ‖ · ‖ be a norm on Rn and let X be a random vector with values
in Rn and moments growing α-regularly. For β > 0, p ≥ 2, and x ∈ Rn we have(

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p,
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where a = p(2eαβσ‖·‖,X(p))−1.

Proof : For f(x) = a‖x‖ with positive a being arbitrary for now we bound the
infimum convolution as follows:(

Λ∗X(·/β)�f
)
(x) = inf

y
sup
z

{
β−1〈y, z〉 − ΛX(z) + a‖x− y‖

}
= inf

y
sup
u

{
(2eαβ)−1p〈y, u〉 − ΛX((2eα)−1pu) + a‖x− y‖

}
≥ inf

y
sup

u:‖〈u,X〉‖p≤1

{
(2eαβ)−1p〈y, u〉 − p+ a‖x− y‖

}
,

where in the last inequality we have used Lemma 4.1. Choose u = σ‖·‖,X(p)−1v
with ‖v‖∗ ≤ 1 such that 〈y, v〉 = ‖y‖. Then clearly ‖〈u,X〉‖p ≤ 1 and thus

Λ∗X(·/β)�f(x) ≥ inf
y

{
(2eαβσ‖·‖,X(p))−1p‖y‖ − p+ a‖x− y‖

}
.

If we now set a = p(2eαβσ‖·‖,X(p))−1, then by the triangle inequality we obtain
the desired lower bound (

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p. �

Proof of Theorem 2.4: Let f(x) = a‖x‖ with a = p(2eαβσ‖·‖,X(p))−1 as in Lemma 4.2.
Testing the property convex IC(β) with f and applying Lemma 4.2 yields

E ea‖X‖ E e−a‖X‖ ≤ ep.
By Jensen’s inequality we obtain that both E ea(‖X‖−E ‖X‖) and E ea(−‖X‖+E ‖X‖)

are bounded above by ep. Thus Markov’s inequality implies the tail bound

P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
≤ 2e−tep ≤ 2e−t/2, t ≥ 2p.

Consequently,

ap E
∣∣‖X‖ − E ‖X‖

∣∣p =

∫ ∞
0

ptp−1P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
dt

≤ (2p)p + 2

∫ ∞
0

ptp−1e−t/2dt = (2p)p + 2 · 2ppΓ(p)

≤ 2(2p)p.

Plugging in the value of a gives the result (we can take C = 4
√

2e < 16). �

5. An example

Let X be a symmetric random variable defined by P(|X| > t) = T (t), where

T (t) := 1[0,2)(t) +

∞∑
k=1

e−2k

1[2k,2k+1)(t), t ≥ 0, (5.1)

or, in other words, let |X| have the distribution

(1− e−2)δ2 +

∞∑
k=2

(
e−2k−1

− e−2k)
δ2k .

Let us first show that the moments of X grow 3-regularly, but X does not satisfy
IC(β) for any β <∞ (we also prove a slightly stronger statement later).

Let Y be a symmetric exponential random variable. Then Y has log-concave
tails, so the moments of Y grow 1-regularly (see Remark 2.3). Moreover, if X
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and Y are constructed in the standard way by the inverses of their cumulative
distribution functions on the probability space (0, 1), then

|Y | ≤ |X| ≤ 2|Y |+ 2.

Therefore, for p ≥ q ≥ 2,

‖X‖p ≤ 2‖Y ‖p + 2 ≤ 2
p

q
‖Y ‖q + 2 ≤ 3

p

q
‖X‖q

(we used the fact that |X| ≥ 2 in the last inequality). Thus the moments of X
grow 3-regularly.

On the other hand, for every h > 0 there exists t > 0 such that

P(|X| ≥ t+ h) = P(|X| ≥ t).

Therefore by Theorem 1 from Feldheim et al. (2018) there does not exist a constant
C such that the pair (X,ϕ(·/C)), where ϕ(x) = 1

2x
21{|x|≤1} + (|x| − 1/2)1{|x|>1},

satisfies the convex infimum convolution inequality. But, by symmetry and the
3-regularity of moments of X,

ΛX(s) ≤ ln
(

1 +
∑
k≥1

s2k EX2k

(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3k)2k
(
EX2

)k
(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3e/2)2k
(
EX2

)k)
= ln

(
1 +

∑
k≥1

(
9e2s2 EX2/4

)k)
.

Hence, using the inequality ln(1 + x) ≤ x and summing the geometric series, we
arrive at

ΛX(s) ≤ 9e2 EX2

4− 9e2s2 EX2
· s2,

provided that |s| ≤ ε for some small enough ε. Thus for some A, ε > 0 we have
ΛX(s) ≤ As2 for |s| ≤ ε. Having chosen ε and possibly increasing A, we can also
guarantee that 2Aε2 ≥ 1. Hence

Λ∗X(t) ≥ sup
|s|≤ε
{st−As2} = 1

4A t
21{|t|≤2Aε} + (ε|t| −Aε2)1{|t|>2Aε}

= 2Aε2ϕ
(
t/(2Aε)

)
≥ ϕ

(
t/(2Aε)

)
.

We conclude that X cannot satisfy IC(β) for any β.

Remark 5.1. Let us also sketch an alternative approach. Take a, c > 0, b ∈ R, and
denote ϕ(x) = min{x2, |x|}, f(x) = fa,b(x) = a(x − b)+ for x ∈ R. One can check
that (

f�ϕ(c·)
)
(x) =


0 if x ≤ b,
c2(x− b)2 if b < x ≤ b+ 1/c,

c(x− b) if x > b+ 1/c,

if a > 2c. It is rather elementary but cumbersome to show that for any c > 0 there
exist a > 0 and b ∈ R such that (1.1) is violated by the test function f . We omit
the details.

In fact, the above example shows that even a slightly stronger statement is true:
for vectors with independent coordinates with α-regular growth of moments the
comparison of weak and strong moments of norms does not hold with the constant
1 at the first strong moment. More precisely, let X1, X2, . . . be independent random
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variables with distribution given by (5.1). We claim that there does not exist any
K <∞ such that(

Emax
i≤n
|Xi|p

)1/p ≤ Emax
i≤n
|Xi|+K sup

‖t‖1≤1

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

(5.2)

holds for every p ≥ 2 and n ∈ N (note that we chose the `∞-norm as our norm).
We shall estimate the three expressions appearing in (5.2).

We have

sup
‖t‖1≤1

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

≤ sup
‖t‖1≤1

n∑
i=1

|ti|‖Xi‖p = ‖X1‖p (5.3)

(this inequality is in fact an equality). Since the moments of X1 grow 3-regularly,

the last term in (5.2) is bounded by K̃p for some K̃ <∞.
To estimate the remaining two terms we need the following standard fact.

Lemma 5.2. For independent events A1, . . . , An,

(1− e−1)
(

1 ∧
n∑
i=1

P(Ai)
)
≤ P

( n⋃
i=1

Ai

)
≤ 1 ∧

n∑
i=1

P(Ai).

In particular, for i.i.d. non-negative random variables Y1, . . . , Yn,

(1− e−1)

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt ≤ Emax

i≤n
Yi ≤

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt.

Proof : The upper bound is just the union bound. The lower bound follows from
de Morgan’s laws combined with independence, which imply that

P
( n⋃
i=1

Ai

)
= 1−

n∏
i=1

(
1− P(Ai)

)
,

and from the inequalities 1 − x ≤ e−x and 1 − e−y ≥ (1 − e−1)y for x ∈ R,
y ∈ [0, 1]. �

Fix m ≥ 2 and let e2m−1 ≤ n < e2m

. Then

1 ∧ nT (t) =

{
1 if 0 < t < 2m,

nT (t) if t ≥ 2m.

By the above lemma,

Emax
i≤n
|Xi| ≤

∫ 2m

0

dt+ n

∫ ∞
2m

T (t)dt = 2m + n

∞∑
j=m

e−2j

(2j+1 − 2j)

= 2m + n

∞∑
j=m

e−2j

2j ≤ 2m + ne−2m

2m
∞∑
j=0

(2e−2m

)j = 2m +
ne−2m

2m

1− 2e−2m .

Set θ = θ(m,n) = ne−2m ∈ [e−2m−1

, 1). Then

Emax
i≤n
|Xi| ≤ 2m

(
1 +

θ

1− 2e−2m

)
. (5.4)
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Similarly,

Emax
i≤n
|Xi|p ≥ (1− e−1)

∫ ∞
0

1 ∧ nT (t1/p)dt

= (1− e−1)
[ ∫ 2mp

0

dt+ n

∫ ∞
2mp

T (t1/p)dt
]

= (1− e−1)
[
2mp + n

∞∑
j=m

e−2j(
2(j+1)p − 2jp

)]
.

Hence

Emax
i≤n
|Xi|p > (1− e−1)ne−2m(

2(m+1)p − 2mp
)

= (1− e−1)θ2mp(2p − 1). (5.5)

Putting (5.3), (5.4), and (5.5) together, we see that (5.2) would imply

(1− e−1)1/pθ1/p2m(2p − 1)1/p ≤ 2m
(

1 +
θ

1− 2e−2m

)
+ K̃p

for every p ≥ 2, m ≥ 2, and θ ∈ [e−2m−1

, 1) of the form ne−2m

, n ∈ N. Take
p = 1/θ and θ ∼ 1/m to get

(1− e−1)θθθ(21/θ − 1)θ ≤ 1 +
θ

1− 2e−2m +
K̃

2mθ
.

Since θ → 0 and 2mθ → ∞ as m → ∞ this inequality yields 2 ≤ 1, which is
a contradiction. Hence inequality (5.2) cannot hold for all p ≥ 2 and n ∈ N.
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