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Abstract. Sheffield (2016) proposed an inventory accumulation model with two
types of products which encodes the critical Fortuin-Kasteleyn model on a random
planar map, and showed that a two-dimensional inventory accumulation trajectory
in the discrete model scales to a correlated planar Brownian motion. In this work,
we generalize the inventory model to k types of products for any integer k ≥ 2, and
prove that the corresponding trajectory scales to a k-dimensional Brownian motion
with a certain covariance matrix. We also discuss implications of the scaling limit
result in inventory theory and beyond.

1. Introduction

In a last-in-first-out (LIFO) inventory system (Cohen and Pekelman, 1977/78;
Prastacos, 1979), most recently produced products are issued to fulfill customers’
orders. The LIFO discipline is usually suitable for inventories of perishable prod-
ucts (Nahmias, 1982; Karaesmen et al., 2011), e.g., foods, blood units and chemical
products. Moreover, the LIFO method of accounting for inventories is widely used
to reduce tax liability in times of inflation (Cohen and Halperin, 1980). In some
applications such as blood bank management, supplies and demands are stochastic
and thus not under control of the inventory manager (Kaspi and Perry, 1983; Keil-
son and Seidmann, 1990; Parlar et al., 2011), so it is important to understand how
inventories evolve with time. One effective way to study the long-term behavior
of an inventory is through its continuous limit under the rescaling of time and the
inventory size (Perry, 1997). See also Abate and Whitt (1997); Limic (2001) for
examples of scaling limits of LIFO queues among the vast literature in queueing
theory.

Received by the editors September 1st, 2016; accepted November 29th, 2017.
2010 Mathematics Subject Classification. Primary 60F17; secondary 60G50.
Key words and phrases. Inventory accumulation, first-in-last-out models, scaling limits, Brow-

nian motion, random walks.

947

http://alea.impa.br/english/index_v14.htm
https://doi.org/10.30757/ALEA.v14-41


948 C. Mao and T. Zhou

1.1. A stochastic LIFO model, applications and a generalization. In a recent paper
(Sheffield, 2016), Sheffield introduced a simple stochastic inventory model at a
LIFO retailer with two types of products, called hamburgers and cheeseburgers. In
this inventory model, production of a hamburger, production of a cheeseburger,
consumption of a hamburger, consumption of a cheeseburger and consumption of
the freshest burger happen with respective probabilities 1

4 ,
1
4 ,

1−p
4 , 1−p4 and p

2 at each
discrete time point, where the freshest burger means the most recently produced
burger regardless of type. It was established that the evolution of the two-burger
inventory from time −∞ to ∞ scales to a two-dimensional Brownian motion with
covariance depending on p, which cleanly describes the long-term behavior of the
inventory. An interesting phase transition happens at p = 1/2. In particular, when
p ≥ 1/2, the burger inventory remains balanced in the long run, i.e., the discrepancy
between the two types of burgers remains small.

Balancing inventories of multiple products (resp. lengths of queues) is critical in
inventory (resp. queueing) theory, because such a balance helps reduce backordering
and holding costs (resp. service time and server load). Balancing policies have often
been studied via scaling limits of the systems (Wein, 1992; Dimakis and Walrand,
2006; Mukherjee et al., 2016). For the model of Sheffield (2016), it may be easier to
interpret the results if we reverse the time and switch the roles of production and
consumption. Namely, in addition to production and consumption of two types of
burgers, we assume that with probability p/2 the retailer produces a flexible burger
which caters to both types of demands. The scaling limit result clearly remains
true. If the retailer aims to balance the two types of demands, it suffices to tune
up the proportion p of flexible burgers, and p = 1/2 is the critical threshold above
which the two types are macroscopically balanced.

Along a different line of literature in operations research, from earlier results on
auctions (Kruk, 2003) to a recent surge of research on limit order books (Cont and
de Larrard, 2013, 2012; Guo et al., 2015; Paulsen, 2016), functional limit theorems
have been crucial for studying price dynamics, especially in high frequency settings.
Another way of understanding the stochastic inventory model of Sheffield (2016)
is to view production of burgers as sell orders driving prices down, and view con-
sumption of burgers as buy orders driving prices up in a limit order market. With
probability p, buyers are willing to accept the lowest price regardless of the type
of the product. The scaling limit result therefore characterizes the price dynamics
of different products under this model. Particularly, the more similar the products
are, the more likely buyers will accept whichever with the lowest price (correspond-
ing to a higher p value in the model) and the higher correlation the prices of the
products will have, as suggested by the covariance of the limiting Brownian motion.
Therefore, beyond Markovian models of limit order books (Cont and de Larrard,
2013; Abergel and Jedidi, 2013; Gao and Deng, 2016), the non-Markovian inven-
tory model yields interesting results on the correlation between price dynamics of
different products.

As most inventory systems (or limit order books) consist of more than two types
of products, a generalization to multiple types of products is desired to make the
model of Sheffield (2016) more adaptive to further applications. This motivates
us to study the stochastic LIFO inventory model with k types of products for
any integer k ≥ 2. In particular, we prove that the corresponding k-dimensional
inventory trajectory scales to a k-dimensional Brownian motion and identify its
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covariance matrix. A phase transition occurs at the critical probability p = 1−1/k
which generalizes the two-dimensional result.

On the technical side, the high-level strategy of our proof for the k-dimensional
scaling limit result is the same as that for dimension two. In short, various renewal
times and excursions of the discrete process between renewal times are introduced
to describe the non-Markovian inventory trajectory. Integrability of these renewal
times sits at the heart of the phase transition between the case where the well-
balanced inventory scales to a standard Brownian motion, and the case where the
imbalanced inventory scales to a Brownian motion with a nontrivial covariance
structure.

It is worth noting that the k-dimensional scaling limit result is far from being
obvious and many nontrivial adjustments need to be made provided the proof for
dimension two, because interactions between multiple types of products are more
complicated in higher dimensions. Originality is required for some proofs. For
example, monotonicity properties of inventories used in Sheffield (2016, Section 3.4)
do not hold in higher dimensions, so instead we make use of the property that if
two inventory stacks are close in an appropriate sense, then they still stay close
after adding the same product or order to each of them.

1.2. Random planar maps and beyond. Interestingly, the original motivation of
Sheffield (2016) to study this inventory model was rather distant from inventory the-
ory. Planar maps are connected planar graphs embedded into the two-dimensional
sphere defined up to homeomorphisms of the sphere (Tutte, 1963), and the crit-
ical Fortuin-Kasteleyn (FK) cluster model is a statistical physics model defined
on a random planar map (Fortuin and Kasteleyn, 1972; Grimmett, 2006). Per-
haps surprisingly, the inventory model bijectively encodes a random planar map
weighted by the partition function of the critical FK cluster model (Bernardi, 2008;
Sheffield, 2016). In particular, the probability p in the inventory model is funda-
mental because it is connected to the parameter q of the FK model via the relation
q = 4p2/(1 − p)2. Thus the inventory model serves as a new tool to study scaling
limits of the FK model. See also Le Gall and Miermont (2011, 2012) for recent
developments on scaling limits of random planar maps.

More recently, efforts have been made to understand variations of the inven-
tory accumulation model and their connections to models on random planar maps.
Several conditional versions of the hamburger-cheeseburger model were studied in
Gwynne et al. (2015); Berestycki et al. (2017); Gwynne and Sun (2017, 2015). For
example, in Gwynne et al. (2015) orders after time 0 are conditioned to consume
burgers produced after time 0, in which case the inventory trajectory scales to a
Brownian motion conditioned to stay in the positive quadrant; in Gwynne and Sun
(2015), the inventory is conditioned to be empty after a finite period, in which
case the trajectory scales to a Brownian motion conditioned to return to the origin.
Furthermore, the hamburger-cheeseburger model finds applications in the abelian
sandpile model and the uniform spanning unicycle model (Sun and Wilson, 2016),
and a generalized version of the inventory model with more rules of burger produc-
tion and consumption was introduced to study scaling limits of the active spanning
tree model (Gwynne et al., 2016).
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So far, little research has been devoted to higher-dimensional analogues of ran-
dom planar maps, partly due to the difficulty of enumeration and lack of bijec-
tive representations. See Benjamini and Curien (2011) for an interesting higher-
dimensional result among the few. We hope that our generalized model and results
can be used to construct potentially interesting higher-dimensional objects, possibly
as follows.

When there are only two types of burgers, the number of hamburgers and the
number of cheeseburgers after n steps can be interpreted as two walks on Z. As
explained in Sheffield (2016), each of these walks separately encodes a tree (via a
standard bijection between walks and trees) along with a path tracing the boundary
of the tree. Furthermore, one can form a larger graph by starting with these two
trees and then adding an edge between a vertex on the first tree and a vertex on
the second tree if those vertices are both visited at the same time by the traversing
paths. This construction can be used to give a bijection between burger-order
sequences and FK planar maps; see Sheffield (2016, Section 4) for more details.

It is straightforward to generalize this construction to our setting to obtain k
trees along with extra edges joining vertices on different trees. We are not aware
of any natural physical interpretation of the random graph obtained this way when
k > 2, but we feel that this might be an interesting avenue for future research.

The rest of the paper is organized as follows. In Section 2, we describe the
inventory model in detail and state the main scaling limit theorem. Section 3 is
devoted to computing the covariance matrix of the limiting Brownian motion. We
prove various technical estimates in Section 4 and 5, and finish the proof of the
main theorem in Section 6.

2. Model setup and the main theorem

We consider a last-in-first-out retailer with k types of products, to which we
refer as burger 1, . . . , burger k. To adapt the two-dimensional model introduced in
Sheffield (2016), we define an alphabet of symbols

Θ =
{

1 , 2 , . . . , k , 1 , 2 , . . . , k , F
}

which represent the k types of burgers, the corresponding k types of orders each
of which consumes the most recently produced burger of the same type, and the
“flexible” order which consumes the most recently produced burger regardless of
type in the remaining burger stack.

A word in the alphabet Θ is a concatenation of symbols in Θ that describes a
series of production or consumption activities at the retailer. For example, if W =
2 3 3 1 2 F , then the word W describes the following sequence of activities: a

burger 2 is produced, a burger 3 is produced, a burger 3 is ordered, a burger 1 is
produced, a burger 2 is ordered and the freshest burger is ordered, which is burger
1 in this case.

To describe the evolution of burger inventory mathematically, we consider the
collection G of (reduced) words in the alphabet Θ modulo the following relations

i i = i F = ∅ and i j = j i (2.1)

where 1 ≤ i, j ≤ k and i 6= j. Intuitively, the first relation means that an order i or
F consumes a preceding burger i , and the second means that we move an order
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one position to the left if it does not consume the immediately preceding burger.
For example,

W = 2 3 3 1 2 F = 2 1 2 F = 2 2 1 F = ∅,

where 3 consumes 3 , 2 consumes 2 and F consumes 1 . By the same argument
as in the proof of Sheffield (2016, Proposition 2.1), we see that G is a semigroup
with ∅ as the identity and concatenation as the binary operation.

Let X(n) be i.i.d. random variables indexed by Z (i.e. time), each of which takes
its value in Θ with respective probabilities{ 1

2k
,

1

2k
, . . . ,

1

2k
,

1− p
2k

,
1− p

2k
, . . . ,

1− p
2k

,
p

2

}
.

Let µ denote the corresponding probability measure on the space Ω of maps from
Z to Θ. In this paper, we follow the convention that probabilities and expectations
are with respect to µ unless otherwise mentioned. For m ≤ n, we write

X(m,n) := X(m)X(m+ 1) · · ·X(n)

where · means that a word is reduced modulo the relations (2.1). Then X(m,n)
describes the remaining orders and burgers (after all consumptions) between time
m and time n at the retailer.

If a burger is added at time m and consumed at time n, we define φ(m) = n and
φ(n) = m. Otherwise, if a burger at m has no corresponding order, then φ(m) =∞,
or if an order at n has no corresponding burger, then φ(n) = −∞. Proposition 2.2
in Sheffield (2016) remains valid in this k-burger setting:

Proposition 2.1. It is µ-almost sure that for every m ∈ Z, φ(m) is finite.

Since a slight modification of the original proof will work here, we only describe
the ideas. Let Ei be the event that every burger of type i is ultimately consumed.
It can be shown that the union of Ei’s has probability one, and since Ei’s are
translation-invariant, the zero-one law implies that each of them occurs almost
surely. A similar argument works for orders, so each X(m) has a correspondence,
which is the statement of Proposition 2.1.

Hence for each n ∈ Z, we can define a letter

Y (n) :=

{
X(n) X(n) 6= F ,

i X(n) = F , X(φ(n)) = i .

Namely, Y (n) is the same as X(n) except that when X(n) = F , Y (n) is the order
type corresponding to the burger it actually consumes. Moreover, we define the
semi-infinite burger stack X(−∞, n) to be the sequence of X(m) where m ≤ n
and φ(m) > n. It contains no orders almost surely since each order consumes an
earlier burger at a finite time due to Proposition 2.1. It is almost surely infinite,
because otherwise the number of burgers minus the number of orders in X(−∞, n)
is a simple random walk in n and will visit −1 at a finite time almost surely, but
an order added at or before that time will consume no burger which contradicts
Proposition 2.1.

Next, we give definitions of several important discrete processes that will be
shown to scale to Brownian motions.



952 C. Mao and T. Zhou

Definition 2.2. For a word W in the alphabet Θ, we define Ci(W ) to be the net
burger count of type i, i.e., the number of i minus the number of i . Also, we
define C(W ) to be the total burger count, i.e.,

C(W ) :=

k∑
i=1

Ci(W ).

If W has no F , then for 1 ≤ i 6= j ≤ k, we define Dij(W ) to be the net
discrepancy of burger i over burger j, i.e.,

Dij(W ) := Ci(W )− Cj(W ).

Definition 2.3. Given the infinite X(n) sequence, let Cin be the integer-valued

process defined by Ci0 = 0 and Cin − Cin−1 = Ci(Y (n)) for all n1. Let Cn :=
∑k
i=1 Cin

and Dijn := Cin − Cjn.

For any integer n, we define two vector-valued processes An and Ãn by

An := (D12
n ,D23

n , . . . ,Dk−1,kn , Cn) and Ãn := (C1n, C2n, . . . , Ckn).

We extend these definitions to real numbers by piecewise linear interpolation so

that t 7→ At and t 7→ Ãt are infinite continuous paths.

When n > 0, we have Cin = Ci(Y (1, n)); when n < 0, we have Cin = Ci(Y (n +
1, 0)); similarly for Cn and Dijn . As shorthand notation, we write

Ci(m) = Ci(Y (m)) and Ci(m,n) = Ci(Y (m,n))

for m ≤ n, and we let C(m),Dij(m), C(m,n) and Dij(m,n) be defined similarly.

Note that the two processes An and Ãn actually code the same information

about the evolution of the sequence Y (n). Specifically, if we view An and Ãn as

column vectors, then it follows from Definition 2.3 that An = MÃn where M is a
k × k invertible matrix defined by

Mij =


1 i = j, 1 ≤ i ≤ k − 1,

−1 i+ 1 = j, 1 ≤ i ≤ k − 1,

1 i = k,

0 otherwise.

It is more natural to describe the evolution of Y (1, n) by Ãn as its i-th coordinate
corresponds to the burger count of type i. However, An gives another interesting
perspective to view the stack Y (1, n). Consider the line L through (0, . . . , 0) and
(1, . . . , 1) in Rk. Since Cn is a simple random walk along L and is independent of
the other k − 1 coordinates of An, we may view An as the Cartesian product of a
one-dimensional simple random walk and an independent walk on the perpendicular
(k − 1)-dimensional hyperplane. The idea of separating the net burger count from
the net burger discrepancies is inherited from the two-dimensional case.

With the linear relation established between An and Ãn, we are ready to state
two equivalent versions of the main scaling limit theorem.

1In this work, we use subscripts n to index cumulated stochastic processes, such as Ci
n, Dij

n

and An, while we use bracketed n to index random variables at discrete time points, such as X(n),

Y (n) and Ci(n).
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Theorem 2.4 (Main theorem, version 1). As ε→ 0, the random variables εAt/ε2
converge in law (with respect to the L∞ metric on compact intervals) to

(B1
αt, B

2
t ),

where B1
t = (W 1

t , . . . ,W
k−1
t ) is a (k − 1)-dimensional Brownian motion with co-

variance

Cov(W i
t ,W

j
t ) =


t i = j,

− t
2 |i− j| = 1,

0 otherwise,

B2
t is a standard one-dimensional Brownian motion independent of B1

t and α :=
max{ 2k −

2p
k−1 , 0}.

Theorem 2.5 (Main theorem, version 2). As ε→ 0, the random variables εÃt/ε2
converge in law (with respect to the L∞ metric on compact intervals) to a k-
dimensional Brownian motion

B̃t = (V 1
t , . . . , V

k
t )

with covariance

Cov(V it , V
j
t ) =

{
( 1
k2 −

α
2k + α

2 )t i = j,

( 1
k2 −

α
2k )t i 6= j,

where α := max{ 2k −
2p
k−1 , 0}.

It can be verified that (B1
αt, B

2
t ) = MB̃t in distribution, so it is not hard to see

that the two theorems are indeed equivalent.
Theorem 2.4 is a direct generalization of Sheffield (2016, Theorem 2.5). We will

focus on proving this version in later sections. We noted that Cn is a simple random
walk independent of Dijn , so it scales to B2

t which is independent of B1
t as in the

theorem. Moreover, the value of α suggests that a phase transition happens at

p = 1 − 1
k , so that when p gets larger than this value, the process Ãn looks like a

1-dimensional brownian motion when viewed from a large scale). It will be further
explained in the next section.

To see that the limit in Theorem 2.5 is reasonable, we consider the special case

p = 0, i.e., there are no “flexible” orders. In this case, Ãn is a simple random walk
on Zk, so we expect the limit to be a standard k-dimensional Brownian motion.
Indeed, if p = 0, then α = 2/k and

Cov(V it , V
j
t ) =

{
1
k i = j,

0 i 6= j.

3. Computation of the covariance matrix and the critical value

In this section, we calculate the covariance matrix [Cov(Di,i+1
n ,Dj,j+1

n )]ij where
1 ≤ i, j ≤ k − 1. It determines the value of α, the critical value of p and the
covariance matrix of the limiting Brownian motion as in Theorem 2.4.



954 C. Mao and T. Zhou

3.1. First calculations. Following the argument in Sheffield (2016, Section 3.1),
we let J be the smallest positive integer for which the reduced word X(−J,−1)
contains exactly one burger (which is the rightmost burger in the semi-infinite
stack X(−∞,−1)). We use |W | to denote the length of a word W and let χ =
χ(p) := E[|X(−J,−1)|].

The orders in the reduced word X(−J,−1) are of types different from the one
burger in X(−J,−1). In particular, we have that

|Dij(−J,−1)| ≤ |X(−J,−1)| = −C(−J,−1) + 2. (3.1)

Since C(−n,−1) is a martingale in n, for a fixed n the optional stopping theorem
applied to the stopping time J ∧ n implies that

0 = E[C(−1,−1)] = E[C(−J,−1)1J≤n] + E[C(−n,−1)1J>n]. (3.2)

In the case J > n, C(−n,−1) ≤ 0, so E[C(−J,−1)1J≤n] ≥ 0. Letting n → ∞, we
see that E[C(−J,−1)] ≥ 0. On the other hand, E[C(−J,−1)] ≤ 1, so by (3.1),

χ = E[|X(−J,−1)|] ∈ [1, 2]. (3.3)

Note that χ = 2 if and only if E[C(−J,−1)] = 0. Therefore, as n→∞ in (3.2), we
deduce that

χ = 2 if and only if lim
n→∞

E[C(−n,−1)1J>n] = 0. (3.4)

By (3.1), (3.3) and symmetry, E[Dij(−J,−1)] exists and equals zero. Moreover,
since |Dij(−n,−1)| ≤ −C(−n,−1) for n < J , by (3.4),

χ = 2 implies that lim
n→∞

E[|Dij(−n,−1)|1J>n] = 0. (3.5)

It turns out that there is a dichotomy between χ = 2 and 1 ≤ χ < 2, which
corresponds exactly to the phase transition at p = 1−1/k. In this section, we focus
on the case χ = 2 and show that p ≤ 1− 1/k. We leave the case 1 ≤ χ < 2 to the
following sections.

3.2. Computation of E[Dij(0)Dlm(−J,−1)]. In preparation for computing the co-
variance Cov(Dijn ,Dlmn ) = E[Dijn Dlmn ] for any i 6= j and l 6= m, we first calculate

E[Dij(0)Dlm(−J,−1)]. Note that on the event X(0) 6= F , Dij(0) is determined by
X(0) independently of Dlm(−J,−1), so by symmetry between i and j we have that

E[Dij(0)Dlm(−J,−1) |X(0) 6= F ] = 0.

In the sequel, we split the analysis on the event X(0) = F into three cases.
First, suppose that the indices i, j, l and m are distinct. On the event that

X(0) = F and Y (0) 6= i or j , we have Dij(0) = 0, so

E[Dij(0)Dlm(−J,−1) |X(0) = F , Y (0) 6= i or j ] = 0.

On the event that X(0) = F and Y (0) = i or j , we have that Dij(0) = −1 or 1,
and thus by symmetry between l and m,

E[Dij(0)Dlm(−J,−1) |X(0) = F , Y (0) = i or j ] = 0.

Therefore, we conclude that

E[Dij(0)Dlm(−J,−1)] = 0. (3.6)

Next, we evaluate E[Dij(0)Dij(−J,−1)] for i 6= j. On the event X(0) = F , we
have φ(0) = −J . Suppose that Y (0) = i . Then for any l 6= i, Dil(0) = −1, and for
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any l,m 6= i, Dlm(0) = 0. Because X(−J,−1) contains a burger i and (possibly)
orders of types other than i, it follows that

|X(−J,−1)|+ k − 2 =
∑
l 6=i

Dil(−J,−1)

=−
∑
l 6=i

Dil(0)Dil(−J,−1) = −1

2

∑
l 6=m

Dlm(0)Dlm(−J,−1),

where in the last sum indices l and m range over {1, . . . , k}. The above equation

was proved on the event X(0) = F and Y (0) = i , yet the quantity does not
depend on i. Hence taking the expectation yields that

χ+ k − 2 = E
[
|X(−J,−1)|

∣∣X(0) = F
]

+ k − 2

= −1

2

∑
l 6=m

E[Dlm(0)Dlm(−J,−1) |X(0) = F ]

= −k(k − 1)

2
E[Dlm(0)Dlm(−J,−1) |X(0) = F ], (3.7)

where the first equality holds because |X(−J,−1)| is independent of X(0). Together

with the case X(0) 6= F , the equation (3.7) (with dummy indices (l,m) replaced
by (i, j)) implies that for any i 6= j,

E[Dij(0)Dij(−J,−1)] = −p(χ+ k − 2)

k(k − 1)
, (3.8)

since X(0) = F with probability p/2.
It remains to compute E[Dij(0)Dil(−J,−1)] for distinct i, j and l. On the event

X(0) = F and Y (0) 6= i or j , we have Dij(0) = 0, so E[Dij(0)Dil(−J,−1)] = 0.

On the event X(0) = F and Y (0) = j , we have that Dij(0) = 1 and thus

E[Dij(0)Dil(−J,−1)] = 0. Finally, on the event X(0) = F and Y (0) = i , we ob-
serve that Dij(0) = Dil(0) = −1, so E[Dij(0)Dil(−J,−1)] = E[Dil(0)Dil(−J,−1)].
Summarizing the cases above, we obtain that

E[Dij(0)Dil(−J,−1)] = E[Dil(0)Dil(−J,−1)1
X(0)= F ,Y (0)= i

]. (3.9)

Since Dil(0)Dil(−J,−1) = Dli(0)Dli(−J,−1) and Dil(0) = 0 if Y (0) 6= i or l ,

E[Dil(0)Dil(−J,−1)1
X(0)= F ,Y (0)= i

] = E[Dil(0)Dil(−J,−1)1
X(0)= F ,Y (0)= l

]

=
1

2
E[Dil(0)Dil(−J,−1)1

X(0)= F
]

=
1

2
E[Dil(0)Dil(−J,−1)].

Together with (3.9) and (3.8), this implies that

E[Dij(0)Dil(−J,−1)] =
1

2
E[Dij(0)Dij(−J,−1)] = −p(χ+ k − 2)

2k(k − 1)
. (3.10)

3.3. The covariance matrix and the phase transition. Conditional on the event J <
n, Dlm(−n,−J−1) is independent of Dij(0) because even if X(0) were F it would
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consume a burger after time −J . Therefore we have that E[Dij(0)Dlm(−n,−J −
1)1J<n] = 0 and it is not hard to see that

E[Dij(0)Dlm(−n,−1)] = E[Dij(0)Dlm(−J,−1)1J≤n] +E[Dij(0)Dlm(−n,−1)1J>n]
(3.11)

where the rightmost term tends to zero as n → ∞ if χ = 2 because of (3.5).
Therefore, summarizing (3.6), (3.8) and (3.10), we see that for i 6= j, l 6= m,

χ = 2 implies lim
n→∞

E[Dij(0)Dlm(−n,−1)] =


− p
k−1 i = l, j = m,

− p
2(k−1) i = l, j 6= m,

0 i, j, l,m distinct.

(3.12)

Moreover, Dij(0)2 = 1 if Y (0) is of type i or j, and Dij(0)Dil(0) = 1 if Y (0) is
of type i, so

E[Dij(0)Dlm(0)] =


2
k i = l, j = m,
1
k i = l, j 6= m,

0 i, j, l,m distinct.

(3.13)

Now we evaluate Cov(Dijn ,Dlmn ) = E[Dijn Dlmn ]. Using

Dijr Dlmr = Dij(r)Dlm(r) +Dij(r)Dlmr−1 +Dijr−1Dlm(r) +Dijr−1Dlmr−1
recursively for 2 ≤ r ≤ n and applying the translation invariance of the law of Ym,
we deduce that when χ = 2,

Cov(Dijn ,Dlmn )

=

n∑
r=1

E[Dij(r)Dlm(r)] +

n∑
r=2

E[Dij(r)Dlmr−1 +Dijr−1Dlm(r)]

=nE[Dij(0)Dlm(0)] +

n∑
r=2

(
E[Dij(0)Dlm(1− r,−1)] + E[Dlm(0)Dij(1− r,−1)]

)

=


2n
k −

2np
k−1 + o(n) i = l, j = m,

n
k −

np
k−1 + o(n) i = l, j 6= m,

o(n) i, j, l,m distinct,

(3.14)

where the last equation follows from (3.12) and (3.13).
For i = l and j = m, the variance is nonnegative, so

χ = 2 implies p ≤ 1− 1

k
. (3.15)

We remark that (3.14) and (3.15) suggest that the phase transition happens at
the critical value p = 1− 1

k . Let α = max{ 2k −
2p
k−1 , 0}. When χ = 2 and p ≤ 1− 1

k ,

it follows immediately from (3.14) that

Cov(Di,i+1
n ,Dj,j+1

n ) =


αn+ o(n) i = j,

−αn2 + o(n) |i− j| = 1,

o(n) otherwise.

(3.16)

This explains why the limiting Brownian motion should have the covariance matrix
as in Theorem 2.4. In the following sections, we will take care of the case χ < 2
and prove that the convergence indeed happens.
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4. Excursion words revisited

This section generalizes the discussion of excursion words in Sheffield (2016,
Section 3.3) to the k-burger case. The proof structure and most arguments are
largely based on those in the original paper. Since adaptation is required throughout
the proof, we include most details for completeness.

First, we quote two results (Sheffield, 2016, Lemma 3.3 and 3.4) directly:

Lemma 4.1. Let Z1, Z2, Z3, . . . be i.i.d. random variables on some measure space
and ψ a measurable function on that space such that E[ψ(Z1)] < ∞. Let T be

stopping time of the process Z1, Z2, . . . and E[T ] <∞. Then E[
∑T
j=1 ψ(Zj)] <∞.

Lemma 4.2. Let Z1, Z2, . . . be i.i.d. random variables on some measure space and
let Zn be a non-negative integer-valued process adapted to the filtration of the Zn
(i.e., each Zn is a function of Z1, Z2, . . . , Zn) that has the following properties:

(1) Bounded initial expectation: E[Z1] <∞.
(2) Positive chance to hit zero when close to zero: For each k > 0 there exists

a positive chance pk such that conditioned on any choice of Z1, Z2, . . . , Zn
for which Zn = k, the conditional probability that Zn+1 = 0 is at least pk.

(3) Uniformly negative drift when far from zero: There exist positive constants
C and c such that if we condition on any choice of Z1, Z2, . . . , Zn for which
Zn ≥ C, the conditional expectation of Zn+1 −Zn is less than −c.

(4) Bounded expectation when near zero: There further exists a constant b such
that if we condition on any choice of Z1, Z2, . . . , Zn for which Zn < C, then
the conditional expectation of Zn+1 is less than b.

Then E[min{n : Zn = 0}] <∞.

Let E denote the reduced word X(1,K−1) where K is the smallest integer such
that CK < 0, and call E an excursion word. Next we introduce a few quantities
representing successive excursion words and their boundaries.

Definition 4.3. Let V0 := X(0) and K0 := 0. For any positive integer i, let Vi
be the symbol corresponding to the i-th record minimum of Cn, counting forward
from zero. More formally, with Ki−1 determined, we let Vi := X(Ki) where Ki

is the smallest integer larger than Ki−1 such that CKi
< CKi−1

. Similarly, for any
negative integer i, let Vi be the −i-th record minimum of Cn, counting backward
from zero. Moreover, let Ei be the reduced word in between Vi−1 and Vi, i.e.,

Ei := X(Ki−1 + 1) · · ·X(Ki − 1).

Note that in particular K = K1 and E = E1. It is easy to check that E almost
surely contains no F symbols and there are always as many burgers as orders in
the word E. In addition, Ei’s and E are i.i.d. excursion words. The following
lemma parallel to Sheffield (2016, Lemma 3.5) also holds:

Lemma 4.4. If p is such that χ < 2, then the expected word length E[|E|] is finite,

and hence the expected number of symbols in E of each type in { 1 , . . . , k , 1 ,

. . . , k } is E[|E|]/(2k).

Since E is balanced between burgers and orders, the second statement follows
from the first immediately by symmetry. For the first statement, it suffices to prove
that the expected number of burgers in E−1 is finite, since E and E−1 have the same
distribution. The original proof still works, so we omit it. The idea is to introduce
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a sequence of record times similar to the quantity J defined in Section 3.1, and
use them to construct a martingale running backward in time. Then applying the
optional stopping theorem with an appropriate choice of the stopping time leads to
the conclusion.

Next, we consider the following sequences:

(1) m-th empty order stack : let Om be the m-th smallest value of j ≥ 0 with
the property that X(−j, 0) has an empty order stack.

(2) m-th empty burger stack : Bm is the m-th smallest value of j ≥ 1 with the
property that X(1, j) has an empty burger stack.

(3) m-th left record minimum: Lm = L0
m is the smallest value of j ≥ 0 such

that C(−j, 0) = m. Thus, X(−Lm, 0) = V−mE−m . . . V−1E−1.
(4) m-th left minimum with no orders of type 1, 2, . . . , i: for 1 ≤ i ≤ k, Lim is

the m-th smallest value of j ≥ 0 with the property that j = Lm′ for some
m′ and X(−j, 0) has no orders of type 1, 2, . . . , i.

We observe that all these record sequences have the property that the words
between two consecutive records are i.i.d.. Moreover, for 1 ≤ i ≤ k, each Lim is equal
to Li−1m′ for some m′ by definition. Thus we can write each X(−Lim,−Lim−1− 1) as

a product of consecutive words of the form X(−Li−1m′ ,−L
i−1
m′−1 − 1). We have the

following lemma:

Lemma 4.5. Consider the following statements:

(1) E[|E|] <∞;
(2) E[|X(−Li1, 0)|] <∞ where 0 ≤ i ≤ k;
(3) E[|X(−O1, 0)|] <∞;
(4) E[|X(1, B1)|] <∞.

We have that (1), (2) and (3) are equivalent, and (4) implies (1).

Proof : (1) implies (2): Note that for i = 0, L0
1 = L1 and X(−L0

1, 0) = V−1E−1.
Since E−1 and E have the same law, (2) follows immediate from (1) when i = 0.
To prove (2) for 1 ≤ i ≤ k, we use induction.

Assume (2) holds for i − 1. Let H(m) be the number of orders of type i in
X(−Li−1m , 0). If we can apply Lemma 4.2 with Zm = X(−Li−1m ,−Li−1m−1 − 1) and
Zm = H(m), then E[min{m : H(m) = 0}] < ∞. That means the expected
number of X(−Li−1m ,−Li−1m−1 − 1) concatenated to produce X(−Li1, 0) is finite.

Since X(−Li−1m ,−Li−1m−1 − 1) are identically distributed as X(−Li−11 , 0) which has

finite expected length by inductive hypothesis, Lemma 4.1 implies that X(−Li1, 0)
also has finite expected length.

Therefore it remains to check the four assumptions of Lemma 4.2. It is easy to
see that Assumption (1), (2) and (4) follow from the construction of the sequence
and the inductive hypothesis, so we focus on the negative drift assumption. For
any m > 1,

H(m) = max{H(m− 1)− hm, 0}+ om,

where hm is the number of burger i in X(−Li−1m ,−Li−1m−1−1) and om is the number
of order i in it. The expected number of burger i equals the expected number of
order i in E−m by Lemma 4.4, while the expected number of burger i in V−m is
1/k, which has no orders. Hence E[hm] ≥ E[om] + 1/k since X(−Li−1m ,−Li−1m−1− 1)

is a concatenation of at least one V−m′E−m′ . Note that

H(m)−H(m− 1) = om − hm + (hm −H(m− 1))1{H(m−1)−hm<0}
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and E[(hm− j)1hm>j ] ≤ E[hm1hm>j ]→ 0 as j →∞ by assumption. Thus there is
C > 0 such that E[H(m)−H(m− 1) |H(m− 1) = j] ≤ −1/(2k) for j > C, so the
negative drift assumption is verified.

(2) implies (3): By definition, X(−O1, 0) corresponds to the first time that
the stack contains only burgers, while X(−Lk1 , 0) corresponds to the first time
that the stack contains only burgers and increases in length, it follows easily that
|X(−O1, 0)| ≤ |X(−Lk1 , 0)|, so the expectation is finite.

(3) implies (1): The number of burgers in X(−O1, 0) is at least the number of
burgers in E−1, which accounts for half of its length, so E[|E−1|] < ∞. Thus the
same holds for E.

(4) implies (1): Analogous to the previous implication. �

The next lemma on the asymptotic fractions of burgers and orders is key to the
proof of the main theorem.

Lemma 4.6. If E[|E|] <∞, then as n→∞ the fraction of i symbols among the
rightmost n elements of X(−∞, 0) tends to 1/k almost surely for any i. Also, as

n→∞ the fraction of i or F symbols among the leftmost n elements of X(1,∞)
tends to some positive constant almost surely.

On the other hand if E[|E|] = ∞, then as n → ∞ the fraction of F symbols
among the leftmost n elements of X(1,∞) tends to zero almost surely.

Proof : If E[|E|] < ∞, then the words X(−Om,−Om−1 − 1) are i.i.d. with finite
expectations by Lemma 4.5. Hence X(−∞, 0) is a concatenation of i.i.d. words
X(−Om,−Om−1 − 1). The law of large numbers implies that the number of each
type of burgers in X(−Om, 0) is given by Cm+o(m) almost surely for some constant
C. By symmetry, these constants are all equal to E[|X(−O1, 0)|]/k. The first
statement then follows, and the second is proved analogously.

For the last statement, we note that X(1,∞) is an i.i.d. concatenation of burger-

free words X(Bm−1+1, Bm), and an F symbol can be added only when the burger

stack is empty. Hence the number of F symbols in X(1, Bm) grows like a constant
times m. If E[|E|] = ∞, Lemma 4.5 implies that E[|X(1, B1)|] = ∞. Thus the
number of orders in X(1, Bm) grows faster than any constant multiple of m almost

surely, so the fraction of F symbols tends to zero almost surely. �

5. Bounded increments and tail estimates

We fix a semi-infinite stack S0 = X(−∞, 0) and let X(1), X(2), . . . be chosen
according to µ. An analogy of Sheffield (2016, Lemma 3.10) still holds in this case,
but it requires a different proof as we will see.

Lemma 5.1. For N > 0, E[DijN |X(l) : 1 ≤ l ≤ n] and E[DijN |X(l) : 1 ≤ l ≤ n, Cl :
l ≤ N ] are both martingales in n with increments of magnitude at most two.

Instead of monotonicity properties of stacks used in Sheffield (2016) which do not
generalize to higher dimensions, we introduce the notion of neighbor stacks which
allows us to prove a similar result.

Definition 5.2. Two semi-infinite stacks S0 and S1 are called neighbors if S1 can
be achieved from S0 by removing an arbitrary burger from S0, or vice versa.
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For example, S0 = · · · 2 1 1 3 2 2 3 and S1 = · · · 2 1 1 2 2 3 are
neighbors, because one can get S1 from S0 by removing the fourth burger from the
right.

Lemma 5.3. If S0 and S1 are neighbors, then for any word W , S0W and S1W
are still neighbors.

Proof : Assume that we get S1 from S0 by deleting a j . By induction, we may
also assume that W contains a single element.

If W is a burger, then for σ = 1, 2, SσW is achieved by adding W onto Sσ.
If W = F , then SσW is achieved by deleting the rightmost burger from Sσ. If
W = i , then SσW is achieved by deleting the rightmost i from Sσ. Hence in
these three cases, it is easily seen that the resulting two stacks are still neighbors.

If W = j and there is a j in S0 to the right of the j which we deleted

to get S1, then SσW is achieved by deleting the rightmost j from Sσ. Hence

the resulting two stacks are neighbors. Otherwise, the j deleted to get S1 is the

rightmost j in S0, so S0W = S1. Hence S0W and S1W are neighbors. �

Proof of Lemma 5.1: Since the two conditional expectations are clearly martingales
in n, we only need to prove that the increments are bounded. To this end, it suffices
to show that changing X(l) for a single 1 ≤ l ≤ N only changes DijN by at most
two.

Suppose that X(l) is changed to X(l)′. Here we make the convention that a
product of words is always reduced. It is easy to see that X(−∞, l) and X(−∞, l−
1)X(l)′ have a common neighbor X(−∞, l − 1). Lemma 5.3 then implies that
X(−∞, N) and X(−∞, l−1)X(l)′X(l+1, N) have a common neighbor X(−∞, l−
1)X(l + 1, N). Since the ij-discrepancy differs by at most one between neighbors,

we see that DijN changes by at most two if we change a single X(l). �

The following tail estimates are adapted from Sheffield (2016, Lemma 3.12 and
3.13).

Lemma 5.4. Fix any p ∈ [0, 1] and a semi-infinite stack S0 = X(−∞, 0). There
exist positive constants C1 and C2 such that for any choice of S0, a > 0, n > 1 and
any i, j,

P( max
1≤l≤n

|Cl| > a
√
n) ≤ C1e

−C2a and P( max
1≤l≤n

|Dijl | > a
√
n) ≤ C1e

−C2a.

The original proof carries over almost verbatim. The idea is that Lemma 5.1
gives bounded increments of the martingales, so we can apply a pre-established
tail estimate of martingales with bounded increments. We remark that it is an
important technique to estimate the tails of martingales with bounded jumps. See
Dembo (1996) for more interesting results.

Lemma 5.5. Fix any p ∈ [0, 1]. There exist positive constants C1 and C2 such
that for any a ≥ k log k and n > 1,

P(|X(1, n)| > a
√
n) ≤ C1e

−C2a/k.

Proof : Let the semi-infinite stack S0 be rotating among 1 , . . . , k . According to

Lemma 5.4, we have the following control on the fluctuations of Cl and Dijl :

max
1≤l≤n

{
|Cl| ∨ max

1≤i,j≤k
|Dijl |

}
≤ a
√
n/(4k − 1)
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with probability at least 1−C1k
2e−2C2a/k where C1 and C2 are positive constants.

Note that C1k
2e−2C2a/k ≤ C1e

−C2a/k when a ≥ k log k and C2 ≥ 2.
Conditional on this high probability event, we claim that no burger in S0 except

the rightmost a
√
n(2k − 1)/(4k − 1) burgers will be consumed in the first n steps.

Assume the opposite. If the first such burger is consumed at step l and is an m ,

then at this moment all burgers to the right are of types different from m . Since

Cl ≥ −a
√
n/(4k − 1), there are at least a

√
n(2k − 2)/(4k − 1) burgers above the

m . Among them there are at least 2a
√
n/(4k − 1) burgers of some type m′ 6= m.

Hence |Dmm′l | > a
√
n/(4k − 1), which is a contradiction.

It follows from the claim that there are at most a
√
n(2k − 1)/(4k − 1) orders in

X(1, n). Since Cl fluctuates by at most a
√
n/(4k−1), there are at most 2ka

√
n/(4k−

1) burgers in X(1, n). Therefore, |X(1, n)| ≤ a
√
n. �

6. Proof of the main theorem

The proof parallels that in Sheffield (2016, Section 3.5 and 3.6).

6.1. The case χ < 2. In this subsection, we will resolve the remaining case from
Section 3, i.e., the case χ < 2. We will use the results from Section 4 and 5 to
prove that when χ < 2, the scaling limit of An on a compact interval has the law
of a one-dimensional Brownian motion. This means that the total burger count
Cn dominates. As we remarked after the statement of Theorem 2.4, Cn is a simple
random walk and thus scales to a Brownian motion, so it suffices to show that Dijn
scales to 0 in law on compact intervals.

In addition to the statement above, we will show that χ < 2 implies that p >
1 − 1/k. Together with (3.15), this gives the dichotomy mentioned in Section 3.1,
namely,

χ < 2 ⇐⇒ p > 1− 1/k and χ = 2 ⇐⇒ p ≤ 1− 1/k. (6.1)

Thus this subsection proves Theorem 2.4 in the case p > 1 − 1/k. We divide the
proof into three lemmas.

Lemma 6.1. If E[|E|] < ∞ (which holds when χ < 2), then Var[Dijn ] = o(n) for
all pairs (i, j).

Proof : First, we prove that the random variables n−1/2Dijn converge to 0 in prob-
ability. To do this, we consider the following events:

(1) |X(1, n)| < a
√
n;

(2) The top 2ka
√
n burgers in stack X(−∞, 0) are well balanced across all

burger types with error at most ε
√
n, i.e., the number of burgers of any

type is between (2a− ε)
√
n and (2a+ ε)

√
n;

(3) The top n+2ka
√
n burgers in the stack X(−∞, n) are well balanced across

all burger types with error at most ε
√
n.

We assert that if all three events happen, then |n−1/2Dijn | < 4ε. First, (1) and (2)
together imply that all the orders in X(1, n) are fulfilled by the top 2ka

√
n burgers

in X(−∞, 0), so the burgers below height −2ka
√
n in X(−∞, 0) are not affected

by X(1, n). Hence the stacks X(−∞, 0) and X(−∞, n) are identical below height
−2ka

√
n. On the other hand, |X(1, n)| < a

√
n implies that |Cn| < a

√
n, so the

number of burgers in X(−∞, n) above height −2ka
√
n is at least (2k− 1)a

√
n. By
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(2) and (3), the discrepancies between pairs of burger types above height −2ka
√
n

are less than 2ε
√
n for both stacks, so |Dijn | is at most 4ε

√
n, as desired.

Next, we observe that all three events happen with arbitrarily high probability
if we choose a and n to be sufficiently large. For any fixed ε > 0, we first choose
a (depending on k) large enough so that (1) happens with high probability using
Lemma 5.5. Then by Lemma 4.6, we choose n large enough so that (2) and (3)
happen with high probability. Thus we conclude that limn→∞ P[|n−1/2Dijn | > ε] = 0
for all ε > 0, i.e., n−1/2Dijn converge to 0 in probability.

It remains to check that Var[n−1/2Dijn ] = E[n−1(Dijn )2] tends to 0 as n → ∞.
This follows from the fact that n−1(Dijn )2 tends to 0 in probability together with
the uniform bounds on the tails given by Lemma 5.4. �

The following two lemmas are proved in exactly the same way as Sheffield (2016,
Lemma 3.15 and 3.16), so we omit the proofs.

Lemma 6.2. If Var[Dijn ] = o(n), then n−1/2 max{|Dijl | : 1 ≤ l ≤ nt} converges to
zero in probability as n→∞ for any fixed t > 0.

The trick of the proof is to first divide the time interval into small subintervals,
then observe the convergence at the end points, and finally use approximation to
complete the proof. Note that by Lemma 6.2, we immediately obtain that An
converges in law to a one-dimensional Brownian motion on compact intervals.

Lemma 6.3. If χ < 2 and Var[Dijn ] = o(n), then

lim
n→∞

E[|Dij(−n,−1)|1J>n] = 0.

Interested readers may refer to the proof in the original paper which involves
introducing new measures via Radon-Nikodym derivatives and recentering the se-
quence. The original proof also uses the fact that one-dimensional random walk
conditioned to stay positive scales to a three-dimensional Bessel process, which is
explained in Pitman (1975).

Letting n→∞ in (3.11) and using Lemma 6.3 and (3.8), we deduce that

lim
n→∞

E[Dij(0)Dlm(−n,−1)] = E[Dij(0)Dlm(−J,−1)] = −p(χ+ k − 2)

k(k − 1)
.

Following the same computation as in (3.14), we obtain that

Var(Dijn ) =
2n

k
− 2np(χ+ k − 2)

k(k − 1)
+ o(n).

By Lemma 6.1, we must have 2n
k = 2np(χ+k−2)

k(k−1) , i.e., p = k−1
χ+k−2 . Hence χ < 2

implies that p > 1− 1/k, which gives us the promised dichotomy (6.1).

6.2. The case χ = 2. It finally remains to prove the main theorem in the case
χ = 2. First, if p = 1 − 1/k, then Var[Dijn ] = o(n) by (3.14), so the convergence
follows from our argument in Section 6.1.

Next, we may assume p < 1−1/k, so that Var[Dijn ] 6= o(n). By the contrapositive
of Lemma 6.1, we must have E[|E|] = ∞. Then we can apply the second part of

Lemma 4.6, which asserts that the number of F symbols in X(1, n) is small relative
to the total number of orders in X(1, n) as n gets large. To be more precise, the

number of F in X(1, btnc) is o(
√
n) with probability tending to one as n → ∞
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by Lemma 4.6 and Lemma 5.5. Therefore, for t1 + t2 = t3, the laws of Abt1nc and

Abt2nc add to the law of Ab(t1+t2)nc up to an error of o(
√
n) with high probability.

On the other hand, since the variances of n−1/2Atn converge to constants as
n → ∞ for any fixed t, the random variables n−1/2Atn converge subsequentially
in law to a limit. Moreover, if we choose a finite collection of t values, namely
0 < t1 < t2 < · · · < tm <∞, the joint law of(

n−1/2Abt1nc, n
−1/2Abt2nc, . . . , n

−1/2Abtmnc
)

also converges subsequentially to a limiting law.
Now we combine the two observations above. We have that the law of n−1/2Abtnc

is equal to the law of the sum of l independent copies of n−1/2Abtn/lc plus a term

which is o(1) with high probability (since there is a multiplicative factor n−1/2).
Hence, the subsequential weak limit of n−1/2Abtnc must equal the sum of l i.i.d.
random variables. In particular, since l is arbitrary, the limiting law has to be
infinitely divisible. Note that the process n−1/2Abtnc is almost surely continuous in
t, so we conclude that the subsequential limit discussed above has to be a Gaussian
with mean zero. We refer to Bertoin (1996) for more background on infinitely
divisible processes, Lévy processes and Gaussian processes.

The covariance matrix of n−1/2An is already given by our computation in Sec-
tion 3, and Lemma 5.4 guarantees that n−1/2Abtnc are tight, so the subsequential
limit has the correct covariance matrix. We conclude that the limit indeed has the
Gaussian distribution given in Theorem 2.4. Moreover, our argument implies that
any subsequence of n−1/2Atn has a further subsequence converging in law to this
Gaussian distribution, so the whole sequence converges to this law.

The same is true if we choose a finite collection of ti’s, so the finite-dimensional
joint law of (

n−1/2Abt1nc, n
−1/2Abt2nc, . . . , n

−1/2Abtmnc
)

converges to a limiting law, which is exactly the law of (Wt1 ,Wt2 , . . . ,Wtm), where
Wt is the k-dimensional Brownian motion (B1

αt, B
2
t ) described in Theorem 2.4.

The transition from a discrete collection of ti’s to a compact interval follows
similarly as in the proof of Lemma 6.2. As the maximum gap between ti’s gets
smaller, the probability that (the norm of) the fluctuation in some interval [ti, ti+1]
exceeds ε tends to zero as n → ∞ for both n−1/2Abtnc and Wt where t ∈ [0, tm].
Hence the two processes are uniformly close on the interval [0, tm] with probability
tending to one as n→∞. Therefore, Theorem 2.4 is fully proved.
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