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Abstract. We study the free energy and the ground state energy for the directed
polymer in random environment. The polymer is allowed to make unbounded jumps
and the environment is given by i.i.d. Bernoulli variables. Our goal is to derive
concentrations for the ground state energy of polymers at zero temperature and
the free energy at any temperature. To do this, we control the maximum jump of
any polymer nearly minimizing energy and guarantee that it is not too large with
high probability.

1. Introduction

We discuss the models of directed polymer which have unbounded jumps that
were introduced in Comets et al. (2015). See Comets et al. (2015) for the back-
ground and related works. That paper exhibits the following three results: (i) The
continuity of the free energy with respect to inverse temperature and the appearance
probability of obstacles; (ii) The asymptotic of the free energy as the appearance
probability of obstacles goes to 1; (iii) The continuity of the time constant of First
Passage Percolation (FPP) related to the model. In this paper, we show concen-
tration bounds for the ground state energy, which is nothing but the minimum
passage time, and the free energy. As applications, we derive the so-called “rate of
convergence” results and, based on them, we are able to remove the restriction left
in Comets et al. (2015) on a parameter in (i) and also give an alternative proof of
(iii).

In fact, a concentration bound for the lower tail for the FPP is shown in Propo-
sition 3.1 of Comets et al. (2015). However the upper tail is significantly more
difficult as we need to control the maximum jump of the optimal path. Although
such a geometric property of the minimizing path is usually hard to prove, in this
paper, we succeed in controlling jumps not only of the optimal path but also of
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low energy paths in the directed polymer model. As a result, we can show the con-
centration for the minimum passage time and the free energy. The bound on the
maximum jump itself is of independent interest, see Corollary 2.7 for the precise
statement.

Let us briefly explain the motivation of Comets et al. (2015) and this work. There
has been revived interest on the number of open paths in oriented percolation,
e.g. Fukushima and Yoshida (2012) and Garet et al. (2017). It can be regarded
as a zero temperature limit of the directed polymer in random environment and
hence the free energy, which corresponds to the growth rate of the number of open
paths, is expected to be continuous at zero temperature. Unfortunately, there
seems to be few techniques developed to study the zero temperature limit in this
type of models. In Comets et al. (2015), we introduced a toy model where the
polymer is allowed to make unbounded jumps and established the continuity at
zero temperature by a combinatorial argument. This paper proposes alternative
arguments for the continuity based on the concentration estimates.

1.1. Setting of models. Let ({Xn}n∈N∪{0}, P ) be the random walk on Z
d starting

from 0 and with the transition probability

P (Xn+1 = z|Xn = y) = fα(|y − z|1),

where |x|1 :=
∑d

i=1 |xi| for x ∈ Z
d and fα : N ∪ {0} → R is a function of the form

fα(k) = c1 exp{−c2k
α}, (1.1)

where α, c2 > 0 and c1 is a positive constant determined as to be
∑

y∈Zd fα(|y|1) = 1

(see Remark 1.9 for generalizations). The random environment is modelled by
independent and identically distributed Bernoulli random variables
({η(j, x)}(j,x)∈N∪{0}×Zd , Q) with parameter p:

Q(η(0, 0) = 1) = p ∈ (0, 1).

We introduce the Hamiltonian

Hη
n(X) =

n
∑

j=1

η(j,Xj),

and define the partition functions by

Zη,β
n = P [exp{βHη

n}] for β ∈ R and Zη,−∞
n = P (Hη

n = 0),

where P [·] denotes the expectation with respect to P . Note that Zη,−∞
n is positive

for Q-almost every η, since the random walk has unbounded jumps.
An important quantity in this model is the so-called free energy defined by

ϕ(p, β) = lim
n→∞

1

n
logZη,β

n

= lim
n→∞

1

n
Q[logZη,β

n ]

(1.2)

Q-almost surely, whose existence can be shown by using the subadditive ergodic
theorem. In Comets et al. (2015), the continuity property and some asymptotic
behavior of the free energy were studied.
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Next, we introduce the FPP models related to this directed polymer model. Let
us define a point process representing the sites where η takes value zero by

ωp =
∑

(k,x)∈N×Zd

(1− η(k, x))δ(k,spx), (1.3)

with the scaling factor sp = (1 − p)1/d. This scaling is natural since ωp converges
as p ↑ 1 to the Poisson point process ω1 on N×R

d whose intensity is the product of
the counting measure and the Lebesgue measure. With some abuse of notation we
will frequently identify ωp, and more generally any point measure, with its support.
Given a realization of ωp, we define the minimum passage time from 0 to n by

Tn(ωp) = min

{

n
∑

k=1

|xk−1 − xk|
α
1 : x0 = 0 and {(k, xk)}

n
k=1 ⊂ ωp

}

. (1.4)

This is the directed version of Howard-Newman’s Euclidean FPP model in Howard
and Newman (2001). Now, a direct application of the subadditive ergodic theorem
shows that the limit

µp = lim
n→∞

1

n
Tn(ωp) = lim

n→∞

1

n
Q[Tn(ωp)] (1.5)

exists Q-almost surely. The limit µp is non–random and called the time constant.
Observe also that definition (1.4) makes perfect sense when p = 1, yielding a limit
µ1 in (1.5). It is again shown in Comets et al. (2015) that µp is continuous as p ↑ 1.

This FPP is related to the ground state at β = −∞ of the directed polymer
introduced above. Namely,

sup{P (Xi = xi for 1 ≤ i ≤ n) : xi ∈ Z
d, η(i, xi) = 0} = cn1 exp{−c2s

−α
p Tn(ωp)}.

Furthermore, it is shown in Comets et al. (2015) that as p ↑ 1, the ground state
gives dominant contribution to the free energy:

ϕ(p,−∞) ∼ −c2µ1(1 − p)−α/d.

Remark 1.1. It is standard to show the existence of the free energy and the time
constant by the subadditive ergodic theorem. However, it prevents us from getting
more information about them, such as the continuity and the rate of convergence.
In this paper, we will use a method of concentration of measures to get the rate of
convergence in (1.2) and (1.5) and derive the continuity results as a corollary.

1.2. Main results. First, we shall present the results for our FPP. The first result
is the concentration of the minimum passage time around the mean.

Theorem 1.2. For any δ > 0 there exist positive constants C1,C2, and λ ∈ (0, 1]
which are independent of p and n such that for any n ∈ N,

Q(|Tn(ωp)−Q[Tn(ωp)]| > n
1
2+δ) < C1 exp{−C2n

λ}. (1.6)

The next result is about the rate of convergence. It implies that the fluctuation
exponent (see Krug and Spohn, 1991) is 1

2 or less if exists.

Theorem 1.3. For any χ > 1/2, there exists positive constant C1 which is inde-
pendent of p such that for any n ∈ N,

|nµp −Q[Tn(ωp)]| < C1n
χ. (1.7)
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Combining (1.6) and (1.7), we have that for any χ > 1/2 there exist positive
constants C0, C1, C2, λ which are independent of p such that for any n ∈ N,

Q(|Tn(ωp)− nµp| > 2C0n
χ) < C1 exp{−C2n

λ}. (1.8)

Corollary 1.4. µp is continuous in p ∈ [0, 1].

Corollary 1 is a slight extension of Theorem 1.5 in Comets et al. (2015) where
the continuity is proved only at p = 1.

Next, we move on to the results for the directed polymer model.

Theorem 1.5. For any q ∈ [0, 1), δ > 0 and β0 ∈ R, there exist positive constants
C1, C2, and λ ∈ (0, 1) such that for any p ∈ [0, q), β ∈ [−∞, β0] and n ∈ N,

Q(| logZη,β
n −Q[logZη,β

n ]| > n
1
2+δ) < C1 exp{−C2n

λ}. (1.9)

Theorem 1.6. For any q ∈ [0, 1), χ > 1
2 and β0 ∈ R, there exist positive constants

ǫ, C0–C2, and λ ∈ (0, 1) such that for any p ∈ [0, q), β ∈ [−∞, β0] and n ∈ N,

|nϕ(p, β)−Q[logZη,β
n ]| < C0n

χ, (1.10)

Q(| logZη,β
n − nϕ(p, β)| > 2C0n

χ) < C1 exp{−C2n
λ}. (1.11)

The following theorem is an extension of Theorem 1.2 in Comets et al. (2015)
where the continuity is proved only for α < d where α comes from (1.1).

Corollary 1.7. ϕ(p, β) is jointly continuous on [0, 1)× [−∞,∞).

Remark 1.8. Corollary 1.4 can in fact be proved by the “coupling method” in
Comets et al. (2015). Nevertheless, we think the line of the argument—proving the
continuity of a limiting quantity like the time constant via a concentration bound—
is of interest. In Corollary 1.7, the method of concentration indeed yields a better
result than the rather bare-handed approach in Comets et al. (2015).

Remark 1.9. The method of this paper works for more general choices of (1.1). For
example if f(k) = c exp {−V (k)} with V satisfying 0 < C1 < V ′′(x) < C2 for any
x with some positive constant C1 and C2 or V ′ being regularly varying with index
β > 0. Indeed, all of the statements including the key lemma below can be shown
by the essentially the same way for these choices.

1.3. Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we start with the proof of Theorems 1.2. We divide the proof into two
parts; α ≤ 1 or α > 1. We first prove the case α ≤ 1 which is relatively easy. To
prove the other case, we need a key lemma in Section 2.2 which gives a control on the
maximum jump of optimal paths as a special case. This lemma is the essential part
of this paper. By using the same lemma, polymers with large jumps can be shown
to have negligible weights under the Gibbs measure. By restricting our attention
to the polymers with small jumps, we can check the condition for the entropy
method (Theorem 6.7 in Boucheron et al., 2013) to show the concentration bound
and obtain Theorem 1.5. In Section 3, we discuss the non-random fluctuations
and prove Theorems 1.3 and 1.6 by using Theorems 1.2 and 1.5, respectively. The
proofs are based on the argument in Zhang (2010). Finally, we prove Corollaries 1.4
and 1.7 in Section 4 as a consequence of the results of Section 3.
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2. Proof of the concentration around the mean

For any n-path γ ∈ (Rd){1,··· ,n}, we write γ(k) for the k–th point of γ, and
∆γ(k) := |γ(k)− γ(k − 1)|1 with the convention γ(0) = 0.

Definition 2.1. For any n-path γ ∈ (Rd){1,··· ,n}, the passage time t(γ) is defined
by

t(γ) =
n
∑

i=1

∆γ(i)α.

2.1. Concentration for the FPP with 0 < α ≤ 1. We first calculate the probability
that ωp has no points inside a box of size r > 0.

Lemma 2.2. There exist C1, C2 > 0 independent of p such that for any sufficiently
large r > 0,

Q(ωp ∩ [0, r]d = ∅) ≤ C1 exp (−C2r
d). (2.1)

Proof : Note that for sufficiently large r > 0, [0, r]d ∩ spZ
d has at least (2−1s−1

p r)d

points, where sp = (1− p)1/d. Thus

Q(ωp ∩ [0, r]d = ∅) ≤ (p(1−p)−1

)2
−1rd .

Since it is easy to check that supp∈[0,1] p
(1−p)−1

< 1, we complete the proof. �

Proof of (1.6) for 0 < α ≤ 1: We prove (1.6) by using a martingale difference
method. We introduce the filtration

Gm = σ(ωp|[1,m]×Rd)

and decompose the deviation from the mean into the sum of martingale differences
as

Tn(ωp)−Q[Tn(ωp)]

=
n
∑

m=1

(Q[Tn(ωp)|Gm]−Q[Tn(ωp)|Gm−1])

=:

n
∑

m=1

∆m.

We are going to prove that there exists non–random constant c > 0 independent of
p such that

Q
[

exp
{

c|∆m|d/α
}

|Gm−1

]

≤ c−1 (2.2)

Q-almost surely. Then (1.6) follows by a concentration inequality for martingales,
for example, Theorem 1.1 in Liu and Watbled (2009). Before proving it, let us
introduce some notation. Given two configurations ωp and ω′

p and m ∈ N, we
define the new configuration [ωp, ω

′
p]m by

ωp|[1,m]×Rd + ω′
p|[m+1,∞)×Rd .

Let π
(m)
n = (i, π

(m)
n (i))ni=0 be a minimizing path for this configuration chosen by a

deterministic algorithm (if not unique). Given (n, x), (m, y) ∈ N × R
d, we define

|(n, x) − (m, y)|1 = |x − y|1. For a time-space point (k, x) ∈ N × R
d, we define

(k, x)∗ωp to be a point in ωp|{k}×Rd closest to (k, x) with a deterministic rule to
break ties and sometimes use the convention that (k, x)∗ωp = (k, x∗ωp) with a slight
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abuse of notation.

It is easy to check that the law of (k, x)∗ωp is independent of (k, x) and by
Lemma 2.2, there exist C1, C2 > 0 independent of p such that for any sufficiently
large r > 0,

Q(|(k, x)− (k, x)∗ωp |1 > r) ≤ C1 exp (−C2r
d). (2.3)

Now we rewrite the martingale difference as

∆m =

∫

Q(dω′
p)(Tn([ωp, ω

′
p]m)− Tn([ωp, ω

′
p]m−1)).

We can bound Tn([ωp, ω
′
p]m−1) from above by the passage time of the path

π(m)
n (0), . . . , π(m)

n (m− 1), π(m)
n (m)∗ω

′
p , π(m)

n (m+ 1), . . . , π(m)
n (n).

By α ≤ 1 we have

|π(m)
n (m± 1)− π(m)

n (m)∗ω
′
p |α1

≤ |π(m)
n (m± 1)− π(m)

n (m)|α1 + |π(m)
n (m)− π(m)

n (m)∗ω
′
p |α1 .

(2.4)

These lead to

Tn([ωp, ω
′
p]m)− Tn([ωp, ω

′
p]m−1) ≥ −2|π(m)

n (m)− π(m)
n (m)∗ω

′
p |α1 , (2.5)

and we get

∆m ≥ −2

∫

Q(dω′
p)|π

(m)
n (m)− π(m)

n (m)∗ω
′
p |α1 . (2.6)

Similarly, we have

∆m ≤ 2

∫

Q(dω′
p)|π

(m−1)
n (m)− π(m−1)

n (m)∗ωp |α1 . (2.7)

Note that the laws of right hand side of (2.6) and (2.7) are independent of Gm−1.
By Jensen’s inequality, (2.6) and (2.7), if we take c sufficiently small depending
only on C1, C2 > 0 of (2.3), we have

Q
[

exp
{

c|∆m|d/α
}

|Gm−1

]

≤

∫

Q(dωp)

∫

Q(dω′
p) exp (2c|π

(m)
n (m)− π(m)

n (m)∗ω
′
p |d1)

+

∫

Q(dωp)

∫

Q(dω′
p) exp (2c|π

(m−1)
n (m)− π(m−1)

n (m)∗ωp |d1)

= 2

∫

Q(dωp) exp (2c|(k, x)− (k, x)∗ωp |d1) ≤ c−1.

�

2.2. Key lemma (The uniform bound for jumps). As mentioned above, it is more
difficult to prove Theorem 1.2 in the case α > 1. Indeed, we need to estimate the
change of minimum passage time when we replace the configuration on a section
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by another one, but we do not have the triangular inequality (2.5). A natural
alternative way is to use Taylor’s theorem as follows:

|Tn([ωp, ω
′
p]m)− Tn([ωp, ω

′
p]m−1)|

≤ C(|π(m)
n (m+ 1)− π(m)

n (m)|α−1
1 |π(m)

n (m)− π(m)
n (m)∗ω

′
p |1

+ |π(m)
n (m)− π(m)

n (m− 1)|α−1
1 |π(m)

n (m)− π(m)
n (m)∗ω

′
p |1),

with some positive constant C. Then, the jump size of the optimal path appears
in this change and we need to show that it is not too large. We shall state it in a
slightly generalized way that is useful in the study of the directed polymer model.

Given a configuration ω and n-path γ, we write γ ⊂ ω if (i, γ(i)) ∈ ω for any
i = 1, · · · , n. We say that ω ⊂ N× R

d has θ-property if

ω ∩ (i, x+ [0, nθ)d) 6= ∅ for any i ∈ N, x ∈ Z
d.

Intuitively, θ-property means that configration has no big vacant regions. As
we shall see in Lemma 2.4 that the θ-property scarcely influence on the minimum
passage time. The following lemma plays a key role throughout all the results in
this paper. Roughly speaking, any polymer has no big jumps or we can find another
polymer with a smaller passage time.

Lemma 2.3. Suppose that α > 1. For any ζ > 0, there exist θ > 0 and N =
N(θ) ∈ N such that if n > N , s ∈ {1, · · · , n} and a configuration ω′ ⊂ N × R

d

satisfies θ-property, then for any n-path γ, one of the following holds:

(i) max{∆γ(s),∆γ(s+ 1)} ≤ nζ with the convention ∆γ(n+ 1) = 0,
(ii) There exist an n-path γ′ and h ∈ N such that γ(i) = γ′(i) for any i /∈

[s, s+ h− 1], (i, γ′(i)) ∈ ω′ for i ∈ [s, s+ h− 1] and

t(γ′) + (h+ 1)nθ ≤ t(γ).

The proof of Lemma 1 is not long but a bit complicated. Let us explain the
idea of the proof in the case where γ is the minimizing path for ω′. Let A0 be the
point where next jump is larger than nζ and introduce a sequence of large numbers
satisfying nζ ≫ L1 ≫ L2 ≫ · · · .

We draw cones Ck with slope Lk starting at A0 and let Ak be the first point
where the optimal path γ touches it. Then we draw a straight line between A0 and
Ak. Thanks to the θ-property, we can find a path γ′

k ⊂ ω̄ close to this straight
line. Due to the convexity of | · |α1 , average jumps are better (See Figure 2.1). This
yields that, if we forget about the restriction ⊂ ω̄, the straight line connecting A0

and Ak is the optimal path when α > 1. On the other hand, by definition, γ has
a smaller passage time than that of γ′

k. Then it is natural to expect that most of
the jumps of γ between A0 and Ak are close to Lk in size. However in the first
A0 → Ak−1 segment, most of the jumps are close to Lk−1 for the same reason and
hence far from Lk. This implies that the duration of A0 → Ak is much longer than
that of A0 → Ak−1. Based on this observation, we can prove that Ak goes beyond
the n-th section before Lk becomes small. This implies that the optimal path γ
stays outside a cone of very large angle until n. This is very unlikely because the
optimal path has too much passage time between A0 and n-th section, and one can
indeed derive a contradiction.
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Figure 2.1.

Left: The passage time of AB2C is smaller than that of AB1C when α > 1.
Right: Drawing cones, we investigate γ between A0 and Ak inductively.

Proof : Let m ∈ N such that m > 5/ζ, and we take θ > 0 sufficiently small and N
sufficiently large such that

25mαθ < ζ and Nmin{α−1,1}θ > 2α+4α2(α− 1)−1 + (2
1
α − 1)−1.

Suppose that neither (i) nor (ii) holds and we shall derive a contradiction. This
means that we suppose the following two conditions:

(i’) max{∆γ(s),∆γ(s+ 1)} > nζ ,
(ii’) For any n-path γ′ and h > 0 such that γ(i) = γ′(i) for i /∈ [s, s + h − 1],

and (i, γ′(i)) ∈ ω′ for i ∈ [s, s+ h], t(γ′) + (h+ 1)nθ > t(γ).

We only treat the case ∆γ(s) > nζ since the other case ∆γ(s+ 1) > ∆γ(s) can
be dealt with by simply replacing s by s+ 1 in the following proof.

Step 1 (Preliminary bounds): For any k ∈ {1, · · · ,m}, let

ℓk := inf{ℓ ∈ [s, n] ∩ N :
|γ(ℓ)− γ(s− 1)|1

ℓ− s+ 1
≤ nζ−(2k−1)θ}.

The points (s− 1, γ(s− 1)) and (ℓk, γ(ℓk)) correspond to A0 and Ak in Figure 2.1,
respectively. By the θ-property of ω′, there exists an n-path γ′ such that γ(i) = γ′(i)
for any i ≤ s− 1 and (i, γ′(i)) ∈ ω′, ∆γ′(i) ≤ dnθ for any i ≥ s. If the range of the
infimum of (2.8) is empty, then

t(γ)− t(γ′)− (n− s+ 1)nθ ≥ (n− s+ 1)(nζ−(2k−1)θ − dnθ − nθ) ≥ 0,

and it contradicts (ii’). Hence, the range is not void for k ≤ m and ℓk ≤ n.

Let γ̄k be a straight line drawn between (s − 1, γ(s − 1)) and (ℓk, γ(ℓk)). We

write Lk for a slope |γ(ℓk)−γ(s−1)|1
ℓk−s+1 of γ̄k. Since ω′ has θ-property, there exists an

n-path γ′
k such that (j, γ′

k(j)) ∈ ω′, |γ̄k(j) − γ′
k(j)|1 ≤ dnθ for all s ≤ j < ℓk, and

γ′
k(ℓ) = γ(ℓ) for ℓ ≤ s − 1 or ℓ ≥ ℓk. Set Rk := ℓk − s, Dk := {i ∈ {0, · · · , Rk} :

∆γ(s+ i) ≥ nζ−2kθ}, Dc
k := {0, · · · , Rk} \Dk. The set Dk corresponds to the time
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when ∆γ is close to Lk, though we put one-sided inequality in the definition.

Let δj,k := ∆γ(s + j) − Lk and δ′j,k := ∆γ′
k(s + j) − Lk. We note that for any

k ≥ 1, |δ′j,k| ≤ 2dnθ. Moreover since γk and γ′
k start and end at the same points,

we have
Rk
∑

i=0

δi,k ≥ 0,

Rk
∑

i=0

δ′i,k ≥ 0. (2.8)

Note that by convexity of | · |α1 ,

(Lk + δi,k)
α − Lα

k − αLα−1
k δi,k ≥ 0. (2.9)

These positivities (2.8) and (2.9) will be crucial in the proof.

Step 2 (Dk+1 is much larger than Dk): We have

nζ−(2k−1)θ − nζ−2kθ ≤ Lk ≤ nζ−(2k−1)θ. (2.10)

The proof is deferred to the end of this subsection.

We will show that #Dk+1 ≥ nζ/2#Dk for any k < m. Once we get this, by
iteration and D0 ≥ 1, #Dm ≥ nζm/2 ≥ n5/4 holds, which is a contradiction. Thus
the lemma follows.

Use (2.8) to obtain that

Rk+1
∑

i=0

{(Lk+1 + δi,k+1)
α − Lα

k+1 − αLα−1
k+1 δi,k+1}

=

Rk+1
∑

i=0

{∆γ(i+ s)α − Lα
k+1} − αLα−1

k+1

Rk+1
∑

i=0

δi,k+1

≤

Rk+1
∑

i=0

{∆γ(i+ s)α − Lα
k+1}.

(2.11)

When i ∈ Dc
k+1, by (2.10) we have −δi,k+1 ≥ Lk+1 − nζ−2(k+1)θ ≥ α+1

2α Lk+1 for
sufficiently large n and hence

(Lk+1 + δi,k+1)
α − Lα

k+1 − αLα−1
k+1 δi,k+1 ≥

α− 1

2
Lα
k+1. (2.12)

This together with (2.9) and Dk ⊂ Dk+1 shows that the left hand side of (2.11) is
further bounded from below by

∑

i∈Dk∪Dc
k+1

{(Lk+1 + δi,k+1)
α − Lα

k+1 − αLα−1
k+1 δi,k+1}

≥
∑

i∈Dk

{(Lk+1 + δi,k+1)
α − Lα

k+1 − αLα−1
k+1 δi,k+1}+

α− 1

2

∑

i∈Dc
k+1

Lα
k+1.

On the other hand, due to (ii’), the right hand side of (2.11) is bounded from above
by

Rk+1
∑

i=0

{(Lk+1 + δ′i,k+1)
α − Lα

k+1 + nθ}. (2.13)
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The fact that |a+ b|α−|a|α ≤ α|b−a|(|a|+ |b|)α−1 for a, b ∈ R together with (2.10)
and |δ′i,k+1| ≤ 2dnθ leads to that for any i ∈ {0, · · · , Rk+1},

(Lk+1 + δ′i,k+1)
α − Lα

k+1 + nθ ≤ 4dαn(α−1)(ζ−(2k+1)θ)+θ ≤
α− 1

2
Lα
k+1. (2.14)

Thus, (2.13) is further bounded from above by

∑

i∈Dk+1

{(Lk+1 + δ′i,k+1)
α − Lα

k+1 + nθ}+
∑

i∈Dc
k+1

{(Lk+1 + δ′i,k+1)
α − Lα

k+1 + nθ}

≤
∑

i∈Dk+1

4dαn(α−1)(ζ−(2k+1)θ)+θ +
α− 1

2

∑

i∈Dc
k+1

Lα
k+1.

(2.15)

With these observations, since δi,k+1 is much larger than Lk+1 for i ∈ Dk, we have

4dα#Dk+1n
(α−1)(ζ−(2k+1)θ)+θ

≥
∑

i∈Dk

{(Lk+1 + δi,k+1)
α − Lα

k+1 − αLα−1
k+1 δi,k+1}

≥ #Dk min
i∈Dk

{(Lk+1 + δi,k+1)
α − Lα

k+1 − αLα−1
k+1 δi,k+1}

≥
1

2
#Dkn

α(ζ−2kθ).

Rearranging it, we obtain #Dk+1 ≥ nζ/2#Dk as desired. �

Proof of (2.10): Our strategy is to show that the last jump ∆γ(s+Rk) is small or

Rk is large. We choose ζ′ such that nζ′

= ∆γ(s+Rk). By (ii’) and (2.8),

Rk
∑

i=0

{(Lk + δ′i,k)
α − Lα

k + nθ} ≥
Rk
∑

i=0

{(Lk + δi,k)
α − Lα

k − αLα−1
k δi,k}. (2.16)

By arguments similar to (2.14), we get (Lk + δ′i,k)
α −Lα

k ≤ 4dαLα−1
k nθ. Thus, the

left hand side of (2.16) is bounded from above by

(Rk + 1)(4dαLα−1
k nθ + nθ) ≤ Rkn

ζ(α−1)+2θ.

On the other hand, by (2.9) and δ0,k = ∆γ(s) − Lk ≥ nζ/2 ≫ nζ−(2k−1)θ ≥ Lk,
the right hand side of (2.16) is bounded from below by

(

(Lk + δ0,k)
α − Lα

k − αLα−1
k δ0,k

)

+ ((Lk + δRk,k)
α − Lα

k − αLα−1
k δRk,k)

≥
1

2
max

{

nζα, nζ′α
}

.

Consequently, we have

Rk ≥
1

2
max{nζ−2θ, nζ′α−(α−1)ζ−2θ} ≥ max{nζ−3θ, nζ′−3θ}.
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By the definition of Rk, we have |γ(s+Rk − 1)− γ(s− 1)|1 ≥ Rkn
ζ−(2k−1)θ. This

yields

Lk ≥
1

1 +Rk
(|γ(s+Rk − 1)− γ(s− 1)|1 −∆γ(s+Rk))

≥ nζ−(2k−1)θ(1−
1

1 +Rk
)− n3θ

≥ nζ−(2k−1)θ − nζ−2kθ.

We have Lk ≤ nζ−(2k−1)θ by the construction and (2.10) follows. �

2.3. Concentration for the FPP with α > 1. In this subsection, we prove Theo-
rem 1.2 for α > 1. We fix a small θ > 0. Given a configuration ωp ⊂ N × R

d, we
define a new configuration ω̄p as

ω̄p = ωp +
∑

(k,x)∈N×nθZd

1{ω({k}×(x+[0,nθ)d))=0}δ(k,x), (2.17)

i.e. when we find a large vacant box, we artificially add an ω-point at a corner. We
first recall Lemma 3.3 in Comets et al. (2015) which shows that Tn(ωp) and Tn(ω̄p)
are essentially the same.

Lemma 2.4. There exists c > 0 independent of p such that for sufficiently large
n ∈ N,

max{Q(Tn(ωp) 6= Tn(ω̄p)), Q[|Tn(ωp)− Tn(ω̄p)|]}

≤ exp{−cndθ}.

Proof : This is proved only for ω1 in Comets et al. (2015) but the same proof works
for general ωp. In fact, it is proved that the probability that the set of all optimal
paths for ωp coincides with that for ω̄p is larger than 1 − exp (−cndθ). The proof
of Lemma 2.9 below contains a very similar argument. �

Proof of (1.6) for α > 1: Fix δ > 0. Let us denote by ω̄
(m)
p the point process

obtained by replacing its {m} × R
d-section by another configuration ω̄′

p. We are
going to use the so-called entropy method and it requires a bound on

n
∑

m=1

(

sup
ω′

p

|Tn(ω̄
(m)
p )− Tn(ω̄p)|

)2

, (2.18)

where the supremum is taken over all configrations ω′
p.

Lemma 2.5. Suppose that α > 1. For any ζ > 0, there exist θ ∈ (0, ζ) and
N = N(θ) ∈ N such that for any n > N , 1 ≤ i ≤ n, ωp ⊂ N × R

d, and a
minimizing path πn for ω̄p,

∆πn(i) ≤ nζ .

Proof : Let ω′ = ω̄p and γ = πn in Lemma 2.3. Then for any s ∈ {1, · · · , n}, (i) or
(ii) holds. If (ii) holds, it contradicts that πn is a minimizing path. It follows that
(i) holds and we get the desired conclusion. �

By using Lemma 2.5, we can bound the summands of (2.18) from above by no(1)

and consequently (2.18) itself by n1+o(1).
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Lemma 2.6. For any ζ > 0, there exist θ,N > 0 such that for all n ≥ N and
ωp ⊂ N× R

d,

|∆m| ≤ 4nζα,

where ∆m := supω′ |Tn(ω̄
(m)
p )− Tn(ω̄p)|.

Proof : We prove the lower bound for ∆m. The upper bound can be proved simi-
larly. Fix some ωp and ω′

p. Let πn denote a minimizing path for Tn(ω̄p), chosen by

a deterministic algorithm if not unique. We define a new point π̃
(m)
n (m) as a point

in ω̄′
p|{m}×Rd satisfying

|πn(m)− π̃(m)
n (m)|1 ≤ dnθ. (2.19)

Then we can bound Tn(ω̄
(m)
p ) from above by the passage time of the path

π̃(m)
n = (πn(1), . . . , πn(m− 1), π̃(m)

n (m), πn(m+ 1), . . . , πn(n)).

By using Lemma 2.5 together with (2.19), for sufficiently small θ and large n, we
get

Tn(ω̄
(m)
p )− Tn(ω̄p) ≤ t(π̃(m)

n )− t(πn)

≤ |π̃(m)
n (m− 1)− π̃(m)

n (m)|α1 + |π̃(m)
n (m)− π̃(m)

n (m+ 1)|α1

≤ 2(nζ + dnθ)α < 4nζα

(2.20)

as desired. The reverse inequality can be proved by a similar way. �

If we take ζ sufficiently small, (2.18) is less than Cn1+δ. Then, Theorem 6.7
in Boucheron et al. (2013) yields that there exists c > 0 independent of p such that

Q
(

|Tn(ω̄p)−Q[Tn(ω̄p)]| > n
1
2+δ
)

≤ exp{−cn1−δ}.

By Lemma 2.4, there exists c′ > 0 independent of p such that

Q
(

|Tn(ωp)−Q[Tn(ωp)]| > 2n
1
2+δ
)

≤ Q
(

|Tn(ω̄p)−Q[Tn(ω̄p)]| > n
1
2+δ
)

+Q (Tn(ωp) 6= Tn(ω̄p))

≤ exp{−c′n1−δ}+ exp{−c′ndθ},

which implies (1.6). �

By the proof of Lemma 2.4, Lemma 2.6 and the Borel–Cantelli Lemma, we also
have the following corollary.

Corollary 2.7. Suppose that α > 1. For any ζ > 0, the following happens Q-almost
surely: there exists N = N(ωp) such that for any n ≥ N and any minimizing path
πn for Tn(ωp),

max
1≤i≤n

∆πn(i) ≤ nζ .
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2.4. Concentration of the free energy. In this subsection, we prove Theorem 1.5.
By the relation

logZη,β
n = βn+ logZ1−η,−β

n , (2.21)

we have only to consider the case β ∈ [−∞, 0]. Note that, in this case, Zη,β
n ≤ 1

Q-a.s. For simplicity of notation, we write Zn(ω) instead of Zβ,η
n where ω is defined

as

ω :=
∑

(k,x)∈N×Zd

(1− η(k, x))δ(k,x).

We write M := 1 + α−1. For a given configuration η, or equivalently ω, and an
n-path γ, we denote the free energy per path by

Fn(γ;ω) := c2

n
∑

i=1

∆γα
i − β

n
∑

i=1

η(i, γ(i))= c2t(γ)− βHη
n(γ),

where the constant c2 comes from (1.1).

We assume that γ starts at the origin throughout this subsection. Then we can
write the partition function as

Zn(ω) = cn1
∑

γ

e−Fn(γ;ω).

We define ω̄ by (2.17) and the restricted partition function by

Z̃n(ω) := cn1
∑

γ:t(γ)≤n1+2αθ

e−Fn(γ;ω).

First, we bound the difference of partition functions Zn(ω) and Zn(ω̄). We begin
with the following tail bounds.

Lemma 2.8. The following results hold:

(i) There exists C0 > 0 independent of p ∈ (0, 1] such that for all n ∈ N and
m > C0n,

Q(Tn(ωp) > m) ≤ exp{−m1∧ d
α /C0}. (2.22)

(ii) There exist c > 0 and N ∈ N such that for all n > N ,

Zn(ω)− Z̃n(ω) ≤ e−cn1+2αθ

.

Proof : (i) The proof is exactly the same as in Lemma 3.2 in Comets et al. (2015).
We skip the details.
(ii) We bound c−n

1 (Zn(ω)− Z̃n(ω)) from above as follows:

c−n
1 (Zn(ω)− Z̃n(ω)) =

∑

t(γ)>n1+2αθ

e−Fn(γ;ω)

=
∑

k≥2

∑

γ:n1+kαθ<t(γ)≤n1+(k+1)αθ

e−c2t(γ)

≤
∑

k≥2

∑

γ:t(γ)≤n1+(k+1)αθ

e−c2n
1+kαθ

.

(2.23)
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If t(γ) ≤ n1+(k+1)αθ , then γ has no jump larger than n
1
α
+(k+1)θ and thus

max
1≤i≤n

|γ(i)|1 ≤ nM+(k+1)θ .

This yields the bound

#{γ : t(γ) ≤ n1+(k+1)αθ} ≤ nd(M+(k+1)θ)n.

Substituting this into (2.23), for sufficiently large n, we obtain

Zn(ω)− Z̃n(ω) ≤ cn1
∑

k≥2

nd(M+(k+1)θ)ne−c2n
1+kαθ

≤ e−cn1+2αθ

with some small constant c > 0. �

We define ω̄ as in (2.17).

Lemma 2.9. For any q ∈ [0, 1) and θ > 0, there exist λ, c > 0 and N ∈ N such
that for any n > N and p ∈ [0, q),

(i) Q(| logZn(ω)− logZn(ω̄)| > log 2) ≤ e−cnλ

,
(ii) 0 ≤ Q[logZn(ω̄)]−Q[logZn(ω)] ≤ 1.

Proof : Since Zn(ω) ≥ cn1 e
−c2s

−α
p Tn(ωp), Lemma 2.8-(i) and Zn(ω) ≤ 1 imply that

there exist C1, C2 > 0 depending on q such that

Q(Zn(ω) ≤ cn1 e
−c2n

1+αθ

) ≤ e−C1n
(1∧ d

α
)(1+2αθ)

,

Q[| logZn(ω)|
2] ≤ C2n

2.
(2.24)

Also it is plain to see (from Lemma 3.3 in Comets et al., 2015) that there exists
C3 > 0 such that

Q(ω = ω̄ on [−nM+2θ, nM+2θ]d × [0, n]) ≤ e−C3n
dθ

. (2.25)

Thus to prove (i), it suffices to show Zn(ω̄) ≤ 2Zn(ω) under the two conditions:

Zn(ω) ≥ cn1 e
−c2n

1+αθ

and ω = ω̄ on [−nM+2θ, nM+2θ]d × [0, n]. Observe that
Zn(ω) ≤ Zn(ω̄) and that if γ exits from [−nM+2θ, nM+2θ]d × [0, n], then t(γ) >

n1+2αθ as it must contain a jump larger than n
1
α
+2θ. Therefore under the above

conditions, by Lemma 2.8-(ii), there exists C4 > 0 such that

Zn(ω̄)− Zn(ω) ≤ cn1
∑

γ:max1≤k≤n |γ(k)|∞>nM+2θ

e−Fn(γ;ω)

≤ Zn(ω)− Z̃n(ω)

≤ e−C4n
1+2αθ

≤ Zn(ω).

This in turn implies

Q[logZn(ω̄)]−Q[logZn(ω)]

≤ Q(Zn(ω) ≥ cn1 e
−c2n

1+αθ

and ω = ω̄ on [−nM+2θ, nM+2θ]d × [0, n]) log 2

+Q[| logZn(ω)|;Zn(ω) < cn1 e
−c2n

1+αθ

or ω 6= ω̄ on [−nM+2θ, nM+2θ]d × [0, n]]

≤ 1,

where in the last line we have used (2.24), (2.25) and the Schwarz inequality to
bound the second term. �
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From Lemma 2.9, once we show the concentration for ω̄, i.e. for any δ > 0 there
exist λ ∈ (0, 1) and C0, C1 > 0 such that

Q(| logZn(ω̄)−Q[logZn(ω̄)]| > n
1
2+δ) ≤ C0e

−C1n
λ

, (2.26)

the concentration for ω immediately follows. We will use the entropy method as in
the FPP case and the following two lemmas correspond to Lemma 2.5 and 2.6.

Lemma 2.10. Let s ∈ {1, · · · , n}. We take configurations ω, ω′ such that
ω|{ℓ}×Rd = ω′|{ℓ}×Rd for any ℓ 6= s. Then, for any n-path γ, there exists γ′ such
that one of the following holds:

(I) for any i 6= s, γ(i) = γ′(i), and Fn(γ
′; ω̄′) ≤ c2n

ζ(α−1)++3θ + Fn(γ; ω̄) or
(II) there exists k > 0 such that for any i /∈ [s, s+ k], γ(i) = γ′(i), and

Fn(γ
′; ω̄′) + c2(k + 1)nθ ≤ Fn(γ; ω̄),

where the constant c2 comes from (1.1) and (α− 1)+ = (α− 1) ∨ 0.

Proof : When α ≤ 1, it is easy to prove that (I) holds for any γ. Suppose that α > 1
and we will apply the Lemma 2.3 with ω′ = ω̄′. It suffices to show that (i) and
(ii) in Lemma 2.3 imply (I) and (II) in Lemma 2.10, respectively. When (i) holds,
we construct a polymer γ′ such that γ′(i) = γ(i) for i 6= s, (s, γ′(s)) ∈ ω̄′|{m}×Rd ,

and |γ′(s)− γ(s)|1 ≤ dnθ. Then, it is trivial that γ′ satisfies condition (I). On the
other hand, we can easily check that (ii) leads to (II) because of the assumption of
β ∈ [−∞, 0], which is declared at the beginning of this subsection. �

Lemma 2.11. Let ω and ω′ be the configurations as in Lemma 2.10. For any
δ > 0, there exist θ > 0 and C > 0 such that for any n ∈ N,

| logZn(ω̄)− logZn(ω̄
′)| ≤ Cnδ.

Proof : Note first that for any ω,

Z̃n(ω̄) ≥ cn1 e
−c2Tn(ω̄) ≥ cn1 e

−c2d
αn1+αθ

since ω̄ has θ-property. This together with Lemma 2.8-(ii) allows us to replace Zn

by Z̃n in the claim. For a path γ′ and k ∈ N, we define the following sets:

Φ1(γ
′) := {γ : t(γ) ≤ c2n

1+2αθ, (γ, γ′) satisfies condition (I)},

Φ2,k(γ
′) := {γ : t(γ) ≤ c2n

1+2αθ, (γ, γ′) satisfies condition (II) with k},

where (I) and (II) are those in Lemma 2.10. Then any n-path γ lies in one of the
above sets and

Z̃n(ω̄) ≤ cn1
∑

γ′







∑

γ∈Φ1(γ′)

e−Fn(γ;ω̄) +
∑

k≥1

∑

γ∈Φ2,k(γ′)

e−Fn(γ;ω̄)







≤ cn1
∑

γ′

e−Fn(γ
′;ω̄′)







∑

γ∈Φ1(γ′)

ec2n
ζ(α−1)++3θ

+
∑

k≥1

∑

γ∈Φ2,k(γ′)

e−c2kn
θ







≤ cn1
∑

γ′

e−Fn(γ
′;ω̄′)







|Φ1(γ
′)|ec2n

ζ(α−1)++3θ

+
∑

k≥1

|Φ2,k(γ
′)|e−c2kn

θ







.
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Since for any γ′, |Φ1(γ
′)| ≤ n2d(M+2θ) and |Φ2,k(γ

′)| ≤ n2d(M+2θ)k (recall the
argument (2.23)), this is further bounded from above by

cn1
∑

γ′

e−Fn(γ
′;ω̄′)







n2d(M+2θ)ec2n
ζ(α−1)++3θ

+
∑

k≥1

n2dk(M+2θ)e−c2kn
θ







≤ cn1
∑

γ′

e−Fn(γ
′;ω̄′)







n2d(M+2θ)ec2n
ζ(α−1)++3θ

+
∑

k≥1

e−c2kn
θ/2







≤ cn1 e
2c2n

ζ(α−1)++3θ ∑

γ′

e−Fn(γ
′;ω̄′) = e2c2n

ζ(α−1)++3θ

Zn(ω̄
′).

With the symmetry between ω and ω′, this implies

| logZn(ω̄)− logZn(ω̄
′)| ≤ log {2e2c2n

ζ(α−1)++3θ

}

≤ 3c2n
ζ(α−1)++3θ.

If we take ζ > 0 sufficiently small so that 3c2n
ζ(α−1)++3θ < nδ, the proof is com-

pleted. �

Thanks to Lemma 2.11, we can use Theorem 6.7 in Boucheron et al. (2013) and
we get the desired concentration (2.26) of logZn(ω̄).

3. Non-random fluctuation

3.1. FPP Case. In this subsection, we deduce the so-called non-random fluctuation
bound (1.7) from the concentration bound (1.6). This is a well-studied subject in
the theory of first passage percolation and we shall adapt the argument of Zhang
(2010) to our setting.

Proof of (1.7): Let χ > 1/2, M = 1 + α−1 and πn = π
(n)
n , i.e. a minimizing path

for Tn(ωp). We define a face to face passage time

Φn(k, l;ωp) = inf

{

l
∑

i=k+1

|xi−1 − xi|
α
1 : |xk|∞ < nM and {(i, xi)}

l
k+1 ⊂ ωp

}

and introduce the events

Aθ
1(n) = {ωp = ω̄p on [0, 2n]× [−nM , nM ]d},

A2(n) =

{

There exist |x|∞ ≤ 1/2 and a minimizing path for
Φn(n, 2n;ωp) starting at (n, x).

}

.

Lemma 3.1. We fix a sufficiently small constant θ > 0. Then, there exists c > 0
such that for all sufficiently large n,

(i) Q(Aθ
1(n)) ≥ 1− exp{−cnθ},

(ii) Q(A2(n)) ≥ 2−dn−dM .

Proof : The first statement follows from the proof of Lemma 3.3 in Comets et al.
(2015). Since the law of ωp is invariant under time-space shift, the probabilities

Q(There exists a minimizing path for Φn(0, n;ωp)

starting at (0, x) with |x− y|∞ ≤ 1/2)
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for y ∈ Z
d ∩ (−nM , nM )d are the same as Q(A2(n)). Since the union of the above

events has probability one and the number of possible y’s is less than (2nM )d, the
second statement is completed. �

With this lemma and (1.6), we can complete the proof of (1.7). Note first that
on the event Aθ

1(n), we have π2n(n) ∈ (−nM , nM )d as the displacement of π2n until

time n is at most 2n ·nθ ∨ (2n)θ+α−1

< nM for any sufficiently small θ. As a result,
one has

T2n(ωp) ≥ Tn(ωp) + Φn(n, 2n;ωp)

since the second half of π2n is candidates of the face to face minimizing paths. On
the other hand, from Lemma 2.5, for any ζ > 0, if we take θ > 0 sufficiently small,
on the event on A = Aθ

1(n) ∩ A2(n),

Φn(n, 2n;ωp) ≥ T (n, 2n;ωp)− Cnζ(α−1)++θ

with some C > 0 independent of p since only possible differences come from the
starting points, which can be controlled by using the mean value theorem. Therefore
on A, for any χ > 1/2 and sufficiently large n ∈ N, we have the following almost
super-additivity:

T2n(ωp) ≥ Tn(ωp) + T (n, 2n;ωp)− nχ. (3.1)

Now we use (1.6) to obtain

Q (|Tn(ωp)−Q[Tn(ωp)]| > nχ) ≤ C1 exp
{

−C2n
λ
}

and the same bound for T2n(ωp) and T2n(ωp). These bounds and Lemma 3.1 show
that for all sufficiently large n,

A ∩
⋂

(k,l)∈{(0,2n),(0,n),(n,2n)}

{|T (k, l;ωp)−Q[T (k, l;ωp)]| ≤ nχ}

has positive probability and in particular non-empty. Hence we can replace the
passage times in (3.1) by their expectation at the cost of extra −3nχ on the right-
hand side to obtain

1

2n
Q[T2n(ωp)] ≥

1

n
Q[Tn(ωp)]− 4nχ−1.

Iterating this, we arrive at

1

n
Q[Tn(ωp)] ≤

1

2kn
Q[T2kn(ωp)] + 4nχ−1

k−1
∑

j=1

2(χ−1)j .

and letting k → ∞ proves Q[Tn(ωp)] ≤ nµp + Cnχ. Moreover, due to the usual
subadditivity, we get the converse inequality nµp ≤ Q[Tn(ωp)]. Thus we have (1.7).
From (1.6) and (1.7), we obtain (1.8). �

3.2. Free energy Case. The proof is almost the same as that for the FPP, so we
only mention the outline here. To prove Theorem 1.3, we again use the argument
of Zhang. Let

Z(k, ℓ, x, ω) := cn1
∑

γ:γ(k)=x

eβ
∑ℓ

i=k+1 η(i,γ(i))e−c2
∑ℓ

i=k+1 ∆γ(i)α .
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Let M = 1 + 1
α and we define an event A by

A := {Z(n, 2n, 0, ω) = sup
x∈[−nM/2,nM/2]d

Z(n, 2n, x, ω), Z2n(ω) ≤ 2Z̃2n(ω)}.

One can show, as in the case of the FPP, that for sufficiently large n,

Q(A) ≥
1

2nMd
.

On this event,

logZ2n − log 2 ≤ log Z̃2n

≤ log















c2n1
∑

γ:max1≤i≤n |γ(i)|∞≤nM/2
γ(0)=0

e−F2n(γ;ω)















≤ log















cn1
∑

x∈[−nM/2,nM/2]d

∑

γ:γ(n)=x
γ(0)=0

e−Fn(γ;ω)Z(n, 2n, x, ω)















,

where we have used the argument below (2.23) in the second inequality and divided
paths at its n-th point in the third ineqality. Thanks to the choice of A, this is
further bounded from above by

log















cn1
∑

x∈[−nM/2,nM/2]d

∑

γ:γ(n)=x
γ(0)=0

e−Fn(γ;ω)Z(n, 2n, 0, ω)















≤ log (Zn(ω)Z(n, 2n, 0, ω)) = logZn(ω) + logZ(n, 2n, 0, ω).

From the concentration (1.9) and this, for any χ > 1/2, there exists constant C > 0
independent of n such that,

Q[logZ2n] ≤ 2Q[logZn] + Cnχ.

In a similar way to the proof of Theorem 1.3, we have that for any k,

Q[logZ2kn]

2kn
≤

Q[logZn]

n
+ C′nχ−1,

where C′ > 0 is a constant independent of n. As k → ∞, we have

ϕ(p, β) ≤
1

n
Q[logZn] + C′nχ−1.

Finally, we shall derive the converse estimate by a similar way. Indeed, we replace
A by {Z(n, 2n, 0, ω) = minx∈[−nM/2,nM/2]d Z(n, 2n, x, ω), Zn(ω) ≤ 2Z̃n(ω)}. On
this event, we have

logZ2n ≥ log Z̃n + logZ(n, 2n, 0, ω) ≥ log 2 + logZn + logZ(n, 2n, 0, ω),

which implies

ϕ(p, β) ≥
1

n
Q[logZn]− C′nχ−1.

This yields (1.10). From (1.9) and (1.10), it is immediate to prove (1.11).
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4. Proof of continuity results

Thanks to the non-random fluctuation results, it suffices to show the continuities
of Q[Tn] and Q[logZn] for fixed n ∈ N.

Lemma 4.1. For any n ∈ N, Q[Tn(ωp)] is a continuous function of p ∈ [0, 1].

Proof : Note that Tn(·) is continuous on the set of locally finite point configurations
with respect to the vague topology. Indeed for any ω, the definition of passage
time tells us that only points inside a compact set matter. By local finiteness we
can choose the compact set in such a way that its boundary contains no points
of ω. Now if ωN → ω vaguely as N → ∞, then the points of ωN inside the
compact set converge to those of ω in the Hausdorff metric and then it easily
follows that Tn(ωN ) → Tn(ω). By using the Skorohod representation theorem, we
may assume that Q-almost surely, ωp → ω′

p vaguely as p ↑ p′. Then by continuity,
Tn(ωp) → Tn(ω

′
p) as p ↑ p′, Q-almost surely. From this, Tn(ωp) is continuous in

p ∈ [0, 1]. Since the uniform integrability of {Tn(ωp)}p∈(0,1] follows from Lemma 2.8,

L1(Q) convergence follows. �

The following lemma can be proved by a similar way to Lemma 4.1.

Lemma 4.2. Q[logZn] is jointly continuous on (p, β) ∈ [0, 1)× [−∞,∞).

From Lemmas 4.1 and 4.2, we obtain Corollaries 1.4 and 1.7, respectively.
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