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Abstract. LetX be a solution of stochastic differential equation dXt=b(Xt−)dZt+
γ|b|α(Xt)dt, t ≥ 0 where Z is a one-dimensional symmetric stable process of index
0 < α ≤ 2 and let τm(X) = inf{t ≥ 0 : |Xt| ≥ m}, m ∈ Z+. We prove various
Lp-estimates for processes X for p = 1, 2. In particular, it is shown that, if γ 6= 0
and 0 < α ≤ 2, then for all t > 0 and a measurable function f : R → [0,∞], it

holds E
∫ t∧τm(X)

0 |b|α(Xs)f(Xs)ds ≤ N‖f‖2,m where ‖f‖2,m is the L2-norm of the
function f on the interval [−m,m] and the constant N depends on α,m, γ, and t
only. For γ = 0 and 1/2 < α ≤ 2, similar Lp-estimates with p = 1, 2 are proven. As
an application, we use obtained estimates to prove the existence of (weak) solutions
for corresponding stochastic differential equations with γ 6= 0 and γ = 0.

1. Introduction

It is known that the integral estimates of Krylov type play an important
role in the theory of stochastic processes and its applications. In particular, they
provide a powerful method when establishing the existence of (weak) solutions for
corresponding stochastic differential equations and are one of the main tools by
proving the existence of optimal strategies in control problems associated with the
SDEs. To be more precise, let f : R → [0,∞] be a measurable function and define

‖f‖p,m =
( m∫

−m

|f |p(y)dy
)1/p
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to be its Lp-norm on the interval [−m,m], m ∈ Z+, p ≥ 1. For a stochastic process
(Xt), t ≥ 0 defined on a given probability space (Ω, F, P ), the estimates of the form

E

t∧τm(X)∫

0

e−φsΦsf(Xs)ds ≤ N‖f‖p,m (1.1)

where (φt) and (Φt) are nonnegative processes to be specified and

τm(X) = inf{t ≥ 0 : |Xt| ≥ m},

are called the Krylov’s estimates. The inequalities (1.1) were first proved by Krylov
(1980) (see chapter 2) in the case when X is a diffusion process, in other words
when X satisfies the equation

dXt = b(t,Xt)dWt + a(t,Xt)dt

where W is a Brownian motion.
Many authors have tried to generalize the estimates to other classes of pro-

cesses X different from the diffusion ones. For example, in Mel’nikov (1983) one
derived the estimates of the form (1.1) for some classes of continuous semimartin-
gales X . Some generalizations of Krylov’s estimates for diffusion processes with
jumps were obtained by Anulova and Pragarauskas (1977) and Lepeltier and Mar-
chal (1976). We refer also to Situ (2005), chapter 4 for another formulation of
Krylov’s estimates for a class of processes with jumps. However, it should be no-
ticed that all mentioned generalizations of Krylov’s estimates for processes with
jumps have one property in common: they are derived for processes X being not
purely discontinuous, that is when X is of the form

Xt = X0 +

∫ t

0

b(s,Xs)dWs +

∫ t

0

a(s,Xs)ds+

∫ t

0

∫
c(s,Xs−, y)Ñ(ds, dy), t ≥ 0

where Ñ(dt, dy) is a martingale measure generated by a driven process and b 6= 0.
As the result, the tools utilized to prove the estimates for corresponding processes
were similar to those used by Krylov and the presence of the term with the diffusion
coefficient b(t, x) 6= 0 was crutial.

There is less known about Krylov’s estimates for purely discontinuous processes
X . Pragarauskas and Zanzotto (2000) proved a variant of Krylov’s estimates for
the case when X is a solution of the stochastic differential equation

dXt = b(t,Xt−)dZt (1.2)

where Z is a symmetric stable process of index 1 < α < 2. More precisely, they
proved that, for any m ∈ Z+ and t ≥ 0, it holds

E

∫ t∧τm(X)

0

|b(s,Xs)|
α/2f(s,Xs)ds ≤ N‖f‖2,m,t =: N

( t∫

0

m∫

−m

f2(s, y)dsdy
)1/2

.

In the case of Z being a symmetric stable process with 1 < α < 2 and X satisfying
the equation

dXt = b(Xt−)dZt + a(Xt)dt, (1.3)

the corresponding Krylov’s estimates of the form

E

∫ t∧τm(X)

0

|b(Xs)|
αf(Xs)ds ≤ N‖f‖2,m (1.4)
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were proven in Kurenok (2008a) assuming |a(x)| ≤ K|b(x)|α for all x ∈ R and a
constantK > 0. We also mention Kurenok (2008b) where the results from Kurenok
(2008a) were extended to the the SDE (1.3) with Z being a Cauchy process, that
is a symmetric stable process with α = 1.

It is worth to notice that all mentioned results do not include estimates for
the case when Z is a symmetric stable process of index α < 1 and one of our main
goals here is the proof of some variants of Krylov’s estimates covering the case with
α < 1. In other words, we shall establish here several integral estimates of the form
(1.4) when X satisfies the equation

dXt = b(Xt−)dZt + γ|b|α(Xt)dt, t ≥ 0, γ ∈ R, X0 = x0 ∈ R (1.5)

where Z ia a symmetric stable process. For γ = 0, the estimates will hold for
1/2 < α ≤ 2 while for γ 6= 0 they will be true for all 0 < α ≤ 2.

As an application of the obtained integral estimates, we will prove the existence
of weak solutions for the equation (1.5) with γ 6= 0 and γ = 0.

We briefly recall some known existence results for the equation (1.5).
If α = 2, the process Z is a Brownian motion, the only one process in the

class of symmetric stable processes with continuous trajectories and finite variance.
The equation (1.5) in this case was studied in details by Engelbert and Schmidt
(1991) who, in particular, were able to find nessecary and sufficient conditions for
the existence of solutions when γ = 0. In other words, they had shown that the
equation (1.5) with γ = 0 has a non-trivial solution for any initial value x0 ∈ R if
and only if b−2 ∈ Lloc(R), that is the function b−2 is locally integrable on R.

For α ∈ (0, 2), the equation (1.5) with γ = 0 was studied by Zanzotto (1997,
2002). For the values of 1 < α < 2, he was able to generalize the existence result
of Engelbert and Schmidt replacing the condition b−2 ∈ Lloc(R) by the condition
|b|−α ∈ Lloc(R). For the values of 0 < α ≤ 1, he proved the existence of solutions
under the following sufficient conditions:

1) There exists a number δ > 1 such that |b|−δ ∈ Lloc(R);
2) There exists a number U > 0 such that l(BU ) < ∞, where

BU = {y ∈ R : |b(y)| > U}

and l is the Lebesgue measure on R (cf. Theorem 3.3 in Zanzotto, 1997).
In this note, in particular, sufficient conditions for the existence of solutions of

the equation (1.5) without drift are given which are different from conditions 1) and
2) found by Zanzotto. Moreover, for the values of 0 < α < 1/2, our integrability
condition |b|−2α ∈ Lloc is weaker than the integrability condition in 1).

2. Preliminary facts

By D[0,∞)(R) we denote, as usual, the Skorokhod space, i.e. the set of all real-
valued functions z : [0,∞) → R with right-continuous trajectories and with finite
left limits (also called cádlág functions). For simplicity, we shall write D instead
of D[0,∞)(R). We will equip D with the σ-algebra D generated by the Skorokhod
topology. Under Dn we will understand the n-dimensional Skorokhod space defined
as Dn = D×· · ·×D with the corresponding σ-algebra Dn being the direct product
of n one-dimensional σ-algebras D.

Let (Ω,F , P ) be a complete probability space carrying a process Z with Z0 = 0
and let F = (Ft) be a filtration on (Ω,F , P ). The notation (Z,F) means that Z
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is adapted to F. We call (Z,F) a symmetric stable process of index α ∈ (0, 2] if
trajectories of Z belong to D and

E (exp (iξ(Zt − Zs)) |Fs) = exp (−(t− s)|ξ|α) (2.1)

for all t > s ≥ 0 and ξ ∈ R.
For all 0 < α ≤ 2, Z is a Markov process and can be described in terms of

characteristics of Markov processes. Thus, for any function f ∈ L∞(R) and t ≥ 0,
define the operator

(Ptf)(x) :=

∫

Ω

f(x+ Zt)dP (ω)

where L∞(R) is the Banach space of functions f : R → R with the norm ‖f‖∞ =
ess sup |f(x)|. The sequence (Pt)t≥0 is called the family of convolution operators
associated with Z. For a suitable class of functions g(x), we can define so-called
infinitesimal generator L of the process Z as

(Lg)(x) = lim
t↓0

(Ptg)(x)− g(x)

t
.

On the other hand, in the case of α ∈ (0, 2), Z is a purely discontinuous Markov
process that can be described by its Poisson jump measure (jump measure of Z on
interval [0, t]) defined as

N(U × [0, t]) =
∑

s≤t

1U (Zs − Zs−),

the number of jumps of Z on the interval [0, t] whose size lies in the set U . The

compensating measure of N , say N̂ , is given (see, for example, Appelbaum, 2009,
p. 32) by

N̂(U) = EN(U × [0, 1]) =

∫

U

cα
|x|1+α

dx,

where cα is a suitable constant. One defines then Ñ(ds, dy) := N(ds, dy)−N̂(ds, dy)
called the martingale measure associated with the process Z.

It is known that the operator L can be written as

(Lg)(x) =

∫

R\{0}

[g(x+ z)− g(x)− 1{|z|<1}g
′(x)z]

cα
|z|1+α

dz (2.2)

defined on g ∈ C2(R), where C2(R) is the set of all bounded and twice continuously
differentiable functions g : R → R. In the case of α = 2, the infinitesimal generator
of a Brownian motion process is the second derivative operator.

For 1 < α < 2, the operator in (2.2) has the form

(Lg)(x) =

∫

R\{0}

[g(x+ z)− g(x)− g′(x)z]
cα

|z|1+α
dz

since in this case ∫

|z|≥1

z
cα

|z|1+α
dz = 0.
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Using the introduced measures, the equation (1.3) is then understood as

Xt = x0+

∫ t

0

a(Xs)ds+

∫ t

0

∫

|y|≤1

b(Xs−)yÑ(ds, dy)+

∫ t

0

∫

|y|>1

b(Xs−)yN(ds, dy).

(2.3)
For b = 1 and a = 0, the relation (2.3) represents the famous Lévy-Itô decomposi-
tion of a symmetric stable process as a particular case of a Lévy process.

Since for all 0 < α < 2, the process X of the form (2.3) is a semimartingale,
the Itô formula applies so that for any t ≥ 0 and any function g ∈ C2(R) such that
g and g′ are bounded, it follows that (see Ikeda and Watanabe, 1981, chapter 2)

g(Xt)−g(X0) =

∫ t

0

g′(Xs)a(Xs)ds+

∫ t

0

∫

|y|≥1

[g(Xs−+yb(Xs−))−g(Xs−)]N(ds, dy)

+

∫ t

0

∫

|y|<1

[g(Xs− + yb(Xs−))− g(Xs−)]Ñ(ds, dy)+

∫ t

0

∫

|y|<1

[g(Xs− + yb(Xs−))− g(Xs−)− yb(Xs−)g
′(Xs−)]

cαdsdy

|y|1+α
.

In the case of 1 < α < 2, the above formula becomes

g(Xt)−g(X0) =

∫ t

0

g′(Xs)a(Xs)ds+

∫ t

0

∫
[g(Xs−+yb(Xs−))−g(Xs−)]Ñ(ds, dy)+

∫ t

0

∫
[g(Xs− + yb(Xs−))− g(Xs−)− yg′(Xs−)]

cαdsdy

|y|1+α

and making the change of variables z = yb(Xs−) in the last integral will simplify it
further to the form

g(Xt)−g(X0) =

∫ t

0

g′(Xs)a(Xs)ds+

∫ t

0

∫
[g(Xs−+yb(Xs−))−g(Xs−)]Ñ(ds, dy)+

∫ t

0

|b|α(Xs)Lg(Xs)ds

where the term ∫ t

0

∫
[g(Xs− + yb(Xs−))− g(Xs−)]Ñ(ds, dy)

is a martingale.
In a similar way, in the case of 0 < α < 1, the Itô’s formula is written as

g(Xt)− g(X0) =

∫ t

0

g′(Xs)a(Xs)ds+

∫ t

0

∫
[g(Xs− + yb(Xs−))− g(Xs−)]N(ds, dy)

so that taking the expectation from both sides of the last relation we obtain

E[g(Xt)− g(X0)] =

E

∫ t

0

g′(Xs)a(Xs)ds+ E

∫ t

0

∫
[g(Xs− + yb(Xs−))− g(Xs−)]

cαdsdy

|y|1+α
.

Again, by making change of variables z = yb(Xs−) in the last integral, it is not
hard to see that it holds

E[g(Xt)− g(X0)] = E

∫ t

0

g′(Xs)a(Xs)ds+E

∫ t

0

|b|α(Xs)Lg(Xs)ds.
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The case of α = 1 can be treated the same way as it is a mixture between cases
0 < α < 1 and 1 < α < 2. We summarize the obtained results in

Proposition 2.1. Assume that X is of the form (1.3) and g ∈ C2(R) such that g
and g′ are bounded. Then, for any 0 < α ≤ 2, it holds

E[g(Xt)− g(X0)] = E

∫ t

0

g′(Xs)a(Xs)ds+E

∫ t

0

|b|α(Xs)Lg(Xs)ds.

The following result about the convergence of stochastic integrals with re-
spect to symmetric stable processes is proven in Pragarauskas and Zanzotto (2000),
Lemma 2.3. For the sack of completeness of our exposition, we formulate it here.
The result is originally due to A. V. Skorokhod who proved it for the case of Brow-
nian motion and it is often called the Skorokhod’s lemma about the convergence of
stochastic integrals (cf. Krylov, 1980, Lemma 2, p. 87).

Proposition 2.2. Let Zn, n = 0, 1, 2, ... be a sequence of symmetric stable processes
of the same index 0 < α ≤ 2 defined on a complete probability space (Ω,F , P ) with
a filtration F. Assume that gn, n = 0, 1, 2, ... is a sequence of predictable processes

defined on the same probability space so that the stochastic integrals
∫ t

0
gns dZ

n
s are

well defined for all n = 0, 1, 2, ... and t ≥ 0. Moreover, let the following conditions
be satisfied:

1) for all t ≥ 0,

Zn
t → Z0

t , gnt → g0t

in probability as n → ∞;
2) for all t ≥ 0,

lim
N→∞

sup
n

P
(
sup

0≤s≤t
|gns | > N

)
= 0;

3) for all t ≥ 0 and ǫ > 0,

lim
r↓0

lim
n→∞

sup
0≤t1<t2≤t,t2−t1≤r

P
(
|gnt2 − gnt1 | > ǫ

)
= 0.

Then, for all t ≥ 0, it holds
∫ t

0

gns dZ
n
s →

∫ t

0

g0sdZs

in probability as n → ∞.

We notice finally that the use of Fourier transforms can simplify calculations
when working with the operator L. Let g ∈ L1(R) and

ĝ(ξ) :=

∫

R

eizξg(z)dz

be the Fourier transform of g. The following fact will be used later (cf. Proposition
2.1 in Kurenok, 2008a).

Proposition 2.3. Let L be the infinitesimal generator of a symmetric stable process
Z with 0 < α ≤ 2 and assume that g ∈ C2(R), Lg ∈ L1(R). Then

(̂Lg)(ξ) = −|ξ|αĝ(ξ) and ĝ′(ξ) = iξĝ(ξ).
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3. Some integral estimates

In this section we assume that Z is a symmetric stable process of index 0 <
α ≤ 2 defined on a probability space (Ω,F , P ) with a filtration F and γ ∈ R is a
fixed constant.

For all x ∈ R and a nonnegative, measurable function f ∈ C∞
0 (R)1, let

v(x) := E

∞∫

0

e−sf(x+ Zs + γs)ds.

Since (Zt + γt), t ≥ 0 is a Feller process, the formula of Dynkin (cf. Kallenberg,
1997, Lemma 17.21) will imply that, for all t ≥ 0, it holds

v(x) = E
{ t∫

0

e−sf(x+ Zs + γs)ds+ e−tv(x+ Zt + γt)
}
. (3.1)

Applying Itô’s formula to the expression e−tv(x + Zt + γt), we obtain

Ee−tv(x + Zt + γt) = v(x) +E

∫ t

0

e−s
[
Lv − v + γvx

]
(x+ Zs + γs)ds

where vx denotes the derivative of v. Substituting the formula (3.1) into the last
relation yields

E

∫ t

0

e−s
[
Lv − v + γvx + f

]
(x + Zs + γs)ds.

Dividing this equation by t and letting t tend to zero, we obtain (see also Krylov,
1980, ch. 1, pp. 2-4)

Lv(x) − v(x) + γvx(x) + f(x) = 0 (3.2)

where the obtained equation holds a.e. in R.
Equation (3.2) is also known in the control theory as the Bellman equation.

Lemma 3.1. a) Let γ 6= 0 and 0 < α ≤ 2. Then, for all x ∈ R, it holds

v(x) ≤ M‖f‖2 := M
(∫

R

f2(y)dy
)1/2

, (3.3)

where the constant M depends on α and γ only.
b) Let γ = 0 and 1/2 < α ≤ 2. Then, for all x ∈ R, it holds

v(x) ≤ M‖f‖2, (3.4)

where the constant M depends on α only.
c) Let 1 < α < 2 and γ 6= 0. Then, for all x ∈ R, it holds

v(x) ≤ M‖f‖1 := M
(∫

R

|f |(y)dy
)
, (3.5)

where the constant M depends on α and γ only.

1
C∞

0
(R) denotes the class of all infinitely differentiable real-valued functions with compact

support defined on R
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Proof : For any function h : R → R such that h ∈ L1(R) and any ε > 0 we define

h(ε)(x) =
1

ε

∫

R

h(y)q
(x− y

ε

)
dy

to be the ε-convolution of h with a smooth function q such that q ∈ C∞
0 (R) and∫

R
q(x)dx = 1.
After taking the ε-convolution on both sides of equation (3.2), we obtain

Lv(ε)(x) − v(ε)(x) + γv(ε)x (x) + f (ε)(x) = 0. (3.6)

Applying Proposition 2.3 and the Parseval identity to the relation
(
Lv(ε)(x)− v(ε)(x) + γv(ε)x (x)

)2

=
(
f (ε)(x)

)2

,

yields ∫

R

|v̂(ε)(ξ)|2
[
(|ξ|α + 1)2 + γ2ξ2

]
dξ =

∫

R

|f̂ (ε)(ξ)|2dξ. (3.7)

Assume that

M1 :=

∫

R

dξ

(|ξ|α + 1)2 + γ2ξ2
.

Clearly, for γ = 0 and 1/2 < α ≤ 2, the constant M1 is finite and depends on α
only. Similarly, if γ 6= 0 and 0 < α ≤ 2, it follows that M1 < ∞ and M1 depends
on α and γ only.

Using the identity (3.7) and the inverse Fourier transform we obtain for all x ∈ R

(
v(ε)(x)

)2

≤

M1

4π2

∫

R

|v̂(ε)(ξ)|2[(|ξ|α + 1)2 + γ2ξ2]dξ ≤

M1

4π2

∫

R

(
f (ε)(z)

)2

dz.

The claims a) and b) follow then by taking the limit ε → 0 in the above inequality
and using the Lebesgue dominated convergence theorem.

To prove c), we notice that for any function f such that f̂ exists it holds for
all ξ ∈ R

|f̂(ξ)| ≤

∫ ∞

−∞

|f |(x)dx

so that
sup
ξ∈R

|f̂(ξ)| ≤ ‖f‖1.

Again, the application of the inverse Fourier transform yields for all x ∈ R and
1 < α < 2

v(x) ≤
1

2π
M1‖f‖1

where

M1 =

∫ ∞

−∞

dξ√
|ξ|(α + 1)2 + γ2ξ2

< ∞.

The argument with the Lebesgue dominated convergence theorem finishes then the
proof. �
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Remark 3.2. The addition of the term γt (γ 6= 0) to the process Z allows to extend
the analytical estimate of the sup-norm of the function v(x) through the L2-norm
of the function f(x) from the range 1/2 < α ≤ 2 to the entire range 0 < α ≤ 2 of
the stability index. In this sense the addition of drift plays a “regularizing effect”
on the estimates.

The analytical estimates established can be used to derive corresponding inte-
gral estimates for solutions of stochastic differential equations driven by symmetric
stable processes.

Theorem 3.3. a) Assume 0 < α ≤ 2 and X is a solution of equation (1.5) with
γ 6= 0. Then, for any t > 0,m ∈ Z+, x0 ∈ [−m,m], and any measurable function
f : R → [0,∞], one has

E

∫ t∧τm(X)

0

e−φs |b|α(Xs)f(x0 +Xs)ds ≤ M‖f‖2,m, (3.8)

where φt =
∫ t

0 |b|
α(Xs)ds and M is a constant depending on α, γ,m, and t only.

b) Assume that 1/2 < α ≤ 2 and X is a solution of equation (1.5) with γ = 0.
Then, for any t > 0,m ∈ Z+, x0 ∈ [−m,m], and any measurable function f : R →
[0,∞], one has

E

∫ t∧τm(X)

0

e−φs |b|α(Xs)f(x0 +Xs)ds ≤ M‖f‖2,m, (3.9)

where φt is defined in a) and M is a constant depending on α,m, and t only.
c) Assume that 1 < α ≤ 2 and X is a solution of equation (1.5) with γ ∈ R.

Then, for any t > 0,m ∈ Z+, x0 ∈ [−m,m], and any measurable function f : R →
[0,∞], one has

E

∫ t∧τm(X)

0

e−φs |b|α(Xs)f(x0 +Xs)ds ≤ M‖f‖1,m, (3.10)

where φt is defined as above, M is a constant depending on α,m, and t only, and
‖f‖1,m defines the L1-norm of f on the interval [−m,m].

Proof : The proofs of all three statements a), b), and c) are similar and they use
the corresponding estimates a), b), and c) from Lemma 3.1, respectively. We only
prove part a).

Let f ∈ C∞
0 (R) and v be a solution of equation (3.2) satisfying the inequality

(3.3). As before, we apply the convolution to equation (3.2) to obtain the relation
(3.6).

Then, for all s ∈ [0, t ∧ τm(X)), applying the Itô’s formula to the expression

v(ε)(x0 +Xs)e
−φs

and using Proposition 2.1, yields

Ev(ε)(x0 +Xs)e
−φs − v(ε)(x0) =

E

∫ s

0

e−φu |b|α(Xu)(Lv
(ε) − v(ε) + γv(ε)x )(x0 +Xu)du =

−E

∫ s

0

e−φu |b|α(Xu)f
(ε)(x0 +Xu)du.
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By Lemma 3.1, part a) one has that

E

∫ s∧τm(X)

0

e−φu |b|α(Xu)f
(ε)(x0 + Zu)du ≤ sup

x0

v(ε)(x0) ≤ M‖f (ε)‖2,m.

It remains to pass to the limit in the above inequality letting ε → 0, s → t, and
using the Fatou’s lemma.

The inequality (3.8) can be extended in a standard way first to any function
f ∈ L2(R) and then to any non-negative, measurable function using the monotone
class theorem arguments (see, for example, Dellacherie and Meyer, 1980, Theorem
20). �

Corollary 3.4. a) Let 0 < α ≤ 2 and X be a solution of the equation (1.5) with
γ 6= 0. Assume that there exists a constant K > 0 such that 1

K < |b(x)| < K for all
x ∈ R. Then, for all t > 0,m ∈ Z+, and any measurable function f : R → [0,∞],
it holds

E

∫ t∧τm(X)

0

f(Xs)ds ≤ M‖f‖2,m

where the constant M depends on K,α, γ,m, and t only.
b) Let 1/2 < α ≤ 2 and X be a solution of the equation (1.5) with γ = 0. Assume

that there exists a constant K > 0 such that 1
K < |b(x)| < K for all x ∈ R. Then,

for all t > 0,m ∈ Z+, and any measurable function f : R → [0,∞], it holds

E

∫ t∧τm(X)

0

f(Xs)ds ≤ M‖f‖2,m

where the constant M depends on K,α,m, and t only.
c) Let 1 < α ≤ 2 and X be a solution of the equation (1.5) with γ = 0. Assume

that there exists a constant K > 0 such that 1
K < |b(x)| < K for all x ∈ R. Then,

for all t > 0,m ∈ Z+, and any measurable function f : R → [0,∞], it holds

E

∫ t∧τm(X)

0

f(Xs)ds ≤ M‖f‖1,m

where the constant M depends on K,α,m, and t only.

Proof : The estimates a), b), and c) of Corollary 3.4 follow directly from the corre-
sponding estimates of Theorem 3.3 by noticing that

∫ t∧τm(X)

0

f(Xs)ds =

∫ t∧τm(X)

0

eφs |b|−α(Xs)e
−φs |b|α(Xs)f(Xs)ds ≤

M3

∫ t∧τm(X)

0

e−φs |b|α(Xs)f(Xs)ds

where eφs |b|−α(Xs) ≤ M3 for all s ∈ [0, t] and the constant M3 depends on K,α,m,
and t only. �

As a particular case of the estimates in Corollary 3.4, with b = 1, we obtain
the following integral estimates for symmetric stable processes with drift.

Corollary 3.5. a) Let Z be a symmetric stable process of index 0 < α ≤ 2 and
γ 6= 0. Then, for all t > 0,m ∈ Z+, and any measurable function f : R → [0,∞],
it holds

E

∫ t∧τm(Z)

0

f(Zs + γs)ds ≤ M‖f‖2,m
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where the constant M depends on α,m, γ, and t only.
b) Let Z be a symmetric stable process of index 1/2 < α ≤ 2. Then, for all

t > 0,m ∈ Z+, and any measurable function f : R → [0,∞], it holds

E

∫ t∧τm(Z)

0

f(Zs)ds ≤ M‖f‖2,m

where the constant M depends on α,m, and t only.
c) Let Z be a symmetric stable process of index 1 < α ≤ 2. Then, for all

t > 0,m ∈ Z+, and any measurable function f : R → [0,∞], it holds

E

∫ t∧τm(Z)

0

f(Zs)ds ≤ M‖f‖1,m

where the constant M depends on α,m, and t only.

4. Existence of weak solutions

Here we are going to apply the obtained integral estimates to prove the exis-
tence of (weak) solutions for corresponding stochastic differential equations.

We recall that the equation (1.5) is said to have a (weak) solution with initial
value x0 ∈ R if there exist a probability space (Ω,F , P ) with a filtration F on it
and cádlág stochastic processes (X,F) and (Z,F) such that Z is a symmetric stable
process of the given index α and it holds

Xt = x0 +

t∫

0

b(Xs−)dZs + γ

∫ t

0

|b|α(Xs)ds, t ≥ 0 P -a.s. (4.1)

As mentioned before, the stochastic integral in (4.1) can be understood by means
of semimartingale integration theory. On the other hand, as it was shown in
Rosiński and Woyczyński (1986), the stochastic integral in (4.1) can be defined
similarly as for the Brownian motion case (α = 2) following some isometry rela-
tions between corresponding Lα spaces. One of the consequences of such definition
is the following property of a stable integral valid for all α ∈ (0, 2]: there exist
constants C1 and C2 depending on α only such that for all t > 0

C1E

∫ t

0

|σs|
αds ≤ sup

λ>0
λαP

(
sup
s≤t

|

∫ s

0

σudZu| > λ
)
≤ C2E

∫ t

0

|σs|
αds (4.2)

where (σt) is a suitable integrand such that the stochastic integral exists.

Theorem 4.1. Let 0 < α < 2 and γ 6= 0. Assume that there exists a constant
K > 0 such that |b(x)| ≤ K for all x ∈ R and |b|−2α ∈ Lloc(R). Then, for any
x0 ∈ R, there exists a solution of the equation (1.5).

Proof : Step 1. First, we assume additionally that the function b(x) is also bounded
away from zero. Without loss of generality, we can assume that 1

K ≤ |b| ≤ K.
Then, since b is bounded and so |b|α, we can find, again without loss of gen-

erality, a sequence of functions bn, n ≥ 1, such that all bn and |bn|
α are globally

Lipshitz continuous and uniformly bounded by the constant K. Moreover, bn → b
and |bn|

α → |b|α as n → ∞ pointwise and in ‖ · ‖2,m-norm for all t > 0,m ∈ Z+.
It is then well-known that, for any n = 1, 2, . . . , there exists a unique pathwise
solution for the equation (1.5). That is, for any fixed symmetric stable process Z
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defined on a probability space (Ω,F , P ) with a filtration F, there exists a sequence
of processes Xn such that (cf. Theorem 6.2.3 in Appelbaum, 2009)

Xn
t = x0 +

∫ t

0

bn(X
n
s−)dZs + γ

∫ t

0

|bn|
α(Xn

s )ds t ≥ 0 P -a.s. (4.3)

Let Y n
t :=

∫ t

0
bn(X

n
s−)dZs+γ

∫ t

0
|bn|

α(Xn
s )ds. Next, we are going to verify that

the sequence of processes (Xn, Z), n ≥ 1 is tight in the sense of weak convergence
in (D2,D2). Clearly, it suffices to verify that the sequence Y n is tight. Due to the
Aldous’ criterion (Aldous, 1978), we have only to show that

lim
N→∞

lim
n→∞

P
(

sup
0≤s≤t

|Y n
s | > N

)
= 0 (4.4)

for all t ≥ 0 and

lim
n→∞

P
(
|Y n

t∧(τn+rn)
− Y n

t∧τn | > ε
)
= 0 (4.5)

for all t ≥ 0, ε > 0, every sequence of F-stopping times τn, and every sequence of
real numbers rn such that rn ↓ 0.

From the property (4.2) and the uniform boundedness of coefficients bn and
|bn|

α, it follows immediately that both conditions (4.4) and (4.5) are satisfied.
Since the sequence {Xn, Z} is tight, there exists a subsequence {nk}, k =

1, 2, . . . , a probability space (Ω̄, F̄ , P̄ ) and the process (X̄, Z̄) on it with values
in (D2,D2) such that (Xnk , Z) converges weakly (in distribution) to the process
(X̄, Z̄) as k → ∞. For simplicity, let {nk} = {n}.

According to the well-known embedding principle of Skorokhod (see, e.g. The-
orem 2.7, ch. 1 in Ikeda and Watanabe, 1981), there exists a probability space

(Ω̃, F̃ , P̃ ) and the processes (X̃, Z̃), (X̃n, Z̃n), n = 1, 2, . . . , on it such that

i) (X̃n, Z̃n) → (X̃, Z̃) as n → ∞ P̃ -a.s.

ii) (X̃n, Z̃n) = (Xn, Z) in distribution for all n = 1, 2, . . . .

By using standard measurability arguments (Krylov, 1980, chapter 2, p. 89),

the processes Z̃n and Z̃ will be processes with independent increments with respect
to the augmented filtrations F̃n and F̃ generated by processes (X̃n, Z̃n) and (X̃, Z̃),

respectively. Because the finite-dimensional distributions of (X̃n, Z̃n) and (Xn, Z)

coincide, it is then easy to see that the property (2.1) is satisfied so that Z̃n and Z̃
are in fact symmetric stable processes of the same index α as the process Z is.

The properties i), ii) and the equation (4.3) imply that (cf. Krylov, 1980,
chapter 2, p. 89 and Pragarauskas and Zanzotto, 2000, Lemma 3.2)

X̃n
t = x0 +

∫ t

0

bn(X̃
n
s )dZ̃

n
s + γ

∫ t

0

|bn|
α(X̃n

s )ds, t ≥ 0, P̃ -a.s.

On the other hand, the same properties and the quasi-left continuity of the
processes X̃n yield

lim
n→∞

X̃n
t = X̃t P̃ -a.s. (4.6)

Therefore, in order to show that the process X̃ is a solution of the equation (1.5),
it suffices to verify that, for all t ≥ 0,

lim
n→∞

∫ t

0

bn(X̃
n
s )dZ̃

n
s =

∫ t

0

b(X̃s)dZ̃s P̃ - a.s. (4.7)
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and

lim
n→∞

∫ t

0

|bn|
α(X̃n

s )ds =

∫ t

0

|b|α(X̃s)ds P̃ - a.s. (4.8)

It is clear that the relation (4.8) will follow from the relation (4.7) which
remains only one to prove.

The following fact provides the corresponding integral estimate for the limiting
process X̃ and can be proven similar as Lemma 4.2 in Kurenok (2008a).

Lemma 4.2. For any Borel measurable function f : R → [0,∞) and any t ≥ 0,
there exists a sequence mk ∈ (0,∞), k = 1, 2, . . . such that mk ↑ ∞ as k → ∞ and
it holds

Ẽ

∫ t∧τm
k
(X̃)

0

f(X̃s)ds ≤ M‖f‖2,mk
, (4.9)

where the constant M depends on K,α, t, and mk only.

Without loss of generality, we can assume in the lemma above that {mk} =
{m}. Now, to prove (4.7), it is enough to verify that, for all t ≥ 0 and ε > 0, we
have

lim
n→∞

P̃
(
|

∫ t

0

bn(X̃
n
s )dZ̃

n
s −

∫ t

0

b(X̃s)dZ̃s| > ε
)
= 0. (4.10)

In order to prove (4.10) we estimate for a fixed k ∈ Z+ that

P̃
(
|

∫ t

0

bn(X̃
n
s )dZ̃

n
s −

∫ t

0

b(X̃s)dZ̃s| > ε
)
≤

P̃
(
|

∫ t

0

bk(X̃
n
s )dZ̃

n
s −

∫ t

0

bk(X̃s)dZ̃s| >
ε

3

)

+P̃
(
|

∫ t∧τm(X̃n)

0

[bk − bn](X̃
n
s )dZ̃

n
s | >

ε

3

)

+P̃
(
|

∫ t∧τm(X̃)

0

[bk − b](X̃s)dZ̃s| >
ε

3

)
+ P̃

(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
=

I1n,k + I2n,k,m + I3k,m + P̃
(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
.

Since, for any fixed k, the function bk is bounded and Lipshitz continuous, the
processes gnt = bk(X̃

n
t ), n = 1, 2, ... and g0t = bk(X̃t) satisfy the assumptions of

Proposition 2.2 so that I1n,k → 0 as n → ∞.

To show that I2n,k,m → 0 as n → ∞ and I3k,m → 0 as k → ∞, we use first the

inequality (4.2) and then the Corollary 3.4 and Lemma 4.2, respectively, to obtain

I2n,k,m ≤ ε−αM‖bk − bn‖2,m (4.11)

and

I3k,m ≤ ε−αM‖bk − b‖2,m (4.12)

where the constant M depends on K,α,m, and t only. Since ‖bn − b‖2,m → 0 as
n → ∞, we have that the right-hand sides in (4.11) and (4.12) converge to 0 by
letting first n → ∞ and then k → ∞.

Because of the property τm(X̃n) → τm(X̃) as n → ∞ P̃ -a.s.,

P̃
(
τm(X̃n) < t

)
→ P̃

(
τm(X̃) < t

)
as n → ∞
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for all m ∈ Z+, t > 0. Therefore, the last two terms can be made arbitrarly small

by choosing large enough m for all n due to the fact that the processes X̃n and X̃
satisfy the property (4.4). This proves (4.10).

Hence we have shown that X̃ is a solution of the equation (1.5) with a sym-

metric stable process Z̃.
Step 2. Now we drop the additional assumption of b being bounded from below

assumed in Step 1.
The main lines of the proof are similar to those in Step 1, except the fact that

we have to use the integral estimates from Theorem 3.3 rather than Corollary 3.4.
First, for any n = 1, 2, ..., we let bn := b ∨ 1/n. Then, for any fixed n,

the function bn is bounded from above and away from zero. By Step 1, for any
n = 1, 2, ..., there exists a complete probability space (Ωn,Fn, Pn) with a filtration
Fn and the processes (Xn, Zn) on it so that (Zn,Fn) is a symmetric stable process
of index α and it holds

Xn
t = x0 +

∫ t

0

bn(X
n
s−)dZ

n
s + γ

∫ t

0

|bn|
α(Xn

s )ds t ≥ 0 Pn-a.s. (4.13)

Similarly as in Step 1, we can verify that the processes (Xn, Zn), n = 1, 2, ...
will satisfy two properties (4.4) and (4.5) from the Aldous’ criterion where we have
to use Pn instead of P . Therefore, the sequence (Xn, Zn) is tight in the sense of
weak convergence in the space (D2,D2) so that one will be able to find a probability

space (Ω̃, F̃ , P̃ ) and processes (X̃n, Z̃n) and (X̃, Z̃) defined on it so that

i) (X̃n, Z̃n) → (X̃, Z̃) as n → ∞ P̃ -a.s.

ii) (X̃n, Z̃n) = (Xn, Z) in distribution for all n = 1, 2, . . . .

Additionally, using the same arguments as in Step 1, one can establish that

X̃n
t = x0 +

∫ t

0

bn(X̃
n
s )dZ̃

n
s + γ

∫ t

0

|bn|
α(X̃n

s )ds, t ≥ 0, P̃ -a.s.

and (4.6) holds.

Therefore, to show that the process X̃ is a solution of the equation (1.5), it
suffices to verify that, for all t ≥ 0, the relations (4.7) and (4.8) hold. In turn, for
that it is enough to prove the relation (4.7) only. Moreover, as before, the limiting

process X̃ will satisfy the corresponding integral estimate (4.9) from Lemma 4.2 of
the form

Ẽ

∫ t∧τm
k
(X̃)

0

f(X̃s)ds ≤ M‖f |b|−α‖2,mk
(4.14)

since

f(X̃s) = eφse−φs |b|α(X̃s)
[
|b|−αf

]
(X̃s) ≤ M4e

−φs |b|α(X̃s)
[
|b|−αf

]
(X̃s)

and the constant M4 depends on K,m, and t only.
Now, to prove (4.7), it is enough to verify that, for all t ≥ 0 and ε > 0, we

have

lim
n→∞

P̃
(
|

∫ t

0

bn(X̃
n
s )dZ̃

n
s −

∫ t

0

b(X̃s)dZ̃s| > ε
)
= 0. (4.15)

In order to prove (4.15), we first estimate for a fixed k ∈ Z+

P̃
(
|

∫ t

0

bn(X̃
n
s )dZ̃

n
s −

∫ t

0

b(X̃s)dZ̃s| > ε
)
≤
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P̃
(
|

∫ t

0

bk(X̃
n
s )dZ̃

n
s −

∫ t

0

bk(X̃s)dZ̃s| >
ε

3

)

+P̃
(
|

∫ t∧τm(X̃n)

0

[bk − bn](X̃
n
s )dZ̃

n
s | >

ε

3

)

+P̃
(
|

∫ t∧τm(X̃)

0

[bk − b](X̃s)dZ̃s| >
ε

3

)
+ P̃

(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
≤

P̃
(
|

∫ t

0

bk(X̃
n
s )dZ̃

n
s −

∫ t

0

bk(X̃s)dZ̃s| >
ε

3

)

+I1n,k,m + I2k,m

+P̃
(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
.

To show that I1n,k,m → 0 as n → ∞ and I2k,m → 0 as k → ∞, we use first

the inequality (4.2) and then the Theorem 3.3 and estimate (4.14) for the limiting
process, respectively, to obtain

I1n,k,m ≤ ε−αM1‖|bn − bk|
αb−α

n ‖2,m (4.16)

and

I2k,m ≤ ε−αM2‖|b− bk|
αb−α‖2,m (4.17)

where the constants M1 and M2 depend on α,m, and t only.
Now, the obvious inequalities

(bn − bk)
2αb−2α

n ≤ [2(b2n + b2k)b
−2
n ]α ≤ 2α(1 + b2kb

−2
n )α

and

b−1
n ≤ b−1 ∨ 1/n

combined with the condition |b|−2α ∈ Lloc imply that the sequence of functions
|bn − bk|

2α|bn|
−2α, n = 1, 2, ... is uniformly integrable on [−m,m] so that |bn −

bk|
2α|bn|

−2α → |b − bk|
2α|b|−2α as n → ∞ in L1[−m,m]. Thus, the term I1n,k,m

converges to zero as n → ∞ and k → ∞. The convergence of the term I2k,m to zero
as k → ∞ then follows.

We now consider the term

P̃
(
|

∫ t

0

bk(X̃
n
s )dZ̃

n
s −

∫ t

0

bk(X̃s)dZ̃s| >
ε

3

)
.

For any fixed k, we can find a sequence of Lipshitz continuous, uniformly bounded
functions bk,l, l = 1, 2, ...so that ‖bk,l − bk‖2,m → 0 for any m as l → ∞. Using this
fact, we can estimate

P̃
(
|

∫ t

0

bk(X̃
n
s )dZ̃

n
s −

∫ t

0

bk(X̃s)dZ̃s| >
ε

3

)
≤

P̃
(
|

∫ t

0

bk,l(X̃
n
s )dZ̃

n
s −

∫ t

0

bk,l(X̃s)dZ̃s| >
ε

9

)

+P̃
(
|

∫ t∧τm(X̃n)

0

[bk,l − bk](X̃
n
s )dZ̃

n
s | >

ε

9

)

+P̃
(
|

∫ t∧τm(X̃)

0

[bk,l − bk](X̃s)dZ̃s| >
ε

9

)
+ P̃

(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
=
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J1
k,l,n + J2

k,l,n,m + J3
k,l,m + P̃

(
τm(X̃n) < t

)
+ P̃

(
τm(X̃) < t

)
.

Proposition 2.2 implies now that the term J1
k,l,n converges to zero as n → ∞. The

terms J2
k,l,n,m and J3

k,l,m can be estimated by the corresponding integral estimates
as

J2
k,l,n,m ≤ ε−αM1‖|bk,l − bk|

αb−α
n ‖2,m

and

J3
k,l,m ≤ ε−αM2‖|bk,l − bk|

αb−α‖2,m

where the constants M1 and M2 depend on α,m, and t only. By letting l → ∞,
both terms J2

k,l,n,m and J3
k,l,m will converge to zero.

Finally, because of the property τm(X̃n) → τm(X̃) as n → ∞ P̃ -a.s.,

P̃
(
τm(X̃n) < t

)
→ P̃

(
τm(X̃) < t

)
as n → ∞

for all m ∈ Z+, t > 0. Thus, the convergence to zero of the last two terms

P̃
(
τm(X̃n) < t

)
and P̃

(
τm(X̃) < t

)
can be justified in a similar form as in Step

1. �
We use now Theorem 4.1 to prove the existence of solutions for the equation

(1.5) with γ = 0.

Theorem 4.3. Let 0 < α < 2. Assume that |b|−2α ∈ Lloc(R), |b(x)| ≤ K for all
x ∈ R where K > 0 is a constant, and b(x) is a continuous function in x. Then,
for any x0 ∈ R, there exists a solution of the equation (1.5) without drift.

Proof : We choose a sequence of real numbers γn 6= 0, n = 1, 2, .... such that
limn→∞ γn = 0 and consider the stochastic equation

dXn
t = b(Xn

t−)dZ
n
t + γn|b|

α(Xn
t )dt, t ≥ 0, Xn

0 = x0 ∈ R (4.18)

where Zn is a symmetric stable process of index 0 < α < 2.
For any fixed n = 1, 2, ..., the conditions of Theorem 4.1 are satisfied. There-

fore, the equation (4.18) has a (weak) solution. In other words, there exists a
complete probability space (Ωn,Fn, Pn) and the processes (Xn, Zn) on it so that
Zn is a symmetric stable process of index α and (4.18) holds.

Now, consider the sequence of processes (Jn, Xn, Zn), n ≥ 1, where

Jn
t = γn

∫ t

0

|b|α(Xn
s )ds, t ≥ 0.

Since b is bounded, the sequence of processes (Jn, Xn, Zn), n ≥ 1 will satisfy
the Aldous’ conditions (4.4) and (4.5) hence is tight in the sense of weak conver-
gence in (D3,D3). Also, by the same argument, the pair (Jn, Zn) will converge in
distribution to (J, Z) where J = 0 and Z is a symmetric stable process of index α.

We also notice that the functional b
(
z(t)

)
is Skorokhod continuous on the

space D because the function b is assumed to be continuous and, for each t > 0,

the sequence {
∫ t

0 H
n
s−dZ

n
s } is stochastically bounded (uniformly in n) where Hn is

any predictable simple process such that |Hn| ≤ 1, n ≥ 1. The latter follows from
the inequality (4.2).

According to the Theorem of Th. Kurtz and Ph. Protter about the conver-
gence of solutions of stochastic differential equations with respect to semimartin-
gales (see Proposition 5.1 in Kurtz and Protter, 1991), any limiting point of the
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sequence (Xn) will then satify the equation

dXt = b(Xt−)dZt, x0 ∈ R, t ≥ 0.

Thus, the existence of a solution of equation (1.5) without drift is proven. �

Example 4.4. Let

b(x) =





−1, x < −1
x, x ∈ [−1, 1]
1, x > 1

and assume 0 < α < 1/2. The function b(x) satisfies the assumptions of the The-
orem 4.3 so that there is a solution of the equation (1.5). At the same time, the
coefficient b does not satisfy the conditions found by Zanzotto (see Introduction).
Moverover, Theorem 4.3 also improves the local integrability condition on the co-
efficient b found by Zanzotto for the SDE without drift in case of 0 < α < 1/2 in
general. Contrary to the condition |b|−δ ∈ Lloc with δ > 1 required in the existence
theorem of Zanzotto, Theorem 4.3 assumes only |b|−δ ∈ Lloc which is satisfied with
δ = 2α < 1 since 0 < α < 1/2.
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de Mathmatique de l’Université de Strasbourg (1980). First edition. MR0488194.

H. J. Engelbert and W. Schmidt. Strong Markov continuous local martingales and
solutions of one-dimensional stochastic differential equations. III. Math. Nachr.
151, 149–197 (1991). MR1121203.

N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes,
volume 24 of North-Holland Mathematical Library. North-Holland Publishing
Co., Amsterdam-New York; Kodansha, Ltd., Tokyo (1981). ISBN 0-444-86172-6.
MR637061.

O. Kallenberg. Foundations of modern probability. Probability and its Appli-
cations (New York). Springer-Verlag, New York (1997). ISBN 0-387-94957-7.
MR1464694.

N. V. Krylov. Controlled diffusion processes, volume 14 of Applications of
Mathematics. Springer-Verlag, New York-Berlin (1980). ISBN 0-387-90461-1.
MR601776.

V. Kurenok. A note on L2-estimates for stable integrals with drift. Trans. Amer.
Math. Soc. 360 (2), 925–938 (2008a). MR2346477.

http://www.ams.org/mathscinet-getitem?mr=MR0474446
http://www.ams.org/mathscinet-getitem?mr=MR0651573
http://www.ams.org/mathscinet-getitem?mr=MR2512800
http://www.ams.org/mathscinet-getitem?mr=MR0488194
http://www.ams.org/mathscinet-getitem?mr=MR1121203
http://www.ams.org/mathscinet-getitem?mr=MR637061
http://www.ams.org/mathscinet-getitem?mr=MR1464694
http://www.ams.org/mathscinet-getitem?mr=MR601776
http://www.ams.org/mathscinet-getitem?mr=MR2346477


66 V. P. Kurenok

V. Kurenok. Stochastic equations driven by a Cauchy process. In Markov processes
and related topics: a Festschrift for Thomas G. Kurtz, volume 4 of Inst. Math.
Stat. (IMS) Collect., pages 99–106. Inst. Math. Statist., Beachwood, OH (2008b).
MR2574226.

T. G. Kurtz and P. Protter. Weak limit theorems for stochastic integrals
and stochastic differential equations. Ann. Probab. 19 (3), 1035–1070 (1991).
MR1112406.

J.-P. Lepeltier and B. Marchal. Problème des martingales et équations différentielles
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