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Abstract. Inspired by a recent paper of I. Grama, E. Le Page and M. Peigné
(Grama et al., 2014), we consider a sequence (gn)n≥1 of i.i.d. random d×d-matrices
with non-negative entries and study the fluctuations of the process
(log |gn · · · g1x|)n≥1 for any non-zero vector x in Rd with non-negative coordinates.
Our method involves approximating this process by a martingale and studying har-
monic functions for its restriction to the upper half line. Under certain conditions,
the probability for this process to stay in the upper half real line up to time n
decreases as c√

n
for some positive constant c.

1. Introduction

Many limit theorems describe the asymptotic behaviour of random walks
with i.i.d. increments, for instance the strong law of large numbers, the central
limit theorem, the invariant principle... Besides, the fluctuations of these processes
are well studied, for example the decay of the probability that they stay inside the
half real line up to time n or functional central limit theorems for random walks
conditioned to stay positive. A vast literature exists on this subject, see for instance
Bolthausen (1976), Iglehart (1974a), Iglehart (1974b), Iglehart (1975), Kaigh (1976)
or Shimura (1983), and references therein. The Wiener-Hopf factorization is usually
used in this case and so far, it seems to be impossible to adapt in non-abelian con-
text. Recently, much efforts are made to apply the results above for the logarithm
of the norm of the product of i.i.d. random matrices since it behaves similarly to
a sum of i.i.d. random variables. Many limit theorems arose for the last 60 years,
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initiated by Furstenberg and Kesten (1960), Guivarc’h and Raugi (1985), Le Page
(1982)... and recently Benoist and Quint (2016). Let us mention also the works by
Hennion (1984) and Hennion and Hervé (2008) for matrices with positive entries.
However, the studies on the subject of fluctuation was quite sparse a few years
ago. Thanks to the approach of Denisov and Wachtel (2015) for random walks in
Euclidean spaces and motivated by branching processes, I. Grama, E. Le Page and
M. Peigné recently progressed for invertible matrices (Grama et al., 2014). Here
we propose to develop the same strategy for matrices with positive entries by using
Hennion and Hervé (2008).

We endow R
d with the norm | · | defined by |x| :=

d∑

i=1

|xi| for any column vector

x = (xi)1≤i≤d. Let C be the cone of vectors in R
d with non-negative coordinates

C := {x ∈ R
d : ∀1 ≤ i ≤ d, xi ≥ 0}

and X be the standard simplex defined by

X := {x ∈ C, |x| = 1}.
Let S be the set of d× d matrices with non-negative entries such that each column
contains at least one positive entry; its interior is S̊ := {g = (g(i, j))1≤i,j≤d/g(i, j) >
0}. Endowed with the standard multiplication of matrices, the set S is a semigroup

and S̊ is the ideal of S, more precisely, for any g ∈ S̊ and h ∈ S, it is evident that
gh ∈ S̊.
We consider the following actions:

• the left linear action of S on C defined by (g, x) 7→ gx for any g ∈ S and
x ∈ C,

• the left projective action of S on X defined by (g, x) 7→ g · x := gx
|gx| for any

g ∈ S and x ∈ X.

For any g = (g(i, j))1≤i,j≤d ∈ S, without confusion, let

v(g) := min
1≤j≤d

( d∑

i=1

g(i, j)
)

and |g| := max
1≤j≤d

( d∑

i=1

g(i, j)
)
,

then | · | is a norm on S and for any x ∈ C,
0 < v(g) |x| ≤ |gx| ≤ |g| |x|. (1.1)

We set N(g) := max
(

1
v(g) , |g|

)
; notice that N(g) ≥ 1 for any g ∈ S.

On some probability space (Ω,F ,P), we consider a sequence of i.i.d. S-valued
matrices (gn)n≥0 with the same distribution µ on S. Let L0 = Id and Ln := gn . . . g1
for any n ≥ 0. For any fixed x ∈ X, we define the X-valued Markov chain (Xx

n)n≥0

by setting Xx
n := Ln · x for any n ≥ 0 (or simply Xn if there is no confusion). We

denote by P the transition probability of (Xn)n≥0, defined by: for any x ∈ X and
any bounded Borel function ϕ : X → C,

Pϕ(x) :=

∫

S

ϕ(g · x)µ(dg) = E[ϕ(L1 · x)].

Hence, for any n ≥ 1,
Pnϕ(x) = E[ϕ(Ln · x)].

We assume that with positive probability, after finitely many steps, the sequence
(Ln)n≥1 reaches S̊. In mathematical term, it is equivalent to writing as
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P


⋃

n≥1

[Ln ∈ S̊]


 > 0.

On the product space S×X, we define the function ρ by setting for any (g, x) ∈ S×X,

ρ(g, x) := log |gx|.

Notice that gx = eρ(g,x)g ·x; in other terms, the linear action of S on C corresponds
to the couple (g ·x, ρ(g, x)). This function ρ satisfies the cocycle property ρ(gh, x) =
ρ(g, h · x) + ρ(h, x) for any g, h ∈ S and x ∈ X and implies the basic decomposition
for any x ∈ X,

log |Lnx| =
n∑

k=1

ρ(gk, X
x
k−1).

For any a ∈ R and n ≥ 1, let S0 := a and Sn = Sn(x, a) := a+
∑n

k=1 ρ(gk, Xk−1).
Then the sequence (Xn, Sn)n≥0 is a Markov chain on X × R with transition prob-

ability P̃ defined by: for any (x, a) ∈ X × R and any bounded Borel function
ψ : X× R → C,

P̃ψ(x, a) =

∫

S

ψ(g · x, a+ ρ(g, x))µ(dg).

For any (x, a) ∈ X×R, we denote by Px,a the probability measure on (Ω,F) condi-
tioned to the event [X0 = x, S0 = a] and by Ex,a the corresponding expectation; for
the sake of brevity, by Px we denote Px,a when S0 = 0 and by Ex the corresponding
expectation. Hence for any n ≥ 1,

P̃nψ(x, a) = E[ψ(Ln · x, a+ log |Lnx|)] = Ex,a[ψ(Xn, Sn)].

Now we consider the restriction P̃+ to X × R+ of P̃ defined by: for any (x, a) ∈
X× R+ and any bounded function ψ : X× R → C,

P̃+ψ(x, a) = P (ψ1
X×R

+
∗
)(x, a).

Let us emphasize that P̃+ may not be a Markov kernel on X× R+.
Let τ := min{n ≥ 1 : Sn ≤ 0} be the first time the random process (Sn)n≥1

becomes non-positive; for any (x, a) ∈ X × R+ and any bounded Borel function
ψ : X× R → C,

P̃+ψ(x, a) = Ex,a[ψ(X1, S1); τ > 1] = E[ψ(g1 · x, a+ ρ(g1, x)); a+ ρ(g1, x) > 0].

A positive P̃+-harmonic function V is any function from X×R+ to R+ satisfying

P̃+V = V . We extend V by setting V (x, a) = 0 for (x, a) ∈ X×R−
∗ . In other words,

the function V is P̃+-harmonic if and only if for any x ∈ X and a ≥ 0,

V (x, a) = Ex,a[V (X1, S1); τ > 1]. (1.2)

From Theorem II.1 in Hennion and Hervé (2008), under conditions P1-P3 intro-
duced below, there exists a unique probability measure ν on X such that for any
bounded Borel function ϕ from X to R,

(µ ∗ ν)(ϕ) =
∫

S

∫

X

ϕ(g · x)ν(dx)µ(dg) =
∫

X

ϕ(x)ν(dx) = ν(ϕ).
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Such a measure is said to be µ-invariant. Moreover, the upper Lyapunov exponent
associated with µ is finite and is expressed by

γµ =

∫

S

∫

X

ρ(g, x)ν(dx)µ(dg). (1.3)

Now we state the needed hypotheses for later work.
HYPOTHESES

P1 There exists δ0 > 0 such that

∫

S

N(g)δ0µ(dg) < +∞.

P2 There exists no affine subspaces A of Rd such that A ∩ C is non-empty and
bounded and invariant under the action of all elements of the support of µ.
P3 There exists n0 ≥ 1 such that µ∗n0(S̊) > 0.
P4 The upper Lyapunov exponent γµ is equal to 0.
P5 There exists δ > 0 such that µ{g ∈ S : ∀x ∈ X, log |gx| ≥ δ} > 0.

In this paper, we establish the asymptotic behaviour of Px,a(τ > n) by studying

the P̃+-harmonic function V . More precisely, Proposition 1.1 concerns the existence

of a P̃+-harmonic function and its properties whereas Theorem 1.2 is about the limit
behaviour of the exit time τ .

Proposition 1.1. Assume hypotheses P1-P5.

(1) For any x ∈ X and a ≥ 0, the sequence
(
Ex,a[Sn; τ > n]

)
n≥0

converges to

the function V (x, a) := a− Ex,aMτ .
(2) For any x ∈ X the function V (x, ·) is increasing on R+.
(3) There exist c > 0 and A > 0 such that for any x ∈ X and a ≥ 0,

1

c
∨ (a−A) ≤ V (x, a) ≤ c(1 + a).

(4) For any x ∈ X, the function V (x, .) satisfies lim
a→+∞

V (x, a)

a
= 1.

(5) The function V is P̃+-harmonic.

The function V contains information of the part of the trajectory which stays in
R+ as stated in Theorem 1.2.

Theorem 1.2. Assume P1-P5. Then for any x ∈ X and a ≥ 0,

Px,a(τ > n) ∼ 2V (x, a)

σ
√
2πn

as n→ +∞.

Moreover, there exists a constant c such that for any x ∈ X, a ≥ 0 and n ≥ 1,
√
nPx,a(τ > n) ≤ cV (x, a).

As a direct consequence, we prove that the sequence ( Sn

σ
√
n
)n≥1, conditioned to

the event τ > n, converges in distribution to the Rayleigh law as stated below.

Theorem 1.3. Assume P1-P5. For any x ∈ X, a ≥ 0 and t > 0,

lim
n→+∞

Px,a

(
Sn√
n
≤ t | τ > n

)
= 1− exp

(
− t2

2σ2

)
.

In section 2, we approximate the chain (Sn)n≥0 by a martigale and in section
3, we study the harmonic function V and state the proof of Proposition 1.1. We
use the coupling argument to prove Theorem 1.2 and Theorem 1.3 in section 4. At
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last, in section 5 we check general conditions to apply an invariant principle stated
in Theorem 2.1 in Grama et al. (2014).

Throughout this paper, we denote the absolute constants such as C, c, c1, c2, . . .
and the constants depending on their indices such as cε, cp, . . .. Notice that they
are not always the same when used in different formulas. The integer part of a real
constant a is denoted by [a].

2. Approximation of the chain (Sn)n≥0

In this section, we discuss the spectral properties of P and then utilise them to
approximate the chain (Sn)n≥0. Throughout this section, we assume that condi-
tions P1-P4 hold true.

2.1. Spectral properties of the operators P and its Fourier transform. Following
Hennion (1997), we endow X with a bounded distance d such that g acts on X as
a contraction with respect to d for any g ∈ S. For any x, y ∈ X, we write:

m (x, y) = min
1≤i≤d

{
xi
yi
|yi > 0

}

and it is clear that 0 ≤ m (x, y) ≤ 1. For any x, y ∈ X, let d (x, y) :=
ϕ (m (x, y)m (y, x)), where ϕ is the one-to-one function defined for any s ∈ [0, 1]

by ϕ (s) :=
1− s

1 + s
. Setting c (g) := sup {d (g · x, g · y) , x, y ∈ X} for g ∈ S; the

proposition below gives some more properties of d and c(g).

Proposition 2.1. Hennion (1997) The quantity d is a distance on X satisfying the
following properties:

(1) sup{d(x, y) : x, y ∈ X} = 1.
(2) |x− y| ≤ 2d(x, y) for any x, y ∈ X.

(3) c(g) ≤ 1 for any g ∈ S, and c(g) < 1 if and only if g ∈ S̊.
(4) d (g · x, g · y) ≤ c (g) d (x, y) ≤ c(g) for any and x, y ∈ X.
(5) c (gh) ≤ c (g) c (h) for any g, h ∈ S.

From now on, we consider a sequence (gn)n≥0 of i.i.d. S-valued random variables,
we set ak := ρ(gk, Xk−1) for k ≥ 1 and hence Sn = a +

∑n
k=1 ak for n ≥ 1. In

order to study the asymptotic behavior of the process (Sn)n≥0, we need to consider
the “Fourier transform” of the random variables ak, under Px, x ∈ X, similarly for
classical random walks with independent increments on R. Let Pt be the family of
“Fourier operators” defined for any t ∈ R, x ∈ X and any bounded Borel function
ϕ : X → C by

Ptϕ(x) :=

∫

S

eitρ(g,x)ϕ(g · x)µ(dg) = Ex

[
eita1ϕ(X1)

]
(2.1)

and for any n ≥ 1,

Pn
t ϕ(x) = E[eit log |Lnx|ϕ(Ln · x)] = Ex[e

itSnϕ(Xn)]. (2.2)

Moreover, we can imply that

PmPn
t ϕ(x) = E

[
eit log |gm+n···gm+1(Lm·x)|ϕ(Lm+n · x)

]

= Ex

[
eit(am+1+···+am+n)ϕ(Xn+m)

]
(2.3)
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and when ϕ = 1, we obtain

Ex

[
eitSn

]
= Pn

t 1(x) and Ex

[
eit(am+1+···+am+n)

]
= PmPn

t 1(x).

We consider the space C(X) of continuous functions from X to C endowed with
the norm of uniform convergence |.|∞. Let L be the subset of Lipschitz functions
on X defined by

L := {ϕ ∈ C(X) : |ϕ|L := |ϕ|∞ +m(ϕ) < +∞},
where m(ϕ) := supx,y∈X

x 6=y

|ϕ(x)−ϕ(y)|
d(x,y) . The spaces (C(X), | · |∞) and (L, | · |L) are

Banach spaces and the canonical injection from L into C(X) is compact. The norm
of a bounded operation A from L to L is denoted by |A|L→L := supϕ∈L |Aϕ|L. We
denote L′ the topological dual of L endowed with the norm | · |L′ corresponding to
| · |L; notice that any probability measure ν on X belongs to L′.
For further uses, we state here some helpful estimations.

Lemma 2.2. For g ∈ S, x, y, z ∈ X such that d(x, y) < 1 and for any t ∈ R,

|ρ(g, x)| ≤ 2 logN(g), (2.4)

and

|eitρ(g,y) − eitρ(g,z)| ≤
(
4min{2|t| logN(g), 1}+ 2C|t|

)
d(y, z), (2.5)

where C = sup{ 1
u log 1

1−u : 0 < u ≤ 1
2} < +∞.

Proof. For the first assertion, from (1.1), we can imply that | log |gx|| ≤ logN(g).
For the second assertion, we refer to the proof the Theorem III.2 in Hennion and
Hervé (2008).

�

Denote ε(t) :=
∫
S min{2|t| logN(g), 2}µ(dg). Notice that limt→0 ε(t) = 0.

Proposition 2.3. Hennion and Hervé (2008) Under hypotheses P1, P2, P3 and
P4, for any t ∈ R, the operator Pt acts on L and satisfies the following properties:

(1) Let Π : L → L be the rank one operator defined by Π(ϕ) = ν(ϕ)1 for any
function ϕ ∈ L, where ν is the unique P -invariant probability measure on
X and R := P −Π.

The operator R : L→ L satisfies

ΠR = RΠ = 0,

and its spectral radius is less than 1; in other words, there exist constants
C > 0 and 0 < κ < 1 such that |Rn|L→L ≤ Cκn for any n ≥ 1.

(2) There exist ǫ > 0 and 0 ≤ rǫ < 1 such that for any t ∈ [−ǫ, ǫ], there exist a
complex number λt closed to 1 with modulus less than or equal to 1, a rank
one operator Πt and an operator Rt on L with spectral radius less than or
equal to rǫ such that

Pt = λtΠt +Rt and ΠtRt = RtΠt = 0.

Moreover, CP := sup
−ǫ≤t≤ǫ

n≥0

|Pn
t |L→L < +∞.

(3) For any p ≥ 1,

sup
n≥0

sup
x∈X

Ex|ρ(gn+1, Xn)|p < +∞. (2.6)
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Proof. (a) We first check that Pt acts on (L, | · |L) for any t ∈ R. On one hand,
|Ptϕ|∞ ≤ |ϕ|∞ for any ϕ ∈ L. On the other hand, by (2.5) for any x, y ∈ X such
that x 6= y,

|Ptϕ(x) − Ptϕ(y)|
d(x, y)

≤
∫

S

(∣∣∣∣
eitρ(g,x) − eitρ(g,y)

d(x, y)

∣∣∣∣ |ϕ(g · x)|+
∣∣∣∣
ϕ(g · x)− ϕ(g · y)

d(x, y)

∣∣∣∣
)
µ(dg)

≤ |ϕ|∞(4ε(t) + 2C|t|) +
∫

S

( |ϕ(g · x)− ϕ(g · y)|
d(g · x, g · y)

d(g · x, g · y)
d(x, y)

)
µ(dg),

≤ |ϕ|∞(4ε(t) + 2C|t|) +m(ϕ),

which implies m(Ptϕ) ≤ |ϕ|∞(4ε(t) + 2C|t|) +m(ϕ) < +∞. Therefore Ptϕ ∈ L.

(b) Let Π be the rank one projection on L defined by Πϕ = ν(ϕ)1 for any ϕ ∈ L.
Let R := P −Π. By definition, we obtain PΠ = ΠP = Π and Π2 = Π which implies
ΠR = RΠ = 0 and Rn = Pn−Π for any n ≥ 1. Here we only sketch the main steps
by taking into account the proof of Theorem III.1 in Hennion and Hervé (2008).
Let µ∗n be the distribution of the random variable Ln and set

c(µ∗n) := sup

{∫

S

d(g · x, g · y)
d(x, y)

dµ∗n(g) : x, y ∈ X, x 6= y

}
.

Since c(·) ≤ 1, we have c(µ∗n) ≤ 1. Furthermore, we can see that c(µ∗(m+n)) ≤
c(µ∗m)c(µ∗n) for any m,n > 0. Hence, the sequence (c(µ∗n))n≥1 is submultiplica-
tive and satisfies c(µ∗n0) < 1 for some n0 ≥ 1. Besides, we obtain m(Pnϕ) ≤
m(ϕ)c(µ∗n). Moreover, we also obtain m(ϕ) ≤ |ϕ|L ≤ 3m(ϕ) for any ϕ ∈ KerΠ.
Notice that Pn(ϕ − Πϕ) belongs to KerΠ for any ϕ ∈ L and n ≥ 0. Hence
|Pn(ϕ−Πϕ)|L ≤ 3c(µ∗n)|ϕ|L which yields

|Rn|L→L = |Pn −Π|L→L = |Pn(I −Π)|L→L ≤ 3c(µ∗n).

Therefore, the spectral radius of R is less than or equal to κ := lim
n→+∞

(
c(µ∗n)

) 1
n

which is strictly less than 1 by hypothesis P3 and Proposition 2.1 (3).

(c) The theory of the perturbation (see Dunford and Schwartz, 1988, Chapter
VII, section 6) allows to extend the decomposition P = Π + R to the operator Pt

when t is closed to 0. Indeed, for ǫ > 0 small enough, there exists rǫ ∈ [0, 1[ such
that, for any t ∈ [−ǫ; ǫ], the operator Pt may be decomposed as Pt = λtΠt + Rt,
where the spectral radius of Rt is less than or equal to rǫ and λt is the unique
eigenvalue of Pt with modulus greater than rǫ; furthermore, the eigenvalue λt is
simple. In order to control Pn

t , we ask λ
n
t to be bounded. Notice that by Hypothesis

P1, the function t 7→ Pt is analytic near 0. To prove that the sequence (Pn
t )t is

bounded in L, it suffices to check |λt| ≤ 1 for any t ∈ [−ǫ, ǫ].
When ϕ(x) = 1(x), equality (2.2) becomes

Pn
t 1(x) = E

[
eitρ(Ln,x)

]
= λnt Πt1(x) +Rn

t 1(x). (2.7)

We have the local expansion of λt at 0:

λt = λ0 + tλ′0 +
t2

2
λ′′0 [1 + o(1)]. (2.8)
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Taking the first derivative of (2.7) with respect to t, we may write for any n ≥ 0,

d

dt
Pn
t 1(x) =

d

dt

(
λnt Πt1(x) +Rn

t 1(x)
)
= E

[
iρ(Ln, x)e

itρ(Ln,x)
]
.

Since λ0 = 1, Π01(x) = 1 and |Rn|L→L ≤ Crnǫ , we can imply that

λ′0 =
i

n
E[ρ(Ln, x)]−

Π′
01(x)

n
− [Rn

t 1(x)]
′
t=0

n
,

which yields λ′0 = i lim
n→+∞

1

n
E[ρ(Ln, x)] = iγµ = 0. Similarly, taking the second de-

rivative of (2.7) implies λ′′0 = − lim
n→+∞

1

n
E[ρ(Ln, x)

2]. Denote σ2 := lim
n→+∞

1

n
Ex[S

2
n].

Applying in our context of matrices with non-negative coefficients the argument de-
veloped in Bougerol and Lacroix (1985) Lemma 5.3, we can imply that σ2 > 0 and
hence λ′′0 = −σ2 < 0. Therefore, in particular, for t closed to 0, expression (2.8)
becomes

λt = 1− σ2

2
t2[1 + o(1)]

which implies |λt| ≤ 1 for t small enough.

(d) In particular, inequality (1.1) implies |ρ(g, x)| ≤ logN(g) for any x ∈ X.
Therefore, for any p ≥ 1, x ∈ X and n ≥ 1, Hypothesis P1 yields

Ex|ρ(gn+1, Xn)|p ≤ p!

δp0
Exe

δ0|ρ(gn+1,Xn)| ≤ p!

δp0
EN(gn+1)

δ0 < +∞.

�

2.2. Martingale approximation of the chain (Sn)n≥0. As announced in the abstract,
we approximate the process (Sn)n≥0 by a martingale (Mn)n≥0. In order to construct

the suitable martingale, we introduce the operator P and then find the solution of
the Poisson equation as follows. First, it is neccessary to introduce some notation
and basic properties. Let g0 = I andX−1 := X0. The sequence ((gn, Xn−1))n≥0 is a

Markov chain on S×X, starting from (Id, x) and with transition operator P defined
by: for any (g, x) ∈ S × X and any bounded measurable function φ : S × X → R,

Pφ(g, x) :=

∫

S×X

φ(h, y)P ((g, x), dhdy) =

∫

S

φ(h, g · x)µ(dh) (2.9)

(in other words, the measure P ((g, x), dhdy) on S × X equals δg·x(dy)µ(dh)).
Notice that by (2.4), under assumption P1, for any g ∈ S and x ∈ X, the function
h 7→ ρ(h, g · x) is µ-integrable, so that Pρ(g, x) is well defined.

Lemma 2.4. The function ρ̄ : x 7→
∫

S

ρ(g, x)µ(dg) belongs to L and for any g ∈ S,

x ∈ X and n ≥ 1,

P
n+1

ρ(g, x) = Pnρ(g · x). (2.10)

Proof. (1) For any x ∈ X, definition of ρ and (2.4) yield

|ρ(x)| ≤
∫

S

| log |gx||µ(dg) ≤
∫

S

2 logN(g)µ(dg) ≤
∫

S

2N(g)δ0µ(dg) < +∞.

Hence |ρ|∞ < +∞. For any x, y ∈ X such that d(x, y) > 1
2 , we can see that

|ρ(g, x)− ρ(g, y)| ≤ |ρ(g, x)− ρ(g, y)|2d(x, y) ≤ 8 logN(g)d(x, y). (2.11)
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For any x, y ∈ X such that d(x, y) ≤ 1
2 , applying Lemma III.1 in Hennion and

Hervé (2008), we obtain

|ρ(g, x)− ρ(g, y)| ≤ 2 log
1

1− d(x, y)
≤ 2Cd(x, y), (2.12)

where C is given in Lemma 2.2. For any x, y ∈ X, by (2.11) and (2.12) we obtain

|ρ(x) − ρ(y)| ≤
∫

S

|ρ(g, x)− ρ(g, y)|µ(dg)

≤
∫

S

[8 logN(g) + 2C]d(x, y)µ(dg).

Thus m(ρ) = sup
x,y∈X,x 6=y

|ρ(x)− ρ(y)|
d(x, y)

< +∞.

(2) From (2.9) and definition of ρ, it is obvious that

Pρ(g, x) =

∫

S

ρ(h, g · x)µ(dh) = ρ(g · x),

which yields

P
2
ρ(g, x) = P (Pρ)(g, x) =

∫

S×X

(Pρ)(k, y)P ((g, x), dkdy)

=

∫

S×X

ρ(k · y)P ((g, x), dkdy)

=

∫

S

ρ(k · (g · x))µ(dk) = Pρ(g · x).

By induction, we obtain P
n+1

ρ(g, x) = Pnρ(g · x) for any n ≥ 0.
�

Formally, the solution θ : S ×X → R of the equation θ− Pθ = ρ is the function

θ : (g, x) 7→
+∞∑

n=0

P
n
ρ(g, x).

Notice that we do not have any spectral property for P and ρ does not belong to
L. However, we still obtain the convergence of this series by taking into account
the important relation (2.10), as shown in the following lemma.

Lemma 2.5. The sum θ =

+∞∑

n=0

P
n
ρ exists and satisfies the Poisson equation ρ =

θ − Pθ. Moreover,

|Pθ|∞ = sup
g∈S,x∈X

|θ(g, x) − ρ(g, x)| < +∞; (2.13)

and for any p ≥ 1, it holds

sup
n≥0

sup
x∈X

Ex|θ(gn+1, Xn)|p < +∞. (2.14)

Proof. (1) Since P acts on (L, | · |L) and ρ ∈ L from Lemma 2.4, we obtain
Pρ ∈ L. Thanks to definition of ρ, (1.3) and P4, it follows that

ν(ρ) =

∫

X

ρ(x)ν(dx) =

∫

S

∫

X

ρ(g, x)ν(dx)µ(dg) = γµ = 0.
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Proposition 2.3 and the relation (2.10) yield for any x ∈ X and n ≥ 0,

P
n+1

ρ(g, x) = Pnρ(g·x) = Πρ(g·x)+Rnρ(g·x) = ν(ρ)1(g·x)+Rnρ(g·x) = Rnρ(g·x)
and there exist C > 0 and 0 < κ < 1 such that for any x ∈ X and n ≥ 0,

|Rnρ(x)| ≤ |Rnρ|L ≤ |Rn|L→L ≤ Cκn.

Hence for any g ∈ S and x ∈ X,
∣∣∣∣∣

+∞∑

n=1

P
n
ρ(g, x)

∣∣∣∣∣ ≤
+∞∑

n=0

|Pnρ(g · x)| ≤ C
+∞∑

n=0

κn =
C

1− κ
< +∞.

Therefore, the function θ =

+∞∑

n=0

P
n
ρ exists and obviously satisfies the Poisson

equation ρ = θ − Pθ. Finally, it is evident that

sup
g∈S,x∈X

|θ(g, x) − ρ(g, x)| = sup
g∈S,x∈X

∣∣∣∣∣

+∞∑

n=1

P
n
ρ(g, x)

∣∣∣∣∣ < +∞.

(2) Indeed, from (2.6), (2.13) and Minkowski’s inequality, the assertion arrives.
�

Now we contruct a martingale to approximate the Markov walk (Sn)n≥0. Hence,
from the definition of Sn and the Poisson equation, by adding and removing the
term Pθ(g0, X−1), we obtain

Sn = a+ ρ(g1, X0) + . . .+ ρ(gn, Xn−1)

= a+ Pθ(g0, X−1)− Pθ(gn, Xn−1) +

n−1∑

k=0

[
θ(gk+1, Xk)− Pθ(gk, Xk−1)

]
.

Let F0 := {∅,Ω} and Fn := σ{gk : 0 ≤ k ≤ n} for n ≥ 1.

Proposition 2.6. For any n ≥ 0, x ∈ X, a ≥ 0 and p > 2, the sequence (Mn)n≥0

defined by

M0 := S0 and Mn :=M0 +
n−1∑

k=0

[
θ(gk+1, Xk)− Pθ(gk, Xk−1)

]
(2.15)

is a martingale in Lp(Ω,Px,a, (Fn)n≥0) satisfying the properties:

sup
n≥0

|Sn −Mn| ≤ 2|Pθ|∞ Px,a-a.s. (2.16)

sup
n≥1

n− p
2 sup
x∈X

Ex,a|Mn|p < +∞. (2.17)

From now on, we set A := 2|Pθ|∞.
Proof. By definition (2.15), martingale property arrives.
(1) From the construction of Mn and (2.13), we can see easily that

sup
n≥0

|Sn −Mn| = sup
n≥0

∣∣Pθ(g0, X−1)− Pθ(gn, Xn−1)
∣∣ ≤ 2

∣∣Pθ
∣∣
∞ < +∞ Px,a-a.s..
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(2) Denote ξk := θ(gk+1, Xk)−Pθ(gk, Xk−1). ThusMn =M0+
∑n−1

k=0 ξk. Using
Burkholder’s inequality, for any p ≥ 1, there exists some positive constant cp such
that for 0 ≤ k < n,

(Ex,a|Mn|p)
1
p ≤ cp


Ex,a

∣∣∣∣∣

n−1∑

k=0

ξ2k

∣∣∣∣∣

p
2




1
p

.

Now, with p > 2, applying Holder’s inequality, we obtain

∣∣∣∣∣

n−1∑

k=0

ξ2k

∣∣∣∣∣ ≤ n1− 2
p

(
n−1∑

k=0

|ξk|p
) 2

p

,

which implies

Ex,a

∣∣∣∣∣

n−1∑

k=0

ξ2k

∣∣∣∣∣

p
2

≤ n
p
2
−1

Ex,a

n−1∑

k=0

|ξk|p ≤ n
p
2 sup
0≤k≤n−1

Ex,a|ξk|p.

Since (Mn)n is a martingale, by using the convexity property, we can see that for
any k ≥ 0,

∣∣∣Pθ(gk, Xk−1)
∣∣∣
p

=
∣∣∣Ex,a

[
|θ(gk+1, Xk)||Fk

]∣∣∣
p

≤ Ex,a

[
|θ(gk+1, Xk)|p|Fk

]
,

which implies Ex,a

∣∣Pθ(gk, Xk−1)
∣∣p ≤ Ex,a |θ(gk+1, Xk)|p. Therefore, we obtain

(
Ex,a|Mn|p

) 1
p ≤ cp

(
n

p
2 sup
0≤k≤n−1

Ex,a|ξk|p
) 1

p

≤ cpn
1
2 sup
0≤k≤n−1

(
Ex,a|ξk|p

) 1
p

≤ cpn
1
2 sup
0≤k≤n−1

[(
Ex,a|θ(gk+1, Xk)|p

)1/p
+
(
Ex,a|Pθ(gk, Xk−1)|p

)1/p]

≤ 2cpn
1
2 sup
0≤k≤n−1

(
Ex,a|θ(gk+1, Xk)|p

) 1
p

.

Consequently, we obtain Ex,a|Mn|p ≤ (2cp)
pn

p
2 sup
0≤k≤n−1

Ex,a|θ(gk+1, Xk)|p and the

assertion arrives by using (2.14).
�

3. On the P̃+-harmonic function V and the proof of Proposition 1.1

In this section we construct explicitly a P̃+-harmonic function V and study
its properties. We begin with the first time the martingale (Mn)n≥0 (2.15) visit
]−∞, 0], defined by

T = min{n ≥ 1 :Mn ≤ 0}.
The equality γµ = 0 yields lim inf

n→+∞
Sn = −∞ Px-a.s. for any x ∈ X, thus

lim inf
n→+∞

Mn = −∞ Px-a.s., so that T < +∞ Px-a.s. for any x ∈ X and a ≥ 0.
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3.1. On the properties of T and (Mn)n. We need to control the first moment of the
random variable |MT∧n| under Px; we consider the restriction of this variable to
the event [T ≤ n] in Lemma 3.1 and control the remaining term in Lemma 3.4.

Lemma 3.1. There exists ε0 > 0 and c > 0 such that for any ε ∈ (0, ε0), n ≥ 1, x ∈
X and a ≥ n

1
2
−ε,

Ex,a

[
|MT |;T ≤ n

]
≤ c

a

nε
.

Proof. For any ε > 0, consider the event An := { max
0≤k≤n−1

|ξk| ≤ n
1
2
−2ε}, where

ξk = θ(gk+1, Xk)− Pθ(gk, Xk−1); then

Ex,a

[
|MT |;T ≤ n

]
= Ex,a

[
|MT |;T ≤ n,An

]
+ Ex,a

[
|MT |;T ≤ n,Ac

n

]
.(3.1)

On the event [T ≤ n] ∩ An, we have |MT | ≤ |ξT−1| ≤ n
1
2
−2ε. Hence for any x ∈ X

and a ≥ n
1
2
−ε,

Ex,a

[
|MT |;T ≤ n,An

]
≤ Ex,a

[
|ξT−1|;T ≤ n,An

]
≤ n

1
2
−2ε ≤ a

nε
. (3.2)

Let M∗
n := max

1≤k≤n
|Mk|; since |MT | ≤ M∗

n on the event [T ≤ n], it is clear that, for

any x ∈ X and a ≥ 0,

Ex,a

[
|MT |;T ≤ n,Ac

n

]
≤ Ex[M

∗
n;A

c
n]

≤ Ex,a

[
M∗

n;M
∗
n > n

1
2
+2ε, Ac

n

]
+ n

1
2
+2ε

Px,a(A
c
n)

≤
∫ +∞

n
1
2
+2ε

Px,a(M
∗
n > t)dt+ 2n

1
2
+2ε

Px,a(A
c
n). (3.3)

We bound the probability Px,a(A
c
n) by using Markov’s inequality, martingale defi-

nition and (2.14) as follows: for any p ≥ 1,

Px,a(A
c
n) ≤

n−1∑

k=0

Px,a

(
|ξk| > n

1
2
−2ε
)

≤ 1

n( 1
2
−2ε)p

n−1∑

k=0

Ex,a|ξk|p

≤ 2p

n( 1
2
−2ε)p

n−1∑

k=0

Ex,a|θ(gk+1, Xk)|p

=
cp

n
p
2
−1−2εp

.

For any a ≥ n
1
2
−ε, it follows that

n
1
2
+2ε

Px,a(A
c
n) ≤ an3ε

Px,a(A
c
n) ≤

cpa

n
p
2
−1−2εp−3ε

. (3.4)

Now we control the integral in (3.3). Using Doob’s maximal inequality for mar-
tingales and (2.17), we receive for any p ≥ 1,

Px(M
∗
n > t) ≤ 1

tp
Ex

[
|Mn|p

]
≤ cp

n
p
2

tp
,
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which implies for any a ≥ n
1
2
−ε,

∫ +∞

n
1
2
+2ε

Px(M
∗
n > t)dt ≤ cp

p− 1

n
p
2

n( 1
2
+2ε)(p−1)

≤ cp
p− 1

a

n2εp−3ε
. (3.5)

Taking (3.3), (3.4) and (3.5) altogether, we obtain for some c′p,

Ex,a

[
|MT |;T ≤ n,Ac

n

]
≤ c′p

(
a

n2εp−3ε
+

a

n
p
2
−1−2εp−3ε

)
. (3.6)

Finally, from (3.1), (3.2) and (3.6), we obtain for any a ≥ n
1
2
−ε,

Ex,a

[
|MT |;T ≤ n

]
≤ a

nε
+ c′p

a

nε

(
1

n2εp−4ε
+

1

n
p
2
−1−2εp−4ε

)
.

Fix p > 2. Then there exist c > 0 and ε0 > 0 such that for any ε ∈ (0, ε0) and

a ≥ n
1
2
−ε,

Ex,a

[
|MT |, T ≤ n

]
≤ c

a

nε

which proves the lemma.
�

For fixed ε > 0 and a ≥ 0, we consider the first time νn,ε when the process

(|Mk|)k≥1 exceeds 2n
1
2
−ε. It is connected to Lemma 4.3 where P(τbma > n) is

controlled uniformly in a under condition a ≤ θn
√
n with limn→+∞ θn = 0 which

we take into account here by setting

νn,ε := min{k ≥ 1 : |Mk| ≥ 2n
1
2
−ε}.

Notice first that for any ε > 0, x ∈ X and a ≥ 0 the sequence (νn,ε)n≥1 tends to
+∞ a.s. on (Ω,B(Ω),Px,a). The following lemma yields to a more precise control
of this property.

Lemma 3.2. For any ε ∈ (0, 12 ), there exists cε > 0 such that for any x ∈ X, a ≥ 0
and n ≥ 1,

Px,a(νn,ε > n1−ε) ≤ exp(−cεnε).

Proof. Let m = [B2n1−2ε] and K = [nε/B2] for some positive constant B. By

(2.16), for n sufficiently great such that A ≤ n
1
2
−ε, we obtain for any x ∈ X and

a ≥ 0,

Px,a(νn,ε > n1−ε) ≤ Px,a

(
max

1≤k≤n1−ε
|Mk| ≤ 2n

1
2
−ε

)

≤ Px,a

(
max

1≤k≤K
|Mkm| ≤ 2n

1
2
−ε

)

≤ Px,a

(
max

1≤k≤K
|Skm| ≤ 3n

1
2
−ε

)
. (3.7)

Using Markov property, it follows that, for any x ∈ X and a ≥ 0, from which by
iterating K times, we obtain

Px,a

(
max

1≤k≤K
|Skm| ≤ 3n

1
2
−ε

)
≤
(

sup
b∈R,x∈X

Px,b

(
|Sm| ≤ 3n

1
2
−ε
))K

. (3.8)

Denote B(b; r) = {c : |b+ c| ≤ r}. Then for any x ∈ X and b ∈ R

Px,b

(
|Sm| ≤ 3n

1
2
−ε
)
= Px

(
Sm√
m

∈ B(b/
√
m; rn)

)
,
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where rn = 3n
1
2
−ε

√
m

. Using the central limit theorem for Sn (Theorem 5.1 property

iii) Bougerol and Lacroix (1985)), we obtain for n→ +∞,

sup
b∈R,x∈X

∣∣∣∣∣Px

(
Sm√
m

∈ B(b/
√
m; rn)

)
−
∫

B(b/
√
m;rn)

φσ2 (u)du

∣∣∣∣∣→ 0,

where φσ2(t) = 1
σ
√
2π

exp
(
− t2

2σ2

)
is the normal density of mean 0 and variance σ2

on R. Since rn ≤ c1B
−1 for some constant c1 > 0, we obtain

sup
b∈R

∫

B(b/
√
m;rn)

φσ2(u)du ≤
∫ rn

−rn

φσ2 (u)du ≤ 2rn

σ
√
2π

≤ 2c1

Bσ
√
2π
.

Choosing B and n great enough, for some qε < 1, we obtain

sup
b∈R,x∈X

Px,b

(
|Sm| ≤ 3n

1
2
−ε
)
≤ sup

b∈R

∫

B(b/
√
m;rn)

φσ2(u)du + o(1) ≤ qε.

Implementing this bound in (3.8) and using (3.7), it follows that for some cε > 0,

sup
a>0,x∈X

Px,a(νn,ε > n1−ε) ≤ qKε ≤ q
nε

B2 −1
ε ≤ e−cεn

ε

.

�

Lemma 3.3. There exists c > 0 such that for any ε ∈ (0, 12 ), x ∈ X, a ≥ 0 and
n ≥ 1,

sup
1≤k≤n

Ex,a[|Mk|; νn,ε > n1−ε] ≤ c(1 + a) exp(−cεnε)

for some positive constant cε which only depends on ε.

Proof. By Cauchy-Schwartz inequality, for any x ∈ X, a ≥ 0 and 1 ≤ k ≤ n,

Ex,a

[
|Mk|; νn,ε > n1−ε

]
≤
√
Ex,a|Mk|2Px,a(νn,ε > n1−ε).

By Minkowsky’s inequality, (2.16) and the fact that 1
nEx|Sn|2 → σ2 as n → +∞,

it yields
√

Ex,a|Mk|2 ≤ a+
√
Ex,a[M2

k ] ≤ a+A+
√
Ex,a[S2

k] ≤ c(a+ n
1
2 )

for some c > 0 which does not depend on x. The claim follows by Lemma 3.2.
�

Lemma 3.4. There exists c > 0 and ε0 > 0 such that for any ε ∈ (0, ε0), x ∈ X,
a ≥ 0 and n ≥ 1,

Ex,a[Mn;T > n] ≤ c(1 + a). (3.9)

and

lim
a→+∞

1

a
lim

n→+∞
Ex,a[Mn;T > n] = 1. (3.10)

Proof. (1) On one hand, we claim

Ex,a[Mn;T > n, νn,ε ≤ n1−ε] ≤
(
1 +

c′ε
nε

)
Ex,a

[
M[n1−ε];T > [n1−ε]

]
(3.11)
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and delay the proof of (3.11) at the end of the first part. On the other hand, by
Lemma 3.3, there exists c > 0 such that for any ε ∈ (0, 12 ), x ∈ X, a ≥ 0 and n ≥ 1,

Ex,a[Mn;T > n, νn,ε > n1−ε] ≤ sup
1≤k≤n

Ex,a

[
|Mk|; νn,ε > n1−ε

]

≤ c(1 + a) exp(−cεnε). (3.12)

Hence combining (3.11) and (3.12), we obtain for any x ∈ X and a ≥ 0,

Ex,a[Mn;T > n] ≤
(
1 +

c′ε
nε

)
Ex,a

[
M[n1−ε];T > [n1−ε]

]
+ c(1 + a) exp(−cεnε).

(3.13)

Let kj :=
[
n(1−ε)j

]
for j ≥ 0. Notice that k0 = n and [k1−ε

j ] ≤ kj+1 for any j ≥ 0.

Since the sequence ((Mn)1[T>n])n≥1 is a submartingale, by using the bound (3.13),
it yields

Ex,a[Mk1
;T > k1] ≤

(
1 +

c′ε
k1

ε

)
Ex,a

[
M[k1

1−ε];T > [k1
1−ε]

]
+ c(1 + a) exp(−cεkε1)

≤
(
1 +

c′ε
k1

ε

)
Ex,a[Mk2

;T > k2] + c(1 + a) exp(−cεkε1).

Let n0 be a constant and m = m(n) such that km =
[
n(1−ε)m

]
≤ n0. After m

iterations, we obtain

Ex,a[Mn;T > n] ≤ Am

(
Ex,a[Mkm

;T > km] + c(1 + a)Bm

)
, (3.14)

where

Am =

m∏

j=1

(
1 +

c′ε
kεj−1

)
≤ exp

(
2εc′ε

n−ε
0

1− n−ε2

0

)
, (3.15)

and

Bm =

m∑

j=1

exp
(
−cεkεj−1

)
(
1 +

c′ε
kε
j−1

)
. . .
(
1 +

c′ε
kε
m

) ≤ c1
n−ε
0

1− n−ε2

0

(3.16)

from Lemma 5.6 in Grama et al. (2014). By choosing n0 sufficient great, the first
assertion of the lemma follows from (3.14), (3.15) and (3.16) taking into account
that

Ex,a[Mkm
;T > km] ≤ Ex,a[Mn0

;T > n0] ≤ Ex,a|Mn0
| ≤ a+ c.

Before proving (3.11), we can see that there exist c > 0 and 0 < ε0 <
1
2 such that

for any ε ∈ (0, ε0), x ∈ X and b ≥ n
1
2
−ε,

Ex,b[Mn;T > n] ≤
(
1 +

c

nε

)
b. (3.17)

Indeed, since (Mn,Fn)n≥1 is a Px,b- martingale, we obtain

Ex,b[Mn;T ≤ n] = Ex,b[MT ;T ≤ n]

and thus

Ex,b[Mn;T > n] = Ex,b[Mn]− Ex,a[Mn;T ≤ n]

= b− Ex,b[MT ;T ≤ n]

= b+ Ex,b[|MT |;T ≤ n]. (3.18)



82 T. D. C. Pham

Hence (3.17) arrives by using Lemma 3.1. For (3.11), it is obvious that

Ex,a

[
Mn;T > n, νn,ε ≤ n1−ε

]
=

[n1−ε]∑

k=1

Ex,a

[
Mn;T > n, νn,ε = k

]
. (3.19)

Denote Um(x, a) := Ex,a[Mm;T > m]. For any m ≥ 1, by the Markov property
applied to (Xn)n≥1, it follows that

Ex,a

[
Mn;T > n, νn,ε = k

]
=

∫
Ey,b[Mn−k;T > n− k]

Px,a(Xk ∈ dy,Mk ∈ db;T > k, νn,ε = k)

= Ex,a

[
Un−k(Xk,Mk);T > k, νn,ε = k

]
. (3.20)

From the definition of νn,ε, we can see that [νn,ε = k] ⊂
[
|Mk| ≥ n

1
2
−ε
]
, and

by using (3.17), on the event [T > k, νn,ε = k] we have Un−k(Xk,Mk) ≤
(
1 +

c
(n−k)ε

)
Mk. Therefore (3.20) becomes

Ex,a[Mn;T > n, νn,ε = k] ≤
(
1 +

c

(n− k)ε

)
Ex,a[Mk;T > k, νn,ε = k]. (3.21)

Combining (3.19) and (3.21), it follows that, for n sufficiently great,

Ex,a[Mn;T > n, νn,ε ≤ n1−ε] ≤
[n1−ε]∑

k=1

(
1 +

c

(n− k)ε

)
Ex,a[Mk;T > k, νn,ε = k]

≤
(
1 +

c′ε
nε

) [n1−ε]∑

k=1

Ex,a[Mk;T > k, νn,ε = k],

for some constant c′ε > 0. Since (Mn1[T>n])n≥1 is a submartingale, for any x ∈ X,

a ≥ 0 and 1 ≤ k ≤ [n1−ε],

Ex,a[Mk;T > k, νn,ε = k] ≤ Ex,a

[
M[n1−ε];T > [n1−ε], νn,ε = k

]
.

This implies

Ex,a[Mn;T > n, νn,ε ≤ n1−ε] ≤
(
1 +

c′ε
nε

) [n1−ε]∑

k=1

Ex,a

[
M[n1−ε];T > [n1−ε], νn,ε = k

]

≤
(
1 +

c′ε
nε

)
Ex,a

[
M[n1−ε];T > [n1−ε]

]
.

(2) Let δ > 0. From (3.15) and (3.16), by choosing n0 sufficiently great, we
obtain Am ≤ 1 + δ and Bm ≤ δ. Together with (3.14), since (Mn1[T>n])n≥1 is a
submartingale, we obtain for km ≤ n0,

Ex,a[Mn;T > n] ≤ (1 + δ)
(
Ex,a[Mn0

;T > n0] + c(1 + a)δ
)
.

Moreover, the sequence Ex,a[Mn;T > n] is increasing, thus it converges Px,a-a.s.
and

lim
n→+∞

Ex,a[Mn;T > n] ≤ (1 + δ)
(
Ex,a[Mn0

;T > n0] + c(1 + a)δ
)
.
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By using (3.18), we obtain

a ≤ lim
n→+∞

Ex,a[Mn;T > n] ≤ (1 + δ)
(
a+ Ex|Mn0

|+ c(1 + a)δ
)
.

Hence the assertion follows since δ > 0 is arbitrary.
�

3.2. On the stopping time τ . We now state some useful properties of τ and Sτ .

Lemma 3.5. There exists c > 0 such that for any x ∈ X, a ≥ 0 and n ≥ 1,

Ex,a[Sn, τ > n] ≤ c(1 + a).

Proof. (2.16) yields Px(τa ≤ Ta+A) = 1 and A + Mn ≥ Sn > 0 on the event
[τ > n]. By (3.9), it follows that

Ex,a[Sn; τ > n] ≤ Ex,a[A+Mn; τ > n]

≤ Ex,a+A[Mn;T > n]

≤ c1(1 + a+A) ≤ c2(1 + a).

�

Proposition 3.6. There exists c > 0 such that for any x ∈ X and a ≥ 0,

Ex,a|Sτ | ≤ c(1 + a) < +∞

and

Ex,a|Mτ | ≤ c(1 + a) < +∞. (3.22)

Proof. By (2.16), since (Mn)n is a martingale, we can see that

−Ex,a[Sτ ; τ ≤ n] ≤ −Ex,a[Mτ ; τ ≤ n] +A

= Ex,a[Mn; τ > n]− Ex,a[Mn] +A

≤ Ex,a[Sn; τ > n] + 2A.

Hence by Lemma 3.5, for any x ∈ X and a ≥ 0,

Ex,a [|Sτ |; τ ≤ n] ≤ Ex,a |Sτ∧n|
= Ex,a [Sn; τ > n]− Ex,a [Sτ ; τ ≤ n]

≤ 2Ex,a[Sn; τ > n] + 2A

≤ c(1 + a) + 2A.

By Lebesgue’s Dominated Convergence Theorem, it yields

Ex,a|Sτ | = lim
n→+∞

Ex,a [|Sτ |; τ ≤ n] ≤ c(1 + a) + 2A < +∞.

By (2.16), the second assertion arrives.
�
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3.3. Proof of Proposition 1.1.
Denote τa := min{n ≥ 1 : Sn ≤ −a} and Ta := min{n ≥ 1 : Mn ≤ −a} for any
a ≥ 0. Then Ex,aMτ = a+ ExMτa and Px,a(τ > n) = Px(τa > n).

(1) By (3.22) and Lebesgue’s Dominated Convergence Theorem, for any x ∈ X

and a ≥ 0,
lim

n→+∞
Ex,a[Mτ ; τ ≤ n] = Ex,aMτ = a− V (x, a),

where V (x, a) is the quantity defined by: for x ∈ X and a ∈ R,

V (x, a) :=

{
−ExMτa if a ≥ 0,
0 if a < 0.

Since (Mn,Fn)n≥1 is a Px,a-martingale,

Ex,a[Mn; τ > n] = Ex,aMn − Ex,a[Mn; τ ≤ n] = a− Ex,a[Mτ ; τ ≤ n],(3.23)

which implies

lim
n→+∞

Ex,a[Mn; τ > n] = V (x, a).

Since |Sn −Mn| ≤ A Px-a.s. and lim
n→+∞

Px,a(τ > n) = 0, it follows that

lim
n→+∞

Ex,a[Sn; τ > n] = lim
n→+∞

Ex,a[Mn; τ > n] = V (x, a).

(2) The assertion arrives by taking into account that 0 ≤ a ≤ a′ implies τa ≤ τa′

and

Ex[a+ Sn; τa > n] ≤ Ex[a
′ + Sn; τa′ > n].

(3) Lemma 3.5 and assertion 1 imply that V (x, a) ≤ c(1 + a) for any x ∈ X and
a ≥ 0. Besides, (3.23) and (2.16) yield

Ex,a[Mn; τ > n] ≥ a− Ex,a[Sτ ; τ ≤ n]−A ≥ a−A,

which implies

V (x, a) ≥ a−A. (3.24)

Now we prove V (x, a) ≥ 0. Assertion 2 implies V (x, 0) ≤ V (x, a) for any x ∈ X

and a ≥ 0. From P5, let Eδ := {g ∈ S : ∀x ∈ X, log |gx| ≥ δ} and choose a positive
constant k such that kδ > 2A. Hence, for any g1, . . . , gk ∈ Eδ and any x ∈ X, we
obtain log |gk . . . g1x| ≥ kδ > 2A. It yields

V (x, 0) = lim
n→+∞

Ex[Sn; τ > n]

≥ lim inf
n→+∞

∫

Eδ

. . .

∫

Eδ

Egk...g1·x,log |gk...g1x|[Sn−k; τ > n− k]µ(dg1) . . . µ(dgk)

≥ lim inf
n→+∞

∫

Eδ

. . .

∫

Eδ

V (gk . . . g1 · x, 2A)µ(dg1) . . . µ(dgk)

≥ A
(
µ(Eδ)

)k
> 0,

where the last inequality comes from (3.24) by applying to a = 2A.

(4) Equation (3.24) yields lim
a→+∞

V (x, a)

a
≥ 1. By (2.16), it yields that Px(τa <

TA+a) = 1, which implies

Ex,a[Sn; τ > n] ≤ Ex,a[A+Mn; τ > n]

≤ Ex,a[A+Mn;TA > n] = Ex,a+A[Mn;T > n].
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From (3.10), we obtain lim
n→+∞

V (x, a)

a
≤ 1.

(5) For any x ∈ X, a ≥ 0 and n ≥ 1, we set Vn(x, a) := Ex,a[Sn; τ > n]. By
assertion 1, we can see lim

n→+∞
Vn(x, a) = V (x, a). By Markov property, we obtain

Vn+1(x, a) = Ex,a

[
E

[
S1 +

n∑

k=1

ρ(gk+1, Xk);S1 > 0, . . . , Sn+1 > 0|F1

]]

= Ex,a [Vn(X1, S1); τ > 1] .

By Lemma 3.5, we obtain sup
x∈X,a≥0

Vn(x, a) ≤ c(1 + a) which implies P-a.s.

Vn(X1, S1)1[τ>1] ≤ c(1 + S1)1[τ>1].

Lebesgue’s Dominated Convergence Theorem and (1.2) yield

V (x, a) = lim
n→+∞

Vn+1(x, a) = lim
n→+∞

Ex,a[Vn(X1, S1); τ > 1]

= Ex,a[V (X1, S1); τ > 1]

= P̃+V (x, a).

�

4. Coupling argument and proof of Theorems 1.2 and 1.3

First, we check that the weak invariance principle with rate stated in Grama
et al. (2014) (Theorem 2.1) may be applied to the sequence (ρ(gk, Xk−1))k≥0.The
hypotheses C1, C2 and C3 of this theorem are given in terms of Fourier transform
of the partial sums of Sn; combining the expressions (2.1), (2.2), (2.3) and the
properties of the Fourier operators (Pt)t, we verify in the next section that these
conditions are satisfied in our context. This leads to the following simpler but
sufficient statement.

Theorem 4.1. Assume P1-P4. There exist

• ε0 > 0, and c0 > 0,

• a probability space (Ω̃, B(Ω̃)),

• a family (P̃x)x∈X of probability measures on (Ω̃, B(Ω̃)),

• a sequence (ãk)k of real-valued random variables on (Ω̃, B(Ω̃)) such that

L
(
(ãk)k/P̃x

)
= L

(
(ak)k/Px

)
for any x ∈ X,

• and a sequence (W̃i)i≥1 of independent standard normal random variables

on (Ω̃,B(Ω̃))
such that for any x ∈ X,

P̃x

(
sup

1≤k≤n

∣∣∣∣∣

k∑

i=1

(ãi − σW̃i)

∣∣∣∣∣ > n
1
2
−ε0

)
≤ c0n

−ε0 . (4.1)

Notice that the fact (4.1) holds true for ε0 implies (4.1) holds true for ε, whenever

ε ≤ ε0. In order to simplify the notations, we identify (Ω̃,B(Ω̃)) and (Ω,B(Ω)) and
consider that the process (log |Lnx|)n≥0 satisfies the following property: there exists
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ε0 > 0 and c0 > 0 such that for any ε ∈ (0, ε0] and x ∈ X,

P

(
sup

0≤t≤1
| log |L[nt]x| − σBnt| > n

1
2
−ε

)

= Px

(
sup

0≤t≤1
|S[nt] − σBnt| > n

1
2
−ε

)
≤ c0n

−ε, (4.2)

where (Bt)t≥0 is a standard Brownian motion on the probability space (Ω,B(Ω),P)
and σ > 0 is used in the proof of Proposition 2.3, part c). For any a ≥ 0, let τbma
be the first time the process (a+ σBt)t≥0 becomes non-positive:

τbma = inf{t ≥ 0 : a+ σBt ≤ 0}.
The following lemma is due to Lévy (1937, Theorem 42.I, pp. 194-195).

Lemma 4.2. (1) For any a ≥ 0 and n ≥ 1,

P(τbma > n) = P

(
σ inf

0≤u≤n
Bu > −a

)
=

2

σ
√
2πn

∫ a

0

exp

(
− s2

2nσ2

)
ds.

(2) For any a, b such that 0 ≤ a < b < +∞ and n ≥ 1,

P(τbma > n, a+ σBn ∈ [a, b])

=
1

σ
√
2πn

∫ b

a

[
exp

(
− (s− a)2

2nσ2

)
− exp

(
− (s+ a)2

2nσ2

)]
ds.

From Lemma 4.2, we can obtain the next result.

Lemma 4.3. (1) There exists a positive constant c such that for any a ≥ 0
and n ≥ 1,

P(τbma > n) ≤ c
a

σ
√
n
. (4.3)

(2) For any sequence of real numbers (αn)n such that αn → 0 as n → +∞,
there exists a positive constant c such that for any a ∈ [0, αn

√
n],

∣∣∣P(τbma > n)− 2a

σ
√
2πn

∣∣∣ ≤ c
αn√
n
a. (4.4)

We use the coupling result described in Theorem 4.1 above to transfer the prop-
erties of the exit time τbma to the exit time τa for great a.

4.1. Proof of Theorem 1.2.
(1) Let ε ∈ (0,min{ε0; 12}) and (θn)n≥1 be a sequence of positive numbers such

that θn → 0 and θnn
ε/4 → +∞ as n → +∞. For any x ∈ X and a ≥ 0, we have

the decomposition

Pn(x, a) := Px,a(τ > n) = Px,a(τ > n, νn,ε > n1−ε) + Px,a(τ > n, νn,ε ≤ n1−ε).(4.5)

It is obvious that from Lemma 3.2, we obtain

sup
x∈X,a≥0

Px,a(τ > n, νn,ε > n1−ε) ≤ sup
x∈X,a≥0

Px,a(νn,ε > n1−ε) ≤ e−cεn
ε

. (4.6)

For the second term, by Markov’s property,

Px,a(τ > n, νn,ε ≤ n1−ε) = Ex,a

[
Pn−νn(Xνn,ε

, Sνn,ε
); τ > νn,ε, νn,ε ≤ n1−ε

]
(4.7)

= In(x, a) + Jn(x, a),
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where

In(x, a) := Ex,a

[
Pn−νn(Xνn,ε

, Sνn,ε
);Sνn,ε

≤ θnn
1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
,

and Jn(x, a) := Ex,a

[
Pn−νn(Xνn,ε

, Sνn,ε
);Sνn,ε

> θnn
1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
.

Now we control the quantity Pn−νn(Xνn,ε
, Sνn,ε

) by using the following lemma.
The proofs of the lemmas stated in this subsection are postponed to the next
subsection.

Lemma 4.4. (1) There exists c > 0 such that for any n sufficiently great,

x ∈ X and a ∈ [n
1
2
−ε, θnn

1
2 ],

∣∣∣∣Px,a(τ > n)− 2a

σ
√
2πn

∣∣∣∣ ≤ c
aθn√
n
. (4.8)

(2) There exists c > 0 such that for any x ∈ X, a ≥ n
1
2
−ε and n ≥ 1,

Px,a(τ > n) ≤ c
a√
n
. (4.9)

Notice that for any x ∈ X, a ≥ 0 and 0 ≤ k ≤ n1−ε,

Pn(x, a) ≤ Pn−k(x, a) ≤ Pn−[n1−ε](x, a). (4.10)

By definition of νn,ε and (2.16), as long as A ≤ n
1
2
−ε, we have Px,a-a.s.

Sνn,ε
≥Mνn,ε

−A ≥ 2n
1
2
−ε −A ≥ n

1
2
−ε. (4.11)

Using (4.8) and (4.10), (4.11) with θn replaced by θn

(
n

n−n1−ε

) 1
2

, for n sufficiently

great, on the event
[
Sνn,ε

≤ θnn
1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
, we obtain Px,a-a.s.

Pn−νn,ε
(Xνn,ε

, Sνn,ε
) =

2(1 + o(1))Sνn,ε

σ
√
2πn

.

Let

I ′n(x, a) := Ex,a

[
Sνn,ε

; τ > νn,ε, νn,ε ≤ n1−ε
]
, (4.12)

J ′
n(x, a) := Ex,a

[
Sνn,ε

;Sνn,ε
> θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
. (4.13)

Hence

In(x, a) =
2(1 + o(1))

σ
√
2πn

Ex,a

[
Sνn,ε

;Sνn,ε
≤ θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]

=
2(1 + o(1))

σ
√
2πn

[I ′n(x, a)− J ′
n(x, a)] ,

Jn(x, a) =
c(1 + o(1))√

n
J ′
n(x, a).

Therefore (4.5) becomes
∣∣∣Px,a(τ > n)− 2(1 + o(1))

σ
√
2πn

I ′n(x, a)
∣∣∣ ≤ C

(
n− 1

2J ′
n(x, a)

)
+ C′

(
e−cεn

ε
)
.

The first assertion of Theorem 1.2 immediately follows by noticing that the term J ′
n

is negligible and Px,a(τ > n) is dominated by the term I ′n as shown in the lemma
below.
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Lemma 4.5.

lim
n→+∞

I ′n(x, a) = V (x, a) and lim
n→+∞

n2εJ ′
n = 0,

where I ′n and J ′
n are defined in (4.12) and (4.13).

(2) By using Proposition 1.1 (3), it suffices to prove
√
nPx,a(τ > n) ≤ c(1 + a)

for n great enough. For n sufficiently great, using (4.9) and (4.11), we obtain Px,a-
a.s.

Pn−[n1−ε](Xνn,ε
, Sνn,ε

) ≤ c
Sνn,ε√
n
.

Combined with (4.7), it yields

Px,a(τ > n, νn,ε ≤ n1−ε) ≤ c√
n
I ′n. (4.14)

Since τa < Ta+A P-a.s. and (3.9), it follows that

I ′n(x, a) ≤ Ex,a+A[Mνn,ε
;T > νn,ε, νn,ε ≤ n1−ε] ≤ c(1 + a+A).

Hence (4.14) becomes

Px,a(τ > n, νn,ε ≤ n1−ε) ≤ c√
n
(1 + a+A). (4.15)

Combining (4.5), (4.6) and (4.15), we obtain for n great enough,

Px,a(τ > n) ≤ e−cεn
ε

+
c√
n
(1 + a+A) ≤ c′(1 + a).

�

4.2. Proof of Theorem 1.3.
Let us decompose Px,a(Sn ≤ t

√
n|τ > n) as follows:

Px,a(Sn ≤ t
√
n, τ > n)

Px,a(τ > n)
= Dn,1 +Dn,2 +Dn,3, (4.16)

where

Dn,1 :=
Px,a(Sn ≤ t

√
n, τ > n, νn,ε > n1−ε)

Px,a(τ > n)
,

Dn,2 :=
Px,a(Sn ≤ t

√
n, τ > n, Sn > θn

√
n, νn,ε ≤ n1−ε)

Px,a(τ > n)
,

Dn,3 :=
Px,a(Sn ≤ t

√
n, τ > n, Sn ≤ θn

√
n, νn,ε ≤ n1−ε)

Px,a(τ > n)
.

Lemma 3.2 and Theorem 1.2 imply

lim
n→+∞

Dn,1 = 0. (4.17)



Conditioned limit theorems for products of positive random matrices 89

Theorem 1.2 and Proposition 1.1 (3) imply

Dn,2 ≤ Px,a(τ > n, Sn > θn
√
n, νn,ε ≤ n1−ε)

Px,a(τ > n)

=
1

Px,a(τ > n)
Ex,a

[
Pn−νn,ε

(Xνn,ε
, Sνn,ε

); τ > νn,ε, Sνn,ε
> θn

√
n, νn,ε ≤ n1−ε

]

≤ c
Ex,a

[
1 + Sνn,ε

; τ > νn,ε, Sνn,ε
> θn

√
n, νn,ε ≤ n1−ε

]

Px,a(τ > n)σ
√
n− n1−ε

≤ c′
Ex,a

[
Sνn,ε

; τ > νn,ε, Sνn,ε
> θn

√
n, νn,ε ≤ n1−ε

]
+ Px,a(τ > νn,ε)

V (x, a)
√
1− n−ε

.

Since Px,a(τ < +∞) = 1 and Px,a(νn,ε < +∞) = 0, Lemma 4.5 yields

lim
n→+∞

Dn,2 = 0. (4.18)

Now we control Dn,3. Let Hm(x, a) := Px,a(Sm ≤ t
√
n, τ > m). We claim the

following lemma and postpone its proof at the end of this section.

Lemma 4.6. Let ε ∈ (0, ε0), t > 0 and (θn)n≥1 be a sequence such that θn → 0

and θnn
ε/4 → +∞ as n → +∞. Then for any x ∈ X, n1/2−ε ≤ a ≤ θn

√
n and

1 ≤ k ≤ n1−ε,

Px,a

(
Sn−k ≤ t

√
n, τ > n− k

)
=

2a

σ3
√
2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1)).

It is noticeable that on the event [τ > k, Sk ≤ θn
√
n, νn,ε = k], the random

variable Hn−k(Xk, Sk) satisfies the hypotheses of Lemma 4.6. Hence

Px,a(Sn ≤ t
√
n, τ > n, Sn ≤ θn

√
n, νn,ε ≤ n1−ε)

= Ex,a

[
Hn−νn,ε

(Xνn,ε
, Sνn,ε

); τ > νn,ε, Sνn,ε
≤ θn

√
n, νn,ε ≤ n1−ε

]

=

[n1−ε]∑

k=1

Ex,a

[
Hn−k(Xk, Sk); τ > k, Sk ≤ θn

√
n, νn,ε = k

]

=
2(1 + o(1))

σ3
√
2πn

∫ t

0

u exp

(−u2
2σ2

)
duEx,a

[
Sνn,ε

; τ > νn,ε, Sνn,ε
≤ θn

√
n, νn,ε ≤ n1−ε

]
.

Lemma 4.5 yield as n→ +∞,

Ex,a

[
Sνn,ε

; τ > νn,ε, Sνn,ε
≤ θn

√
n, νn,ε ≤ n1−ε

]
= V (x, a)(1 + o(1)).

Therefore, Theorem 1.2 yields

Dn,3 =
2V (x, a)(1 + o(1))

Px,a(τ > n)σ3
√
2πn

∫ t

0

u exp

(−u2
2σ2

)
du

=
1 + o(1)

σ2

∫ t

0

u exp

(−u2
2σ2

)
du. (4.19)

The assertion of the theorem arrives by combining (4.16), (4.17), (4.18) and (4.19).
�
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4.3. Proof of Lemma 4.4.
(1) Fix ε > 0 and let

An,ε :=

[
sup

0≤t≤1
|S[nt] − σBnt| ≤ n

1
2
−2ε

]
.

For any x ∈ X, (4.2) implies Px(A
c
n,ε) ≤ c0n

−2ε. Denote a± := a ± n
1
2
−2ε and

notice that for a ∈ [n
1
2
−ε, θn

√
n],

0 ≤ a± ≤ 2θn
√
n. (4.20)

Using (4.4) and (4.20), for any x ∈ X and a ∈ [n
1
2
−ε, θn

√
n], we obtain

−ca
±θn√
n

± 2n−2ε

σ
√
2π

≤ Px(τ
bm
a± > n)− 2a

σ
√
2πn

≤ ca±θn√
n

± 2n−2ε

σ
√
2π
. (4.21)

For any a ≥ n
1
2
−ε, we have

[
τbma− > n

]
∩Ac

n,ε ⊂ [τa > n]∩Ac
n,ε ⊂

[
τbma+ > n

]
∩Ac

n,ε,
which yields

Px(τ
bm
a− > n)− Px(A

c
n,ε) ≤ Px(τa > n) ≤ Px(τ

bm
a+ > n) + Px(A

c
n,ε)

for any x ∈ X. It follows that
{

Px(τa > n)− Px(τ
bm
a+ > n) ≤ c0n

−2ε,
Px(τ

bm
a− > n)− Px(τa > n) ≤ c0n

−2ε.
(4.22)

The fact that θnn
ε/4 → +∞ yields for n great enough

θn
a√
n
≥ n

1
2
−ε

nε
√
n
= n−2ε. (4.23)

From (4.21), (4.22) and (4.23), it follows that for any a ∈ [n
1
2
−ε, θn

√
n],

∣∣∣∣Px(τa > n)− 2a

σ
√
2πn

∣∣∣∣ ≤ c(1 + θn)n
−2ε + c1

θna√
n

≤ c2
θna√
n
.

(2) For n great enough, condition a ≥ n
1
2
−ε implies a+ ≤ 2a. From (4.3) and

(4.22) , since n−2ε ≤ a√
n
, for any x ∈ X,

Px(τa > n) ≤ c
a

σ
√
n
+ c0n

−2ε ≤ c1
a√
n
.

�

4.4. Proof of Lemma 4.5.
(1) We prove that lim

n→+∞
Ex,a

[
Mνn,ε

; τ > νn,ε, νn,ε ≤ n1−ε
]
= V (x, a). Then, the

assertion arrives by using (2.16) and taking into account that Px(τa < +∞) = 1
and Px( lim

n→+∞
νn,ε = +∞) = 1. For x ∈ X and a ≥ 0, we obtain

Ex,a

[
Mνn,ε

; τ > νn,ε, νn,ε ≤ n1−ε
]
= Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε, νn,ε ≤ n1−ε

]

= Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε]

]

− Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε], νn,ε > n1−ε

]
.

By using Lemma 3.3,

Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε], νn,ε > n1−ε

]
≤ c(1 + a)e−cεn

ε

.
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Using the facts that (Mn)n≥0 is a martingale and Px

(
lim

n→+∞
νn,ε = +∞

)
= 1, we

obtain

lim
n→+∞

Ex,a

[
Mνn,ε

; τ > νn,ε, νn,ε ≤ n1−ε
]

= lim
n→+∞

Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε]

]

= a− lim
n→+∞

Ex,a

[
Mνn,ε∧[n1−ε]; τ ≤ νn,ε ∧ [n1−ε]

]

= a− lim
n→+∞

Ex,a

[
Mτ ; τ ≤ νn,ε ∧ [n1−ε]

]

= a− Ex,a[Mτ ] = V (x, a).

(2) Let b = a+A. Remind that M∗
n = max

1≤k≤n
|Mk|. We obtain

Ex,a

[
Sνn,ε

;Sνn,ε
> θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]

≤ Ex,b

[
Mνn,ε

;Mνn,ε
> θnn

1
2 , νn,ε ≤ n1−ε

]

≤ Ex,b

[
M∗

[n1−ε];M
∗
[n1−ε] > θnn

1
2

]
.

Since θnn
ε/4 → +∞ as n→ +∞, it suffices to prove that for any δ > 0, x ∈ X and

b ∈ R,

lim
n→+∞

n2ε
Ex

[
b+M∗

n;M
∗
n > n

1
2
+δ
]
= 0.

Obviously, by (3.5),

Ex

[
b +M∗

n;M
∗
n > n

1
2
+δ
]
≤ bPx

(
M∗

n > n
1
2
+δ
)
+ Ex

[
M∗

n;M
∗
n > n

1
2
+δ
]

=
(
b+ n

1
2
+δ
)
Px

(
M∗

n > n
1
2
+δ
)
+

∫ +∞

n
1
2
+δ

Px(M
∗
n > t)dt

≤ c
(
b+ n

1
2
+δ
)
n−pδ + cn−pδ+ 1

2
+δ.

Since p can be taken arbitrarily great, it follows that lim
n→+∞

n2εJ ′
n = 0.

�

4.5. Proof of Lemma 4.6.
Recall that a± = a± n1/2−2ε and denote t± = t± 2n−2ε. For any 1 ≤ k ≤ n1−ε,

{τbma− } ∩ An,ε ⊂ {τa > n− k} ∩ An,ε ⊂ {τbma+ } ∩ An,ε

and

{a− + σBn−k ≤ t−
√
n} ∩ An,ε ⊂ {a+ Sn−k ≤ t

√
n} ∩ An,ε

⊂ {a+ + σBn−k ≤ t+
√
n} ∩An,ε,

which imply

Px(τ
bm
a− > n− k, a− + σBn−k ≤ t−

√
n)− Px(A

c
n,ε)

≤ Px(τa > n− k, a+ Sn−k ≤ t
√
n) ≤ (4.24)

Px(τ
bm
a+ > n− k, a+ + σBn−k ≤ t+

√
n) + Px(A

c
n,ε).
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Moreover, by Lemma 4.2, we obtain

Px

(
τbma+ > n− k, a+ + σBn−k ≤ t+

√
n
)

=
2a

σ3
√
2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1))

(4.25)

and similarly,

Px

(
τbma− > n− k, a− + σBn−k ≤ t−

√
n
)

=
2a

σ3
√
2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1)).

(4.26)

Therefore, from (4.24), (4.25), (4.26) and Px(A
c
n,ε) ≤ cn−2ε, it follows that

Px

(
τa > n− k, a+ Sn−k ≤ t

√
n
)
=

2a

σ3
√
2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1)).1

�

5. On conditions C1-C3 of Theorem 2.1 in Grama et al. (2014)

Let kgap,M1,M2 ∈ N and j0 < . . . < jM1+M2
be natural numbers. Denote

ak+Jm
=
∑

l∈Jm
ak+l, where Jm = [jm−1, jm),m = 1, . . . ,M1+M2 and k ≥ 0. Con-

sider the vectors ā1 = (aJ1
, . . . , aJM1

) and ā2 = (akgap+JM1+1
, . . . , akgap+JM1+M2

).

Denote by φx(s, t) = Eeisā1+itā2 , φx,1(s) = Eeisā1 and φx,2(s) = Eeitā2 the char-
acteristic functions of (ā1, ā2), ā1 and ā2, respectively. For the sake of brevity, we
denote φ1(s) = φx,1(s), φ2(t) = φx,2(t) and φ(s, t) = φx(s, t).

We first check that conditions C1-C3 hold and then prove the needed lemmas.

5.1. Statement and proofs of conditions C1-C3. C1: There exist positive constants
ε0 ≤ 1, λ0, λ1, λ2 such that for any kgap ∈ R,M1,M2 ∈ Z+, any sequence j0 < . . . <
jM1+M2

and any s ∈ RM1 , t ∈ RM2 satisfying |(s, t)|∞ ≤ ε0,

|φ(s, t)− φ1(s)φ2(t)| ≤ λ0 exp(−λ1kgap)
(
1 + max

m=1,...,M1+M2

card(Jm)

)λ2(M1+M2)

.

C2: There exists a positive constant δ such that supn≥0 |an|L2+2δ < +∞.
C3: There exist a positive constant C and a positive number σ such that for any
γ > 0, any x ∈ X and any n ≥ 1,

sup
m≥0

∣∣∣∣∣n
−1V arPx

(
m+n−1∑

i=m

ai

)
− σ2

∣∣∣∣∣ ≤ Cn−1+γ .

Proposition 5.1. Condition 1 is satisfied under hypotheses P1-P5.

Proof. First, we prove the following lemma.

Lemma 5.2. There exist two positive constants C and κ such that 0 < κ < 1 and

|φ(s, t)− φ1(s)φ2(t)| ≤ CCM1+M2

P κkgap ,

where CP is defined in Proposition 2.3.
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Proof. In fact, the characteristic functions of the ramdom variables ā1, ā2 and
(ā1, ā2) can be written in terms of operator respectively as follows:

φ1(s) = Ex[e
isā1 ] = P j0−1P |J1|

s1 . . . P
|JM1

|
sM1

1(x),

φ2(t) = Ex[e
itā2 ] = P kgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x), (5.1)

φ(s, t) = Ex[e
isā1+itā2 ] = P j0−1P |J1|

s1 . . . P
|JM1

|
sM1

P kgapP
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x).

Now we decompose φ(s, t) into the sum of φΠ(s, t) and φR(s, t) by using the
spectral decomposition P = Π+R in Proposition 2.3, where

φΠ(s, t) = P j0−1P |J1|
s1 . . . P

|JM1
|

sM1
ΠP

|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x),

φR(s, t) = P j0−1P |J1|
s1 . . . P

|JM1
|

sM1
RkgapP

|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x).

Since Π(ϕ) = ν(ϕ)1 for any ϕ ∈ L and Pt acts on L, we obtain

φΠ(s, t) = P j0−1P |J1|
s1 . . . P

|JM1
|

sM1
1(x)ν

(
P

|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)
.

Then setting ψ2(t) = ν(P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1) yields

φ(s, t) = φ1(s)ψ2(t) + φR(s, t)

= φ1(s)φ2(t) + φ1(s)[ψ2(t)− φ2(t)] + φR(s, t),

which implies

|φ(s, t) − φ1(s)φ2(t)| ≤ |φ1(s)||ψ2(t)− φ2(t)|+ |φR(s, t)|. (5.2)

On the one hand, we can see that |φ1(s)| =
∣∣∣
(
P j0−1P

|J1|
s1 . . . P

|JM1
|

sM1
1
)
(x)
∣∣∣ ≤ C1+M1

P

and |φR(s, t)| ≤ C1+M1+M2

P CRκ
kgap . On the other hand, since ν is P -invariant

measure and (ν − δx)(1) = 0, by using again the expression P = Π+R, we obtain

|ψ2(t)− φ2(t)| =
∣∣∣(ν − δx)

(
P kgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

≤
∣∣∣(ν − δx)

(
ΠP

|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

+
∣∣∣(ν − δx)

(
Rkgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

=
∣∣∣(ν − δx)(1)ν

(
P

|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

+
∣∣∣(ν − δx)

(
Rkgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

=
∣∣∣(ν − δx)

(
Rkgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

≤ CCM2

P κkgap+jM1
−1. (5.3)

Therefore, (5.2) follows.
�

Second, let λ2 = max{1, log2 CP }. Since max
m=1,...,M1+M2

card(Jm) ≥ 1, we obtain

CM1+M2

P ≤ 2λ2(M1+M2) ≤
(
1 + max

m=1,...,M1+M2

card(Jm)

)λ2(M1+M2)

,
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which implies that

|φ(s, t)− φ1(s)φ2(t)| ≤ Cκkgap

(
1 + max

m=1,...,M1+M2

card(Jm)

)λ2(M1+M2)

.

Finally, let λ0 = C and λ1 = − logκ. Then the assertion arrives.
�

Proposition 5.3. Condition 2 is satisfied under hypotheses P1-P5.

Proof. Condition P1 implies that there exists δ0 > 0 such that E[N(g)δ0 ] <

+∞ and since E[N(g)δ0 ] = E[exp(δ0 logN(g))] =

+∞∑

k=0

δk0
k!

E[(logN(g))k], we obtain

E|an|k ≤ E[(logN(g))k] < +∞ for any n ≥ 0 and any k ≥ 0.
�

Proposition 5.4. Condition 3 is satisfied under hypotheses P1-P5. More precisely,
there exists a positive constant σ such that for any x ∈ X and any n ≥ 1,

sup
m≥0

∣∣∣∣∣V arPx

(
m+n−1∑

k=m

ak

)
− nσ2

∣∣∣∣∣ < +∞. (5.4)

Proof. For any integer m,n ≥ 0, we denote Sm,n =
∑m+n−1

k=m ak, Vx(X) =
V arPx

(X) = Ex(X
2)− (ExX)2 and Covx(X,Y ) = CovPx

(X,Y ). Then

Vx(Sm,n) =

m+n−1∑

k=m

Vx(ak) + 2

m+n−1∑

k=m

m+n−k−1∑

l=1

Covx(ak, ak+l) (5.5)

and (5.4) becomes supm≥0 |Vx(Sm,n) − nσ2| < +∞. We claim two lemmas and
postpone their proofs until the end of this section.

Lemma 5.5. There exist C > 0 and 0 < κ < 1 such that for any x ∈ X, any k ≥ 0
and any l ≥ 0,

|Covx(ak, ak+l)| ≤ Cκl. (5.6)

Lemma 5.6. There exist C > 0, 0 < κ < 1 and a sequence (sn)n≥0 of real numbers
such that for any x ∈ X, any k ≥ 0 and any l ≥ 0,

|Covx(ak, ak+l)− sl| ≤ Cκk, (5.7)

|sl| ≤ Cκl. (5.8)

For the first term of the right side of (5.5), by combining Lemma 5.5 and Lemma
5.6, we obtain

|Covx(ak, ak+l)− sl| ≤ Cκmax{k,l}. (5.9)

Inequality (5.7) implies |Vx(ak)− s0| ≤ Cκk, which yields for any integer m,n ≥ 0,
∣∣∣∣∣

m+n−1∑

k=m

Vx(ak)− ns0

∣∣∣∣∣ ≤
m+n−1∑

k=m

|Vx(ak)− s0| ≤ C

m+n−1∑

k=m

κk ≤ C

1− κ
< +∞.(5.10)
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For the second term of the right side of (5.5), we can see that
∣∣∣∣∣

m+n−1∑

k=m

m+n−k−1∑

l=1

Covx(ak, ak+l)−
m+n−1∑

k=m

+∞∑

l=1

sl

∣∣∣∣∣

≤
m+n−1∑

k=m

m+n−k−1∑

l=1

|Covx(ak, ak+l)− sl|+
m+n−1∑

k=m

+∞∑

l=m+n−k

|sl|

= Σ1(x,m, n) + Σ2(x,m, n). (5.11)

On the one hand, by (5.7) and (5.9), we can see that for any x ∈ X, any m ≥ 0 and
any n ≥ 1,

Σ1(x,m, n) ≤
+∞∑

k=0

k∑

l=1

Cκk +

+∞∑

k=0

+∞∑

l=k+1

Cκl

≤
+∞∑

k=0

Ckκk +

+∞∑

k=0

C
κk+1

1− κ
< +∞. (5.12)

Similarly, on the other hand, by (5.8) we obtain for any x ∈ X, any m ≥ 0 and any
n ≥ 1,

Σ2(x,m, n) ≤
n−1∑

k=0

+∞∑

l=n−k

Cκl ≤ C

(1− κ)2
< +∞. (5.13)

Combining (5.5),(5.10),(5.11),(5.12) and (5.13), we obtain

sup
m≥0

∣∣∣∣∣Vx(Sm,n)− n

+∞∑

l=0

sl

∣∣∣∣∣ < +∞. (5.14)

In fact, by using Lemma 2.1 in Le Page et al. (2017+), Theorem 5 in Hennion
(1997) implies that the sequence ( Sn√

n
)n≥1 converges weakly to a normal law with

variance σ2. Meanwhile, under hypothesis P2, Corollary 3 in Hennion (1997) implies
that the sequence (|Rn|)n≥1 is not tight and thus σ2 > 0, see Hennion (1997) for
the definition and basic properties. Therefore, we can see that V arxSn ∼ nσ2 with
σ2 > 0, which yields

∑+∞
l=0 sl = σ2.

�

5.2. Proof of Lemma 5.5.

Let g(x) =

{
x if |x| ≤ 1,
0 if |x| > 2.

such that g is C∞ on R and |g(x)| ≤ |x| for any x ∈ R.

Then g ∈ L1(R) ∩ C1
c (R). Therefore, the Fourier transform of g is ĝ defined as

follows:

ĝ(t) :=

∫

R

e−itxg(x)dx,

and the Inverse Fourier Theorem yields

g(x) =
1

2π

∫

R

eitxĝ(t)dt.

Let gT (x) := Tg( xT ) for any T > 0. Then |ĝT |1 = T |ĝ|1 < +∞. Let hT (x, y) =

gT (x)gT (y). Then ĥT (x, y) = ĝT (x)ĝT (y). Let V and V ′ be two i.i.d. random
variables with mean 0, independent of al for any l ≥ 0 whose characteristic functions
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have the support included in the interval [−ε0, ε0] for ε0 defined in C1. Assume
that E|V |n < +∞ for any n > 0. Let Zk = ak+V and Z ′

k+l = ak+l+V
′ and denote

by φ̃1(s), φ̃2(t) and φ̃(s, t) the characteristic functions of Zk, Z
′
k+l and (Zk, Z

′
k+l),

respectively.
We use the same notations introduced at the beginning of this section by setting

φ1(s) = Ex[e
isak ], φ2(t) = Ex[e

itak+l ] and φ(s, t) = Ex[e
isak+itak+l ]. We also denote

ϕ the characteristic function of V , that yields

φ̃1(s) = E[e
isZk ] = E[e

isak ]E[e
isV ] = φ1(s)ϕ(s),

φ̃2(t) = E[e
itZ′

k+l ] = E[e
itak+l ]E[e

itV ′

] = φ2(t)ϕ(t), (5.15)

φ̃(s, t) = E[e
isZk+itZ′

k+l ] = E[e
isak+itak+l ]E[e

isV ]E[e
itV ′

] = φ(s, t)ϕ(s)ϕ(t).

Then we can see that φ̃1 and φ̃2 have the support in [−ε0, ε0]. We perturb ak and
ak+l by adding the random variables V and V ′ with mean 0 and the support of their
characteristic functions are on [−ε0, ε0]. We explicit the quantity Covx(ak, ak+l):

Covx(ak, ak+l) = Ex[ak, ak+l]− ExakExak+l. (5.16)

On the one hand, we can see that

Ex[akak+l] = Ex[ZkZ
′
k+l] = Ex[hT (Zk;Z

′
k+l)] + Ex[ZkZ

′
k+l]− Ex[hT (Zk;Z

′
k+l)]

=
1

(2π)2
Ex

∫ ∫
ĥT (s, t)e

isZk+itZ′
k+ldsdt+R0

=
1

(2π)2

∫ ∫
ĥT (s, t)Ex

[
eisZk+itZ′

k+l

]
dsdt+R0

=
1

(2π)2

∫ ∫
ĥT (s, t)φ̃(s, t)dsdt+R0,

(5.17)

where R0 = Ex[ZkZ
′
k+l]− Ex[hT (Zk;Z

′
k+l)]. On the other hand, we obtain

Exak = ExZk = ExgT (Zk) + ExZk − ExgT (Zk)

=
1

2π

∫
ĝT (s)φ̃1(s)ds+R1, (5.18)

where R1 = ExZk − ExgT (Zk) and

Exak+l = ExZ
′
k+l = ExgT (Z

′
k+l) + ExZ

′
k+l − ExgT (Z

′
k+l)

=
1

2π

∫
ĝT (t)φ̃2(t)dt +R2, (5.19)

where R2 = ExZ
′
k+l − ExgT (Z

′
k+l). From (5.16), (5.17), (5.18) and (5.19), since

ĥT (s, t) = ĝT (s)ĝT (t), we obtain

Covx(ak, ak+l) =
1

(2π)2

∫ ∫
ĥT (s, t)φ̃(s, t)dsdt+R0

−
(

1

2π

∫
ĝT (s)φ̃1(s)ds+R1

)(
1

2π

∫
ĝT (t)φ̃2(t)dt+R2

)

=
1

(2π)2

∫ ∫
ĥT (s, t)

[
φ̃(s, t)− φ̃1(s)φ̃2(t)

]
dsdt+R (5.20)
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where R = R0 −R1R2 −R1
1

2π

∫
ĝT (t)φ̃2(t)dt−R2

1

2π

∫
ĝT (s)φ̃1(s)ds. Since ĝT ∈

L1(R) and applying Lemma 5.2 for j0 = k, j1 = k + 1, j2 = k + 2, kgap = l,M1 =
M2 = 1, we obtain

|Covx(ak, ak+l)|

≤ 1

(2π)2

∫ ∫ ∣∣∣ĥT (s, t)
∣∣∣
∣∣∣φ̃(s, t)− φ̃1(s)φ̃2(t)

∣∣∣ dsdt+ |R|

≤ 1

(2π)2

∫ ∫ ∣∣∣ĥT (s, t)
∣∣∣ |φ(s, t)ϕ(s)ϕ(t) − φ1(s)φ2(t)ϕ(s)ϕ(t)| dsdt+ |R|

≤ sup
|s|,|t|≤ε0

|φ(s, t)− φ1(s)φ2(t)|
(∫

|ĝT (s)| ds
)2

+ |R|

≤ CT 2κl + |R|. (5.21)

It remains to bound of |R|. On the one hand, we can see that

• |R1| = |Ex[Zk − gT (Zk)]| = Ex

∣∣[Zk − gT (Zk)]1[|Zk|>T ]

∣∣ ≤ 2T−1
Ex|Zk|2,

•
∣∣∣∣
1

2π

∫
ĝT (s)φ̃1(s)ds

∣∣∣∣ = |ExgT (Zk)| ≤ Ex |Zk| ≤ Ex|ak|+ Ex|V | ≤ C,

• |R2| =
∣∣Ex[Z

′
k+l − gT (Z

′
k+l)]

∣∣ ≤ 2T−1
Ex|Z ′

k+l|2,

•
∣∣∣∣
1

2π

∫
ĝT (t)φ̃2(t)dt

∣∣∣∣ =
∣∣ExgT (Z

′
k+l)

∣∣ ≤ Ex|al+k|+ Ex|V ′| ≤ C.

On the other hand, similarly for |R0|, we obtain

|R0| =

= Ex

[∣∣ZkZ
′
k+l − hT (Zk, Z

′
k+l)

∣∣ (1[|Zk|>T ] + 1[|Zk|≤T ]

) (
1[|Z′

k+l
|>T ] + 1[|Z′

k+l
|≤T ]

)]

≤ Ex

[∣∣ZkZ
′
k+l − hT (Zk, Z

′
k+l)

∣∣
(
1[|Zk|>T ] + 1[|Z′

k+l
|>T ]

)]

≤ 2Ex

∣∣ZkZ
′
k+l1[|Zk|>T ]

∣∣+ 2Ex

∣∣∣ZkZ
′
k+l1[|Z′

k+l
|>T ]

∣∣∣ .

For any positive δ, let qδ = δ+1
δ , by Holder’s inequality, we obtain

Ex

∣∣ZkZ
′
k+l1[|Zk|>T ]

∣∣ ≤
(
Ex|Zk|2+2δ

) 1
2+2δ

(
Ex|Z ′

k+l|2+2δ
) 1

2+2δ
Px(|Zk| > T )

1
qδ .

By Minkowski’s inequality,
(
Ex|Zk|2+2δ

) 1
2+2δ ≤

(
Ex|ak|2+2δ

) 1
2+2δ +

(
Ex|V |2+2δ

) 1
2+2δ < C,

(
Ex|Z ′

k+l|2+2δ
) 1

2+2δ ≤
(
Ex|al+k|2+2δ

) 1
2+2δ +

(
Ex|V ′|2+2δ

) 1
2+2δ < C.

By Markov’s inequality,

Px(|Zk| > T ) ≤ 1

T qδ
Ex|Zk|qδ ≤ C

T qδ
,

Px(|Z ′
k+l| > T ) ≤ 1

T qδ
Ex|Z ′

k+l|qδ ≤ C

T qδ
.

Hence |R0| ≤ CT−1 for T > 1 and thus |R| ≤ CT−1.
Thus, (5.21) becomes |Covx(ak, ak+l)| ≤ CT 2κl + CT−1. By choosing T = κ−α

with α > 0, we obtain

|Covx(ak, ak+l)| ≤ Cκl−2α + Cκα ≤ C′ max{κl−2α, κα}.
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Now we choose α > 0 such that l − 2α > 0, for example, let α = l
4 , we obtain

|Covx(ak, ak+l)| ≤ Cκ
l
4 .

5.3. Proof of Lemma 5.6.
Inequality (5.8) follows by setting k = l in (5.6) and (5.7). It suffices to prove (5.7).
Recall the definition in (5.15) and let

ψ(s) = ν(Ps1)ϕ(s),

ψ(s, t; l) = ν(PsP
l−1Pt1)ϕ(s)ϕ(t),

ψ̃(s, t; l) = ψ(s, t; l)− ψ(s)ψ(t), (5.22)

φ̃0(s, t) = φ̃(s, t)− φ̃1(s)φ̃2(t),

sl,T =
1

(2π)2

∫ ∫
ĥT (s, t)ψ̃(s, t; l)dsdt.

Then (5.20) implies

|Covx(ak, ak+l)− sl,T | ≤
∣∣∣∣

1

(2π)2

∫ ∫
ĥT (s, t)[φ̃0(s, t)− ψ̃(s, t; l)]dsdt

∣∣∣∣+ |R|.

We claim that
∣∣∣∣

1

(2π)2

∫ ∫
ĥT (s, t)[φ̃0(s, t)− ψ̃(s, t; l)]dsdt

∣∣∣∣ ≤ Cκk−1T 2, (5.23)

which implies

|Covx(ak, ak+l)− sl,T | ≤ Cκk−1T 2 + CT−1, (5.24)

which yields for any k,m ≥ 1,

|Covx(ak, ak+l)− Covx(am, am+l)| ≤ Cκmin{k−1,m−1}T 2 + CT−1. (5.25)

By choosing T = κ−
1
4
min{k−1,m−1}, we obtain

|Covx(ak, ak+l)− Covx(am, am+l)| ≤ Cκmin{k−1

4
,m−1

4
}. (5.26)

Hence we can say that (Covx(ak, ak+l))l is a Cauchy sequence, thus it converges to
some limit, denoted by sl(x). When k → +∞, (5.24) becomes

|sl(x) − sl,T | ≤ CT−1.

Now let T = T (ℓ) = κ−ℓ, we obtain |sl(x)−sl,T (ℓ)| ≤ Cκℓ. Let ℓ→ +∞, we can see
that sl,T (ℓ) → sl(x). Since sl,T (ℓ) does not depend on x, so is sl(x), i.e. sl(x) = sl.
Now let m→ +∞ in (5.26), we obtain

|Covx(ak, ak+l)− sl| ≤ Cκ
k−1

4 .

Now we prove the claim (5.23). By definitions in (5.15) and (5.22), we obtain

∣∣∣φ̃0(s, t)− ψ̃(s, t; l)
∣∣∣ ≤

∣∣∣φ̃(s, t)− ψ(s, t; l)
∣∣∣+
∣∣∣φ̃1(s)φ̃2(t)− ψ(s)ψ(t)

∣∣∣ . (5.27)
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On the one hand, we can see that
∣∣∣φ̃(s, t)− ψ(s, t; k)

∣∣∣

=
∣∣P k−1PsP

l−1Pt1(x)ϕ(s)ϕ(t) − ν(PsP
l−1Pt1)ϕ(s)ϕ(t)

∣∣

=
∣∣ΠPsP

l−1Pt1(x) +Rk−1PsΠPt1(x) +Rk−1PsR
l−1Pt1(x)− ν(PsP

l−1Pt1)
∣∣

=
∣∣Rk−1Ps1(x)ν(Pt1) +Rk−1PsR

l−1Pt1(x)
∣∣ ≤ Cκk−1. (5.28)

On the other hand,
∣∣∣φ̃1(s)φ̃2(t)− ψ(s)ψ(t)

∣∣∣ =
∣∣∣[φ̃1(s)− ψ(s)]φ̃2(t) + ψ(s)[φ̃2(t)− ψ(t)]

∣∣∣

≤
∣∣∣φ̃1(s)− ψ(s)

∣∣∣+
∣∣∣φ̃2(t)− ψ(t)

∣∣∣
≤ |φ1(s)ϕ(s)− ψ(s)|+ |φ2(t)ϕ(t) − ψ(t)| ,

where as long as k ≥ 2,

|φ1(s)ϕ(s) − ψ(s)| =
∣∣[ΠPs1(x) +Rk−1Ps1(x)

]
Ex[e

isV ]− ν(Ps1)Ex[e
isV ]

∣∣

≤
∣∣[ΠPs1(x)− ν(Ps1)] +Rk−1Ps1(x)

∣∣

=
∣∣Rk−1Ps1(x)

∣∣ ≤ Cκk−1.

Similarly, we obtain
∣∣∣φ̃1(s)φ̃2(t)− ψ(s)ψ(t)

∣∣∣ ≤ Cκk−1. (5.29)

Therefore, (5.27), (5.28) and (5.29) imply
∣∣∣φ̃0(s, t)− ψ̃(s, t; l)

∣∣∣ ≤ Cκk−1 which

yields the assertion of the claim.
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