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Abstract. Inspired by a recent paper of I. Grama, E. Le Page and M. Peigné
(Grama et al., 2014), we consider a sequence (gy )n>1 of i.i.d. random d x d-matrices
with non-negative entries and study the fluctuations of the process
(log |gn - - - g17|)n>1 for any non-zero vector z in R? with non-negative coordinates.
Our method involves approximating this process by a martingale and studying har-
monic functions for its restriction to the upper half line. Under certain conditions,
the probability for this process to stay in the upper half real line up to time n
decreases as ﬁ for some positive constant c.

1. Introduction

Many limit theorems describe the asymptotic behaviour of random walks
with i.i.d. increments, for instance the strong law of large numbers, the central
limit theorem, the invariant principle... Besides, the fluctuations of these processes
are well studied, for example the decay of the probability that they stay inside the
half real line up to time n or functional central limit theorems for random walks
conditioned to stay positive. A vast literature exists on this subject, see for instance
Bolthausen (1976), Iglehart (1974a), Iglehart (1974b), Iglehart (1975), Kaigh (1976)
or Shimura (1983), and references therein. The Wiener-Hopf factorization is usually
used in this case and so far, it seems to be impossible to adapt in non-abelian con-
text. Recently, much efforts are made to apply the results above for the logarithm
of the norm of the product of i.i.d. random matrices since it behaves similarly to
a sum of i.i.d. random variables. Many limit theorems arose for the last 60 years,
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initiated by Furstenberg and Kesten (1960), Guivarc’h and Raugi (1985), Le Page
(1982)... and recently Benoist and Quint (2016). Let us mention also the works by
Hennion (1984) and Hennion and Hervé (2008) for matrices with positive entries.
However, the studies on the subject of fluctuation was quite sparse a few years
ago. Thanks to the approach of Denisov and Wachtel (2015) for random walks in
Euclidean spaces and motivated by branching processes, I. Grama, E. Le Page and
M. Peigné recently progressed for invertible matrices (Grama et al., 2014). Here
we propose to develop the same strategy for matrices with positive entries by using

Hennion and Hervé (2008).
d

We endow R? with the norm | - | defined by |z| := Z |z;| for any column vector
i=1
x = (2;)1<i<d- Let C be the cone of vectors in R? with non-negative coordinates
C:={zeR¥:V1<i<daz; >0}
and X be the standard simplex defined by
Xi={zel,|z|=1}.

Let S be the set of d x d matrices with non-negative entries such that each column
contains at least one positive entry; its interior is S := {g = (g(4, j))1<ij<a/9(i, ) >
0}. Endowed with the standard multiplication of matrices, the set S is a semigroup
and S is the ideal of S, more precisely, for any g € S and h € S, it is evident that
gh € S.
We consider the following actions:

e the left linear action of S on C defined by (g,z) — ga for any g € S and

z €C,
e the left projective action of S on X defined by (g,z) — g-x := % for any
g€ SandxeX.
For any g = (9(4,7))1<i,j<a € S, without confusion, let
d d
v(g) = 131}3(1(; 9(i.j)) and |g|:= f???d(; 9(i.))
1= 1=
then | - | is a norm on S and for any = € C,
0 <o(g) =] < lgz| <lg| |- (1.1)

We set N(g) := max (ﬁ, |g|); notice that N(g) > 1 for any g € S.

On some probability space (2, F,P), we consider a sequence of i.i.d. S-valued
matrices (gn)n>0 with the same distribution gon S. Let Ly = Idand L,, :== gy, ... 01
for any n > 0. For any fixed z € X, we define the X-valued Markov chain (X7),>0
by setting X7 := L,, - « for any n > 0 (or simply X, if there is no confusion). We
denote by P the transition probability of (X,,),>0, defined by: for any = € X and
any bounded Borel function ¢ : X — C,

Po(x) = /S o(9 - 2)u(dg) = Elp(Ly - ).
Hence, for any n > 1,
Po(z) = Elp(Ly - 7))

We assume that with positive probability, after finitely many steps, the sequence
(Lp)n>1 reaches S. In mathematical term, it is equivalent to writing as



Conditioned limit theorems for products of positive random matrices 69

P| JLnes]| >0

n>1
On the product space S xX, we define the function p by setting for any (g, z) € SxX,

pg, ) = log |gz|.

Notice that gz = e”(9®)g.z; in other terms, the linear action of S on C corresponds
to the couple (g-z, p(g,x)). This function p satisfies the cocycle property p(gh, z) =
p(g,h-x)+ p(h,z) for any g,h € S and z € X and implies the basic decomposition
for any z € X

log |Lnz| = plgr, Xi—1)-
k=1

For any a € R and n > 1, let Sy :=a and S, = Sy (z,a) :=a+ Y p_; p(gr, Xi—1)-
Then the sequence (X, Sp)n>0 is a Markov chain on X x R with transition prob-

ability P defined by: for any (z,a) € X x R and any bounded Borel function
P:XxR—C,

Py(z,a) = /S@b(g ~x,a+ p(g,x))p(dg).

For any (x,a) € X x R, we denote by P, , the probability measure on (€2, F) condi-
tioned to the event [Xo = z, So = a] and by E, ,, the corresponding expectation; for
the sake of brevity, by P, we denote P, , when Sy = 0 and by E,, the corresponding
expectation. Hence for any n > 1,

ﬁn‘/’(xa a) = E[‘/’(Ln - x,a+ log |an|)] = Ez,awj(Xm Sn)]

Now we consider the restriction Py to X x RT of P defined by: for any (z,a) €
X x R* and any bounded function ¢ : X x R — C,

ﬁ_,.’g[](.%‘, a) = P('@[JlXXRI)(% a).

Let us emphasize that ?Jr may not be a Markov kernel on X x RT.

Let 7 := min{n > 1: S,, < 0} be the first time the random process (S, )n>1
becomes non-positive; for any (x,a) € X x RT and any bounded Borel function
P: X xR —=C,

Pip(z,a) = By o[(X1,81);7 > 1] = E[Yo(g1 - 2,0 + plgr,@)); a + p(ga, ) > 0].

A positive Py-harmonic function V is any function from X x R+ to R* satisfying
P,V =V. Weextend V by setting V(z,a) = 0 for (z,a) € Xx R, . In other words,
the function V' is Py-harmonic if and only if for any € X and a > 0,

V(z,a) = Eyo[V(X1,S1);7 > 1. (1.2)

From Theorem II.1 in Hennion and Hervé (2008), under conditions P1-P3 intro-
duced below, there exists a unique probability measure v on X such that for any
bounded Borel function ¢ from X to R,

(1 v)(g) = /5 / (g - 2)(da)u(dg) = / o(@)(dz) = v(p).
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Such a measure is said to be p-invariant. Moreover, the upper Lyapunov exponent
associated with p is finite and is expressed by

= [ [ olaaidyutds) (13)

Now we state the needed hypotheses for later work.
HYPOTHESES

P1 There exists 69 > 0 such that / N(g)% u(dg) < +oc.
S

P2 There exists no affine subspaces A of R? such that AN C is non-empty and
bounded and invariant under the action of all elements of the support of u.

P3 There exists ng > 1 such that ™ (S) > 0.

P4 The upper Lyapunov exponent v, is equal to 0.

P5 There exists 0 > 0 such that p{g € S : Vx € X, log |gx| > ¢} > 0.

In this paper, we establish the asymptotic behaviour of P, ,(7 > n) by studying
the Er—harmonic function V. More precisely, Proposition 1.1 concerns the existence
ofa Er—harmonic function and its properties whereas Theorem 1.2 is about the limit
behaviour of the exit time 7.

Proposition 1.1. Assume hypotheses P1-P5.
(1) For any x € X and a > 0, the sequence (Ez,a[Sn; T > n]) converges to
0

n>
the function V(x,a) == a — E; (M.
(2) For any x € X the function V (x,-) is increasing on RT.
(3) There exist ¢ >0 and A > 0 such that for any x € X and a > 0,

TV A) < Vira) < ol +a)

Vv
(4) For any x € X, the function V(z,.) satisfies lim Viz,a)

a——+oo a

=1.
(5) The function V is Py-harmonic.

The function V' contains information of the part of the trajectory which stays in
R* as stated in Theorem 1.2.
Theorem 1.2. Assume P1-P5. Then for any x € X and a > 0,
2V
Pyo(r>n) ~ Wz, a) asn — +oc.
oV2mn

Moreover, there exists a constant ¢ such that for any x € X, a >0 andn > 1,

VNP o (T >n) < cV(x,a).

As a direct consequence, we prove that the sequence (a%)nzl’ conditioned to
the event 7 > n, converges in distribution to the Rayleigh law as stated below.

Theorem 1.3. Assume P1-P5. For any x € X, a >0 and t > 0,

lim P i<t| >nl=1-—e —i
nstoo Y\ M T ’ N P 202 )"

In section 2, we approximate the chain (S,)n>0 by a martigale and in section
3, we study the harmonic function V' and state the proof of Proposition 1.1. We
use the coupling argument to prove Theorem 1.2 and Theorem 1.3 in section 4. At



Conditioned limit theorems for products of positive random matrices 71

last, in section 5 we check general conditions to apply an invariant principle stated
in Theorem 2.1 in Grama et al. (2014).

Throughout this paper, we denote the absolute constants such as C,c, ¢y, ca, ...
and the constants depending on their indices such as c.,cp,.... Notice that they
are not always the same when used in different formulas. The integer part of a real
constant a is denoted by [a].

2. Approximation of the chain (S,),>0

In this section, we discuss the spectral properties of P and then utilise them to
approximate the chain (S,)n>0. Throughout this section, we assume that condi-
tions P1-P4 hold true.

2.1. Spectral properties of the operators P and its Fourier transform. Following
Hennion (1997), we endow X with a bounded distance d such that g acts on X as
a contraction with respect to d for any g € S. For any z,y € X, we write:
(2.y) = min 3 =y, >0
mx,y) = 1211.1;1 ” Yi
and it is clear that 0 < m(z,y) < 1. For any z,y € X, let d(z,y) :=
o (m(x,y)m(y,x)), where ¢ is the one-to-one function defined for any s € [0, 1]

by ¢ (s) := 1—: Setting ¢(g) := sup{d(g-x,9-y),z,y € X} for g € S; the

proposition below gives some more properties of d and c(g).

Proposition 2.1. Hennion (1997) The quantity d is a distance on X satisfying the
following properties:

(1) sup{d(z,y) : z,y € X} = 1.

(2) |z —y| <2d(z,y) for any z,y € X.

(3) ¢(g) <1 forany g € S, and ¢(g) <1 if and only if g € S.

(4) d(g-z,9-y) <clg)d(z,y) <clg) for any and x,y € X.

(5) c(gh) <c(g)c(h) for any g,h € S.

From now on, we consider a sequence (gn,)n>0 of i.i.d. S-valued random variables,
we set ay := p(gr, Xx—1) for £ > 1 and hence S,, = a+ Y ;_jar forn > 1. In
order to study the asymptotic behavior of the process (S, )n>0, we need to consider
the “Fourier transform” of the random variables ag, under P,z € X, similarly for
classical random walks with independent increments on R. Let P; be the family of
“Fourier operators” defined for any t € R, z € X and any bounded Borel function
p:X = C by

Prp(z) = /S D) (g - )u(dg) = Ey [61 p(X))] (2.1)
and for any n > 1,
Plo(z) = E[e198 1007l oL, . 2)] = B, [0 o(X,). (2.2)

Moreover, we can imply that
P"Plo(x) = E [eit log ‘gm+n"'gm+1(Lm'm)lsp(Lm_"_n . ;C)}

= E, [eit(aerl+m+am+n)</)(Xn+m)} (23)
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and when ¢ = 1, we obtain
E, [e”sn] = P'1(z) and E, [eit(am+1+”'+am+") = P™P!"1(x).

We consider the space C'(X) of continuous functions from X to C endowed with
the norm of uniform convergence |.|oc. Let L be the subset of Lipschitz functions
on X defined by

Li={p e CX): ol = [ploo +mlp) < +o0},

W' The spaces (C(X),| - o) and (L,]| - |L) are

where m(y) = Sup. yex —
7Y '

Banach spaces and the canonical injection from L into C(X) is compact. The norm

of a bounded operation A from L to L is denoted by |A|L— 1, := sup,¢, [Ap|z. We

denote L’ the topological dual of L endowed with the norm |- |1+ corresponding to

| - |; notice that any probability measure v on X belongs to L'.

For further uses, we state here some helpful estimations.
Lemma 2.2. For g€ S, x,y,z € X such that d(z,y) < 1 and for any t € R,
(g, %) < 2log N(g), (2.4)

and
|aw®ﬂ%_am@@|g(4mhqmﬂmgN@%1}+2cm)ﬂ%zL (2.5)
where C = sup{log -1 : 0 <u < i} < 4o0.

Proof. For the first assertion, from (1.1), we can imply that |log|gz|| < log N(g).
For the second assertion, we refer to the proof the Theorem II1.2 in Hennion and
Hervé (2008).
O
Denote (t) := [ min{2[t|log N(g),2}u(dg). Notice that lim_,oe(t) = 0.

Proposition 2.3. Hennion and Hervé (2008) Under hypotheses P1, P2, P3 and
P4, for any t € R, the operator P; acts on L and satisfies the following properties:

(1) Let I : L — L be the rank one operator defined by II(¢) = v(p)1 for any
function ¢ € L, where v is the unique P-invariant probability measure on
X and R:= P — 11
The operator R : L — L satisfies

IR = RII = 0,

and its spectral radius is less than 1; in other words, there exist constants
C >0 and 0 < k <1 such that |R™|—1 < CK"™ for anyn > 1.

(2) There exist € > 0 and 0 < r. < 1 such that for any t € [—e¢, €|, there exist a
complex number ¢ closed to 1 with modulus less than or equal to 1, a rank
one operator II; and an operator R:; on L with spectral radius less than or
equal to r. such that

Pt = )\th + Rt and Hth = Rth =0.

Moreover, Cp := sup |P'|p—L < +00.
—e<t<e
n>0

(3) Foranyp>1,

sup sup Eq |p(gnt1, Xn)|P < 400. (2.6)
n>0zeX
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Proof. (a) We first check that P, acts on (L, |- |z) for any ¢ € R. On one hand,
|Pi¢loo < |¢|oo for any ¢ € L. On the other hand, by (2.5) for any z,y € X such
that = # y,

|Prp(z) — Pip(y)]
d(z,y)

e e R I

< lelu(te(o) + 201 + [ (DT INAI 299 4,

ola- )]+

< Jploo (4e(t) +2C[¢]) + m(e),
which implies m(Pp) < |p|oo(4e(t) + 2Ct]) + m(p) < 4+00. Therefore Py € L.

(b) Let II be the rank one projection on L defined by Iy = v(p)1 for any ¢ € L.
Let R := P—1II. By definition, we obtain PII = IIP = II and II?> = II which implies
IIR = RIl =0 and R™ = P™ —1I for any n > 1. Here we only sketch the main steps
by taking into account the proof of Theorem III.1 in Hennion and Hervé (2008).
Let u*™ be the distribution of the random variable L,, and set

o(p™) = sup {/S %du*"@) rx,y € Xjx £ y} :

Since ¢(-) < 1, we have ¢(u*") < 1. Furthermore, we can see that c(u*(™m*m) <
e(p*™)e(u*™) for any m,n > 0. Hence, the sequence (c¢(u*™)),>1 is submultiplica-
tive and satisfies ¢(u*™) < 1 for some ny > 1. Besides, we obtain m(P"p) <
m(p)e(u*™). Moreover, we also obtain m(¢) < |¢|r < 3m(p) for any ¢ € KerlIl.
Notice that P"(¢ — Ip) belongs to Kerll for any ¢ € L and n > 0. Hence
[P (¢ — )L < 3e(w™)|¢lL which yields

|R"|L~r = |P" = U|p—p = [P"(I = 1)|z—1 < 3e(u™).

3=

Therefore, the spectral radius of R is less than or equal to k := lim (c(u*"))

n—-+oo

which is strictly less than 1 by hypothesis P3 and Proposition 2.1 (3).

(c) The theory of the perturbation (see Dunford and Schwartz, 1988, Chapter
VII, section 6) allows to extend the decomposition P = II + R to the operator P,
when ¢t is closed to 0. Indeed, for € > 0 small enough, there exists r. € [0, 1] such
that, for any ¢ € [—e¢; €], the operator P, may be decomposed as P, = MII; + Ry,
where the spectral radius of R; is less than or equal to r. and A; is the unique
eigenvalue of P; with modulus greater than r; furthermore, the eigenvalue \; is
simple. In order to control P;*, we ask A" to be bounded. Notice that by Hypothesis
P1, the function ¢t — P is analytic near 0. To prove that the sequence (FP/*); is
bounded in L, it suffices to check |A;| < 1 for any t € [—¢, €].

When ¢(z) = 1(x), equality (2.2) becomes

P (x) = E [e"7En)| = NTLA(e) + Ry'L(). (2.7)
We have the local expansion of A\; at 0:

t2
At = Ao + ) + 5/\6’[1 +o(1)]. (2.8)
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Taking the first derivative of (2.7) with respect to ¢, we may write for any n > 0,

d n . d n n . . itp(Ly,x)
~ P () = (/\t ,1(z) + R! 1(35)) ~E [zp(Ln, z)e .

Since Ag = 1, Igl(z) =1 and |R"™|r— 1 < Cr?, we can imply that
_ Mpl(z)  [REL(@)]io

, 7
=-E L’n.v ’
Xy = ~Efp(Ln,2)] - =2 -

1
which yields \j = i Erf EIE[p(Ln, x)| = iy, = 0. Similarly, taking the second de-

rivative of (2.7) implies \j = — nll)r}goo %E[p(Ln, x)?]. Denote 02 := ngg-loo %Ez [S2].
Applying in our context of matrices with non-negative coefficients the argument de-
veloped in Bougerol and Lacroix (1985) Lemma 5.3, we can imply that o2 > 0 and
hence \j = —0? < 0. Therefore, in particular, for ¢ closed to 0, expression (2.8)

becomes
o2
Ae=1-— 71{4’[1 +0(1)]
which implies |A\;| < 1 for ¢ small enough.

(d) In particular, inequality (1.1) implies |p(g,x)| < log N(g) for any = € X.
Therefore, for any p > 1, z € X and n > 1, Hypothesis P1 yields

p! p!
Eo|p(gnit, Xn)P < %Emeéo\p(gnﬂ,){n)l < %EN(gn+l)50 < +o0.

O

2.2. Martingale approximation of the chain (Sy)n>0. As announced in the abstract,
we approximate the process (S, )n>0 by a martingale (M,,),>0. In order to construct
the suitable martingale, we introduce the operator P and then find the solution of
the Poisson equation as follows. First, it is neccessary to introduce some notation
and basic properties. Let go = I and X_; := X. The sequence ((gn, Xn—1))n>0is a
Markov chain on S x X, starting from (Id, x) and with transition operator P defined
by: for any (g,z) € S x X and any bounded measurable function ¢ : S x X — R,

Po(g,z) = /S 0lh.y)P((g.). dhdy) = /S o(h, g - 2)uldh) (2.9)

(in other words, the measure P((g,x),dhdy) on S x X equals 6., (dy)u(dh)).
Notice that by (2.4), under assumption P1, for any g € S and = € X, the function
h s p(h,g-x) is u-integrable, so that Pp(g, ) is well defined.

Lemma 2.4. The function p : x — / p(g,x)u(dg) belongs to L and for any g € S,
S
rzeXandn > 1,
—n+1 —
B p(g,) = Pp(g - ). (2.10)
Proof. (1) For any = € X, definition of p and (2.4) yield

p(z)] < /Sllog lg|[p(dg) S/S210gN(9)u(dg) S/S2N(9)6°u(dg) < +00.

Hence [p|oo < +00. For any z,y € X such that d(z,y) > 3, we can see that
09, 2) = p(g:9)| < |p(g, %) = plg,y)|2d(x, y) < 8log N(g)d(z,y).  (2.11)
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For any z,y € X such that d(z,y) < %, applying Lemma III.1 in Hennion and
Hervé (2008), we obtain

1
— < - < .
|p(g,2) = plg, y)| < Zlog 7— Aoy = 20d(z,y), (2.12)

where C is given in Lemma 2.2. For any z,y € X, by (2.11) and (2.12) we obtain

p() - 5()| / 109, ) — plg, )| 1(dg)

IN

IN

/S [8log N(g) + 2C)d(x, y)u(dg).

_ [p(z) = p(y)|

Thus m(p) = sup ———
( ) z,yeX,x#y d(I y)

(2) From (2.9) and definition of p, it is obvious that

Pp(g,x) =/Sp(h,g-:v)u(dh) =79 =),

< 400

which yields

P'plg,x) = P(Pp)g,x) = i X(ﬁp)(kay)?((g,fzf),dkdy)

/ 2k )P (g, )., didy)
SxX

= [ plE- - @)tat) = Py )

By induction, we obtain ﬁn+lp(g, x) = P"p(g - z) for any n > 0.
O
Formally, the solution 6 : S x X — R of the equation § — P8 = p is the function

+oo
z) > P'plg,x)
n=0

Notice that we do not have any spectral property for P and p does not belong to
L. However, we still obtain the convergence of this series by taking into account
the important relation (2.10), as shown in the following lemma.

+oo
Lemma 2.5. The sum 0 = Zﬁnp exists and satisfies the Poisson equation p =
n=0
0 — PO. Moreover,
[Pfloc = sup |0(g,2) — p(g, )| < +00; (2.13)
geS,xeX
and for any p > 1, it holds
supsup E. |0(gnt1, Xn) P < +oo. (2.14)
n>0zeX
Proof. (1) Since P acts on (L, | |L) and p € L from Lemma 2.4, we obtain
Pp € L. Thanks to definition of p, (1.3) and P4, it follows that

() = [ pawias) // p(g, 2)0(dz)u(dg) = 7 = 0.
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Proposition 2.3 and the relation (2.10) yield for any = € X and n > 0,
plg, ) = P"p(g-x) = 1Ip(g-x)+R"p(g-x) = v(p)1(g-x)+R"Dp(g-x) = R"p(g-x)
and there exist C' > 0 and 0 < x < 1 such that for any z € X and n > 0,

R"5(x)| < |7, < |R",,, < Cx™

P

Hence for any g € S and z € X

<Z|P" (g - a:|<CZ/£ ——<—|—oo
+oo
Therefore, the function 6§ = ZPnp exists and obviously satisfies the Poisson
n=0

equation p = 6 — Pf. Finally, it is evident that

< +o00.

ZP p(g,

(2) Indeed, from (2.6), (2.13) and Minkowski’s inequality, the assertion arrives.
(]

sup |0(g,x) — p(g,z)| = sup
geS,xeX qESmEX

Now we contruct a martingale to approximate the Markov walk (Sy,)n>0. Hence,
from the definition of S, and the Poisson equation, by adding and removing the
term P6(go, X_1), we obtain

Sn = a+plgr,Xo)+ ...+ p(gn, Xn-1)
n—1
= a+ Pb(go,X_1) — PO(gn, Xn—1) + Z [0(gk+1, Xi) — PO(gr, Xi—1)] -
k=0

Let Fo :={0,9Q} and F,, := o{gr : 0 < k <n} for n > 1.
Proposition 2.6. For anyn >0, z € X, a > 0 and p > 2, the sequence (My)n>0
defined by

n—1

MO = SO and Mn = MO + Z [e(gk_,_l,Xk) — F&(gk, Xk—l)] (2.15)
k=0

is a martingale in LP(Q, Py o, (Fn)n>0) satisfying the properties:

sup |S, — My | < 2|Ploc Py a-a.s. (2.16)
n>0
supn” 2 sup B, o| M,|? < +oc. (2.17)
n>1 zeX

From now on, we set A := 2|P0|.
Proof. By definition (2.15), martingale property arrives.
(1) From the construction of M,, and (2.13), we can see easily that

sup |S,, — M,,| = sup ‘FH(QQ,X_l) —Fﬁ(gn,Xn_l)’ <2 ‘Fﬁ‘m <400 Pgg-as.
n>0 n>0
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(2) Denote &, := 0(gr+1, Xi) — PO(gx, X1.—1). Thus M,, = Mo—i—zz;é &. Using
Burkholder’s inequality, for any p > 1, there exists some positive constant ¢, such
that for 0 < k < n,

1
(E za|M [P)» < Ezq

P
n—1 2
2
> &
k=0

Now, with p > 2, applying Holder’s inequality, we obtain

-1 . n—1 %
il<n'Tv (Z |§k|p> ;
= k=0

which implies

n—1 2 n—1
p__ p
z,a Z &l <n?'E,, Z I€6)P <nz  sup E;.|&lP.
k=0 k=0 0<k<n-1

Since (My,), is a martingale, by using the convexity property, we can see that for
any k >0,

[Po(ge, Xu-1)| = [Eaa[1800s1, XOIF]|” < Era 0001, X017,

which implies E; 4 |ﬁ9(gk, Xk,1)|p < Ey.q|0(gk+1, Xk)|”. Therefore, we obtain

1 1
(Baaldtl?) <y (nF s Emw”) ot (Eelel’)”
0<k<n-—1 0<k<n—1
i 1/p — 1/p
<cpn?  osup [( .0l 0(gr+1, Xk) |p) (Ez,a|P9(9k,Xk—1)|p> }
0<k<n—1
1
<2¢,nt  sup ( 2,al0(gr41, X) |p)p

0<k<n—1

Consequently, we obtain E; ,|M,|P < (2cp)pn% sup  E, o|0(g9k+1, Xi)|P and the
0<k<n—1

assertion arrives by using (2.14).
O

3. On the Er-harmonic function V and the proof of Proposition 1.1

In this section we construct explicitly a ﬁ+-harm0nic function V' and study
its properties. We begin with the first time the martingale (M, )n,>0 (2.15) visit
] — o0, 0], defined by

T =min{n >1: M, < 0}.

The equality 7, = 0 yields lim me = —oo Pg-a.s. for any z € X, thus
n—) oo
liminf M,, = —oo P.-a.s., so that T' < +o00 P;-a.s. for any x € X and a > 0.

n—-+o0o
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3.1. On the properties of T and (M,,),,. We need to control the first moment of the
random variable |Mra,| under P,; we consider the restriction of this variable to
the event [T' < n] in Lemma 3.1 and control the remaining term in Lemma 3.4.

Lemma 3.1. There exists eg > 0 and ¢ > 0 such that for any e € (0,e9),n > 1,z €
X and a > n%_a,

EM[|MT|;T < n} <.
, —

Proof. For any € > 0, consider the event A, := { max . [€k| < n%*%}, where

0<k<n—
&k = 0(gk+1, Xi) — PO(gk, Xi—1); then
E..q [|MT|;T < n} - Em7a[|MT|;T < n,An} Y E,. [|MT|;T < n,Afl} (3.1)

On the event [T' < n] N A,,, we have |[My| < |¢7_1| < nz~2. Hence for any = € X

1_
and a > n2"¢,

Em,a |:|MT|3 T S n, An:| S Ez,a |:|€T71|; T S H,An:| S n%725 S % (32)
n
Let M} := ax |My|; since |[M7| < M} on the event [T' < nj, it is clear that, for

any x € X and a > 0,

Ev|IMriT <m AS] < B0y AG)

A

Eva|[ My My > 0342, A5 4 nd 2P, ,(45)

—+o0
/ Py o(M? > £)dt + 203 +2P, L(4°).  (3.3)

1
bl +2e

We bound the probability P, ,(AS) by using Markov’s inequality, martingale defi-
nition and (2.14) as follows: for any p > 1,

n—1
Pra(45) < 3 Pua (6] >0t %)
k=0
1 n—1
< 1o E;E a P
— n(%_zs)p I;) ) |§k|
9p n—1
- - p
S n(%*QE)P ZE$70|0(gk+17Xk)|
k=0
_ p
- ns—1-2ep’

For any a > ni—e , it follows that

1 CphQ
5+2¢ c 3e c P
n2TEP, o (A7) < an®Py o (A7) < oy =

(3.4)

Now we control the integral in (3.3). Using Doob’s maximal inequality for mar-
tingales and (2.17), we receive for any p > 1,

[MiS)

n

1
P, (M >t) < —E, [|Mn|p] <o
1P P

)
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which implies for any a > n 3¢

+oo z
¢ nz ¢ a
* < P < P . .
/n%+25 Po(My > t)dt - < p—1pG+2)E-1) — p—1n2p-3 (35)

Taking (3.3), (3.4) and (3.5) altogether, we obtain for some c,

Ez,a[|MT|;T§n,Az}sC;< @ _,__¢ > (3.6)

n2ep—3e n§71725p735

Finally, from (3.1), (3.2) and (3.6), we obtain for any a > nz—¢,

1 1
Ema[IMTI;Tgn}giJrc’i( + )
’ ne P

neé \ n2ep—4e n%—1—2€p—4€

Fix p > 2. Then there exist ¢ > 0 and g9 > 0 such that for any € € (0,£9) and
a>ni"e,
Ez,a [|MT|7T < n:| < C%
which proves the lemma.
O
For fixed ¢ > 0 and a > 0, we consider the first time v, . when the process
(IMy|)k>1 exceeds 2nz~=. It is connected to Lemma 4.3 where P(70™ > n) is

controlled uniformly in @ under condition a < 6,,/n with lim, ., 6, = 0 which
we take into account here by setting

Un,e :=min{k > 1: |M| > 2n%75}.

Notice first that for any ¢ > 0,z € X and a > 0 the sequence (Vpc)n>1 tends to
+00 a.s. on (Q,B(Q),P;,). The following lemma yields to a more precise control
of this property.
Lemma 3.2. For any ¢ € (0, %), there exists cc > 0 such that for any x € X, a > 0
andn > 1,

Pyo(tne > n'"%) < exp(—c.n®).
Proof. Let m = [B?n!'72¢] and K = [n°/B?] for some positive constant B. By

(2.16), for n sufficiently great such that A < nz~¢, we obtain for any z € X and
a >0,

Pyo(Vne > nl_g) < P ( max |Mg| < 2n§_8>

1<k<nl-e

< P ( max | Mgy, | < 2n§_8)
1<k<K

< P ( max |Sgm| < 37755) ) (3.7)
1<k<K

Using Markov property, it follows that, for any x € X and a > 0, from which by
iterating K times, we obtain

K
Psa ( max_|Skm| < 3n5_8> < ( sup Py (|Sm| < 3n5_8)> ) (3.8)
1<k<K bER,2EX

Denote B(b;r) = {c: |b+c| <r}. Then for any z € X and b € R

Pas (15l < 304 %) =B, (52 e Boyvmin)).
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1_.
where r,, = 3’1/% . Using the central limit theorem for .S;,, (Theorem 5.1 property

iii) Bougerol and Lacroix (1985)), we obtain for n — +oo,

P, (% & B(b/m; m) -/ (0

where ¢,2(t) = - 127T exp (—%) is the normal density of mean 0 and variance o

on R. Since r,, < ¢; B! for some constant ¢; > 0, we obtain

sup
bER,z€X

— 0,

2

n 21y, 2¢1
su o2 (u)du < -2 (u)du < < .
be]g /B(b/\/ﬁ;rn) P02 (v) —rn 902 (1) oV2r  Bov2rw

Choosing B and n great enough, for some g. < 1, we obtain

sup_Poy (ISl < 30 7¢) <sup G2 (u)du + (1) < ge.

beER,xEX beR /]B(b/\/ﬁ;rn)
Implementing this bound in (3.8) and using (3.7), it follows that for some ¢ > 0,

€

_ 77,_71 _ £
sup Py o(Une >n'%) < gl <¢P? <emom.
a>0,zeX

([
Lemma 3.3. There exists ¢ > 0 such that for any ¢ € (0, %), reX,a>0 and
n>1,

sup By of|Mi|;vne >n' "¢ < c(1 + a) exp(—c.n®)
1<k<n

for some positive constant c. which only depends on ¢.

Proof. By Cauchy-Schwartz inequality, for any x € X, a > 0 and 1 < k <mn,

Ew,a [|Mk|;1/n,€ > nlis] S \/Ew,a|Mk|2]P)m,a(Vn,€ > nl—a)'

By Minkowsky’s inequality, (2.16) and the fact that 1E,|S,[*> — o2 as n — +o0,
it yields

VEzalMi? <a+ \/Eypo[M?] <a+ A+ /EyolSE < cla+n?)

for some ¢ > 0 which does not depend on x. The claim follows by Lemma 3.2.
O

Nl=

Lemma 3.4. There exists ¢ > 0 and g9 > 0 such that for any ¢ € (0,&0), x € X,
a>0andn>1,

Ego[Mp; T >n] <c(1+a). (3.9)
and

1
lim = lim E,q[M,;T >n]=1. (3.10)

a——+o0 4 n——+oo

Proof. (1) On one hand, we claim

c/

By o[Mn;T > nyvp. <n'™f] < (1 + —8) Euo [M-<; T > [n'~]](3.11)

net
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and delay the proof of (3.11) at the end of the first part. On the other hand, by
Lemma 3.3, there exists ¢ > 0 such that for any € € (0, %), re€X,a>0andn >1,

EvalMaiT > n,vne >0 ™) < sup Eyo|[Milvne > '~
1<k<n

¢(1 4 a) exp(—cen®). (3.12)
Hence combining (3.11) and (3.12), we obtain for any z € X and a > 0,

A

/
Eyo[Mp; T > n) < <1 + %) E; o [M[nks];T > [nl’sﬂ + ¢(1 + a) exp(—cen®).
(3.13)
Let kj := [n(lfs)j] for j > 0. Notice that ko = n and [k}~°] < kji1 for any j > 0.
Since the sequence ((M,)1{7>n])n>1 is a submartingale, by using the bound (3.13),
it yields

/

Em,a[Mkl;T > kl] < <1 + %) Ez,a [M[]gllfs];T > [kll_aﬂ + C(l + CL) exp(—csk‘f)
/
< <1 + %) Ey.a[Mpy; T > ko] + ¢(1 + a) exp(—cekT).
1

Let ng be a constant and m = m(n) such that k,, = [n(l_g)m] < ng. After m
iterations, we obtain

Eyo[Mp;T > 0] < A (Em,a[Mkm;T > ko] + (1 + a)Bm), (3.14)
where
2 ct ey Mo°
Am =T [1+ =)< exp(2 077) (3.15)
j=1 k51 L —nq
and
m exp (—c.kS —€
Bpn=>Y_ D (“echi-y) < ¢ —0 (3.16)

’ c! — —e2
j:l(l—l—k?)...(l—i—kE) 1—ng*

j—1 fn
from Lemma 5.6 in Grama et al. (2014). By choosing ng sufficient great, the first
assertion of the lemma follows from (3.14), (3.15) and (3.16) taking into account
that

Ez,a[Mkm;T > km] S Em,a[Mno;T > nO] S Ez,a|Mno| S a+c.
Before proving (3.11), we can see that there exist ¢ > 0 and 0 < g9 < 3 such that
for any € € (0,20), z € X and b > nz ¢,
c
B, 4[Mp; T > n] < (1 + n—) b. (3.17)

Indeed, since (My,, Fp)n>1 is a P, p- martingale, we obtain
Epp[Mp; T < n] = Egp[Mp; T <]
and thus
Eup[Mn; T >n] = Euu[My] —Eyo[My; T <n

)

b_Em,b[MT;T < n]
= b+ Eup[|Mr|; T <nl. (3.18)
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Hence (3.17) arrives by using Lemma 3.1. For (3.11), it is obvious that

']

Eya [Mn; T >n,vpe < nl—ﬂ =Y Eua [Mn;T >N, Une = k} (3.19)
k=1

Denote Uy, (x,a) := Ey o[My; T > m]. For any m > 1, by the Markov property
applied to (X,,)n>1, it follows that

Em,a |:Mn7 T > n, Un,e = k} = /E%b[Mn_k;T >n— k]
Po.a(Xk € dy, My, € db; T > kv = k)
=Eoa {Un—k(XkaMk);T > ky Ve = k] (3.20)

From the definition of v, ., we can see that [v,. = k] C {|Mk| > n%*s}, and
by using (3.17), on the event [T > k,v, . = k] we have Up_p(Xp, My) < (1 +
ﬁ)Mk. Therefore (3.20) becomes

_c
(n— k)
Combining (3.19) and (3.21), it follows that, for n sufficiently great,

Epo[Mp;T > n,vpme =k < <1 + > EpoMp; T > Ekyvne =k]. (3.21)

[n'=°]
Em,a[Mn; T> N, Vn e < nl—s] < Z (1 + ﬁ) Em,a[Mk:; T > k, Vne = k]
n —
k=1
1—e
Y [n" %]
< <1 + n_i> Z Em,a[MkJT >k, Upe = k],
k=1

for some constant ¢, > 0. Since (M, 1j75y))n>1 is a submartingale, for any z € X,
a>0and 1 <k <[nl79],

EpoMp; T > kyvne =k <Egq |:M[n175];T > [ vpe = k]

This implies

o [Mp-e; T > [n' 7], vn e = k]

)

/ [n
]Em,a,[Mn;T >n, Vn.,e S nl—é‘] S (1 -+ C_E) ]Em

cl _
< (1 + TL_EE) Esa [M[nl—a];T > [nl E]] .

(2) Let 6 > 0. From (3.15) and (3.16), by choosing ng sufficiently great, we
obtain A,, <140 and B,, <. Together with (3.14), since (My1{r>p))n>1 is a
submartingale, we obtain for k,, < ng,

By oMy T > n) < (1 +6) (Em,a[Mno; T > no) + (1 + a)(5>.

Moreover, the sequence E, ,[M,; T > n] is increasing, thus it converges P, ,-a.s.
and

lim Eyo[Mp;T >n] < (1+0) (E%G[Mno;T > o) + (1 + a)&).

n—-+o0o
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By using (3.18), we obtain

a< lim Eyo[MyT >n] < (1+0) (a By M|+ c(1 + a)5).

n—-+o0o

Hence the assertion follows since § > 0 is arbitrary.

3.2. On the stopping time 7. We now state some useful properties of 7 and .S;.
Lemma 3.5. There exists ¢ > 0 such that for any x € X, a >0 andn > 1,
Ep o[Sn, 7™ >n] <c(1+ a).

Proof. (2.16) yields Py(7, < Tyya) = 1 and A+ M,, > S, > 0 on the event
[ > n]. By (3.9), it follows that

Eqgo[Sn; T > n) Ey oA+ My, 7 > n
Eyara[Mp; T > n]

ca(l+a+A) <co(l+a).

IN N CIA

Proposition 3.6. There exists c > 0 such that for any x € X and a > 0,

Es.olSr| < e(l+a) < 400
and

Ep ol M:| <e(l+a) < +o0. (3.22)
Proof. By (2.16), since (M), is a martingale, we can see that

_Em,a[ST;T < nj —Em,a[MT; T<n]+A

Epo[Mp;7 > n] —Ey o[My] + A

)

< Eyo[Sn;T > n] + 24,

Hence by Lemma 3.5, for any = € X and a > 0,

Eool|Sri7<n] < EyalSran
Ey,o[Sn; T >n] —Ep o [Sr;7 <1
< 2K, o[Sn;T > n]+ 24
< ¢(1+4a)+2A.

By Lebesgue’s Dominated Convergence Theorem, it yields

E; oS- = lirf EuollS-;7<n] <c(l+a)+24< +o0.
n—-+00

By (2.16), the second assertion arrives.
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3.3. Proof of Proposition 1.1.
Denote 7, := min{n > 1: S, < —a} and T, := min{n > 1 : M,, < —a} for any
a>0. Then E; (M, = a+E, M, and Py (7 > n) = Py(14 > n).
(1) By (3.22) and Lebesgue’s Dominated Convergence Theorem, for any z € X
and a > 0,
lim E,o[Mq7<n]|=E; M, =a-V(x,a),

n—-+o0o

where V(z,a) is the quantity defined by: for z € X and a € R,
—E; M., if a>0,
Viz,a) "{ 0 if a<0.
Since (My,, Fn)n>1 is a P o-martingale,
EpoMp;7>n] = EpoMy —Epo[My;7<n]l=a—E;[M:;;7 <nl(3.23)

which implies
lim E,q[M,;7>n]=V(z,a).

n—-+oo

Since |S, — M,| < A P,-a.s. and hm P, o(7 > n) =0, it follows that

n—-+

lim Ego[Sn;7>n]= hm Ey o[Mp; 7 > n] =V(z,a).

n—-+oo n—-+oo

(2) The assertion arrives by taking into account that 0 < a < a’ implies 7, < 74
and
Exla + Sn; 7o > n] < Egla’ + Sp;7ar > nl.

(3) Lemma 3.5 and assertion 1 imply that V(z,a) < ¢(1 + a) for any z € X and
a > 0. Besides, (3.23) and (2.16) yield

Eyo[Mp;7>n]>a—E;  [Sr;7<n]—A>a— A,
which implies
V(z,a) > a— A. (3.24)

Now we prove V(z,a) > 0. Assertion 2 implies V(z,0) < V(z,a) for any x € X
and a > 0. From P5, let E5 :={g € S : Vz € X,log|gz| > ¢} and choose a positive
constant k such that k6 > 2A. Hence, for any ¢1,...,g9r € Fs and any x € X, we
obtain log |gk . .. g1x| > kd > 2A. Tt yields

V(z,0) = hm E;[Sn;T > n]

> lim lnf/ / ...g1-T,log |gk...g17| [Sn—k;T > n —klu(dg) . .. p(dgx)
Es

n—-+o0o

zliminf/ / Vigr...q1 x,2A)u(dgy) ... u(dgr)
s Es

n—-+o0o E

> A(M(E(;))k >0,
where the last inequality comes from (3.24) by applying to a = 2A.
(4) Equation (3.24) yields aEIqPoo # > 1. By (2.16), it yields that P, (7, <
Ta+q) = 1, which implies
Ey o[Sn; 7T > 1] wal A+ My > n]

<E
<Eg oA+ My;Ta >n|=Eg qpa[Mp; T > nl.
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v
From (3.10), we obtain lim M

n—-4o0o a
(5) For any € X, a > 0 and n > 1, we set Vi, (z,a) := Ey 4[Sn;7 > n]. By
assertion 1, we can see 11111 Vi(z,a) = V(x,a). By Markov property, we obtain
n—-+0oo

<1

Vot1(z,a) = Egpq |E

St + ZP(Qk+lan);S1 >0,...,541 > 0|]:1H
k=1
= ]Em,a [Vn(Xl,Sl);T > 1]

By Lemma 3.5, we obtain  sup Vj,(z,a) < ¢(1 + a) which implies P-a.s.
xeX,a>0

Vo (X1, 51) 1) < e(1 4 S1)1 751

Lebesgue’s Dominated Convergence Theorem and (1.2) yield

V(:C,a) = ngrilw Vn+l(‘r7a’) = nll)r_{_loo Ew,a[Vn(le Sl);T > 1]
= Em)a[V(Xl,Sl);T> 1]
= P.V(z,a).

4. Coupling argument and proof of Theorems 1.2 and 1.3

First, we check that the weak invariance principle with rate stated in Grama
et al. (2014) (Theorem 2.1) may be applied to the sequence (p(gr, Xr—1))k>0.The
hypotheses C1, C2 and C3 of this theorem are given in terms of Fourier transform
of the partial sums of S,; combining the expressions (2.1), (2.2), (2.3) and the
properties of the Fourier operators (P;):, we verify in the next section that these
conditions are satisfied in our context. This leads to the following simpler but
sufficient statement.

Theorem 4.1. Assume P1-Pj. There exist

€0 >0, and ¢y > 0,

a probability space (€, B(Q)),

a family (Py)zex of probability measures on (9, B(R)),

a sequence ()i of real-valued random variables on (€, B(Q)) such that

E((dk)k/ﬁw> = E((ak)k/IP’w> for any x € X,

o and a sequence (W;);>1 of independent standard normal random variables
on (Q,B(22))
such that for any © € X,

k

P, sup

(di — le)

> né_g‘)) < con~ 0. (4.1)

Notice that the fact (4.1) holds true for g¢ implies (4.1) holds true for €, whenever
e < go. In order to simplify the notations, we identify (Q, B(2)) and (Q, B(£2)) and
consider that the process (log |L,x|)n>0 satisfies the following property: there exists
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g0 > 0 and ¢o > 0 such that for any € € (0,¢¢] and z € X,

P < sup |log|Ligz| — 0Bl > né_a)
0<t<1

=P, ( sup |Sinyg — 0 Bne| > n%5> < con”¢F, (4.2)
0<t<1

where (B;);>0 is a standard Brownian motion on the probability space (£2, B(£2),P)
and o > 0 is used in the proof of Proposition 2.3, part c¢). For any a > 0, let 7°™
be the first time the process (a + 0By)¢>0 becomes non-positive:

7'M — inf{t > 0:a+ oB; < 0}.

The following lemma is due to Lévy (1937, Theorem 42.1, pp. 194-195).

Lemma 4.2. (1) For anya >0 andn > 1,

2 ¢ s?
bm _ : _ — _
P(r)" >n)=P (O’ Ognulin B, > a> P /0 exp ( 2n02) ds.

(2) For any a,b such that 0 < a<b< +oco andn > 1,

P(r?™ > n,a+ 0B, € [a,b])

i [ () (5

From Lemma 4.2, we can obtain the next result.

Lemma 4.3. (1) There exists a positive constant ¢ such that for any a > 0
andn > 1,
P(rP™ > n) < c—o. (4.3)
a O’\/ﬁ

(2) For any sequence of real numbers (an)n such that o, — 0 as n — 400,
there exists a positive constant ¢ such that for any a € [0, /1),
2a o}
P(rt™ > n) — <c—=a. (4.4)
oV 2mn n

We use the coupling result described in Theorem 4.1 above to transfer the prop-
erties of the exit time 7°™ to the exit time 7, for great a.

4.1. Proof of Theorem 1.2.

(1) Let € € (0,min{eo; 4}) and (6,)n>1 be a sequence of positive numbers such
that 8,, — 0 and Hnn5/4 — 400 as n — 4o00. For any z € X and a > 0, we have
the decomposition

Pu(z,a) =Pt >n) = Puo(t>nvne >n' ")+ Pyo(r > n,v,. < n'(E))
It is obvious that from Lemma 3.2, we obtain

sup Py o(7 > n,vpe > n'7F) < sup Pyo(Vne > n'=%) < e’ (4.6)
zeX,a>0 zeX,a>0

For the second term, by Markov’s property,
]P)z,a(T >Ny Une < n175> = Eia [Pnfun (Xvn,svsvn,s); T > VUneyVne < nliﬁl}’?)
= In(.I,CL)—FJn({E,CL),
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where

1 —
In(xv CL) = Ex,a |:Pn71/n (Xyn,€7SVn’5); ‘S’l/n,‘€ S onnsz > V’n,,Ev Vn,s S nl E:| )

1
and Jy(z,a) :=Eg 4 [Pn_,,n (X o3 Sun )i Supe > 0an2, 7> vy o Un e < nlfs] .

Now we control the quantity P,_,, (X,, ., Sy, .) by using the following lemma.
The proofs of the lemmas stated in this subsection are postponed to the next
subsection.

Lemma 4.4. (1) There exists ¢ > 0 such that for any n sufficiently great,
reX anda € [n2< 0,02,
2a ab,
Pro(t >n) — —| < c——=. 4.8
al ) o T (4.8)
(2) There exists ¢ > 0 such that for any x € X, a > n3=¢ andn > 1,
Pyo(r>n) < c%. (4.9)
Notice that for any z € X;a > 0 and 0 < k < nt—e,
Po(x,a) < Py p(z,a) < Py_jpi—<)(z,a). (4.10)
By definition of v, . and (2.16), as long as A < n%_a, we have P 4-a.s.
Spp.=>2M, . —A>2n2"°—A>n2"" (4.11)

1
Using (4.8) and (4.10), (4.11) with 6,, replaced by 6, (#) * for n sufficiently
great, on the event [Sun,s < Hnn%,T > UnerVne < nl_a}, we obtain P, 4-a.s.

2(140(1))S,
Puv (X s S0) = 2(1+0(1)5, .

ovV2mn
Let
I'(z,a) = Eguq [SUR,E;T > UneyVUne < nlfﬂ , (4.12)
J(z,a) = Euq, {Syn’g; Sy > Hnn%,T > UpeyUne < nlfs} . (4.13)
Hence
2(1 1
In(I; a) = wﬂzz,a |:Sun E;Sun . < enn%aT > VUn,eyVn,e < n17€:|
oV 2mn ' '
2(1 1
20 A 1 4,0) - ()
oVv22mn
1 1
Jo(z,a) = w%(m)_

Vn
Therefore (4.5) becomes
2(140o(1)) ,
o2mn "
The first assertion of Theorem 1.2 immediately follows by noticing that the term J,

is negligible and Py (7 > n) is dominated by the term I as shown in the lemma
below.

Pyo(r>n)— (z, a)’ <C (n*%J,’z(:zr, a)) +C' (efcfns) .
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Lemma 4.5.

lim Iflz(xu (1) = V(J:, a) and lim anJ:l =0,
n—+oo n—+oo

where I and J!, are defined in (4.12) and (/.13).

(2) By using Proposition 1.1 (3), it suffices to prove /nPy; o(7 > n) < ¢(1 + a)
for n great enough. For n sufficiently great, using (4.9) and (4.11), we obtain P, -
a.s.

Vn,e

Pn_[nlfs](Xyn,€7SVn’E> S C \/ﬁ .

Combined with (4.7), it yields

Pyo(T >0y Une <n' %) < %1;. (4.14)
Since 7, < Tyqa P-a.s. and (3.9), it follows that
I (x,0) <EparalMy, ;T > vpe,vne < n'7f < ce(1+a+ A).
Hence (4.14) becomes
Py o(r > 1y Une <1V °) < —=(1+a+ A). (4.15)
) ) \/ﬁ
Combining (4.5), (4.6) and (4.15), we obtain for n great enough,
Poo(t >n) <e %" + %(1 +a+A)<d(1+a).
O
4.2. Proof of Theorem 1.3.
Let us decompose P, (S, < t4/n|T > n) as follows:
Py o(Sn < ty/n,7 >n)
: — Dy1+Dy o+ D3, 416
P, .(r > 1) 1+ Dno+ Do (4.16)
where
D o Pa(Sn Sty T >, > nt=¢c)
b Py o(r>n) ’
D L Pm,a(sn < t\/ﬁ,T >mn, Sy > on\/ﬁv Un,e < n17€>
m2 T Pyo(T >n) ’
D Py a(Sn < ty/n, 7 >n, 80 < Opy/n,vne <n'°)
i Pyo(T >n) '
Lemma 3.2 and Theorem 1.2 imply
lim Dy, = 0. (4.17)



Conditioned limit theorems for products of positive random matrices 89

Theorem 1.2 and Proposition 1.1 (3) imply

Py o(T > 1,8, > Op/n,vp e < nl7e)
Py o(r > n)

Dn,2 <

1
= 7Ex,a |:Pn71/n’5 (X

By alr > 1) Sun T > Vs S > b/ Tovme <17

Vn,e»

Ez,a {1 + Sun,g;T > Un,e, Sun,a > on\/ﬁv Vn,e < nlis]
= Pyo(m > n)ovn —nl—=

o [SVH,E;T > Uney Sy, . > On/1, Un e < nl‘a] +Pra(T > vpe)
=¢ Vo avion=s |

Since Py (7 < 400) =1 and Py (vn,e < +00) =0, Lemma 4.5 yields

lim D5 =0. (4.18)

n—-+oo

Now we control D, 3. Let Hp,(z,a) := Py o(Sm < t4/n,7 > m). We claim the
following lemma and postpone its proof at the end of this section.

Lemma 4.6. Let ¢ € (0,e0),t > 0 and (6,,)n>1 be a sequence such that 6,, — 0

and 9nn5/4 — 400 as n — 4oo. Then for any x € X, nt?—e < g < On/1 and
1<k<nl—s,

u2

2a ¢
< k)= 2 v .
Psa (Sn,k <tn,T>n k) 03%/0 uexp( 202)du(1 +0(1))

It is noticeable that on the event [t > k,S; < 0,/n,vne = k|, the random
variable H,, (X}, Sk) satisfies the hypotheses of Lemma 4.6. Hence

Pyo(Sn <tv/n,m>n,8, < 0nv/n,vpe <n'7°)
— Em,a [Hn—ums (len,H Sun,g); T > Vn,au Sum5 S en\/ﬁa I/n,a S n17€:|

1—5]

- Ex,a [ank(Xk; Sk);T > ka Sk S en\/ﬁa Un,e = k:|

k=1
2 1)) [ —u?
= ( ha 0( )) /uexp ( u2 )duEm,a |:SIJn T > 1/717€7SV71 . < Hn\/ﬁ, Un,e < nl—a]
o3/2mn  Jo 20 ' '

Lemma 4.5 yield as n — 400,

Eva|[SuiT > Vs Su . < Onv/R e <0175 = V(w,@)(1+ ().

Therefore, Theorem 1.2 yields

t 2
Dy = 2V (z,a)(1 4 o(1)) wexp ( u2 ) du
Py o(T > n)o3V2mn Jo 20

1+o(1) [* —u?

The assertion of the theorem arrives by combining (4.16), (4.17), (4.18) and (4.19).
O
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4.3. Proof of Lemma /./.
(1) Fix € > 0 and let

Ape = | sup [Spy — 0Bn| < na=2
0<t<1
For any z € X, (4.2) implies P,(AS ) < con™%. Denote a* := a + nz=2 and
notice that for a € [n2=¢,0,/n),
0 <a* <20,vn. (4.20)
Using (4.4) and (4.20), for any z € X and a € [n27¢,0,y/n], we obtain
+ —2¢ + —2e
ca™0 2n 2a ca™0 2n
-t <P (P >n)— < "4 .
vn oV2r (7ot ) oVv2mn —  /n oV 2

For any a > n? ¢, we have [hm > n]NAS . C [ra >n]NAS . C 07 > n]NAS
which yields

Py (127 > n) — Py (A5 ) < Po(ra > n) < Po(r2 > n) + Po(AS L)

a

(4.21)

for any = € X. It follows that

Py (7a > n) — Py (707 > n) < con™2, (4.22)
P (7™ > n) — Py(7, > n) < con™ 2. '
The fact that 6,n5/* — +o0 yields for n great enough
1
a nz"*¢ 9

From (1.21), (4.22) and (4.23), it follows that for any a € [n2 <, 6,/n),

2a Ona Ona
<c(l+0,)n %402 <=
oV2mn| ( ") 1\/5_ ?
or n great enough, condition ¢ > n2~° implies a™ < 2a. From (4.3) an
2) For n g gh, conditi 3~ implies a* < 2a. F 1.3) and
4.2: since n~ ¢ < —=, for any = €
4.22) , si %< g forany z € X,

P.(1q >n) —

_ a
+eon "% < ¢ —.

ov/n vn

Py(me >n) <c

4.4. Proof of Lemma 4.5.
(1) We prove that lirf Epo [My, 57> Ve, Vne <n'7°] = V(z,a). Then, the
n—-+oo ’

assertion arrives by using (2.16) and taking into account that P,(7, < +o0) =1
and P, ( HI_P Upe =+00) = 1. For z € X and a > 0, we obtain
n—-+00

1— 1—
Em,a [M T > Un,eyVn,e <n E] = Em,a [Munys/\[nlff];'r > Vn,eyVUn,e <n 8}

VUn, e
= ]Em,a [Ml/n,sl\[nlfi];T > Un,e A [nlfsu

1—8]71/”)5 > nl—a} )

— Ez,a [Muyl,EA[nlfs];T > Upe N\ [TL
By using Lemma 3.3,

Esa [MVH’E/\[nlfs];T > Upe A [nlfs], Upe > nlfﬂ <c(1+ a)e*CE"E.
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Using the facts that (M,),>0 is a martingale and P, < lim v, = —|—oo> =1, we

n—-+oo
obtain
lim E;, [M iT > Upe, Unye < nlfﬂ

v, b
n—-+oo .

= lim E,, [Myn’e/\[nl—s];T > Upe N\ [nlis]]

n—-+o0o

=a— lim E;, [MVH’EAW*E];T < Upe A [nlf‘EH

n—-+oo

=a— lim E;, [MT; T<UpeA [nlfs]}

n—-+oo

=a—E,;M;]=V(z, a).
(2) Let b = a+ A. Remind that M} = max | My|. We obtain

Em,a [Sun,g ; Sun,s

1
= l1—e
> 0,2, T > Vpe,Une <N }

< Eup My, M,

VUn,e Un,e

> 02, v, <nl7E
< Ez,b [Mff,llfa];M[tllfs] > an%} .

Since 6,,n¢/*

beR,

— 400 as n — 400, it suffices to prove that for any § > 0, z € X and

lim n*E, [b—i—M:{;M;{ > n%”] =0.

n—-+4oo

Obviously, by (3.5),

E, [b+ Ms My > n¥*0| 0Py (M > n3t0) + By My My > i)

= (b—|—n%+5) P, (M,;k > n%‘L‘;) +/

n

<c (b + n%‘L‘;) n"PS 4 en POt HS,

—+oo
P, (M) > t)dt

1
7+s

Since p can be taken arbitrarily great, it follows that lirf n% J =0.
n—-+0oo

4.5. Proof of Lemma /.0.
Recall that a* = a & n'/272¢ and denote t = t 4+ 2n2¢. For any 1 <k < nt—e,

{(r"minA,cCc{ra>n—k}NA,. C{r'"}INA,.
and
{a =+ 0By <t Vn}NA,. C{a+ S <tyVn}nA,.
C{at +0B,_r <tTVn}NA,.,
which imply
Po(r2™ >n—k,a” + 0Bn_ <t7v/n) — Py(AS )
<Pu(1a >n—k,a+ Snk <tyn) < (4.24)
Po(r20 >n—k,a® + 0Bn_ < tTy/n) + Po(A5 ).
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Moreover, by Lemma 4.2, we obtain

P, (r}l’T >n—ka"+0B,_; < t*ﬁ)
(4.25)
\/_/ uexp )du(l +0(1))

and similarly,

P, (Tbln >n—k,a +0B,_ < tf\/ﬁ)
2 (4.26)

\/ﬁ/ uexp “ )du(l-i—o(l)).

Therefore, from (4.24), (4.25), (4.26) and ]P’z(Afw) < cn~2% it follows that

2

P, (Ta >n—k,a+ Sp—p < tﬁ) uexp u )du(l +o(1)).1

o

5. On conditions C1-C3 of Theorem 2.1 in Grama et al. (2014)

Let kgap, M1, My € N and jo < ... < jm,+m, be natural numbers. Denote
Ut T = D e g,, Qhtl, Where Jo = [jm—1,jm),m =1,..., M1+ Mz and k > 0. Con-
sider the vectors a; = (q{l, e ay,) and @z -Zi(a,kgaerJMl#»l, c Qg £ Taty a0 ).
Denote by ¢,(s,t) = Ee*@ 112 ¢ 1(s) = Ee"® and ¢, 2(s) = Ee® the char-
acteristic functions of (@i, as), a1 and as, respectively. For the sake of brevity, we
denote ¢1 (S) = (bw,l(s)a ¢2(t) = ¢w,2(t) and (b(su t) = ¢I(S7t)

We first check that conditions C1-C3 hold and then prove the needed lemmas.

5.1. Statement and proofs of conditions C1-C3. C1: There exist positive constants
€0 <1, A, A1, A2 such that for any kgqp € R, My, My € Z, any sequence jo < ... <
Jn+m, and any s € RM1 ¢ € RM2 satisfying |(s, )]0 < €0,

) A2 (M1+M2)

66 = 1620 < doexpl-Aukyy) (14 mix - card(7)

C2: There exists a positive constant ¢ such that sup,,>g |an|g2+2s < +00.
C3: There exist a positive constant C' and a positive number ¢ such that for any
v >0, any z € X and any n > 1,

m+n—1
—lV i 2
n arp, a; | — o

i=m

sup < Cn~ 1t

m>0

Proposition 5.1. Condition 1 is satisfied under hypotheses P1-P5.
Proof. First, we prove the following lemma.

Lemma 5.2. There exist two positive constants C and k such that 0 < k < 1 and
|@(s,t) = ¢1(s)a(t)| < COpPTHegloer,

where Cp is defined in Proposition 2.5.
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Proof. In fact, the characteristic functions of the ramdom variables a1, as and
(@1, az2) can be written in terms of operator respectively as follows:

$1(s) = Eyle™™] = pio-tplhl  pllvly(y),
Go(t) = E,[e®] = Pruoptisn—tplhunl | pliily ) (5.1)
G(s,t) = Bylesmtita] = pio=Lplhl  plinlphyoy pliviel | piieraly ()

Now we decompose ¢(s,t) into the sum of ¢ri(s,t) and ¢r(s,t) by using the
spectral decomposition P = II + R in Proposition 2.3, where

ou(s,t) = proiplhl  piininplinl | pliuely ),
o1 plJ a1 | pokgap ol T30 +1] 7 |
¢r(s,t) = PPTIPIL L Pipn RRser pt L pl R (1),

Since II(¢) = v(¢)1 for any ¢ € L and P; acts on L, we obtain

(s, t) = Pl=Lpll  pllvly gy (P,J;’Ml“' N .P,J;Lf”MZ'l) .

M

¢(S= t) =®1 (S)¢2(t) + ¢R(Sv t)
= ¢1(s)d2(t) + d1(s)[Wh2(t) — P2(t)] + dr (s, 1),

Then setting ¢ (t) = V(Pt‘;]Mlﬂl . .Ptle:Iﬁlel) yields

which implies
¢(s,t) — @1(5)P2(t)] < |d1(s)[¥2(t) — P2(t)| + |Pr(s,1)]. (5.2)

On the one hand, we can see that |¢;(s)| = ‘ (Pjo’lPSI‘l]1| . .PSIJJ\/,];“ Il) (a:)‘ < Rt

and |¢g(s,t)| < CpTMM2Cpikoar. On the other hand, since v is P-invariant
measure and (v — §,)(1) = 0, by using again the expression P = Il + R, we obtain

— Egap-+in, —1 pl/ | |7 |
1o (t) — do(t)]| = |(v — 62) (P gap+in P My+1 ”-PtMI:I1+M2 1)‘
<|w-0,) (HPJ;]MW‘ o P,J‘N’IT*MZH) ’
[ gy (o plesaly)
= | =) (P peely)
| = 8,) (REsert Ll pllnly)
_ Egap+irg —1 plIar+1] [Ty 40, |
= |(v = b,) (Rt rp el plinevely )
< OC}JL/IQ I{kgaerlefl. (53)
Therefore, (5.2) follows.
O
Second, let A2 = max{1,log, Cp}. Since max card(Jy,) > 1, we obtain
m=1,..., M+ Mo

)

Ao (My+Ms)
CII;/[1+M2 < r2(MitMz) < (1 + max card(Jm))

=1,....M1+M>
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which implies that

>>\2(M1+M2)

|6(s,t) — d1(5)pa(t)] < Crloer <1 t oo max card(Jm)

Finally, let A\g = C and A1 = —log k. Then the assertion arrives.

Proposition 5.3. Condition 2 is satisfied under hypotheses P1-P5.

Proof. Condition P1 implies that there exists do > 0 such that E[N(g)%] <
+00 ok

+oo and since E[N(g)*] = Elexp(dolog N(g))] = > %]E[(log N(g))¥], we obtain
k=0

Elan|* < E[(log N(g))*] < +oo for any n > 0 and any &k > 0.
(]

Proposition 5.4. Condition 3 is satisfied under hypotheses P1-P5. More precisely,
there exists a positive constant o such that for any r € X and any n > 1,

m+n—1
sup chpz< Z ak> —no?| < 4o0. (5.4)
m>0 -
=m
Proof. For any integer m,n > 0, we denote Sy, = Zz;:*l ak, Vu(X) =

Varp,(X) = E,(X?) — (E,X)? and Cov,.(X,Y) = Couvp, (X,Y). Then

m+n—1 m+n—1m+n—k—1
ValSmn) = >, Vala)+2 > Y Covlar,arp)  (5.5)
k=m k=m =1

and (5.4) becomes sup,,>q [Va(Sm.n) — no?| < +0o0. We claim two lemmas and
postpone their proofs until the end of this section.

Lemma 5.5. There exist C >0 and 0 < k < 1 such that for any x € X, any k > 0
and any 1 > 0,

|Cov, (ag, axs1)| < CkL. (5.6)

Lemma 5.6. There exist C > 0,0 < k < 1 and a sequence ($y)n>0 of real numbers
such that for any r € X, any k > 0 and any 1 > 0,

|Covy(ag, aryi) — s1| < CK*, (5.7)

|s;] < CkL. (5.8)

For the first term of the right side of (5.5), by combining Lemma 5.5 and Lemma
5.6, we obtain

|Covg(ak, aky1) — s1] < Crmax{k.l} (5.9)

Inequality (5.7) implies |V (ax) — so| < Ck¥, which yields for any integer m,n > 0,

m+n—1

Z Ve (ax) — nso
k=m

m+n—1 m+n—1

c
< Z [Va(ak) — so| < C Z K < 1—x < 400.(5.10)

k=m k=m
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For the second term of the right side of (5.5), we can see that

m+n—1m+n—k—1 m+n—1 +oco
E E Covg(ak, agyr) — E E S;
=m =1
m+n—1m+n—k—1 m+n—1

IN

Z Z |Covy(ak, arri) — si| + Z Z |s1]
=m =1

= k=m Il=m+n—k
= Xi(z,m,n)+ Xa(z,m,n). (5.11)

On the one hand, by (5.7) and (5.9), we can see that for any x € X, any m > 0 and
any n > 1,

+oo k +o0o0 H4oo
Si(z,m,n) < ZZka—i—z Z Cr!
k=0 =1 k=0 l=k+1

“+o00 +oo
< > CksF 4> (5.12)
k=0 k=0
Similarly, on the other hand, by (5.8) we obtain for any x € X, any m > 0 and any
n>1,

n—1 +4oo

Yo(z, m,n) Z Z Cr! < 71%) < +o0. (5.13)

k=0 l=n—k
Combining (5.5),(5.10),(5.11),(5.12) and (5.13), we obtain

+o0
sup (Vi (Sm.n) — nz 51| < 4o0. (5.14)
m20 1=0

In fact, by using Lemma 2.1 in Le Page et al. (2017+), Theorem 5 in Hennion
(1997) implies that the sequence (i’i)n>1 converges weakly to a normal law with
variance o2. Meanwhile, under hypothesis P2, Corollary 3 in Hennion (1997) implies
that the sequence (|R, |)n21 is not tight and thus o2 > 0, see Hennion (1997) for
the definition and basic properties. Therefore, we can see that Var,S, ~ no? with
o > 0, which yields 3% s, = 2.

O

5.2. Proof of Lemma 5.5.

x if jz] <1, .
_ = o0 < .
Let g(x) { 0 if 2] > 2. such that g is C*° on R and |g(z)| < |z| for any z € R

Then g € L*(R) N CL(R). Therefore, the Fourier transform of g is § defined as
follows:

J(t) :z/eﬂ'tzg(m)dw,

R
and the Inverse Fourier Theorem yields
1
27
Let gr(x) := Tg(%) for any T > 0. Then |gr[1 = T|gl1 < +oo. Let hr(z,y) =

gr(x)gr(y). Then hp(z,y) = gr(x)gr(y). Let V and V' be two iid. random
variables with mean 0, independent of a; for any [ > 0 whose characteristic functions

g(x) = e g(t)dt.
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have the support included in the interval [—eg, gg] for ¢ defined in C1. Assume
that IE‘V|" < 4oo foranyn > 0. Let Z, = ap+V and Zk+l = agy;+ V' and denote

by ¢1(s), d2(t) and ¢(s,t) the characteristic functions of Zj, Zy oy and (Zx, Z;yy),
respectively.

We use the same notations introduced at the beginning of this section by setting
#1(s) = Ep[e?], pa(t) = Ep[e?@+!] and ¢(s,t) = E,[e?aFitar+t] We also denote
© the characteristic function of V, that yields

G1(s) = B =B EeV] = 1 (s)p(s),
oolt) = &wﬂw:EﬁmmeW1 b2(t)e (1), (5.15)

5(5,15) _ E[eisZk—i-itZ,;H] E[ezsak-l-ztakH]E[ st]E[ th] ¢(S t)‘/)( )@(t)'

Then we can see that (51 and (52 have the support in [—&g,e0]. We perturb aj and

a1 by adding the random variables V and V' with mean 0 and the support of their
characteristic functions are on [—eg, £9]. We explicit the quantity Cov,(a, ar+1):

COUI (ak, akH) = Em [ak, ak_H] — EwakEwakH. (5.16)
On the one hand, we can see that
Eylagar] = B [ZkZ1yy) = Eulhr(Zr; Zjg)] + BulZk Zisy) — Bulhr (Zy; Ziyy))

1 - ; e
= —Em//hT(s,t)e”Z’““tZk“dsdt—l—RO
(27)?

1 . T it
_ W//hT(S;t)Em |:eZSZk+ltZk+l:| dsdt+R0
T

= #//HT(s,t)g(s,t)dsdt—l—Ro,

(5.17)
where Ry = E.[ZxZ;, )| — Ex[hr(Zk; Z;,,)]. On the other hand, we obtain
Ecar =Bz Zy = Eog7(Zk) + ExZi — Evgr(Zi)
= % /gT(s)(El (s)ds + Ry, (5.18)
where Ry = E, Z — E,g7(Z;) and
Evari =EoZyy = Bogr(Ziy) + EoZiyy — Eogr(Ziyy)
— 5 [ar(dr + R (519)

where Ry = E,Z; ;, — E,g7(Z;,;). From (5.16), (5.17), (5.18) and (5.19), since
ho(s,t) = gr(s)gr(t), we obtain

Covz(ak,akﬂ) = 27‘( //hT S, t S t det+R0

_( /g (s) 1 (s )ds+R1> (%/gT(t)GFz(t)dHRz)

5,1) — 51(5)52@)} dsdt+ R (5.20)
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where R = Ry — R R — Rlzi /gT(t)q%(t)dt— Rgzi /gT(s)Jsl(s)ds. Since g €
™ ™

L1(R) and applying Lemma 5.2 for jo = k,j1 = k+ 1,jo = k + 2, kgap = [, M1 =
My = 1, we obtain

|Covy (ar, ar+1)|

< #//’fw(s,t)’ ‘g(s,t)—al(s)az(t)‘dsdw|R|

] 165, D9()2(t) — 61(5)62 (D)2 ()(0)| dsdt + |
< s 16(s,0) ~ r(s ( / risds) +1A
Is],[t]<eo
< CT?*:' +|R|. (5.21)
It remains to bound of |R|. On the one hand, we can see that
. |R1| = [Ex[Zk — 97 (Zi)ll = Ea |[Zk — 97 (Zi)|1 2, 5m)] < 277 " Ea|Zi]?,
1 [ o~
| [ = Bar@)] < Bl < oo + B VI < C
b |Ra| = ‘Ew [lec+l - QT(Zl/chl)H < 2T—1E1|Zl/c+l|27
1
o | [ = [BarZ)] < Biad + BV < C.
On the other hand, similarly for |Ry|, we obtain
|Ro| =

= E; || ZeZhs = b (Zs Zi4)| (Wgzagsm) + Lizuasr) Lz, om + Lz, sm) |
E, [|Zk22+z = hr(Zk, Z1.11))| (1[\zk|>T1 + 1HZ,;+J>T1)}

< 0By [ 2523411 2, 51| + 2Ea

Lz, 1> -
For any positive ¢, let g5 = 5“ , by Holder’s inequality, we obtain

1 1 1

E. |20 Zh 70 5m)] < (Bal Z02420) 5 (Eq| 21, [2H2) 77 Bo(124] > )

By Minkowski’s inequality,

(Em |Zk|2+26) 2125

(Em |Zl/€+l |2+26) 2125
By Markov’s inequality,

S (Ez|ak|2+26) PEST + (Em|V|2+26) 2+125 < C,

1 1
S (Ez|al+k|2+26) 2F25 + (E$|V/|2+26) 2+25 < C.

q
PollZi] > T) < 7 Bal 220 < oo,
1 C
Po(|Zka] > T) < Ty La | Zy | < Ta

Hence |Ro| < CT~! for T > 1 and thus |R| < CT~ L.
Thus, (5.21) becomes |Cov, (ax, ary)| < CT?k! + CT~1. By choosing T = k=
with a > 0, we obtain

|Covy (ar, api1)| < Ok 2% 4 Ck® < C' max{r' 72, k*}.
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Now we choose a > 0 such that [ — 2a > 0, for example, let a = ﬁ, we obtain

|Covg(ak, akyr)| < Cri.
5.3. Proof of Lemma 5.0.

Inequality (5.8) follows by setting &k = [ in (5.6) and (5.7). It suffices to prove (5.7).
Recall the definition in (5.15) and let

U(s) = v(Pd)g(s),
U(s,t;1) = v(PPTIP)p(s)e(t),
U(s,til) = w<stl> ()zﬁ(t), (5.22)
dols,1) = ¢( Ga(t),

siT = //hT s t)1/) s, t;1)dsdt.
27T
Then (5.20) implies

|Covy (ak, ak41) — sir| < '#//ﬁzp(s,t)[ao(s,t) — (s, t;1)|dsdt| + |R|.
We claim that
‘#//BT(S@[%O(S,Q —{/)V(s,t;l)]dsdt‘ < CrFIT?, (5.23)
which implies
|Covy(ag, apy1) — sir] < CkF1T? + 0T, (5.24)
which yields for any k,m > 1,
|Covg (an, apii) — Covg(am, amyr)| < Crmiik—tm=1bp2 4 op=1, (5.25)
By choosing T = x~1 min{k=L:m=1} "o obtain

m—1

|Covy(ag, ak11) — Covg(am, m+1)| < Cpmin{ 5=y (5.26)

Hence we can say that (Cov, (ak, axt1)); is a Cauchy sequence, thus it converges to
some limit, denoted by s;(z). When k& — 400, (5.24) becomes

[si(x) — si,7| < cT~ .

Now let T' = T'(¢) = £~*, we obtain |s;(z) — s, 7(¢)] < Ck*. Let £ — 400, we can see
that s; () — si(z). Since s; 7(s) does not depend on z, so is si(z), i.e. s;(x) = 5.
Now let m — 400 in (5.26), we obtain

|Covy (ag, art1) — si] < Ck'T.

Now we prove the claim (5.23). By definitions in (5.15) and (5.22), we obtain

Go(s,) = D5, 50| < [9ls.8) = (s, 6| + [91(5)da(0) — w()00)] . (5.27)
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On the one hand, we can see that

}(Z(Sv t) - ¢(Sa t; k)

|P¥ PP P (2)p(s)p(t) — v(PP T P L)g(s)p(t))|

= |[IP.P"'P1(z)+ R 'PIIP1(z) + R* 'P,R"'P1(z) — v(P.P ' P1)|

|RF1P1(z)v(P1) + RF PR P ()] < CrML (5.28)
On the other hand,
[61(9062() —v()et)| = |[81(5) =¥ ()]d(t) + ¥ (t) = V(1)
< [duls) —wls)| + [da(t) = v(0)

< ou(s)e(s) —d(s) + [d2(t)p(t) — v ()],
where as long as k > 2,

|61(s)p(s) — (s)] [P 1(z) + R¥ ' Py1(z)] By[e’™V] — v(P1)E, [eV])|

< |MP1(z) — v(P1)] + R* ' P1(x)|
= |RF'Pa(z)| < CrFL
Similarly, we obtain
[61()2() — w(s)p(t)] < CRF 1. (5.29)

Therefore, (5.27), (5.28) and (5.29) imply lgo(s,t)—zf/;(s,t;l) < Ck*=1 which

yields the assertion of the claim.
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