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Abstract. We consider a Boolean model Z driven by a Poisson particle process η
on a metric space Y. We study the random variable ρ(Z), where ρ is a (determinis-
tic) measure on Y. Due to the interaction of overlapping particles, the distribution
of ρ(Z) cannot be described explicitly. In this note we derive concentration in-
equalities for ρ(Z). To this end we first prove two concentration inequalities for
functions of a Poisson process on a general phase space.

1. Introduction

Let Y be a locally compact separable metric space and let F be the space of
closed subsets of Y equipped with a suitable σ-field. Let η be a Poisson process on
F with a σ-finite intensity measure Λ. If η({K}) > 0 for some K ∈ F , then we
write K ∈ η and say that K is a particle of η. The Boolean model associated with
η is the random set Z defined by

Z :=
⋃

K∈η

K.

Let ρ be a measure on Y satisfying
∫

F

ρ(K) Λ(dK) <∞.

Then ρ(Z) is a finite random variable even though Z might not be a random closed
set in the sense of Matheron (1975); Schneider and Weil (2008).

The random set Z is a fundamental model of stochastic geometry and continuum
percolation; see Chiu et al. (2013); Matheron (1975); Schneider and Weil (2008).
Explicit formulae for the distribution of geometric functionals of the Boolean model
are not available, even not in the simplest case of a stationary Boolean on Rd and
ρ = λd(W ∩ ·) being the restriction of Lebesgue measure to a convex and compact
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set W . The reason for the absence of such formulae is the interaction between
the particles from η caused by overlapping. One way out are moment formulae
and central limit theorems; see e.g. Hug et al. (2016) and Last and Penrose (2017,
Chapter 22). In this paper we will prove concentration inequalities of the form

P(F − E[F ] ≥ r) ≤ exp
(

inf
s≥0

∫ s

0

v(u) du− sr
)

, r > 0,

where the function v : [0,∞) → [0,∞] is determined by Λ and ρ. In the stationary
Euclidean case such inequalities were first proved in Heinrich (2005). Our bounds
improve these results. Moreover, we generalize the setting of Heinrich (2005) in
several ways. First, we study the Boolean model on a metric space Y and not only
on Rd. Second, we will allow that compact subsets of Y are intersected by infinitely
many Poisson particles. Hence, in general, the random set Z is not closed and
its boundary might have fractal properties. Roughly speaking, this means that we
can allow for a σ-finite distribution of the typical grain. Closely related models of
this type were introduced in Zähle (1984), a seminal paper on fractal percolation,
that was almost completely ignored in the later literature. Third, we consider
general measures and not only the volume. Finally, our method allows to treat also
Lipschitz functions of these measures.

Similarly as in Breton et al. (2007); Houdré (2002); Houdré et al. (2008); Houdré
and Privault (2002) our approach is based on a covariance identity for square in-
tegrable Poisson functionals. In fact we first prove a concentration inequality for
functions of a Poisson process on a general phase space. Using the log-Sobolev in-
equality, related concentration inequalities were derived in Bachmann and Peccati
(2016); Boucheron et al. (2003); Wu (2000).

2. Concentration of Poisson functionals

Let (X,X ) be a measurable space and let Λ be a σ-finite measure on X. Let η be
a Poisson process on X with intensity measure Λ, defined over a probability space
(Ω,A,P); see Last and Penrose (2017). In particular, η is a point process, that is a
measurable mapping from Ω to the space N = N(X) of all σ-finite measures with
values in N̄0 := {∞, 0, 1, 2, . . .}, where N is equipped with the smallest σ-field N
such that µ 7→ µ(B) is measurable for all B ∈ X . The distribution of η is denoted
by ΠΛ := P(η ∈ ·). Since we are only interested in distributional properties of η,
Corollary 6.5 in Last and Penrose (2017) shows that it is no restriction of generality
to assume that η is proper. This means that there exist random elements X1, X2, . . .

in X such that almost surely η =
∑η(X)

n=1 δXn
.

Let 0 ≤ t ≤ 1 and Y1, Y2, . . . be a sequence of independent random variables

with distribution (1 − t)δ0 + tδ1, independent of η. Define ηt :=
∑η(X)

n=1 YnδXn
as a

t-thinning of η. Then ηt and η−ηt are independent Poisson processes with intensity
measures tΛ and (1 − t)Λ, respectively. Given x ∈ X and a measurable function
f : N → R, the difference operator Dxf is defined by

Dxf(µ) := f(µ+ δx)− f(µ), µ ∈ N.

We call a random variable F a Poisson functional if there is a measurable f : N → R

such that F = f(η) almost surely. In this case we define

DxF := Dxf(η), x ∈ X,
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(which is almost surely, for Λ-almost all x, independent of the choice of an admissible
f) and further a measurable mappingDF : Ω×X → R, given by (ω, x) 7→ (DxF )(ω).

The starting point of our concentration inequalities is the following covariance
identity; see Theorem 20.2 in Last and Penrose (2017). (The conditional expecta-
tion appearing in (20.2) therein can be dropped.) Earlier versions of this result can
be found in Breton et al. (2007); Chen (1985); Houdré and Pérez-Abreu (1995);
Houdré and Privault (2002); Privault (2009).

Proposition 2.1. Let F = f(η) and G = g(η) be Poisson functionals such that
F,G ∈ L2(P) and DF,DG ∈ L2(P⊗ Λ). Then

Cov(F,G) = E

[

∫

X

DxF

∫ 1

0

∫

N

Dxg(ηt + µ)Π(1−t)Λ(dµ) dtΛ(dx)
]

. (2.1)

For F = f(η) ∈ L2(P) we define sF := sup
{

s ≥ 0 : esF ∈ L2(P), DesF ∈

L2(P⊗ Λ)
}

, where the case sF = ∞ is possible. Define

VF (s) :=

∫

X

(

esDxF − 1
)

∫ 1

0

∫

N

Dxf(ηt + µ)Π(1−t)Λ(dµ) dtΛ(dx), 0 ≤ s < sF .

The following bound for the cumulant generating function is the main result of
this section.

Theorem 2.2. Let F = f(η) ∈ L2(P) such that DF ∈ L2(P⊗Λ) and let s ∈ (0, sF ).
Then

logE
[

es(F−E[F ])
]

≤ inf
0<θ<1

θ

1− θ

(

∫ s

0

(1

s
logE

[

esVF (u)/θ
]

−
1

u
logE

[

euF
]

)

du+ sE[F ]
)

(2.2)

≤ inf
0<θ<1

θ

s(1− θ)

∫ s

0

logE
[

esVF (u)/θ
]

du. (2.3)

Proof : Similarly as in the proof of Corollary 6 in Houdré et al. (2008) we combine
the idea of the proof of Lemma 3.2 in Houdré and Privault (2002) (see also the proof
of Theorem 1 in Houdré, 2002) with Lemma 11 in Massart (2000). Let θ ∈ (0, 1)
and s ∈ (0, sF ) be such that E

[

esVF (u)/θ
]

<∞ and let u ∈ (0, s]. Since u < sF , we
can use the covariance identity (2.1) to obtain that

Cov
(

F, euF
)

= E

[

∫

X

∫ 1

0

(

Dxe
uF

)

∫

N

Dxf(ηt + µ)Π(1−t)Λ(dµ) dtΛ(dx)
]

= E
[

euF VF (u)
]

.

Now, Lemma 11 of Massart (2000) applied to VF (u)/θ and F yields

E
[

euF VF (u)
]

E
[

euF
] ≤

θE
[

euFF
]

E
[

euF
] +

θ

u
logE

[

euVF (u)/θ
]

−
θ

u
logE

[

euF
]

.

The combination of the last two displays leads to the inequality

E
[

F euF
]

E
[

euF
] −E[F ] =

Cov(F, euF )

E
[

euF
] ≤

θE
[

euF F
]

E
[

euF
] +

θ

u
logE

[

euVF (u)/θ
]

−
θ

u
logE

[

euF
]

and a simple rearrangement yields

E
[

FeuF
]

E
[

euF
] ≤

θ

u(1− θ)

(u

θ
E[F ] + logE

[

euVF (u)/θ
]

− logE
[

euF
]

)

.



154 F. Gieringer and G. Last

Setting h(t) := logE
[

etF
]

and gu(t) := logE
[

etVF (u)
]

, t ≥ 0, we have

h(s) = h(0) +

∫ s

0

h′(u) du =

∫ s

0

E
[

F euF
]

E
[

euF
] du

≤

∫ s

0

θ

u(1− θ)

(u

θ
E[F ] + gu(u/θ)− h(u)

)

du.

By gu(0) = 0 and the convexity of gu, we have gu(
u
s t) ≤

u
s gu(t) for t > 0, so that

h(s) ≤
s

1− θ
E[F ] +

θ

1− θ

∫ s

0

(1

s
gu(s/θ)−

1

u
h(u)

)

du.

From logE
[

es(F−E[F ])
]

= h(s) − sE[F ] and the preceding inequality, (2.2) follows.
Using Jensen’s inequality, this simplifies to (2.3). �

Theorem 2.2 and the well-known Chernoff bound (see Chernoff, 1952)

P(F − E[F ] ≥ r) ≤ inf
s>0

E[es(F−E[F ])]

esr
, r ≥ 0, (2.4)

(a direct consequence of Markov’s inequality) imply a concentration inequality. If
VF (·) has a deterministic bound, we can use inequality (2.3) in (2.4) to obtain the
following corollary. The (short and standard) proof is omitted.

Corollary 2.3. Let F = f(η) ∈ L2(P) such that DF ∈ L2(P ⊗ Λ). Assume that
v : [0, sF ) → R is a measurable function such that almost surely VF (s) ≤ v(s) for
each s ∈ [0, sF ). Then,

P(F − E[F ] ≥ r) ≤ exp
(

∫ s

0

v(u) du− sr
)

, s ∈ [0, sF ). (2.5)

Remark 2.4. Concentration inequalities for the lower tail can be derived analo-
gously. Under the obvious integrability assumptions, the bounds (2.2) and (2.3)
hold again upon replacing F by −F and VF by V−F . Thus, by the Chernoff bound
P(F − E[F ] ≤ −r) ≤ infs>0 E[e

−s(F−E[F ])]e−sr, r ≥ 0, a result analogous to Corol-
lary 2.3 gives a bound for the lower tail when V−F has a deterministic bound.
Hence, all results relying on Corollary 2.3 can be given for the lower tail as well.

Our next result was motivated by a question in Bachmann and Peccati (2016)
whether the Mecke formula (cf. Last and Penrose, 2017) can be combined with the
covariance identity to yield reasonable concentration inequalities.

Theorem 2.5. Let F = f(η) ∈ L2(P) be such that DF ∈ L2(P ⊗ Λ) and such
that DF ≥ 0 holds P ⊗ Λ-almost everywhere. Assume further that there exist a
measurable function g : X → [0,∞) and constants a > 0 and b ≥ 0 such that a.s.
the following holds:

∫ 1

0

∫

N

Dxf(ηt + µ)Π(1−t)Λ(dµ) dt ≤ g(x), Λ-a.e. x ∈ X, (2.6)

∫

Dxf(η − δx)g(x) η(dx) ≤ aF + b. (2.7)

Then

P(F − E[F ] ≥ r)

≤ exp

(

inf
0<s<a−1∧sF

(

−
bs

a
− sE[F ]−

(

E[F ]

a
+

b

a2

)

log(1− as)− sr

))

.
(2.8)



Concentration inequalities for measures of a Boolean model 155

In particular, if a−1 ≤ sF , we have

P(F − E[F ] ≥ r) ≤ exp

(

−
1

a

[

r +

(

E[F ] +
b

a

)

log

(

E[F ] + b/a

r + E[F ] + b/a

)])

. (2.9)

Proof : Let 0 < u ≤ s < a−1 ∧ sF . By the covariance identity (2.1) and assumption
(2.6), we have

Cov
(

F, euF
)

≤ E

[

∫

Dxe
uF g(x) Λ(dx)

]

.

Applying the Mecke formula and the elementary bound ez − 1 ≤ zez, z ∈ R, yields

Cov
(

F, euF
)

≤ E

[

∫

Dxe
uf(η−δx)g(x) η(dx)

]

= E

[

∫

euf(η−δx)
(

euDxf(η−δx) − 1
)

g(x) η(dx)
]

≤ uE
[

∫

euf(η)Dxf(η − δx)g(x) η(dx)
]

.

Assumption (2.7) yields that Cov
(

F, euF
)

≤ uaE
[

F euF
]

+ ubE
[

euF
]

. It follows
that

E[F euF ]

E[euF ]
≤

E[F ] + ub

1− au
.

Setting h(u) := logE[euF ], we get h′(u) ≤ (E[F ] + ub)/(1 − au) and hence, by
integration and h(0) = 0, the bound logE[esF ] ≤ −bs/a− (E[F ]/a+ b/a2) log(1 −
as). Using the Chernoff bound (2.4), we obtain (2.8). Inequality (2.9) follows by
optimising with s = r/(ar + aE[F ] + b). This choice of s is at most a−1, since
F + b/a ≥ 0 a.s. by assumption (2.7), and the case E[F ] + b/a = 0 can be ruled
out as this implies DF ≡ 0 and therefore a trivial concentration. �

3. General Boolean models

In this section we shall consider a Poisson process on a suitable class F ′ of closed
subsets of a locally compact separable Hausdorff space Y. Let F ≡ F(Y) denote
the class of all closed subsets of Y equipped with the Fell topology; see Matheron
(1975); Schneider and Weil (2008). The associated Borel σ-field is denoted by
B(F). Let ρ be a measure on (Y,Y), where Y denotes the Borel σ-field of Y. Let
F ′ ∈ B(F) be such that ρ is finite on F ′ and K 7→ ρ(K) is measurable on F ′. We
assume that F ′ is closed under finite unions and equip F ′ with the trace σ-field
B(F ′) := {B ∩ F ′ : B ∈ B(F)}.

Let η be a Poisson process on F ′ whose intensity measure Λ satisfies
∫

F ′

ρ(K) Λ(dK) <∞. (3.1)

Let Bn ∈ B(F ′), n ∈ N, be such that Bn ↑ F ′ and Λ(Bn) < ∞ for all n ∈ N. Let
Nl denote the measurable set of all µ ∈ N ≡ N(F ′) satisfying µ(Bn) <∞ for each
n ∈ N. Note that P(η ∈ Nl) = ΠΛ(Nl) = 1. Define

Z(µ) :=
⋃

µ({K})>0

K, µ ∈ Nl, (3.2)
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and Z(µ) := ∅ for µ ∈ N \ Nl. The random set Z := Z(η) is called the Boolean
model governed by η. Now consider the function f : N → [0,∞) given by

f(µ) := 1{ρ(Z(µ)) <∞}ρ(Z(µ)), µ ∈ N,

with the convention 0 ·∞ := 0. Our goal is to obtain a concentration inequality for
F := f(η).

Campbell’s formula (Proposition 2.7 in Last and Penrose, 2017) and assumption
(3.1) show that

∫

ρ dη <∞ a.s., so that the sub-additivity of ρ shows that ρ(Z) <∞
a.s. In particular P(F = ρ(Z)) = 1. However, we need to check that ρ(Z) is a
random variable. This follows from the assumption on ρ and the next lemma.

Lemma 3.1. The mapping (x, µ) 7→ 1{x ∈ Z(µ)} is measurable on Y ×N. Fur-
thermore, for each K ∈ Y with ρ(K) < ∞, the mapping µ 7→ ρ(Z(µ) ∩ K) is
measurable on N. Finally µ 7→ ρ(Z(µ)) is measurable on N.

Proof : By Theorem 1-2-1 in Matheron (1975), F is a compact and separable Haus-
dorff space and hence F ′ (equipped with the trace σ-field) is a Borel space; see
Kallenberg (2002, Theorem A1.1). By Last and Penrose (2017, Proposition 6.2)
(see also the proof of Last and Penrose, 2017, Proposition 6.3), there exist measur-
able functions πn : N → F ′ such that

µ =

µ(F ′)
∑

n=1

δπn(µ), µ ∈ Nl.

This shows that Z(µ) = ∪
µ(F ′)
n=1 πn(µ) for each µ ∈ Nl. By Matheron (1975, Theorem

2-5-1), the mapping (K,x) 7→ 1{x ∈ K} is measurable on F × Y. Since

1{x /∈ Z(µ)} =

µ(F ′)
∏

n=1

1{x /∈ πn(µ)}, µ ∈ Nl,

this proves the first assertion. The second assertion follows from Fubini’s theorem.
By monotone convergence, the third assertion follows, once we have shown that

µ 7→ ρ

(min{µ(F ′),n}
⋃

m=1

πm(µ)

)

is measurable for each n ∈ N. By Matheron (1975, Corollary 1-2-1) the mapping
(L,L′) 7→ L ∪ L′ is measurable on F × F and hence also on F ′ × F ′. Since F ′

is closed under unions, it follows that µ 7→
⋃min{µ(F ′),n}

m=1 πm(µ) is a measurable
mapping from Nl to F ′. Since L 7→ ρ(L) is measurable on F ′, the final assertion
now follows. �

Let t ∈ [0, 1]. We now compute the probability that a point y ∈ Y lies inside the
Boolean model with intensity measure tΛ. We use the notation

F ′
y := {K ∈ F ′ : y ∈ K}, y ∈ Y. (3.3)

Since (K, y) 7→ 1{y ∈ K} is B(F) ⊗ Y-measurable, this is a measurable set. The
first definition in (3.2) and the defining properties of a Poisson process yield

∫

1{y ∈ Z(µ)}ΠtΛ(dµ) = 1− P(ηt(F
′
y) = 0) = 1− exp

(

− tΛ
(

F ′
y

))

. (3.4)
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Lemma 3.2. We have that

DKf(µ) = ρ(K)− ρ(Z(µ) ∩K), ΠΛ ⊗ Λ-a.e. (µ,K).

Proof : For each µ ∈ Nl and each K ∈ F ′ we have that

DKf(µ) = ρ(Z(µ+ δK))− ρ(Z(µ)) = ρ(Z(µ) ∪K))− ρ(Z(µ)).

Since ΠΛ({µ ∈ Nl : ρ(Z(µ)) < ∞}) = 1 we can use the additivity of ρ to conclude
the proof. �

Lemma 3.3. Let t ∈ [0, 1] and K ∈ F ′. Then P-a.s.
∫

DKf(ηt + µ)Π(1−t)Λ(dµ) ≤

∫

1{y ∈ K} exp
(

− (1 − t)Λ
(

F ′
y

))

ρ(dy).

Proof : By Lemma 3.2 and the superposition theorem for Poisson processes we have
a.s.

DKf(ηt + µ) ≤ ρ(K)− ρ(Z(µ) ∩K), Π(1−t)Λ ⊗ Λ-a.e. (µ,K).

Furthermore,
∫

ρ(Z(µ) ∩K)Π(1−t)Λ(dµ) =

∫∫

1{y ∈ Z(µ)}1{y ∈ K}Π(1−t)Λ(dµ) ρ(dy)

= ρ(K)−

∫

1{y ∈ K} exp
(

− (1 − t)Λ
(

F ′
y

))

ρ(dy),

where we have used (3.4). The assertion now follows. �

In what follows we shall use the full measure properties of ρ. Define

ρ∗(K) :=

∫

K

τ
(

Λ(F ′
y)
)

ρ(dy), K ∈ F ′,

where τ : [0,∞] → [0, 1] is given by τ(z) := (1 − e−z)/z for z ∈ (0,∞), τ(0) :=
limz↓0 τ(z) = 1 and τ(∞) := limz→∞ τ(z) = 0. We define a measure ν∗ on [0,∞)
by

ν∗ :=

∫

F ′

1{ρ(K) ∈ ·}
ρ∗(K)

ρ(K)
Λ(dK), (3.5)

with the convention 0/0 := 0 and another measure ν on [0,∞) by

ν :=

∫

F ′

1{ρ(K) > 0, ρ(K) ∈ ·}Λ(dK).

Naturally, our concentration inequalities require the constant

s0 := sup
{

s > 0 :

∫

F ′

1{ρ(K) > 1}esρ(K)Λ(dK) <∞
}

(3.6)

to be positive.
Define a function φ : [0,∞) → R, φ(z) := ez − 1− z.

Theorem 3.4. Assume that (3.1) holds and that s0 > 0, where s0 is given by (3.6).
Then

P(ρ(Z)− E[ρ(Z)] ≥ r) ≤ exp
(

inf
0<s<s0

(

∫

φ(su) ν∗(du)− sr
))

, r > 0. (3.7)
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Proof : We write η =
∑η(F ′)

k=1 δZk
. Let n ∈ N. Then ηn :=

∑η(F ′)
k=1 1{ρ(Zk) ≤ n}δZk

is a Poisson process with intensity measure Λn(dK) := 1{ρ(K) ≤ n}Λ(dK). Define
Zn := Z(ηn) and Fn := ρ(Zn). We wish to apply Corollary 2.3 to the pair (ηn, Fn).
We start by checking the integrability properties of the Poisson functional Fn. First,
we obtain from Lemma 3.2 that

E

[

∫

(DKFn)
2 Λn(dK)

]

≤

∫

1{u ≤ n}u2 ν(du) ≤ n

∫

u ν(du)

which is finite by (3.1). Since E[Fn] < ∞ the Poincaré inequality (see Last and
Penrose, 2017, Corollary 18.8) shows that E[F 2

n ] < ∞. Secondly, we have for each
s ≥ 0 that

E[e2sFn ] ≤ E

[

exp
[

2s

∫

ρ(K) ηn(dK)
]]

= exp
[

∫

(

e2sρ(K) − 1
)

Λn(dK)
]

,

where we have used a well-known formula for Poisson processes (see e.g. Last and
Penrose, 2017). The integral in the exponent is dominated by a multiple (depending
on n and s) of

∫

1{u ≤ n}u ν(du) and hence finite. Thirdly, we have

E

[

∫

(

DKe
sFn

)2
Λn(dK)

]

=

∫

E
[(

esFn

(

esDKFn − 1
))2]

Λn(dK)

≤ E
[

e2sFn

]

∫

(

esρ(K) − 1
)2

Λn(dK).

This is finite, since
∫

1{u ≤ n}
(

esu−1
)2
ν(du) is bounded by a multiple of

∫

u ν(du).
By Lemma 3.2 and Lemma 3.3 (applied with (ηn, Fn) in place of (η, F )),

VFn
(s) ≤

∫

F ′

(

esρ(K) − 1
)

∫

Y

1{y ∈ K}

∫ 1

0

exp
(

− (1− t)Λn

(

F ′
y

))

dt ρ(dy) Λn(dK)

=

∫

F ′

(

esρ(K) − 1
)

∫

K

τ
(

Λn

(

F ′
y

))

ρ(dy) Λn(dK) =: hn(s). (3.8)

Let ρ∗n(K) :=
∫

K τ
(

Λn

(

F ′
y

))

ρ(dy). Then we have
∫ s

0

hn(u) du =

∫

F ′

1{ρ(K) > 0}ρ∗n(K)

∫ s

0

(

euρ(K) − 1
)

duΛn(dK)

=

∫

1{ρ(K) > 0}ρ∗n(K)
(esρ(K) − 1

ρ(K)
− s

)

Λn(dK)

=

∫

ρ∗n(K)

ρ(K)
φ(sρ(K)) Λn(dK).

For each r > 0 we now obtain from (2.5) that

P(Fn − E[Fn] ≥ r) ≤ exp
(

∫

1{ρ(K) ≤ n}
ρ∗n(K)

ρ(K)
φ(sρ(K)) Λ(dK)− sr

)

. (3.9)

As n→ ∞ we have Zn ↑ Z and hence Fn ↑ ρ(Z). Monotone convergence implies
E[Fn] → E[ρ(Z)]. We now assume that s ∈ (0, s0) and assert that

lim
n→∞

∫

1{ρ(K) ≤ n}
ρ∗n(K)

ρ(K)
φ(sρ(K)) Λ(dK) =

∫

ρ∗(K)

ρ(K)
φ(sρ(K)) Λ(dK). (3.10)

Indeed, we have for each y ∈ Y that limn→∞ Λn(F ′
y) = Λ(F ′

y), and since τ(·) ≤ 1
we obtain for each K ∈ F ′ from dominated convergence that limn→∞ ρ∗n(K) =



Concentration inequalities for measures of a Boolean model 159

ρ∗(K). Hence (3.10) follows from dominated convergence once we have shown that
∫

φ(sρ(K)) Λ(dK) is finite. By assumption (3.6) it is sufficient to show that
∫

1{u ≤ 1}φ(su) ν(du) <∞. (3.11)

For u ∈ [0, 1] the definition of φ implies that φ(su) ≤ uφ(s) and (3.11) follows. Let
ε > 0 such that r − ε > 0. Fatou’s Lemma shows that

P(ρ(Z)− E[ρ(Z)] > r − ε) ≤ lim inf
n→∞

P(Fn − E[Fn] > r − ε)

≤ exp
(

∫

ρ∗(K)

ρ(K)
φ(sρ(K)) Λ(dK)− s(r − ε)

)

,

where we have used (3.10) and (3.9) to obtain the second inequality. Letting ε→ 0,
we obtain the asserted concentration inequality (3.7). �

Remark 3.5. Theorem 3.4 can be extended to a Poisson functional G := T (ρ(Z)),
where T : [0,∞) → R is Lipschitz with Lipschitz constant cT ≥ 0. We then have

P(G− E[G] ≥ r) ≤ exp
(

inf
0<s<s0/cT

(

∫

φ(cT su) ν
∗(du)− sr

))

, r > 0.

Define a function h : [0,∞) → [0,∞] by

h(s) :=

∫ ∞

0

u(esu − 1) ν∗(du), s ≥ 0. (3.12)

If ν∗ = 0, then h ≡ 0. Otherwise h is finite and strictly increasing on [0, s0). Let
h−1 : [0,∞) → [0,∞] denote the generalized inverse of h, defined by

h−1(u) := inf{s ≥ 0 : h(s) ≥ u}, u ≥ 0,

where inf ∅ := ∞. If ν∗ = 0, then h−1 ≡ ∞ on (0,∞). Otherwise h−1 is strictly
increasing and continuous on [0, h(s0−)), where h(s0−) := lims↑s0 h(s).

Theorem 3.6. Under the assumptions of Theorem 3.4,

P(ρ(Z)− E[ρ(Z)] ≥ r) ≤ exp
(

−

∫ r

0

h−1(u) du
)

, r ∈ (0, h(s0−)).

Proof : If
∫

ρ(K) Λ(dK) = 0, then ρ(Z) ≡ 0 a.s. and the result is trivial. Hence we
can assume that

∫

ρ(K) Λ(dK) > 0. We next show that then ν∗(0,∞) > 0. By
definition of ν∗ it is sufficient to show for each K ∈ F ′ that ρ∗(K) > 0 whenever
ρ(K) > 0. Since τ > 0 on [0,∞), it is sufficient to prove that Λ(F ′

y) <∞ for ρ-a.e.
y ∈ K. But this follows from

∫

K

Λ(F ′
y) ρ(dy) =

∫∫

1{y ∈ L}1{y ∈ K}Λ(dL) ρ(dy) =

∫

ρ(K ∩ L) Λ(dL),

which is finite by (3.1).
Since ν∗(0,∞) > 0 we obtain for each s ∈ (0, s0) that

d

ds

∫

φ(su) ν∗(du) = h(s) ∈ (0,∞),
d

ds
h(s) =

∫

u2esu ν∗(du) ∈ (0,∞).

In view of Theorem 3.4 the proof can now be finished as that of Houdré (2002,
Theorem 1). �
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Remark 3.7. Proposition 3.2 in Wu (2000) implies (3.7) with ν instead of ν∗. Since
ν∗ ≤ ν, our result improves this inequality. The larger y 7→ Λ(F ′

y) the larger

the improvement. Recall from (3.4) that P(y ∈ Z) = 1 − exp
(

− Λ
(

F ′
y

))

is the
probability that the point y ∈ Y is covered by Z. Our concentration inequality
takes into account these covering probabilities and hence the overlapping of distinct
grains.

In the sequel we use the (decreasing) function ψ : [0,∞) → (−∞,∞], defined by

ψ(z) := 1−
1

z
(1 + z) log(1 + z), z > 0, (3.13)

and ψ(0) := ∞. We also define

mi :=

∫ ∞

0

ui ν∗(du), i ∈ {0, 1, 2}.

The proof of the following corollary of Theorem 3.6 is similiar to that of Houdré
(2002, Corollary 1).

Corollary 3.8. Assume that (3.1) holds and that ν∗ 6= 0. Assume also that there
is some a > 0 such that ρ(K) ≤ a for Λ-a.e. K ∈ F ′. Then we have for each
i ∈ {0, 1, 2} that

P(ρ(Z)− E[ρ(Z)] ≥ r) ≤ exp

[

r

a
ψ
(ai−1r

mi

)

]

, r > 0.

Proof : We first note that h(s0−) = ∞. This follows by ν∗ 6= 0 once we have shown
that s0 = ∞. To this end, let s > 0. Then, we have

∫

1{ρ(K) > 1}esρ(K)Λ(dK) ≤
esa

∫

ρ(K) Λ(dK) which is finite by (3.1).
Let i ∈ {0, 1, 2}. In the case i = 0 we can assume that m0 = ν∗([0,∞)) > 0.

(Otherwise there is nothing to prove.) It is easy to see that h(s) ≤ mia
1−i(esa− 1)

for all s > 0; cf. the proof of Houdré (2002, Corollary 1) for the case i = 2. Therefore

h−1(r) ≥
1

a
log

(

1 +
rai−1

mi

)

, r > 0.

Since

−

∫ r

0

log(1 + zu) du = r ψ(zr), r > 0,

for each z > 0, we deduce the assertion from Theorem 3.6. �

Example 3.9. In this example we specialize the setting of this section to the case
Y = Rd for some fixed integer d ∈ N. We set F := F(Rd). We fix r ∈ [0, d] and
let λr denote the r-dimensional Hausdorff measure on Rd. Let Fr denote the set
of all C ∈ F such that λr(C ∩ ·) is a locally finite measure on Rd. By Zähle (1982,
Corollary 2.1.5), this is a measurable set, that is Fr ∈ B(F). Let W ⊂ Rd be a
compact set and define ρ := λr(W ∩ ·). By Zähle (1982, Theorem 2.1.3), we have
that K 7→ ρ(K) is measurable on Fr, so that the pair (Fr, ρ) satisfies the general
assumptions of this section (with F ′ = Fr).
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4. Stationary Boolean models

In this section we consider the setting of Example 3.9 in the case r = d. We let
η be a Poisson process on the space Fd of all closed sets K ⊂ Rd with λd(K) <∞.
We assume here that the intensity measure Λ of η is of the translation invariant
form

Λ =

∫

Fd

∫

Rd

1{K + x ∈ ·} dxQ(dK), (4.1)

where K + x := {y + x : y ∈ K} and Q is a σ-finite measure on Fd satisfying

0 < γ1 :=

∫

λd(K)Q(dK) <∞. (4.2)

Example 4.1. Let Q0 be a probability measure on Fd satisfying
∫

λd(K)Q0(dK) <

∞ and let ρ0 be a measure on (0,∞) such that
∫∞

0 rd ρ0(dr) <∞. Assume that

Q =

∫∫

1{rK ∈ ·} ρ0(dr)Q0(dK).

Then
∫

λd(K)Q(dK) =

∫∫

λd(rK) ρ0(dr)Q0(dK)

=

∫

rdρ0(dr)

∫

λd(K)Q0(dK) <∞.

As in Section 3 we define Z := Z(η), where Z(µ), µ ∈ N, is given by (3.2) and the
σ-finiteness of Λ will be checked below. We fix a closed set W ⊂ Rd with positive
finite volume and derive concentration inequalities for the Poisson functional

F := λd(Z ∩W ).

We do this by applying the results of the previous section in the case ρ := λd(W ∩·).
Let p := 1 − e−γ1 . By (3.4), we have p = P(0 ∈ Z). Moreover, Fubini’s theorem
and (4.3) below imply that E[F ] = pλd(W ), so that p is the volume fraction of Z;
see also Last and Penrose (2017, (17.8)).

Theorem 4.2. Assume that (4.2) holds. Then the Poisson functional F = λd(Z ∩
W ) satisfies

P(F−E[F ] ≥ r) ≤ exp
(

inf
s>0

( p

γ1

∫∫

φ(sλd((K+x)∩W )) dxQ(dK)−sr
))

, r > 0.

Proof : We wish to apply Theorem 3.4 in the case ρ = λd(W ∩ ·).
Set Q′(dK) := 1{λd(K) > 0}Q(dK) and Λ′(dK) := 1{λd(K) > 0}Λ(dK) and

let η′ be a Poisson process with intensity measure Λ′. Then λd(Z(η
′)∩W ) has the

same distribution as λd(Z(η)∩W ). Hence we can assume without loss of generality
that λd(K) > 0 for Q-a.e. K. In particular Λ is then σ-finite.

For each Borel set K ⊂ Rd we have that
∫

λd(W ∩ (K + x)) dx =

∫∫

1{y ∈ K + x}1{y ∈ W} dy dx

=

∫∫

1{y ∈ K}1{y + x ∈W} dy dx.
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By Fubini’s theorem and (4.1) we obtain that
∫

λd(W ∩K) Λ(dK) = λd(W )

∫

λd(K)Q(dK),

so that (4.2) implies assumption (3.1).
In what follows we often use that

∫

λd((K + x) ∩ L) dx = λd(K)λd(L) for all

Borel sets K,L ⊂ Rd, a direct consequence of Fubini’s theorem. Let s > 0. Then
∫∫

1{λd((K + x) ∩W ) > 1}esλd((K+x)∩W ) dxQ(dK)

≤ esλd(W )

∫∫

λd((K + x) ∩W ) dxQ(dK)

= esλd(W )λd(W )

∫

λd(K)Q(dK) <∞.

Therefore we have s0 = ∞, where s0 is given by (3.6).
As at (3.3) we define Fd

x := {K ∈ Fd : x ∈ K} for x ∈ Rd. From (4.1) we obtain
that

Λ
(

Fd
x

)

= Λ
(

Fd
0

)

=

∫

λd(K)Q(dK) = γ1. (4.3)

Hence τ
(

Λ
(

Fd
x

))

= p/γ1. Therefore the measure ν∗ defined by (3.5) is given by

ν∗ =
p

γ1

∫

1{λd(K ∩W ) ∈ ·}Λ(dK). (4.4)

Hence Theorem 3.4 implies the assertion. �

The concentration inequality of Theorem 4.2 is rather complicated. In the sequel
we shall derive more explicit versions. We use the function ψ defined by (3.13) and
the constant

γ2 :=

∫

λd(K)2 Q(dK).

Corollary 4.3. Assume that (4.2) holds and that a > 0 is such that λd(K∩W ) ≤ a
for Λ-a.e. K ∈ Fd. Then F = λd(Z ∩W ) satisfies

P(F − E[F ] ≥ r) ≤ exp

[

r

a
ψ

(

r

pλd(W )

)]

, r > 0, (4.5)

P(F − E[F ] ≥ r) ≤ exp

[

r

a
ψ

(

aγ1r

pλd(W )γ2

)]

, r > 0. (4.6)

Proof : We can apply Corollary 3.8. Using (4.4) and (4.1) we obtain that

m1 =
p

γ1

∫∫

λd((K + x) ∩W ) dxQ(dK) = pλd(W ).

Inequality (4.5) now follows from the case i = 1 of Corollary 3.8.
Similarly we obtain that

m2 =
p

γ1

∫∫

λd((K + x) ∩W )2 dxQ(dK)

≤
p

γ1

∫

λd(K)

∫

λd((K + x) ∩W ) dxQ(dK) =
p

γ1
λd(W )

∫

λd(K)2 Q(dK).

Since ψ is decreasing, the inequality (4.6) follows from the case i = 2 of Corol-
lary 3.8. �
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Remark 4.4. Suppose there exists a > 0 such that λd(K) ≤ a for Q-a.e. K ∈ Fd.
Then (4.6) is better than (4.5). Indeed, since ψ is decreasing the right-hand side of
(4.6) is smaller than that of (4.5) iff aγ1/γ2 ≥ 1. If there exist γ > 0 and K0 ∈ Fd

with λd(K0) > 0 such that Q = γδK0
, then both inequalities yield

P(F − E[F ] ≥ r) ≤ exp

[

r

λd(K0)
ψ

(

r

pλd(W )

)]

, r > 0. (4.7)

Remark 4.5. The bound (4.7) is quite sharp. Indeed, if X is a Poisson distributed
random variable then P(X − E[X ] ≥ r) ∼ (2π(E[X ] + r))−1/2 exp

(

r · ψ(r/E[X ])
)

,
as r → ∞, see p. 1225 in Houdré (2002).

Remark 4.6. Choosing a = λd(W ) in (4.5) yields

P(F − E[F ] ≥ r) ≤ exp

[

r

λd(W )
ψ

(

r

pλd(W )

)]

, r > 0. (4.8)

The advantage of this result is that it holds under the only assumption (4.2). The
disadvantage is the occurrence of λd(W )−1 as a factor of r outside the logarithmic
term. This is in contrast with the situation in Remark 4.4.

If λd(·) is not essentially bounded w.r.t. Q, we need an exponential moment

assumption on Q to improve (4.8) at least partially. Define a function h̃ : [0,∞) →
[0,∞] by

h̃(s) :=

∫

λd(K)
(

esλd(K) − 1)Q(dK), s ≥ 0. (4.9)

Corollary 4.7. Assume that (4.2) holds. Then the Poisson functional F = λd(Z∩
W ) satisfies

P(F − E[F ] ≥ r) ≤ exp

(

−

∫ r

0

h̃−1

(

γ1u

pλd(W )

)

du

)

, r > 0.

Proof : We wish to apply Theorem 3.6. Recall the definition (3.12) of the function
h. By (4.4) we have for each s ≥ 0 that

h(s) =
p

γ1

∫∫

λd((K + x) ∩W )
(

esλd((K+x)∩W ) − 1
)

dxQ(dK)

≤
p

γ1

∫∫

λd((K + x) ∩W )
(

esλd(K) − 1
)

dxQ(dK) =
pλd(W )

γ1
h̃(s).

Hence we have for each r > 0 that h−1(r) ≥ h̃−1(γ1r/(pλd(W ))), so that The-
orem 3.6 and the identity s0 = ∞ imply the assertion once we have shown that
lims→∞ h(s) = ∞. But this follows from ν∗((0,∞)) > 0 (a consequence of γ1 >
0). �

We illustrate Corollary 4.7 with two examples. Let c := γ1/(pλd(W )).

Example 4.8. Assume that Q({K : λd(K) ∈ du}) ≤ αu−1e−βu du, where α, β > 0.
On the right-hand side we have here the Lévy measure of the gamma distribution
with shape parameter α > 0 and rate parameter β > 0; see e.g. Last and Penrose
(2017, Example 15.6). For instance, this assumption is satisfied with α = 1/d if

Q ≤
∫

1{rK0 ∈ ·} r−1e−βrd dr, where K0 ∈ Fd has λd(K0) = 1. Let s ∈ (0, β). A

simple calculation shows that h̃(s) ≤ α/(β − s)− α/β, so that

h̃−1(r) ≥ β −
αβ

βr + α
, r > 0.
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It follows that
∫ r

0

h̃−1(u) du ≥ βr − α log

(

1 +
βr

α

)

, r > 0.

Therefore we obtain from Corollary 4.7

P(F − E[F ] ≥ r) ≤ exp

(

− βr +
α

c
log

(

1 +
βcr

α

))

.

Example 4.9. Assume that Q({K : λd(K) ∈ du}) ≤ βα/Γ(α)uα−1e−βu du, where
α, β > 0. On the right-hand side we have here the gamma distribution with shape
parameter α and scale parameter β. A similar calculation as in Example 4.8, yields
h̃(s) ≤ αβα/(β − s)α+1 − α/β for s ∈ (0, β), so that

h̃−1(r) ≥ β −

(

αβα+1

βr + α

)1/(α+1)

, r > 0,

and finally, by Corollary 4.7,

P(F − E[F ] ≥ r) ≤ exp

(

− βr +
α+ 1

c

((

α+ βcr

α

)α/(α+1)

− 1

))

. (4.10)

Remark 4.10. Examples 4.8 and 4.9 are geometrically quite different. Assume in
the second example that Q({K : λd(K) ∈ du}) = βα/Γ(α)uα−1e−βu du. Then each
bounded set contains a finite number of grain centers (at least under a weak reg-
ularity assumption on Q). Ignoring overlapping, each grain contributes a gamma
distributed volume. Assume in the first example that Q({K : λd(K) ∈ du}) =
u−1e−βu du. Then each measurable set B ⊂ Rd with 0 < λd(B) < ∞ contains
infinitely many grain centers. However, the sum of the volumes of balls centered
in B follows a gamma distribution with scale parameter β and shape parameter
λd(B); see Last and Penrose (2017, Example 15.6). Roughly speaking, Z ∩ W
might be interpreted as a finite union of random sets whose volumes are approx-
imately gamma distributed. This might explain that the leading terms in both
concentration inequalities are the same.

Our bounds of Corollary 4.3 improve significantly Theorem 3 in Heinrich (2005)
which deals with the stationary Boolean model in Rd and which assumes Q to be a
probability measure. The tail bound in Heinrich (2005) is only of order exp

(

−O(r)
)

and therefore not able to reproduce the tail behaviour of the Poisson distribution in
the special setting of Remark 4.4. Further, the constants we use arise naturally from
the model and are much less involved than the ones in Heinrich (2005). Moreover,
we do not require that the moment generating function of λd(Z0) exists but only
make the milder moment assumptions γ1 <∞, respectively γ2 <∞.

We note that the general concentration inequalities derived in Bachmann and
Peccati (2016) can be applied to some configurations of the stationary Boolean
model in Rd, too. At least in the case of bounded grains, this application already
improves the corresponding result of Heinrich (2005). However, the functionals con-
sidered in Bachmann and Peccati (2016) appear unable to incorporate the volume
fraction. To be more precise, in the setting of Corollary 4.3, the bound (4.6) is
sharper than the inequality

P(F − E[F ] ≥ r) ≤ exp

(

r

a
· ψ

(

ar

γ2λd(W )

))

, r ≥ 0,
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obtained from Corollary 3.3 in Bachmann and Peccati (2016) with the bound
∫

(DKF )
2 Λ(dK) ≤

∫∫

λd(K + x) ∩W )2 dxQ(dK) ≤ λd(W )γ2.

Finally, we apply Theorem 2.5.

Proposition 4.11. Assume that (4.2) holds. Then

P[F −E[F ] ≥ r] ≤ exp

(

−
γ1

pλd(W )

(

r+E[F ] log

(

E[F ]

r + E[F ]

)))

, r > 0. (4.11)

Proof : By Lemma 3.3 and equation (4.3), we have, for Λ-a.e. K ∈ Fd,
∫ 1

0

∫

N

DKf(ηt + µ)Π(1−t)Λ(dµ) dt ≤ ρ(K ∩W )
p

γ1
≤ λd(W )

p

γ1
.

Using the properness of η, we also get the bound
∫

DKf(η − δK) η(dK) =
∑

K∈η

DKf(η − δK) =
∑

K∈η

λd

(

(K ∩W ) \
⋃

L∈η−δK

L
)

≤ F.

The assertion follows from Theorem 2.5 by truncation as in the proof of Theo-
rem 3.4. �

We note that
∫

DKf(η− δK) η(dK) equals the volume of the set of points which
are covered by exactly one grain. Thus, as the Mecke formula allows us to employ
the functional

∫

DKf(η − δK) η(dK), we are equipped with a finer tool to respect
the interplay between the grains of Z.

Example 4.12. Let Q({K : λd(K) ∈ du}) = βe−βu du, that is the volume of the
typical grain is exponentially distributed. The larger β (and therefore the smaller
p) the better is the specific bound (4.10) in comparison to the general bound (4.11).
If β > 0.14, i.e. p < 0.9992, then (4.10) outplays (4.11) uniformly. If β < 0.13,
it is the other way round. Between, (4.11) might be better only for small values
of r. Comparing the more general bound (4.8) with (4.11), we observe the same
behaviour. The latter wins when p is large.
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