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Abstract. In the G-framework, we establish existence of an optimal stochastic
relaxed control for stochastic differential equations driven by a G-Brownian motion.

1. Introduction

The purpose of this paper is to study optimal control of systems subject to
model uncertainty or ambiguity due to incomplete or inaccurate information, or
vague concepts and principles. Climate or weather and financial markets are typical
fields where information is subject to uncertainty. For example in optimal portfolio
choice problems in finance where the volatility and the risk premium processes are
unknown and hard to accurately estimate from reliable data, we need to consider a
family of different models or scenarios instead of one fixed asset process based on a
given prior or estimate. To cope with any skeptical attitude towards a given model
and quantify ambiguity aversion, the decision maker needs to perform a robust
portfolio optimization that survives all given scenarios.

Aspects of model ambiguity such as volatility uncertainty have been studied by
Peng (2007, 2008, 2010) who introduced an abstract sublinear or G-expectation
space with a process called G-Brownian motion, and by Denis and Martini (2006)
who suggested a structure based on quasi-sure analysis from abstract potential
theory to construct a similar structure using a tight family P of possibly mutually
singular probability measures. Although these two approaches are substantially
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different, Denis et al. (2011) show that they are very closely related by providing a

dual representation of the sublinear expectation Ê associated with the G-Brownian
motion as the supremum of ordinary expectations over P .

Within the G-Brownian motion framework as presented in Peng (2007, 2010),
this paper deals with optimal control of systems governed by stochastic differential
equation driven by a G-Brownian motion. More precisely, we ask if there exists a
stochastic control û ∈ U with values in an action set U such that

J(û) = inf
u∈U

J(u), (1.1)

with

J(u) = sup
lP∈P

J lP(u) := sup
lP∈P

ElP
[∫ T

0
f(t, xu(t), u(t))dt+ h(xu(T ))

]
(1.2)

where xu is a G-sde given by (4.3), below. This problem has been studied in Hu
et al. (2014); Biagini et al. (2014) and Matoussi et al. (2015), where the authors
suggest necessary and sufficient optimality conditions in terms of respectively a
Pontryagin’s type maximum principle and dynamic programming principle. The
objective of this work is to investigate the problem of existence of an optimal control.
Knowing that in the absence of convexity assumptions the control problem (1.1)
may not have a solution simply because U is too small to contain a minimizer, we
would like to find a set R of controls that ’contains’ U and has a richer topological
structure for which the control problem becomes solvable. This embedding is often
called a relaxation of the control problem and R is the set of relaxed controls, while
U is called the set of strict controls. In Theorem (4.2) which constitutes the main
result of this paper, we construct the set R of relaxed controls as a subset of the
set of probability measures on the action set U and show that

inf
u∈U

J(u) = inf
µ∈R

J(µ) = J(µ̂),

where

µ̂ = argmin
µ∈R

J(µ).

In section 2, we collect the notions and results from G-stochastic calculus needed
to establish our result. In section 3, we introduce the space of relaxed controls and
its properties. Finally, in section 4, we consider the relaxed optimal control problem
within the G-framework and prove existence of an optimal relaxed control for our
system of G-sdes.

2. Preliminaries

In this section we recall the notions and main results from the framework of
G-stochastic calculus, mainly based on the references Denis and Martini (2006);
Denis et al. (2011); Peng (2007, 2008, 2010); Soner et al. (2011a) and Soner et al.
(2011b), we will use in this paper.

2.1. G-expectation and G-Brownian motion. Let Ω := {ω ∈ C(R+,R
d) : ω(0) = 0},

equipped with the topology of uniform convergence on compact intervals, B(Ω) the
associated Borel σ-algebra, Ωt := {w.∧t : w ∈ Ω}, B the canonical process and
P0 be the Wiener measure on Ω. Let F := FB = {Ft}t≥0 be the raw filtration
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generated by B, which is only left-continuous. Further, consider the right-limit
filtration F+ := {F+

t , t ≥ 0}, where F+
t := Ft+ := ∩s>tFs.

Given a probability measure lP on (Ω,B(Ω)), we consider the right-continuous

lP-completed filtrations FP
t := F+

t ∨NP(F+
t ) and F̂P

t := F+
t ∨NP(F∞), where the

lP-negligible set NP(G) on a σ-algebra G is defined as

NP(G) := {D ⊂ Ω : there exists D̃ ∈ G such that D ⊂ D̃ and P[D̃] = 0}.
We have

Lemma 2.1 (Lemma 2.1, Soner et al., 2011a). Let lP be an arbitrary probability

measure on (Ω,F∞). For every F̂P
t -measurable random variable ξ̂, there exists a

lP-a.s. unique Ft-measurable random variable ξ such that ξ = ξ̂, lP-a.s.

For every F̂P-progressively measurable process X̂, there exists a unique F-

progressively measurable process X such that X = X̂, dt × lP-a.s. Moreover, if

X̂ is lP-almost surely continuous, then X can be chosen to lP-almost surely contin-
uous.

The G-expectation is defined by Peng (2007, 2008, 2010) through the nonlinear
heat equation in the following sense. A d-dimensional random vector X is said to

be G-normally distributed under the G-expectation Ê[·] if for each bounded and
Lipschitz continuous function ϕ on Rd, ϕ ∈ Lip(Rd), the function u defined by

u(t, x) := Ê[ϕ(x+
√
tX)], t ≥ 0, x ∈ Rd

is the unique, bounded Lipschitz continuous viscosity solution of the following par-
abolic equation

∂u

∂t
−G(D2u) = 0 on (t, x) ∈ (0,+∞)× Rd and u(0, x) = ϕ(x),

where D2u = (∂2xixj
u)1≤i,j≤d is the Hessian matrix of u and the nonlinear operator

G is defined by

G(A) :=
1

2
sup
γ∈Γ

{tr (γγ∗A)}, γ ∈ Rd×d. (2.1)

where A is a d × d symmetric matrix and Γ is a given non empty, bounded and
closed subset of Rd×d. Here, v∗ denotes the transpose of the vector v. This G-
normal distribution is denoted by N(0,Σ), where Σ := {γγ∗, γ ∈ Γ}.

Peng (2007, 2008) shows that the G-expectation Ê : H := Lip(Rd) −→ R is a
consistent sublinear expectation on the lattice H of real functions i.e. it satisfies

(1) Sub-additivity: for all X,Y ∈ H, Ê[X + Y ] ≤ Ê[X ] + Ê[Y ].

(2) Monotonicity: for all X,Y ∈ H, X ≥ Y ⇒ Ê[X ] ≥ Ê[Y ].

(3) Constant preserving: for all c ∈ R, Ê[c] = c.

(4) Positive homogeneity: for all λ ≥ 0, X ∈ H, Ê[λX ] = λÊ[X ].

Let Lip(Ω) be the set of random variables of the form ξ := ϕ(Bt1 , Bt2 , . . . , Btn)
for some bounded Lipschitz continuous function φ on Rd×n and 0 ≤ t1 ≤ t2 ≤ · · · ≤
tn ≤ T . The coordinate process (Bt, t ≥ 0) is called G-Brownian motion whenever

B1 is G-normally distributed under Ê[·] and for each s, t ≥ 0 and t1, t2, . . . , tn ∈ [0, t]
we have

Ê[ϕ(Bt1 , . . . , Btn , Bt+s −Bt)] = Ê[ψ(Bt1 , . . . , Btn)],
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where ψ(x1, . . . , xn) = Ê[ϕ(x1, . . . , xn,
√
sB1)]. This property implies that the in-

crements of the G-Brownian motion are independent and that Bt+s − Bt and Bs

are identically N(0, sΣ)-distributed.
A remarkable result of Peng (2007, 2008) is that if H is a lattice of real functions

on Ω such that Lip(Ω) ⊂ H, then the G-expectation Ê : H −→ R is a consistent
sublinear expectation.

For p ∈ [0,+∞), denote by lLp
G(Ω) the closure of Lip(Ω) under the Banach norm

‖X‖p
lLp

G
(Ω)

:= Ê[|X |p].

For each t ≥ 0, let L0(Ωt) be the set of Ft-measurable functions. We set

Lip(Ωt) := Lip(Ω) ∩ L0(Ωt), lLp
G(Ωt) := lLp

G(Ω) ∩ L0(Ωt).

2.2. G-stochastic integrals. For p ∈ [0,+∞), we let M0,p
G (0, T ) be the space of

F-progressively measurable, Rd-valued elementary processes of the form

η(t) =

n−1∑

i=0

ηi1[ti,ti+1)(s),

where 0 ≤ 0 = t0 < t1 < · · · < tn−1 < tn = T, n ≥ 1 and ηi ∈ Lip(Ωti). Let

M
p
G(0, T ) be the closure of M0,p

G (0, T ) under the norm

‖η‖p
Mp

G
(0,T )

:= Ê[

∫ T

0

|η(t)|pds].

For each η ∈M
0,2
G (0, T ), the G-stochastic integral is defined pointwisely by

It(η) =

∫ t

0

ηsdGBs :=

N−1∑

j=0

ηj(Bt∧tj+1
−Bt∧tj ).

With I(η) := IT (η), the mapping I : M0,2
G (0, T ) → lL2

G(ΩT ) is continuous and thus
can be continuously extended to M2

G(0, T ).
The quadratic variation process of G-Brownian motion can be formulated in

lL2
G(Ωt) by the continuous d× d-symmetric-matrix-valued process defined by

〈B〉Gt := Bt ⊗Bt − 2

∫ t

0

Bs ⊗ dGBs, (2.2)

whose diagonal is constituted of nondecreasing processes. Here, for a, b ∈ Rd, the
d× d-symmetric matrix a⊗ b is defined by (a⊗ b)x = (a ·x)b for x ∈ Rd, where ” · ”
denotes the scalar product in Rd.

Define the mapping J :M0,1
G (0, T ) 7→ L1

G(ΩT ):

J =

∫ T

0

ηtd〈B〉Gt :=

N−1∑

j=0

ηj(〈B〉Gtj+1
− 〈B〉Gtj ).

Then J can be uniquely extended to Q : M1
G(0, T ) → L1

G(ΩT ), where

Q :=

∫ T

0

ηtd〈B〉Gt , η ∈M1
G(0, T ).

We have the following ’isometry’ (formulated for the case d = 1, for simplicity).
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Lemma 2.2. (Peng, 2007)
Assume d = 1 and let η ∈M2

G(0, T ). We have

Ê



(∫ T

0

η(s)dGBs

)2

 = Ê

[∫ T

0

η2(s)d〈B〉Gs

]
.

2.3. A dual representation of G-expectation. Denis and Martini (2006) and Denis
et al. (2011) prove the following dual representation of the G-expectation in terms
of a weakly compact (tight) family P of possibly mutually singular probability
measures on (Ω,B(Ω)). This duality expresses the G-expectation as a robust ex-
pectation with respect to P . We refer to Denis and Martini (2006) and Denis et al.
(2011) for explicit constructions of P . Soner et al. (2011a,b) perform an in-depth
analysis of such a construction and its consequences on the G-stochastic analysis
and in particular the question of aggregation of processes.

Proposition 2.3. (Denis and Martini, 2006; Denis et al., 2011) There exists a
family of weakly compact probability measures P on (Ω,B(Ω)) such that for each
ξ ∈ L1

G(Ω)

Ê[ξ] = sup
lP∈P

ElP[ξ]. (2.3)

Moreover, the set function

c(A) := sup
lP∈P

lP(A), A ∈ B(Ω),

defines a regular Choquet capacity.

This leads to the following (cf. Denis and Martini, 2006; Soner et al., 2011a)

Definition 2.4. A set A ∈ B(Ω) is called polar if c(A) = 0 or equivalently if
lP(A) = 0 for all lP ∈ P . We say that a property holds P- quasi-surely (q.s.) if it
holds lP-almost-surely for all lP ∈ P i.e. outside a polar set. A probability measure
P is called absolutely continuous with respect to P if P(A) = 0 for all A ∈ NP .

Denote by NP :=
⋂

P∈P NP(F∞) the P-polar sets. We shall use the follow-

ing universal filtration FP for the possibly mutually singular probability measures
{P,P ∈ P} (cf. Soner et al., 2011b).

FP := {F̂P
t }t≥0 where F̂P

t :=
⋂

P∈P

(FP
t ∨ NP) for t ≥ 0. (2.4)

The dual formulation of the G-expectation suggests the following aspect of ag-
gregation.

Lemma 2.5 (Proposition 3.3, Soner et al., 2011a). Let η ∈ M2
G(0, T ). Then, η is

Itô-integrable for every lP ∈ P. Moreover, for every t ∈ [0, T ],
∫ t

0

η(s)dGBs =

∫ t

0

η(s)dBs, lP-a.s. for every lP ∈ P . (2.5)

where the right hand side is the usual Itô integral. Consequently, the quadratic
variation process 〈B〉G defined in (2.2) agrees with the usual quadratic variation
process quasi-surely.
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In the sequel, we will drop the notation G from both the G-stochastic integral and
the G-quadratic variation.

Among the stability results derived in Denis et al. (2011), we quote the following
which plays an important role in our analysis.

Lemma 2.6 (Lemma 29, Denis et al., 2011). If {lPn}∞n=1 ⊂ P converges weakly to
lP ∈ P. Then for each ξ ∈ L1

G(ΩT ), ElPn [ξ] → ElP[ξ].

Considering the properties of the quadratic variation process 〈B〉 in the G-
framework and the dual formulation of the G-expectation, we have the following
Burkholder-Davis-Gundy-type estimates, formulated in one dimension for simplic-
ity.

Lemma 2.7. (Gao, 2009) Assume d = 1. For each p ≥ 2 and η ∈M
p
G(0, T ), then

there exists some constant Cp depending only on p and T such that

Ê

[
sup

s≤u≤t

∣∣∣∣
∫ u

s

ηrdBr

∣∣∣∣
p]

≤ CpÊ

[(∫ t

s

|ηr|2dr
)p/2

]
≤ Cp|t− s| p2−1

∫ t

s

Ê[|ηr|p|]dr.

If σ̄ is a positive constant such that d〈B〉t
dt ≤ σ̄ quasi-surely, then, for each p ≥ 1

and η ∈M
p
G(0, T ),

Ê

[
sup

s≤u≤t

∣∣∣∣
∫ u

s

ηrd〈B〉r
∣∣∣∣
p]

≤ σ̄p|t− s|p−1

∫ t

s

Ê[|ηr|p]dr.

3. The space of relaxed controls

Let (U, d) be a separable metric space and P(U) be the space of probability
measures on the set U endowed with its Borel σ-algebra B(U). The class M([0, T ]×
U) of relaxed controls we consider in this paper is a subset of the set lM([0, T ]×U)
of Radon measures ν(dt, da) on [0, T ] × U equipped with the topology of stable
convergence of measures, whose projections on [0, T ] coincide with the Lebesgue
measure dt, and whose projection on U coincide with some probability measure
µt(da) ∈ P(U) i.e. ν(da, dt) := µt(da)dt. The topology of stable convergence of
measures is the coarsest topology which makes the mapping

q 7→
∫ T

0

∫

U

ϕ(t, a)q(dt, da)

continuous, for all bounded measurable functions ϕ(t, a) such that for fixed t, ϕ(t, ·)
is continuous.

Equipped with this topology, lM := lM([0, T ] × U) is a separable metrizable
space. Moreover, it is compact whenever U is compact. The topology of stable
convergence of measures implies the topology of weak convergence of measures.
For further details see El Karoui et al. (1987) and El Karoui et al. (1988).

Next, we introduce the class of relaxed stochastic controls on (ΩT ,H, Ê), where
H is a vector lattice of real functions on Ω such that Lip(ΩT ) ⊂ H.

Definition 3.1 (Relaxed stochastic control). A relaxed stochastic control (or

simply a relaxed control) on (ΩT ,Lip(ΩT ), Ê) is a random measure q(ω, dt, da) =
µt(ω, da)dt such that for each subset A ∈ B(U), the process (µt(A))t∈[0,T ] is FP -
progressively measurable i.e. for every t ∈ [0, T ], the mapping [0, t] × Ω → [0, 1]

defined by (s, ω) 7→ µs(ω,A) is B([0, t])⊗F̂P
t -measurable. In particular, the process
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(µt(A))t∈[0,T ] is adapted to the universal filtration FP given by (2.4). We denote
by R the class of relaxed stochastic controls.

The set U([0, T ]) of ’strict’ controls constituted of FP -adapted processes u taking
values in the set U , embeds into the set R of relaxed controls through the mapping

Φ : U([0, T ]) ∋ u 7→ Φ(u)(dt, da) = δu(t)(da)dt ∈ R. (3.1)

The next lemma which extends the celebrated Chattering Lemma, states that
each relaxed control in R can be approximated with a sequence of strict controls
from U([0, T ]).
Lemma 3.2 (G-Chattering Lemma). Let (U, d) be a separable metric space and
assume that U is a compact set. Let (µt)t be an FP -progressively measurable process
with values in P(U). Then there exists a sequence (un(t))n≥0 of FP -progressively
measurable processes with values in U such that the sequence of random measures
δun(t)(da)dt converges in the sense of stable convergence (thus, weakly) to µt(da)dt
quasi-surely.

Proof : Given the FP -progressively measurable relaxed control µ, the detailed path-
wise construction of the approximating sequence (δun(t)(da)dt)n≥0 of µt(da)dt in
Fleming and Nisio (1984, Lemma after Theorem 3) or El Karoui et al. (1988,
Theorem 2.2) extends easily to make the strict controls (un)n FP -progressively
measurable. �

4. G-Relaxed stochastic optimal control

In this section we establish existence of a minimizer of the relaxed performance
functional

J(µ) = Ê
[∫ T

0

∫
U
f(t, xµ(t), a)µt(da) dt+ h(xµ(T ))

]
(4.1)

over the set R of relaxed controls for the relaxed G-sde (written in vector form)
{
dxµ(t) = σ(t, xµ(t))dBt+

∫
U b(t, x

µ(t), a)µt(da)dt+
∫
U γ(t, x

µ(t), a)µt(da)d〈B〉t,
xµ(0) = x.

(4.2)

where

b : [0, T ]× Rd × U → Rd, σ, γ : [0, T ]× Rd × U → Rd×d, f : [0, T ]× Rd × U → R

and h : Rd → R are deterministic functions.
When µ = δu, u ∈ U([0, T ]), the process xδu := xu simply solves the following

G-sde{
dxu(t) = σ(t, xu(t))dBt + b(t, xu(t), u(t))dt+ γ(t, xu(t), u(t))d〈B〉t,
xu(0) = x.

(4.3)

Furthermore, in view of the embedding (3.1), we may write J(u) = J(δu).
We make the following

Assumptions

(H1) The functions b, γ and σ are continuous and bounded. Moreover, they are
Lipschitz continuous with respect to the space variable uniformly in (t, u).

(H2) the functions f and h are continuous and bounded.
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From Peng (2010) it follows that under assumption (H1), for each µ ∈ R, the
G-sde (4.2) admits a unique solution xµ ∈M2

G(0, T ) which satisfies

Ê[ sup
0≤t≤T

|xµ(t)|2] <∞. (4.4)

Moreover, for each µ ∈ R,

χµ :=

∫ T

0

∫

U

f(t, xµ(t), a)µt(da) dt+ h(xµ(T )) ∈ L1
G(ΩT ). (4.5)

Remark 4.1. Assumptions (H1) and (H2) are strong and can be made much weaker.
We impose them to keep the presentation of the main results simple.

In this section we prove the following theorem which constitutes the main result
of the paper.

Theorem 4.2. We have

inf
u∈U [0,T ]

J(u) = inf
µ∈R

J(µ). (4.6)

Moreover, there exists a relaxed control µ̂ ∈ R such that

J(µ̂) = min
µ∈R

J(µ). (4.7)

Recall that

J(µ) = sup
lP∈P

J lP(µ), (4.8)

where the relaxed performance functional associated to each lP ∈ P is given by

J lP(µ) = ElP
[∫ T

0

∫
U f(t, x

µ(t), a)µt(da) dt+ h(xµ(T ))
]
. (4.9)

To prove (4.6), we use the G-Chattering Lemma (3.2) and stability results for the
G-sde (4.2). In view of the G-Chattering Lemma, given a relaxed control µ ∈ R,
there exists a sequence (un)n ∈ U([0, T ]) of strict controls such that δun(t)(da)dt
converges weakly to µt(da)dt quasi-surely i.e. lP-a.s. , for all lP ∈ P . The proof
of (4.7) is based of existence of an optimal relaxed control for each lP ∈ P and a
tightness argument.

Denote by xn the solution of the G-sde associated with un (or δun(t)(da)) defined
by
{
dxn(t) = σ(t, xn(t))dBt + b(t, xn(t), un(t))dt+ γ(t, xn(t), un(t))d〈B〉t,
xn(0) = x.

(4.10)

We have the following stability results for both the G-sde (4.2) and the performance
J lP, for every lP ∈ P .

Lemma 4.3. For every lP ∈ P, it holds that

lim
n→∞

ElP

[
sup

0≤t≤T
|xn(t)− xµ(t)|2

]
= 0 (4.11)

and

lim
n→∞

J lP(un) = J lP(µ). (4.12)

Moreover,

inf
u∈U [0,T ]

J lP(u) = inf
µ∈R

J lP(µ), (4.13)
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and there exists a relaxed control µ̂lP ∈ R such that

J lP(µ̂lP) = inf
µ∈R

J lP(µ). (4.14)

Proof : Since, due to the aggregation property of Lemma (2.5), under every lP ∈
P , the G-sdes (4.2) and (4.3) become standard sdes driven by a continuous true
martingale B, the proof of this result follows from Bahlali et al. (2006) or Bahlali
et al. (2014). We sketch it here for completeness.

Using the fact that under lP ∈ P , B is a continuous true martingale whose qua-

dratic variation process 〈B〉 is such that ct :=
d〈B〉t
dt is bounded by a deterministic

d× d symmetric positive definite matrix σ̄, xµ and xn satisfy

dxµ(t) = σ(t, xµ(t))dBt +

∫

U

(b(t, xµ(t), a) + ctγ(t, x
µ(t), a))µt(da)dt, x

µ(0) = x,

and

dxn(t) = σ(t, xn(t))dBt + (b(t, xn(t), un(t) + ctγ(t, x
n(t), un(t)))dt, xn(0) = x.

Due to Lipschitz continuity and boundedness assumptions (H1) on σ, b and γ, the
proof of (4.11) relies on the standard Gronwall and Burkholder-Davis-Gundy in-
equalities together with the Dominated Convergence Theorem and the stable con-
vergence of δun(t)(da)dt to µt(da)dt. Furthermore, (4.12) follows from the stable
convergence of δun(t)(da)dt to µt(da)dt due to the continuity and boundedness as-
sumptions (H2) on f and h.

A proof of (4.13) goes as follows. By the embedding (3.1), we have J lP(u) =
J lP(δu). This yields infu∈U [0,T ] J

lP(u) ≥ infµ∈R J lP(µ). Given an arbitrary µ ∈ R
we may apply the Chattering Lemma (3.2) to obtain a sequence of strict controls
un ∈ U [0, T ] such that δun(t)(da)dt weakly converges to µt(da)dt and by (4.12), we
have

J lP(µ) = lim
n→∞

J lP(un) ≥ inf
u∈U [0,T ]

J lP(u).

Since µ is arbitrary, we obtain infµ∈R J lP(µ) ≥ infu∈U [0,T ] J
lP(u).

The proof of existence of an optimal relaxed control, (4.14), relies on the fol-
lowing ingredients. Let (µn)n≥0 be a minimizing sequence of infµ∈R J lP(µ) so
that infµ∈R J lP(µ) = lim

n→∞
J lP(µn). Since the controls µn are random variables

in the compact set lM, by Prohorov’s theorem the associated family of distribution
is relatively compact in lM. Due to assumption (H1), the sequence of processes
(µn, xµ

n

)n≥0 is tight on the space lM × C([0, T ],Rd). Thus, there exists a sub-

sequence ((µnk , xµ
nk )k≥0 of (µn, xµ

n

)n≥0 that weakly converges to (µ̂, xµ̂) which
solves (4.2). Using Skorohod’s embedding theorem, the continuity assumptions
(H2) and Lebesgue Dominated Convergence Theorem, we finally obtain

inf
µ∈R

J lP(µ) = lim
k→∞

J lP(µnk) = J lP(µ̂).

�

The purpose of the next proposition is to make the limit (4.11) valid under the

sublinear expectation Ê[·].
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Proposition 4.4. Suppose that b, γ and σ satisfy condition (H1). Let xµ and xn

be the solutions of (4.2) and (4.10), respectively. Then

lim
n→∞

Ê

[
sup

0≤t≤T
|xn(t)− xµ(t)|2

]
= 0. (4.15)

Proof : Set ξn := sup0≤t≤T |xn(t)− xµ(t)|2 and note that for each n ≥ 1, ξn ∈
L1
G(ΩT ). If there is a δ > 0 such that Ê[ξn] ≥ δ, n = 1, 2, . . . , we then can find a

probability lPn ∈ P such that ElPn [ξn] ≥ δ − 1
n , n = 1, 2, . . . . Since P is weakly

compact, there exists a subsequence {lPnk
}∞k=1 that converges weakly to some lP ∈

P . We then have

lim
j→∞

ElP[ξnj
] = lim

j→∞
lim
k→∞

ElPnk [ξnj
] ≥ lim inf

k→∞
ElPnk [ξnk

] ≥ δ.

This contradicts the fact that lim
j→∞

ElP[ξnj
] = 0 from Lemma (4.3). �

Remark 4.5. Unfortunately, the method of the proof of (4.11) does not extend
to prove (4.15), because under sublinear expectation, the Dominated Convergence
Theorem (and even the celebrated Fatou’s Lemma) is no longer valid, although
the Gronwall and Burkholder-Davis-Gundy inequalities (see Lemma (2.7)) are still
valid for G-sdes and G-Brownian stochastic integrals.

Corollary 4.6. Suppose that f and h satisfy assumption (H2). Let J(un) and
J(µ) be the performance functionals corresponding respectively to un and µ where
dtδun(t)(da) converges weakly to dtµt(da) quasi-surely. Then, there exists a subse-
quence (unk) of (un) such that

lim
k→∞

J(unk) = J(µ).

Proof : From Proposition 17 in Denis et al. (2011) and Proposition (4.4) it follows
that there exists a subsequence (xnk(t))nk

that converges to xµ(t) quasi-surely i.e.

lP-a.s. , for all lP ∈ P , uniformly in t. We may apply Lemma (4.3) to obtain, for
every lP ∈ P ,

lim
k→∞

J lP(unk) = J lP(µ). (4.16)

Using the notation (4.5), we note that J(unk) = Ê[χunk ] and J(µ) = Ê[χµ],
where both χunk and χµ belong to L1

G(ΩT ). If there is some δ > 0 such that

Ê[χunk ] ≥ Ê[χµ] + δ, nk ≥ ℓ, ℓ + 1, . . ., we can then find a probability measure
lPm ∈ P such that

ElPm [χunk
] ≥ Ê[χµ] + δ − 1

m
.

Since P is weakly compact, then we can find a subsequence {lPmk
}∞k=1 that con-

verges to lP ∈ P . We then have

ElP[χµ] = lim
k→∞

ElPmk [χµ] = lim
k→∞

lim
j→∞

ElPmk [χunj ] ≥ lim inf
j→∞

E
lPmj [χunj ]

≥ lim inf
j→∞

(
Ê[χµ] + δ − 1

mj

)
= Ê[χµ] + δ.

Thus, ElP[χµ] ≥ Ê[χµ] + δ, which contradicts the definition of the sublinear expec-
tation. Therefore,

lim
k→∞

J(unk) ≤ J(µ).
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Next, we prove that lim
k→∞

J(unk) ≥ J(µ). We have

lim
k→∞

J(unk) ≥ lim
k→∞

J lP(unk), for all lP ∈ P ,
= J lP(µ), (by (4.16)), for all lP ∈ P .

Therefore, lim
k→∞

J(unk) ≥ J(µ).

�

Proof of Theorem (4.2). By (3.1) and Corollary (4.6) we readily get that

inf
u∈U [0,T ]

J(u) ≤ inf
µ∈R

J(µ).

On the other hand since, for every u ∈ U [0, T ], δu ∈ R. Therefore,

J(u) = J(δu) ≥ inf
µ∈R

J(µ),

Hence,

inf
u∈U [0,T ]

J(u) ≥ inf
µ∈R

J(µ).

This proves (4.6).

We now turn to the proof of existence of relaxed optimal control. Since f and h
are continuous and bounded, for each ν ∈ R

χν :=

∫ T

0

∫

U

f(t, xν(t), a)νt(da) dt+ h(xν(T )) ∈ L1
G(ΩT ).

By Lemma (2.6) we then obtain that for every ν ∈ R,

lim
n→∞

J lPn(ν) = JQ(ν), (4.17)

whenever, the sequence {lPn}∞n=1 ∈ P converges weakly to Q ∈ P .
Assume that there is an ε > 0 such that, for every ν ∈ R,

J(ν) ≥ inf
µ∈R

J(µ) + ε.

Since, by Lemma (4.3), for every lP ∈ P , there exists a relaxed control µ̂ ∈ R such
that µ̂lP = argminµ∈R J lP(µ), we obtain

J(ν) ≥ sup
lP∈P

inf
µ∈R

J lP(µ) + ε = sup
lP∈P

J lP(µ̂lP) + ε.

On the other hand, for every n ≥ 1, there exists lPn ∈ P such that

J lPn(ν) ≥ J(ν) +
1

n
.

The sequence {lPn}∞n=1 ∈ P being weakly compact, we can extract a subsequence
{lPnj

}∞j=1 ∈ P which converges weakly to some Q ∈ P . Thus, it follows from (4.17)
that, for every ν ∈ R,

JQ(ν) = lim
j→∞

J
lPnj (ν) ≥ sup

lP∈P
J lP(µ̂lP) + ε.

In particular, for a given νQ ∈ R, we obtain

JQ(νQ) ≥ JQ(νQ) + ε,

which contradicts the fact that ε > 0. �
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