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Abstract. In an earlier paper, we introduced and studied a system of hierarchically
interacting measure-valued random processes that arises as the continuum limit of a
large population of individuals carrying different types. Individuals live in colonies
labelled by the hierarchical group of order N , and are subject to migration and
resampling on all hierarchical scales simultaneously. The resampling mechanism
is such that a random positive fraction of the population in a block of colonies
inherits the type of a random single individual in that block, which is why we
refer to our system as the hierarchical Cannings process. Before resampling in
a block takes place, all individuals in that block are relocated uniformly, which
we call reshuffling. The evolution of the system seen backwards in time leads to
a dual process of coalescing random walks (representing the lineages) in random
environment. The space-time scaling behaviour of the dual determines that of the
system forward in time.

In the present paper, we study a version of the hierarchical Cannings process in
random environment, namely, the resampling measures controlling the change of
type of individuals in different blocks are chosen randomly with a given mean and
are kept fixed in time, i.e., we work in the quenched setting. We give a necessary
and sufficient condition under which a multi-type equilibrium is approached (= co-
existence) as opposed to a mono-type equilibrium (= clustering). Moreover, in the
hierarchical mean-field limit N →∞, with the help of a renormalization analysis we
obtain a full picture of the space-time scaling behaviour of block averages on all hi-
erarchical scales simultaneously. We show that the k-block averages are distributed
as the superposition of a Fleming-Viot diffusion with a deterministic volatility con-
stant dk and a Cannings process with a random jump rate, both depending on k.
In the random environment dk turns out to be smaller than in the homogeneous
environment of the same mean. We investigate how dk scales with k. This leads
to five universality classes of cluster formation in the mono-type regime. We find
that if clustering occurs, then the random environment slows down the growth of
the clusters, i.e., enhances the diversity of types. In some universality classes, the
growth of the clusters depends on the realisation of the random environment, in
others it does not.
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1. Introduction

1.1. Motivation and goal. Two models play a central role in the world of stochastic
multi-type population dynamics:

(1) The Moran model and its limit for large populations, the Fleming-Viot
measure-valued diffusion.

(2) The Cannings model and its limit for large populations, the Cannings
measure-valued jump process (also called the generalized Fleming-Viot pro-
cess).

The Cannings model accounts for situations in which resampling is such that a
random positive fraction of the population in the next generation inherits the type
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of a random single individual in the current generation, even in the infinite popu-
lation limit (see Cannings, 1974, 1975). In order to describe a setting where this
effect has a geographical structure, i.e., where migration of individuals is allowed as
well, different models have been proposed in Limic and Sturm (2006), Blath et al.
(2007), Barton et al. (2010), Berestycki et al. (2013), and Greven et al. (2014). The
behaviour of these models has been studied in detail and its dependence on the
geographic space is fairly well understood.

The type space is typically chosen to be a compact Polish space E. In Greven
et al. (2014), we focused on the case where the geographic space is the hierarchical
group ΩN of order N , since this allowed us to carry out a full renormalization anal-
ysis. In the hierarchical mean-field limit N → ∞, the migration can be chosen in
such a way that it approximates migration on the geographic space Z2, a possibility
that was exploited by Sawyer and Felsenstein (1983) (see also Dawson et al., 2004).

We analyze the model introduced in Greven et al. (2014), but add the effect that
the Cannings resampling mechanism is controlled by catastrophic events on a small
time scale, for which it is appropriate to assume that the rate of occurrence has
a spatially inhomogeneous structure. This leads us to consider spatial Cannings
models with block resampling in random environment, i.e., both the form and the
overall rate of the block resampling mechanism depend on the geographic location.

Remark 1.1. In a catastrophic event, a part of the population is killed in a large
spatial area and is subsequently replenished via a rapid recolonization, resulting
in a bottleneck effect consisting of compression and subsequent expansion of the
descendants of a single ancestor. The mechanisms behind such events are functions
of the background environment, which is inhomogeneous in space but constant in
time. It would be interesting to derive our continuum model (defined in Section 2.2)
from an individual-based model with two time scales: the catastrophic events hap-
pen on a fast time scale, while the migration and resampling happen on a slow time
scale. Moreover, in our individual-based model we do reshuffling before resampling,
which must be motivated likewise. Carrying out the details of such a derivation
would merit a paper in its own right. �

Remark 1.2. In the present paper, we only work with continuum models. How-
ever, we motivate these models by viewing them as the large-population limit of
individual-based models. �

The goal of the present paper is three-fold:

(1) Construction of the hierarchical Cannings process in random environment
via a well-posed martingale problem and derivation of a duality relation
with a hierarchical spatial coalescent in random environment.

(2) Analysis of the longtime behaviour, in particular, the dichotomy between
a multi-type equilibrium and a mono-type equilibrium.

(3) Scaling analysis of a collection of renormalised processes obtained by look-
ing at the evolution of blocks averages on successive space-time scales in the
hierarchical mean-field limit and the consequences for universality classes
of the mono-type cluster formation.

We are particularly interested in new effects caused by the random environment.
To capture these effects, we need to deal with spatially inhomogeneous processes.
Below, we list what is different and what is the same compared to the model in
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homogeneous environment treated in Greven et al. (2014) (see Section 3.3 for more
details), and what new techniques are employed.

I Properties that are different :

• The volatility of the block averages is lower compared to that in the homo-
geneous (= average) environment. The random environment causes fluctu-
ations in the resampling, which in turn reduce the clustering.
• The growing of mono-type clusters exhibits both environment-dependent

and environment-independent space-time scales.
• The equilibrium is environment-dependent.
• Formulas involving averages of random Möbius transformations are ob-

tained for the parameters controlling the renormalized system on successive
space-time scales in the hierarchical mean-field limit.

I Properties that are the same:

• The criterion for the dichotomy of co-existence versus clustering.
• The form of the duality (backwards in time with block-coalescing random

walks).
• The space-time scaling of the system in the hierarchical mean-field limit

can be computed explicitly.

I New techniques are:

• The harmonic analysis that was used to study the dual process is not ap-
plicable anymore and has to be replaced by potential-theoretic tools.
• The dual process for the second moments involves two random walks instead

of one. The reason is that in random environment the difference of two
ancestral paths is no longer equal in distribution to that of one ancestral
path running at double the speed.
• To analyze the orbits of the renormalization transformation, which arise

from iterations of averages of random Möbius transformations, comparison
metholds are needed.

Finally, compared with Greven et al. (2014), we have made further progress in
finding the appropriate conceptual form for the study of the growth of mono-type
clusters, in particular, in classifying the different clustering regimes.

Our proofs focus on the new ingredients compared to Greven et al. (2014). How-
ever, in order to be self-contained, we everywhere expose the full line of argument,
sometimes referring to Greven et al. (2014) to cut the presentation short. The key
mathematical tools that we will exploit are the duality of the hierarchical Cannings
process in random environment with a hierarchical spatial coalescent in random
environment, and the scaling of the block averages towards a mean-field process in
random environment called the McKean-Vlasov process. This in turn will lead us
to study two independent hierarchical random walks in the same random environ-
ment, and to analyze the orbit of iterations of non-linear transformations arising
from random Möbius transformations that link the behaviour on successive hierar-
chical scales.

1.2. Summary of the main results. In an earlier paper, we introduced and studied
a system of hierarchically interacting measure-valued random processes that arises
as the continuum limit of a large population of individuals subject to migration,
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reshuffling and resampling Greven et al. (2014). More precisely, individuals live
in colonies labelled by ΩN , the hierarchical group of order N , and are subject to
migration based on a sequence of migration coefficients c = (ck)k∈N0 and to resam-
pling based on a sequence of resampling measures Λ = (Λk)k∈N0 , both acting on
blocks of colonies (= macro-colonies) on all hierarchical scales k ∈ N0 simultane-
ously. The resampling mechanism is such that a random positive fraction of the
population in a block of colonies inherits the type of a random single individual
in that block, even in the infinite population limit, which is why we refer to our
system as the hierarchical Cannings process. Before resampling in a block takes
place, all individuals in that block are relocated uniformly. This relocation is called
reshuffling and means that resampling is done in a locally “panmictic” manner.
The justification of this mechanism via a model of catastrophic events on a slow
time scale would require a detailed further study and therefore is not carried out
here (recall Remark 1.1).

In the present paper, we study a version of the hierarchical Cannings process
in random environment, namely, the resampling measures in different blocks are
chosen randomly with mean Λ and are kept fixed in time, i.e., we consider the
quenched version of the system. We construct the hierarchical Cannings process
in random environment via a well-posed martingale problem, and establish duality
with a system of coalescing hierarchical random walks with block coalescence in
random environment. We study the long-time behaviour of the process, in partic-
ular, we give a necessary and sufficient condition on c and Λ under which almost
sure convergence to a multi-type equilibrium occurs (= coexistence), as opposed to
a mono-type equilibrium (= clustering). The equilibrium depends on the environ-
ment, but the condition on c and Λ for its occurrence does not.

To obtain more detailed information on the evolution of the system, we consider
the hierarchical mean-field limit N → ∞. In this limit, with the help of a renor-
malization analysis, we obtain a full picture of the space-time scaling behaviour on
all hierarchical scales simultaneously. Our main result is that, on each hierarchical
scale k ∈ N0, the k-block averages on time scale Nk converge to a random process
that is a superposition of a Cannings process with a resampling measure equal to
the associated k-block resampling measure (which depends on the environment)
and an additional Fleming-Viot process with volatility dk, reflecting the macro-
scopic impact of the lower-order resampling and of the drift of strength ck towards
the limiting (k + 1)-block average (which is constant on the limiting time scale).
It turns out that dk is a function of cl and Λl for all 0 ≤ l < k, and of the law of
the random environment. Thus, it is through the volatility that the renormalization
manifests itself.

We show that the random environment makes the system less volatile, i.e., dk
is strictly smaller than its corresponding value for the homogenous system where
the resampling measures are replaced by their mean. We investigate how dk scales
as k → ∞, which leads to various different cases depending on the choice of c
and Λ. We find that if migration and resampling occur with comparable rates on
all hierarchical scales, then the lower volatility persists in the limit as k → ∞.
The renormalization transformation connecting dk+1 to dk turns out to be a non-
linear transformation arising from a random Möbius transformation. The scaling
behaviour of the iterates of these transformations is studied in detail. We find
that if clustering occurs, then the random environment slows down the growth of
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the clusters, i.e., enhances the diversity of types. We find five universality classes
of cluster formation in the regime of clustering. These are linked to the different
cases of scaling behaviour of dk. We find that if the growth of the clusters is rapid,
then the rate of growth depends on the realization of the environment, while if the
growth is slow, then the effect of the environment averages out. The latter happens
e.g. in the critical regime where the system is barely clustering.

The key to an understanding of the hierarchical Cannings process is its duality
to finite systems of coalescing random walks in random environment on the hierar-
chical group. Here, the coalescence is a Λ0-coalescent for single components and,
for each k ∈ N, a Λk-coalescent for k-blocks in ΩN followed by a relocation uni-
formly in the block. It is clear that the behaviour of such systems depends on the
behaviour of random walks in random environment viewed on successively larger
space-time scales. We can no longer employ harmonic analysis as for homogenous
random walks. Instead, we need potential theory to control the effect of the random
environment.

1.3. Outline. Sections 2–5 deal with the model for finite N , while Sections 6–8
deal with the hierarchical mean-field limit N → ∞. In Section 2, we define the
hierarchical Cannings process in random environment (the presentation necessarily
has considerable overlap with Greven et al., 2014). In Section 3, we state our main
theorems (organized in a manner similar to Greven et al., 2014) and summarize
the effects of the random environment. Section 4 provides the proof of existence
and uniqueness of the hierarchical Cannings process and its dual, and establishes
convergence to an equilibrium. Section 5 proves the dichotomy between coexistence
(multi-type equilibrium) versus clustering (mono-type equilibrium), and provides
the parameter range for both. Section 6 describes the multi-scale analysis for the
evolution of block averages on successive space-time scales in the hierarchical mean-
field limit, proves the dichotomy in that limit, and identifies the renormalization
transformations connecting the successive scales. Section 7 analyzes the orbit of
the iterations of these transformations and identifies various different cases for the
scaling of the volatility of the block averages. Section 8 links these cases to the
universality classes of cluster formation.

Sections 2–3 make up one third of the paper and contain all the main theorems
and their background. Sections 4–8 provide their proofs.

2. The model

In this section, we define the hierarchical Cannings process in random environ-
ment and construct its dual: a spatial coalescent in random environment. We be-
gin in Section 2.1 by recalling the process without random environment introduced
in Greven et al. (2014). In Section 2.2, we explain how the random environment is
added.

2.1. The hierarchical Cannings process. In Sections 2.1.1–2.1.3, we recall the defi-
nition of the hierarchical Canning process given in Greven et al. (2014). In Sec-
tion 2.1.4, we add the random environment and indicate how the definition needs
to be modified.
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2.1.1. The hierarchical group of order N . The hierarchical group ΩN of order N is
the set

ΩN =
{
η = (ηl)l∈N0 ∈ {0, 1, . . . , N − 1}N0 :

∑
l∈N0

ηl <∞
}
, N ∈ N\{1}, (2.1)

endowed with the addition operation + defined by (η + ζ)l = ηl + ζl (mod N),
l ∈ N0. In other words, ΩN is the direct sum of the cyclical group of order N (a
fact that is important for the application of Fourier analysis). The group ΩN is
equipped with the ultrametric distance dΩN (·, ·) defined by

dΩN (η, ζ) = dΩN (0, η − ζ) = min{k ∈ N0 : ηl = ζl ∀ l ≥ k}, η, ζ ∈ ΩN . (2.2)

Let

Bk(η) = {ζ ∈ ΩN : dΩN (η, ζ) ≤ k}, η ∈ ΩN , k ∈ N0 (2.3)

denote the k-block around η (i.e., the ball of hierarchical radius k around η), which
we think of as a macro-colony. The geometry of ΩN is explained in Fig. 2.1.

Figure 2.1. Close-ups of a 1-block, a 2-block and a 3-block in the
hierarchical group of order N = 3. The elements of the group are the
leaves of the tree (indicated by 2’s). The hierarchical distance between
two elements is the graph distance to the most recent common ancestor:
dΩ3(η, ζ) = 2 for η and ζ in the picture.

In what follows, we consider a system of individuals organized in colonies labelled
by ΩN . Initially, each colony has M individuals, each carrying a type drawn from

E = a Polish type space that is compact. (2.4)

Subsequently, individuals are subject to block migration (Section 2.1.2) and block
reshuffling-resampling (Section 2.1.3). In the continuum-mass limit M → ∞, the
evolution converges to the hierarchical Cannings process (Section 2.1.4).

2.1.2. Block migration. We introduce migration on ΩN through a random walk
kernel. For that purpose, we introduce a sequence of migration rates

c = (ck)k∈N0
∈ (0,∞)N0 , (2.5)

and we let the individuals migrate as follows:

• Each individual, for every k ∈ N, chooses at rate ck−1/N
k−1 the block

of radius k around its present location and jumps to a location chosen
uniformly at random in that block.
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The transition kernel of the random walk thus performed by the individuals is

a(N)(η, ζ) =
∑

k≥dΩN
(η,ζ)

ck−1

N2k−1
, η, ζ ∈ ΩN , η 6= ζ, a(N)(η, η) = 0. (2.6)

Remark 2.1. The behaviour of the random walk in (2.6) is known in great detail.
Dawson, Gorostiza and Wakolbinger Dawson et al. (2005) showed that it is re-
current if and only if

∑
k∈N0

(1/ck) = ∞. They introduced the concept of degree

of recurrence/transience γN (Dawson et al., 2005, Definition 2.1.1), which for the
special case where ck = ck, c ∈ (0,∞), equals γ(N) = log c/ log(N/c). Note that

γ(N)


< 0, c < 1 (strongly recurrent),

= 0, c = 1 (critically recurrent),

> 0, c > 1 (transient).

(2.7)

This is the same as for simple random walk on Zd with dimension

d = d(N, c) = (2 logN)/ log(N/c), (2.8)

where N and c are such that d ∈ N (see Dawson et al., 2005, Eq. (3.2.2)). In
particular, d = d(N, 1) = 2 for all N ∈ N. (In (2.8), we may in principle allow for
non-integer dimensions d ∈ (0,∞) as well.)

Throughout the paper, we assume that

lim sup
k→∞

1
k log ck < logN. (2.9)

This guarantees that the total migration rate per individual is finite.

2.1.3. Block reshuffling-resampling. The idea of the Cannings resampling mecha-
nism is to allow reproduction with an offspring that is of a size comparable to the
whole population. Since we have introduced a spatial structure, we now allow, on
all hierarchical levels k simultaneously, a reproduction event where each individual
treats the k-block around its present location as a macro-colony and uses it for its
resampling. More precisely, we choose a sequence of resampling measures

Λ =
(
Λk)k∈N0 ∈Mf ([0, 1])N0 , (2.10)

whereMf ([0, 1]) denotes the set of finite non-negative measures on [0, 1], satisfying

Λ0({0}) = 0,

∫
(0,1]

Λ0(dr)

r
=∞, (2.11)

and

Λk({0}) = 0,

∫
(0,1]

Λk(dr)

r2
<∞. k ∈ N. (2.12)

The assumption in (2.12) guarantees that the local dynamics is a pure jump process
(finitely many jumps in finite time intervals). A general Λ-Cannings process can
have countably many jumps. We assume (2.12) to avoid explicit construction of
the Cannings process via a limiting procedure: cutting off the support of Λk in the
ε-vicinity of 0 and letting ε ↓ 0 afterwards, (see Remark 2.2 below).

Let Λ∗k(dr) = Λk(dr)/r2, r ∈ (0, 1]. Set

λk = Λk((0, 1]), λ∗k = Λ∗k((0, 1]), k ∈ N0, (2.13)

and assume that
λ = (λk)k∈N0 ∈ (0,∞)N0 . (2.14)
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We let individuals reshuffle-resample by carrying out the following two steps at
once:

• For every η ∈ ΩN and k ∈ N0, choose the block Bk(η) at rate 1/N2k.
• First, each individual in Bk(η) independently is moved to a uniformly ran-

dom location in Bk(η), i.e., a reshuffling takes place (see Fig. 2.2). After
that, r ∈ (0, 1] is chosen according to the intensity measure Λ∗k and a ∈ E
is drawn according to the current type distribution in Bk(η), and each of
the individuals in Bk(η) independently is replaced by an individual of type
a with probability r.

Note that the reshuffling-resampling affects all the individuals in a macro-colony
simultaneously and in the same manner1. The reshuffling-resampling occurs at all
levels k ∈ N0, at a rate that is fastest in single colonies and gets slower as the level
k of the macro-colony increases2

Figure 2.2. Random reshuffling in a 1-block on the hierarchical lattice
of order N = 3, with M = 3 individuals of two types (• and N) per
colony. Note: Typically, a random reshuffling does not preserve the
number of individuals per colony, but in the example drawn here it does.

The first conditions in (2.11) and (2.12) make the resampling a jump process.
Later we will add in diffusion by hand. The second condition in (2.11) guarantees
that the population has a well-defined genealogy, in the sense that after a positive
finite time most of the population in a colony descends from a finite number of
ancestors: this is the so-called dust-free case (see, for example, Pitman, 1999). The
second condition in (2.12) is needed to guarantee that in finite time a macro-colony
is affected by finitely many reshuffling-resampling events, otherwise the resampling
cannot be properly defined.

Throughout the paper, we assume that

lim sup
k→∞

1
k log λ∗k < logN. (2.15)

Note that each of the Nk colonies in a k-block can trigger reshuffling-resampling in
that block, and for each colony the block is chosen at rate N−2k. Therefore, (2.15)
guarantees that the total resampling rate per individual is bounded.

1The average number of individuals in a colony does not change over time, provided it is the
same for all colonies initially.

2Because the reshuffling is done first, the resampling always acts on a uniformly distributed

state (“panmictic resampling”). Reshuffling is a parallel update affecting all individuals in a macro-
colony simultaneously. Therefore, it cannot be seen as a migration of individuals equipped with

independent clocks. Reshuffling is biologically less compelling, but mathematically convenient.



The hierarchical Cannings process in random environment 305

2.1.4. The generator and the martingale problem. We are now ready to formally
define the hierarchical Cannings process in terms of a martingale problem. The
process arises as the continuum-mass limit of the individual-based model described
in Sections 2.1.1–2.1.3. Namely, in each colony of size M , instead of recording the
numbers of individuals of a given type we record the empirical distribution of the
types and pass to the limit M → ∞. For our understanding it is helpful to keep
the individual-based model in mind, even though we only deal with the continuum
process itself.

Let P(E) denote the set of probability measures on E, equipped with the topol-
ogy of weak convergence 3. We equip the set P(E)ΩN with the product topology
to get a state space that is Polish. Let F ⊂ Cb

(
P(E)ΩN ,R

)
be the algebra of

functions of the form

F (x) =

∫
En

(
n⊗

m=1

xηm
(
dum

))
f
(
u1, . . . , un

)
, x = (xη)η∈ΩN ∈ P(E)ΩN ,

n ∈ N, f ∈ Cb(En,R), η1, . . . , ηn ∈ ΩN .

(2.16)

The linear operator for the martingale problem

L(ΩN ) : F → Cb

(
P(E)ΩN ,R

)
(2.17)

has two parts,

L(ΩN ) = L
(ΩN )
mig + L(ΩN )

res . (2.18)

The migration operator is given by

(L
(ΩN )
mig F )(x) =

∑
η,ζ∈ΩN

a(N)(η, ζ)

∫
E

(xζ − xη)(da)
∂F (x)

∂xη
[δa] (2.19)

and the reshuffling-resampling operator by (well-defined by Remark 2.2 below)

(L(ΩN )
res F )(x)

=
∑
η∈ΩN

∑
k∈N0

N−2k

∫
(0,1]

Λ∗k(dr)

∫
E

yη,k(da)
[
F
(
Φr,a,Bk(η)(x)

)
− F (x)

]
+
∑
η∈ΩN

(Ld0
η F )(x), (2.20)

where
yη,k = N−k

∑
ζ∈Bk(η)

xζ (2.21)

is the k-block average of the components of x in Bk(η), Φr,a,Bk(η) : P(E)ΩN →
P(E)ΩN is the reshuffling-resampling map acting as[(

Φr,a,Bk(η)

)
(x)
]
ζ

=

{
(1− r)yη,k + rδa, ζ ∈ Bk(η),

xζ , ζ ∈ ΩN\Bk(η),
(2.22)

where r ∈ [0, 1], a ∈ E, k ∈ N0, η ∈ ΩN , and Ld0
η is the Fleming-Viot diffusion

operator with volatility d0 ≥ 0, acting on the colony xη, given by

(Ld0
η F )(x) = d0

∫
E

∫
E

Qxη (du,dv)
∂2F (x)

∂x2
η

[δu, δv] (2.23)

3For countable E, in P(E) weak convergence implies convergence in total variation norm.
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with
Qy(du,dv) = y(du) δu(dv)− y(du) y(dv), y ∈ P(E), (2.24)

the Fleming-Viot diffusion coefficient, and

∂2F (x)

∂x2
η

[δu, δv] =
∂

∂xη

(
∂F (x)

∂xη
[δu]

)
[δv], u, v ∈ E. (2.25)

Remark 2.2.

(a) Note that the right-hand side of (2.20) is well-defined because of assumption
(2.12). Indeed, using (2.16) to Taylor-expand the inner integral in (2.20)
in powers of r, and noting that the first order term in r cancels because of
(2.21)–(2.22), we get∫

E

yη,k(da)
[
F
(
Φr,a,Bk(η)(x)

)
− F (x)

]
= O(r2), r ↓ 0, (2.26)

with the error term uniform in x. Consequently,∫
(0,1]

Λ∗k(dr)

∫
E

yk,η(da)
[
F (Φr,a,Bk(η))− F (x)

]
= O(1) (2.27)

under (2.12).
(b) To remove assumption (2.12), we consider (Λk)k∈N0

that are truncated
below level δ > 0. The corresponding process is constructed as in Section 4,
with a well-posed dual process (see Theorems 3.1 and 4.2 below). It is easy
to show that this dual processes has a limit as δ ↓ 0 that is a pure jump
process (see Greven et al., 2014, Eq. (1.7)). Having a dual process for a
duality function that is measure-determining in the dual variable, we can
construct the forward transition probabilities for any two time-points, and
define a process X(ΩN ) with càdlàg paths that is the limit as δ ↓ 0 of the
truncated process, which is of the kind we can deal with under assumption
(2.12). Except for Proposition 2.3 and Theorem 3.1 below, which deal
with the martingale problem, nothing changes. To characterize the limit
process, we cannot work with the operator L(ΩN ), as pointed out above.
Instead, to characterize the martingale problem, we have to work with the
compensator, (∫ t

s

L(ΩN )(X(ΩN )(u)) du

)
t≥s≥0

, (2.28)

and show that this object is well-defined by using the fact that the dual
process is. Consequently, all the arguments in Greven et al. (2014) based
on L(ΩN ) have to be adapted, basing them on the compensator. We refrain
from giving the details of the construction.

�

The following proposition was proved in Greven et al. (2014).

Proposition 2.3 (Hierarchical martingale problem).
For every x ∈ P(E)ΩN , the martingale problem for (L(ΩN ),F , δx) is well-posed 4.
The unique solution is a strong Markov process with the Feller property. �

4As part of the definition of the martingale problem, we always require that the solution has

càdlàg paths and is adapted to the natural filtration.
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The Markov process arising as the solution of this martingale problem is denoted
by

X(ΩN ) = (X(ΩN )(t))t≥0, (2.29)

and is referred to as the C
c,Λ
N -process on ΩN . Proposition 2.3 does not actually

need the second condition in (2.11).
This condition will be needed only later.

2.2. The hierarchical Cannings process in random environment. Our task in this
section is to modify the first term in the right-hand side of (2.20) so as to include
the effect of a random environment on the Cannings resampling mechanism. Sec-
tion 2.2.1 defines the random environment, Section 2.2.2 introduces the generator
in random environment.

2.2.1. The random environment on the full tree. Recall that ΩN is the set of leaves
of the tree in Fig. 2.1. To introduce the random environment, we need to consider
the full tree, i.e.,

ΩTN =
⋃
k∈N0

Ω
(k)
N with Ω

(k)
N = ΩN/Bk(0), (2.30)

where ΩN/Bk(0) denotes the quotient group of ΩN modulo Bk(0), which can be
identified with the layer of the tree situated at height k above the leaves. Indeed,
because dΩN is an ultrametric distance (recall (2.2)), for each k ∈ N0 the set ΩN
decomposes into disjoint balls of radius k, which can be labelled by the set Ω

(k)
N .

For ξ ∈ ΩTN , we write

|ξ| = the height of ξ (counting from the leaves), (2.31)

i.e., |ξ| = k when ξ ∈ Ω
(k)
N for k ∈ N0, and we define

B|ξ| ⊂ ΩN (2.32)

to be the set of sites in ΩN that lie below ξ (see Fig. 2.3). We can define the distance

on the layer Ω
(k)
N as the graph distance to the most recent common ancestor, and

the distance on the full tree ΩTN as the largest of the two graph distances to the
most recent common ancestor (recall Fig. 2.1). The latter will be denoted by dΩT

N
.

We write

MCk(η) (2.33)

to denote the vertex in ΩTN at height k ∈ N0 above η ∈ ΩN (which we can think
of as “ancestor k of macro-colony η”). This site carries the rate for the random
walk on ΩN to become uniformly distributed on the k−ball around η. Since ΩTN is
isomorphic to ΩN × N0, we sometimes write MCk(η) = ξ = (η, k).

We want to make the reshuffling-resampling spatially random. To that end, we
let

Λ(ω) =
{

Λξ(ω) : ξ ∈ ΩTN
}

(2.34)

be a random field of Mf ([0, 1])-valued resampling measures indexed by the tree.

• Throughout the paper, we use the symbol ω to denote the random environ-
ment and the symbol P to denote the law of ω.
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Figure 2.3. ΩTN with N = 3, ξ ∈ ΩTN with |ξ| = k = 2, and η, ζ ∈ B|ξ|.

The elements of ΩTN are the vertices of the tree (indicated by •’s and
2’s). The elements of ΩN are the leaves of the tree (indicated by 2’s).

In what follows, we assume that Λξ(ω) is of the form

Λξ(ω) = λ|ξ|χ
ξ(ω), (2.35)

where λ = (λk)k∈N0
is a deterministic sequence in (0,∞) (playing the role of mod-

ulation coefficients) and

{χξ(ω) : ξ ∈ ΩTN} (2.36)

is a random field ofMf ([0, 1])-valued resampling measures that is stationary under
upward and sideway translations in ΩTN (see Fig. 2.3), and satisfies (2.11) when
ξ = 0 and (2.12) when ξ 6= 0 5.

Define

λ∗k(ω) =

∫
(0,1]

ΛMCk(0)(dr)(ω)

r2
. (2.37)

Throughout the paper, we assume the following analogue of (2.15):

lim sup
k→∞

1

k
log λ∗k(ω) < logN P-a.e. (2.38)

Abbreviate

ρξ(ω) = χξ(ω)((0, 1]), (2.39)

which is the total mass of χξ(ω). Clearly,

{ρξ(ω) : ξ ∈ ΩTN} (2.40)

is a random field of (0,∞)-valued total masses that is also stationary under trans-
lations in ΩTN . Throughout the paper, we assume that

E[ρξ(ω)] = 1, E[(ρξ(ω))2] = C ∈ (1,∞), (2.41)

and that the sigma-algebra at infinity associated with (2.39), defined by

T =
⋂
L∈N0

FL, FL = σ
(
ρξ(·)

∣∣∣ ξ ∈ ΩTN : dΩT
N

(0, ξ) ≥ L
)
, (2.42)

is trivial, i.e., all its events have probability 0 or 1 under the law P. For one of the
theorems below we need to strengthen (2.41) to

E[ρξ(ω)] = 1, ∃ δ > 0: δ ≤ ρξ(ω) ≤ δ−1 ∀ ξ ∈ ΩTN for P-a.e. ω. (2.43)

5We will only need translation invariance in the upward and sideway direction, starting from

some level in N. So there is no contradiction with the fact that (2.11) and (2.12) differ.
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2.2.2. The generator in random environment. Throughout the sequel, we use the
symbols η, ζ to denote elements of ΩN and the symbol ξ to denote elements of ΩTN .

In random environment, we keep the definitions in Section 2.1.4, but we replace

the reshuffling-resampling operator L
(ΩN )
res in (2.20) by

(L(ΩN )
res (ω)F )(x)

=
∑
ξ∈ΩT

N

N−2|ξ|
∫

(0,1]

(Λξ(ω))∗(dr)

∫
E

yξ(da)
[
F
(
Φr,a,B|ξ|(x)

)
− F (x)

]
+
∑
η∈ΩN

(Ld0
η F )(x) (2.44)

with (Λξ(ω))∗(dr) = Λξ(ω)(dr)/r2, r ∈ (0, 1], where yξ ∈ P(E) is given by

yξ = N−|ξ|
∑
ζ∈B|ξ|

xζ , ξ ∈ ΩTN , (2.45)

and Φr,a,B|ξ| : P(E)ΩN → P(E)ΩN is the reshuffling-resampling map acting as[(
Φr,a,B|ξ|

)
(x)
]
ζ

=

{
(1− r)yξ + rδa, ζ ∈ B|ξ|,
xζ , ζ ∈ ΩN\B|ξ|,

r ∈ [0, 1], a ∈ E, ξ ∈ ΩTN .

(2.46)
The difference between (2.20) and (2.44) is that the resampling in blocks occurs
according to the resampling measure associated with the center of the block, labelled
by ΩTN . The full generator is

L(ΩN )(ω) = L
(ΩN )
mig + L(ΩN )

res (ω) (2.47)

with L
(ΩN )
mig the migration operator in (2.19).

3. Main theorems

In Section 3.1, we present results for fixed N , in Section 3.2, for N → ∞, the
hierarchical mean-field limit. In Section 3.3, we summarize the effects of the random
environment. Throughout the paper, the environment ω is fixed and we use the
symbol L[W ] to denote the law of a random variable W .

3.1. Results for fixed N . Section 3.1.1 establishes the well-posedness of the mar-
tingale problem, Section 3.1.2 the convergence to an equilibrium that depends on
ω.

3.1.1. Well-posedness of the martingale problem. We begin by establishing that
the martingale problem characterizes the process uniquely and specifies a strong
Markov process.

Theorem 3.1 (Well-posedness of the martingale problem). Fix N ∈ N\{1}.
For P-a.e. ω and every x ∈ P(E)ΩN , the (L(ΩN )(ω),F , δx)-martingale problem is
well-posed. The unique solution is a strong Markov process with the Feller property.
�
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The Markov process arising as the solution of the martingale problem is denoted
by

X(ΩN )(ω) = (X(ΩN )(ω; t))t≥0 = ((Xη(ω, t))η∈ΩN )t≥0, (3.1)

and is referred to as the hierarchical Cannings process on ΩN in the environment ω.
Theorem 3.1 does not actually need the second condition in (2.11). This condition
will be needed only later.

3.1.2. Dichotomy: coexistence versus clustering. We next show that the law of our
process converges to a limit law that depends on ω. Since the law P of ω is assumed
to be stationary and ergodic under translations in ΩTN (recall Section 2.2.1), the
limit law is stationary and ergodic under translations in ΩN , provided its initial
state is.

Theorem 3.2 (Equilibrium). Fix N ∈ N\{1}. Suppose that, under the law
P of ω, the law of the initial state X(ΩN )(ω; 0) is stationary and ergodic under
translations in ΩN , with mean single-coordinate measure

θ = E
[
X

(ΩN )
0 (ω; 0)

]
∈ P(E). (3.2)

Then, for P-a.e. ω, there exists an equilibrium measure νNθ (ω) ∈ P(P(E)ΩN ), aris-
ing as

lim
t→∞

L
[
X(ΩN )(ω; t)

]
= νNθ (ω), (3.3)

satisfying ∫
P(E)ΩN

x0 ν
N
θ (ω)(dx) = θ. (3.4)

Moreover, under the law P, νNθ (ω) is stationary and ergodic under translations in
ΩN . �

Note that νNθ (ω) depends on ω even though its mean single-coordinate measure θ
(which is determined by the initial state) does not. The proof of Theorem 3.2 is
based on a computation with the dual hierarchical Cannings process, which allows
us to control second moments. As we will see in Section 5, in random environment
this computation is delicate because it involves two random walks in the same
environment, and the difference of these two random walks is not a random walk
itself, like in the average environment.

Using the stationarity and ergodicity of νNθ , we next identify the parameter
regime for which νNθ (ω) is a multi-type equilibrium (= coexistence given ω), i.e.,

sup
f∈Cb(E)

∫
P(E)ΩN

νNθ (ω)(dx)

∫
E

[f(u)− 〈θ, f〉]2 x0(du) > 0 (3.5)

with 〈θ, f〉 =
∫
E
θ(du)f(u), respectively, a mono-type equilibrium (= clustering

given ω), i.e.,

νNθ (ω) =

∫
E

δ(δu)ΩN θ(du). (3.6)

The two regimes are complementary. In the latter regime the system grows mono-
type clusters that eventually cover any finite subset of ΩN , in the sense that the
probability to see only one type in the set at time t tends to 1 as t → ∞. (Types
may or may not change infinitely often in the course of time.)

Theorem 3.3 (Dichotomy for finite N). Fix N ∈ N\{1} and assume (2.43).
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(a) Let CN = {ω : in ω coexistence occurs}. Then P(CN ) ∈ {0, 1}.
(b) P(CN ) = 1 if and only if (recall (2.34)):∑

k∈N0

1

ck +N−1λk+1

k∑
l=0

λl <∞. (3.7)

�

Cox and Klenke (2000) give a criterion in the clustering regime for when the type
at a given site changes infinitely often. For interacting Fleming-Viot processes they
show that this happens as soon as θ is not a δ-measure. Because of the reasoning
in Section 5, we therefore get the following.

Corollary 3.4 (Change of types). In the clustering regime, if θ 6= δu for some
u ∈ E, then at every site the type changes infinitely often. �

3.2. Results for N → ∞. Our remaining theorems capture the space-time scaling
behaviour of our process in the hierarchical mean-field limit N →∞. In this limit,
the degree of recurrence/transience γ(N) tends to 0, while the Hausdorff dimension
d(N) tends to 2 (recall Remark 2.1), so that our process is near-critical 6.

In Section 3.2.1, we introduce a key process, called the McKean-Vlasov pro-
cess, which naturally arises in this limit 7 In Section 3.2.2, we define the random
environment for N = ∞. In Section 3.2.3 we look at the block averages on suc-
cessive space-time scales and show that as N → ∞ these converge to a sequence
of McKean-Vlasov processes with renormalized volatilities. In Section 3.2.5, we
identify the scaling behaviour of the volatility on hierarchical scale k in the limit
as k → ∞, which leads to various different cases as a function of c and Λ. In
Section 3.2.4, we identify the parameter regimes that correspond to coexistence,
respectively, clustering. In Section 3.2.6, we link the different cases of scaling to
five universality classes of cluster formation.

3.2.1. McKean-Vlasov process. We need some definitions and basic facts about the
McKean-Vlasov process from Greven et al. (2014).

Let F ⊆ Cb(P(E),R) be the algebra of functions F of the form

F (y) =

∫
En

y⊗n(du) f(u), y ∈ P(E), n ∈ N, f ∈ Cb(En,R). (3.8)

For c, d ∈ [0,∞), Λ ∈ Mf ([0, 1]) subject to (2.11) and θ ∈ P(E), let Lc,d,Λθ : F →
Cb(P(E),R) be the linear operator

Lc,d,Λθ = Lcθ + Ld + LΛ (3.9)

6View ΩN as embedded in its continuum version {(ηl)l∈Z ∈ {0, 1, . . . , N−1}Z :
∑
l∈N0

ηl <∞}
(recall (2.1)), and determine the growth of the volume of a ball as a function of its radius to find

the dimension d(N) in the metric η 7→ e|η|.
7For the special initial state of the mean-field system considered in Proposition 3.5 below, it is

not visible that θ is to be viewed as a functional of the law of the state. For general initial states
(i.e., exchangeable random states of the mean-field system), θ is a functional of the law of the state,

namely, it is de Finetti’s measure, which specifies the limit of the averages of all the components.
Consequently, the system is a non-linear Markov process, and the name McKean-Vlasov process
rather than “process with immigration-emigration” is appropriate.
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acting on F ∈ F as (recall (2.24))

(LcθF )(y) = c

∫
E

(θ − y) (da)
∂F (y)

∂y
[δa],

(LdF )(y) = d

∫
E

∫
E

Qy(du,dv)
∂2F (y)

∂y2
[δu, δv],

(LΛF )(y) =

∫
(0,1]

Λ∗(dr)

∫
E

y(da)
[
F
(
(1− r)y + rδa

)
− F (y)

]
.

(3.10)

The above three parts of Lc,d,Λθ correspond to:

(1) a drift towards θ of strength c (“immigration-emigration”);
(2) a Fleming-Viot diffusion with volatility d (“Moran resampling”);
(3) a Cannings process with resampling measure Λ (“Cannings resampling”).

This model arises as the M → ∞ limit of an individual-based model with M
individuals at a single site, with immigration at rate c from a constant source with
type distribution θ ∈ P(E), emigration at rate c to a cemetery state, diffusive
resampling at rate d, and Λ-resampling.

The following proposition was proved in Greven et al. (2014).

Proposition 3.5 (McKean-Vlasov martingale problem).

(a) For every y ∈ P(E), the martingale problem for (Lc,d,Λθ ,F , δy) is well-posed.
The unique solution is a strong Markov process with the Feller property.

(b) For every c ∈ (0,∞), the solution from (a) is ergodic in time: as t → ∞
its law converges to the unique equilibrium measure νc,d,Λθ , irrespective of
the initial state. For c = 0, the solution from (a) is not ergodic in time,

and ν0,d,Λ
θ is defined as the unique equilibrium measure, as t → ∞, when

the initial state is chosen to be y = θ, i.e., ν0,d,Λ
θ =

∫
E
θ(da) δa.

(c) For c > 0,

νc,d,Λθ = ν
1,d/c,Λ/c
θ . (3.11)

�

Denote by

Zc,d,Λθ =
(
Zc,d,Λθ (t)

)
t≥0

, Zc,d,Λθ (0) = θ, (3.12)

the solution of the martingale problem in Proposition 3.5 for the special choice
y = θ. This is called the McKean-Vlasov process with parameters c, d,Λ and initial
state θ.

3.2.2. Random environment for N = ∞. In order to be able to pass to the limit
N → ∞, we need to define a random environment for N = ∞ in which all the
random environments for finite N are embedded. To that end, define Ω∞ = ⊕NN0,
and let (recall (2.30))

ΩT∞ =
⋃
k∈N0

Ω(k)
∞ with Ω(k)

∞ = Ω∞/Bk(0). (3.13)

Note that for any N ∈ N there is a natural embedding of ΩTN into ΩT∞. Similarly
as in Section 2.2.1, we let

Λ(ω) =
{

Λξ(ω) : ξ ∈ ΩT∞
}

(3.14)
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be a random field of Mf ([0, 1])-valued resampling measures index by the full tree,
where ω again denotes the random environment. We retain the symbol P for the
law of of ω. As in (2.35)–(2.42), we assume that Λξ(ω) = λ|ξ|χ

ξ(ω) where, under

the law P, {χξ(ω) : ξ ∈ ΩT∞} is stationary under translations in ΩT∞, and is such
that the total masses ρξ(ω) = χξ(ω)((0, 1]) have first moment equal to 1, second
moment finite, and a trivial sigma-algebra at infinity. For any N ∈ N, the natural
restriction of the random field in (3.14) equals the random field in (2.34).

3.2.3. Renormalization via block averages. For each k ∈ N0, we look at the k-block
averages defined by (recall Fig. 2.1)

Y
(ΩN )
η,k (ω; t) =

1

Nk

∑
ζ∈Bk(η)

X
(ΩN )
ζ (ω; t), η ∈ ΩN , (3.15)

which constitute a renormalization of space where the component η is replaced by
the average of the components in Bk(η). After a corresponding renormalization of
time where t is replaced by tNk, i.e., t is the associated macroscopic time variable,
we obtain a renormalized interacting system((

Y
(ΩN )
η,k (ω; tNk)

)
η∈ΩN

)
t≥0

, k ∈ N0, η ∈ ΩN , (3.16)

which is constant in Bk(η) and can be viewed as an interacting system indexed

by the set Ω
(k)
N (see Fig. 2.1). This provides us with a sequence of renormalized

interacting systems, which for fixed N are not Markov.
The key ingredient to study the N → ∞ limit of (3.16) is the following. Let

d = (dk)k∈N0 be the sequence of volatility constants defined recursively as (compare
with Greven et al., 2014, Eq. (1.45))

dk+1 = ELρ
[
ck(µkρ+ dk)

ck + (µkρ+ dk)

]
, k ∈ N0, (3.17)

where

µk = 1
2λk, k ∈ N0, (3.18)

ρ is the (0,∞)-valued random variable whose law Lρ is the same as that of ρ0(ω)
under P (recall (2.41–2.42)), and ELρ is expectation w.r.t. Lρ. For fixed c, Λ and
d0, the recursion in (3.17) determines d. The right-hand side is the average of a
random Möbius transformation that depends on ρ. Recall that ρ has mean 1 and
strictly positive variance.
Heuristics behind the recursion formula for the volatilities. In order to understand
the recursion formula in (3.17), we consider the 1-block around the origin 0 on time
scale Nt and let N → ∞. Note that, in this limit, the time scales for the jumps
to different levels separate (recall (2.6)), so that we can focus on each of the time
scales separately.

If we randomly draw two lineages from the 1-block and ask whether they have a
common ancestor some time back (so that they are of the same type), then we get
exactly the event that generates the variance of the 1-block average (otherwise the
lineages and their types would be independent and would have an asymptotically
vanishing contribution to the variance). The fact that the lineages behave like a
spatial coalescent follows from the duality formally introduced in Section 4. The
lineages have to meet in order to have a common ancestor, which takes them a time
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of order Nt. Note that triples of lineages have a negligible probability to meet at
times of order Nt in the limit of N →∞.

If the lineages meet, then they may coalesce. This happens at rate

λ(η,0)(ω) = Λ(η,0)((0, 1])(ω) (3.19)

when they both sit at η ∈ Ω. However, they may also move before they coalesce, i.e.,
make a migration jump away, which happens with probability 2c0/(2c0 +λ(η,0)(ω)).
Hence the effective coalescence rate is λ(η,0)(ω)[2c0/(2c0 + λ(η,0)(ω))]. Since the
vertex where the lineages meet is uniformly distributed over the 1-block, the average
rate is given by

E
[

2c0λ0ρ(ω)

2c0 + λ0ρ(ω)

]
, (3.20)

where we use that λ(η,0)(ω) has the same distribution as λ0ρ(ω) (recall (2.35)–
(2.39)). If we would have a diffusive part as well, at constant rate 2d0, then the
lineages would coalesce at the same rate but with λ(ω) replaced by 2d0 + λ(ω).
Since the volatility turns out to be equal to this rate, we get the recursion formula

2d1 = E
[

2c0(2d0 + λ0%(ω))

2c0 + (2d0 + λ0%(ω))

]
. (3.21)

By the same reasoning for k-blocks on time scale tNk, we get a heuristic explanation
for the recursion formula in (3.17).

Our next theorem states that for each k ∈ N0 the k-block averages in the limit
as N →∞ evolve according to the McKean-Vlasov process defined in Section 3.2.1
with certain k-dependent parameters.

Theorem 3.6 (Hierarchical mean-field limit and renormalization). Suppose
that for each N the random field X(ΩN )(ω; 0) is the restriction to ΩN of a random
field X(ω) indexed by Ω∞ =

⊕
N N0 that is i.i.d. with single-component mean θ ∈

P(E). Then, for P-a.e. ω and every k ∈ N and η ∈ Ω∞,

lim
N→∞

L
[(
Y

(ΩN )
η,k (ω; tNk)

)
t≥0

]
= L

[(
Z
ck,dk,Λ

MCk(η)(ω)
θ (t)

)
t≥0

]
, (3.22)

where (recall (2.33), (2.35) and (3.12))

MCk(η) = unique site in ΩT∞ at height k above η ∈ Ω∞, (3.23)

i.e., the label of the block (= macro-colony) of radius k in Ω∞ around η ∈ Ω∞ (see
Fig. 2.1). The same is true for k = 0 when the initial condition for the McKean-

Vlasov process in the right-hand side of (3.22) is Z
c0,d0,Λ

η(ω)
θ (0) = X(ΩN )(ω; 0)

instead of Z
c0,d0,Λ

η(ω)
θ (0) = θ. �

Note that among the parameters ck, dk,Λ
MCk(η)(ω) of the limiting McKean-

Vlasov process, the volatility dk is the result of a self-averaging with respect to the
random environment up to and including level k, as exemplified by (3.17). It is
through this recursion relation that the renormalization manifests itself.

Our next theorem looks at successive block averages simultaneously.

Theorem 3.7 (Multi-scale analysis and the interaction chain). Let (tN )N∈N
be such that

lim
N→∞

tN =∞ and lim
N→∞

tN/N = 0. (3.24)
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Then, for P-a.e. ω, every j ∈ N and every η ∈ Ω∞,

lim
N→∞

L
[(
Y

(ΩN )
η,k (ω; tNN

k)
)
k=j+1,j,...,0

]
= L

[(
M

(j)
η,k(ω)

)
k=−(j+1),−j,...,0

]
,

(3.25)

where M
(j)
η (ω) = (M

(j)
η,k(ω))k=−(j+1),−j,...,0 is the time-inhomogeneous Markov

chain with initial state

M
(j)
η,−(j+1)(ω) = θ, (3.26)

and transition kernel from time −(k + 1) to −k given by

Kη,k(ω; θ, ·) = ν
ck,dk,Λ

MCk(η)(ω)
θ (·). (3.27)

�

The right-hand side of (3.24) describes the large space-time scaling behaviour of
our hierarchical Cannings process.

Definition 3.8 (Interaction chain). M
(j)
η (ω) is called the interaction chain at

level j at location η ∈ Ω∞ given ω. �

Remark 3.9. Theorem 3.7 only specifies the limiting distribution of the one-dimen-
sional spatial marginals, i.e., the single interaction chains. Similarly as in Dawson
et al. (1995, Section 0e), it is possible to also specify the joint distribution of the
interaction chains, which can be viewed as a field of Markov chains indexed by ΩT∞.
�

An important characteristic of M
(j)
η is the variance of M

(j)
η,0, calculated as

Var〈M (j)
η,0, f〉 =

j∏
k=0

2ck
2ck + λkρk + 2dk

Varθ(f). (3.28)

This shows that a key ingredient for M
(j)
η is the sequence of volatilities d = (dk)k∈N0

and the way this sequence grows or decays. How is this affected by the randomness
of the environment?

Our next theorem shows that the volatility dk in the random environment can
be sandwiched between the volatility d0

k in the zero environment (Lρ = δ0, i.e.,
the system without resampling) and the volatility d1

k in the average environment
(Lρ = δ1, i.e., the system with average resampling).

Theorem 3.10 (Randomness lowers volatility). If d0
0 = d0 = d1

0, then d0
k <

dk < d1
k for all k ∈ N. �

3.2.4. Dichotomy for the interaction chain. How are the qualitative properties of
the Cannings process for large N reflected in the interaction chain? What about
the dichotomy clustering versus coexistence? Before answering these questions we
need to first establish the existence of the entrance law of the interaction chain from
level ∞, which we will obtain from the level j interaction chain as limit j → ∞.
With this object, we can address the question of coexistence versus clustering.

Proposition 3.11 (Entrance law of interaction chain exists).

The limit as j →∞ of M
(j)
η exists. �
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The object corresponding to the equilibrium of the stochastic system for finite
N in the hierarchical mean-field limit N → ∞ is the field of entrance laws of the
interaction chain from level ∞ (recall Remark 3.9), in particular, its marginal law
Πηνθ(ω) at level 0 in η, which is element of P(P(E).

Definition 3.12 (Entrance law of interaction chain). For P-a.e. ω and all
η ∈ Ω∞,

lim
j→∞

L
[
M

(j)
η,0(ω)

]
= Πηνθ(ω), (3.29)

where νθ(ω) ∈ P(P(E))Ω∞ is the entrance law from level ∞ of the (tree-indexed)
interaction chain at level 0, and Πηνθ(ω) denotes the projection of νθ(ω) on η. �

Our next theorem is indeed the analogue of Theorem 3.3 for N → ∞. In this

limit, coexistence and clustering in ω are defined for (M
(∞)
η,0 )η∈ΩN in the same way

as in (3.5)–(3.6).

Theorem 3.13 (Dichotomy for N =∞).

(a) Let C = {ω : in ω coexistence occurs}. Then P(C) ∈ {0, 1}.
(b) P(C) = 1 if and only if ∑

k∈N0

1

ck

k∑
l=0

λl <∞. (3.30)

�

Note that condition (3.30) is the limit of condition (3.7) as N → ∞. In fact, the
two conditions are equivalent when the following weak regularity condition holds:

either lim sup
k→∞

λk+1

ck
<∞ or lim inf

k→∞

(
λk+1

ck
∧ λk
λk+1

)
> 0. (3.31)

An important question is whether the equilibrium measure νθ(ω) is the limit as
N → ∞ of the equilibrium measure νNθ (ω) (recall (3.3)). The answer is yes. We
only prove the following.

Corollary 3.14 (Hierarchical mean field limit of equilibrium).
For P-a.e. all ω and all η ∈ Ω∞,

lim
N→∞

Πην
N
θ = Πηνθ. (3.32)

�

3.2.5. Scaling of the volatility. We are interested in the behaviour of the variance
of the interaction chain M (j) as j → ∞, since this allows us to identify universal-
ity classes for the scaling behaviour of our stochastic system. From the variance
formula, we see that (dk)k∈N0 is the key input, and so we study this sequence first.
Note that the variance formula only depends on the ratios dk/ck, µk/dk, which we
encounter and analyze below.

Our next two theorems identify the scaling behaviour of dk as k → ∞ in the
regime of clustering. The first theorem considers the case of polynomial coefficients,
i.e.,

ck ∼ Lc(k) ka, µk ∼ Lµ(k) kb, k →∞, (3.33)
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with a, b ∈ R and Lc, Lµ slowly varying at infinity. In what follows, we assume that

K = lim
k→∞

µk
ck
∈ [0,∞], L = lim

k→∞

k2µk
ck
∈ [0,∞], (3.34)

exist and write Kk and Lk for the respective sequences. There are five cases ac-
cording to the values of K and L. Four of these, labelled (a)–(d), we can analyze
in detail. For the remaining case, labelled (e), see Remark (3.16). For cases (c)–
(d), we need extra regularity conditions on Lc, Lµ in (3.33), for which we refer the
reader to Greven et al. (2014, Eqs. (1.79)–(1.81)).

Theorem 3.15 (Scaling of the Fleming-Viot volatility: polynomial coeffi-
cients).
Under the polynomial scaling assumptions (3.33)–(3.34), the following cases apply:

(a) If K =∞, then limk→∞ dk/ck = 1.
(b) If K ∈ (0,∞), then limk→∞ dk/ck = M with M ∈ (0, 1) the unique solution

of the equation

M = ELρ
[

(Kρ+M)

1 + (Kρ+M)

]
. (3.35)

(c) If K = 0 and L =∞, then limk→∞ dk/
√
ckµk = 1.

(d) If K = 0, L ∈ [0,∞) and a ∈ (−∞, 1), then limk→∞ σkdk = M with

σk =
∑k−1
l=0 (1/cl) and M ∈ [1,∞) given by

M = 1
2

[
1 +

√
1 + 4L/(1− a)2

]
. (3.36)

�

Remark 3.16. It is straightforward to check with the help of (3.33)–(3.34) that all
four cases (a)-(d) correspond to choices of c and λ for which clustering holds, i.e.,
the sum in (3.30) diverges (note that limk→∞ σk =∞ in case (d)). However, they
are not exhaustive: there is a fifth case (e), corresponding to K = 0, L ∈ [0,∞),
a = 1 and limk→∞ σk = ∞, for which we have no scaling result. This case lies at
the border of the clustering regime. An example is ck ∼ k(log k)γ , γ ∈ (−∞, 1], and
µk = k−2ck, which we were able to handle in the deterministic model in Greven
et al. (2014), but cannot handle in the random model treated here. �

The second theorem considers the case of exponential coefficients, i.e.,

ck = ck c̄k, µk = µkµ̄k (3.37)

with c, µ ∈ (0,∞) and c̄k, µ̄k satisfying (3.33) with exponents a, b. We further
assume that

K̄ = lim
k→∞

µ̄k
c̄k
∈ [0,∞], we write K̄k =

µ̄k
c̄k
. (3.38)

exists.

Theorem 3.17 (Scaling of the Fleming-Viot volatility: exponential coef-
ficients).
Under the exponential scaling assumptions in (3.37)–(3.38), the following cases ap-
ply (cf. Theorem 3.15):

(A) [Like Case (a)] c < µ, or c = µ and K̄ =∞: limk→∞ dk/ck = 1/c.



318 A. Greven, F. den Hollander and A. Klimovsky

(B) [Like Case (b)] c = µ and K̄ ∈ (0,∞): limk→∞ dk/ck = M̄/c with M̄ ∈
(0, 1) the unique solution of the equation

M̄ = ELρ
[

(cKρ+ M̄)

c+ (cKρ+ M̄)

]
. (3.39)

(C) The case K̄ = 0, with c = µ or c > µ, splits into three sub-cases:
(C1) [Like Case (b)] c = µ < 1, K̄ = 0: limk→∞ dk/ck = (1− c)/c.
(C2) [Like Case (c)] c = µ > 1, K̄ = 0,

∑
k∈N0

K̄k =∞: 8 limk→∞ dk/µk =

1/(µ− 1).
(C3) [Like Case (d)] 1 > c > µ and K̄ = 0, or 1 = c > µ, K̄ = 0 and

a ∈ (−∞, 1): limk→∞ σkdk = 1.

�

The same observation as in Remark 3.16 applies. Again, the critical case a = 1 is
missing in (C3).

3.2.6. Cluster formation. Within the clustering regime it is of interest to study the
size of the mono-type regions as a function of time, i.e., how fast the clusters where
one type prevails grow.

This question has been addressed for other population models. For the voter
model on Z2, Cox and Griffeath (1986) showed that the radii of the clusters with
opinion “all 1” or “all 0” scale as tα/2 with α ∈ [0, 1), i.e., clusters occur on all scales
α ∈ [0, 1). For the model of hierarchically interacting Fleming-Viot diffusions with
ck ≡ 1 (= critically recurrent migration), Fleischmann and Greven (1994) showed
that, for all N ∈ N \ {1} and all η ∈ ΩN ,

lim
t→∞

L
[(
Y

(ΩN )
η,b(1−α)tc(N

t)
)
α∈[0,1)

]
= L

[(
Y

(
log

(
1

1− α

)))
α∈[0,1)

]
(3.40)

in the sense of finite-dimensional distributions, where (Y (t))t∈[0,∞) is the standard
Fleming-Viot diffusion on P(E). A similar behaviour occurs for other models, e.g.,
branching models as shown in Dawson and Greven (1996).

The advantage of the hierarchical group is that we can analyze the cluster for-
mation as a function of N and let N →∞ to approach the critically recurrent case
(recall Remark 2.1). We can do this by using the interaction chain. In Greven et al.
(2014), we analysed the Cannings model in the limit as N →∞, namely, we proved
that for some level scaling function k : N0 → N0, satisfying 0 ≤ k(j) ≤ j + 1 and
limj→∞ k(j) =∞, we obtained a non-trivial clustering limiting law (henceforth we
pick η = 0 and drop it from the notation)

lim
j→∞

L
[
M

(j)
−k(j)

]
= L

[
M∞

]
(3.41)

for some M∞ ∈ P(E) satisfying E[M∞] = E[X
(ΩN )
0 (0)] = θ ∈ P(E) that is not of

the form M∞ = δU for some possibly random U ∈ E. We will do the same in the
random environment ω, namely, our aim is to show that for P-a.e. ω

lim
j→∞

L
[
M

(j)
−k(j)(ω)

]
= L

[
M∞(ω)

]
(3.42)

8In Greven et al. (2014), the condition
∑
k∈N0

K̄k =∞ was mistakenly omitted.
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for some M∞(ω) ∈ P(E) satisfying E[M∞(ω)] = θ that is not of the form M∞(ω) =
δU(ω) for some possibly random U(ω) ∈ E.

As in Dawson and Greven (1993); Dawson et al. (1995); Dawson and Greven
(1996), and similarly as in (3.40), in order to obtain the profile of cluster formation
it is necessary to consider a whole family of scalings kα : N0 → N0, α ∈ I, with I =
N0, I = [0,∞) or I = [0, 1), and with j 7→ kα(j) non-decreasing, 0 ≤ kα(j) ≤ j + 1
and limj→∞ kα(j) =∞, such that

lim
j→∞

L
[
M j
−kα(j)(ω)

]
= L [M∗α(ω)] for P-a.e. ω and all α ∈ I, (3.43)

for some non-constant Markov process M∗ = (M∗α(ω))α∈I on P(E) that preserves
the mean θ. The convergence in (3.43) is in the weak topology on the product space
of P(E) and the space of the environment.

There are five universality classes of clustering behaviour (see Dawson and
Greven, 1996):

Definition 3.18 (Clustering classes).

(I) Concentrated clustering (M∗ is a Markov chain):
(I1) kα(j) = 0 ∨ (j + 1− α), α ∈ N0, M∗ is trapped after one step.
(I2) kα(j) = 0 ∨ (j + 1− α), α ∈ N0, M∗ is not trapped.

(II) Diffusive clustering (M∗ is a diffusion process):
(II1) Fast clustering : kα(j) = 0∨bj+1−αh(j)c, α ∈ [0,∞), where h : N0 →

[0,∞) is such that limj→∞ h(j) =∞ and limj→∞ h(j)/j = 0.
(II2) Moderate clustering : kα(j) = b(1− α)(j + 1)c, α ∈ [0, 1).
(II3) Slow clustering : limj→∞ kα(j)/j = 0, α ∈ [0, 1).

(The terminology is slightly different from Greven et al., 2014.) The volume of the
clusters at time t in these five universality classes (arranged in decreasing order
of magnitude) equals, respectively, N t, ZN t, N t−o(t), NZt, No(t), with Z ∈ (0, 1)
some random variable. Note that slow clustering borders with the regime of coex-
istence (= no clustering).

Recall (a)-(d) in Theorem 3.15 and (A)-(C) in Theorem 3.17. Recall that, under
the law P, the law of the initial state X(ΩN )(ω; 0) is stationary and ergodic under
translations in ΩTN , with mean single-coordinate measure

θ = E[X
(ΩN )
0 (ω; 0)] ∈ P(E). (3.44)

The interaction chain on level j, arising in the scaling limit N → ∞, starts in θ.
We need this for the scaling limit j →∞.

Theorem 3.19 (Cluster formation). Fix N ∈ N\{1}. The five universality
classes in the regime of clustering, linked to the different cases of scaling behaviour
of (dk)k∈N, are as follows:

• (a), (A): The scaling in regime (I1) yields (3.43) with I = N0. The scaling
limit M∗ is the time-homogeneous Markov chain on P(E) starting in θ with
transition kernel K(θ, ·) given by

K(θ, ·) =

∫
E

θ(du)δδu(·), (3.45)

which satisfies Kα = K, for all α ∈ N.
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• (b), (B), (C1), (C3)[first subcase]: The scaling in regime (I2) yields
(3.43) with I = N0. The scaling limit M∗ is the time-inhomogeneous
Markov chain on P(E) in random environment (χα)α∈N0 starting in θ with
transition kernels {Kα(θ, ·)(ω)}α∈N0 given by (recall (3.11))

Kα(θ, ·)(ω) = ν
1,M̃,2K̃χα(ω)
θ (·) (3.46)

with

(M̃, K̃) =


(M,K), (b),

(M̄/c, K̄), (B),

((1− c)/c, 0), (C1), (C3)[first subcase].

(3.47)

In the last two cases, the random environment does not affect the scaling
limit, and the scaling is the same as for the homogeneous environment
with the same mean. In the first two cases, the measure-valued process
(χα(ω))α∈N0

in (3.46) is constructed by extending the one-sided stationary
random environment (χ(η,k)(ω))η∈ΩN , k∈N0

introduced in (2.36) to a two-

sided stationary random environment (χ(η,k)(ω))η∈ΩN , k∈Z, and defining

L[(χα(ω))α∈N0
] = L[(χ(η,−α)(ω))α∈N0

], η ∈ ΩN , (3.48)

which by stationarity does not depend on η. Furthermore, χα(ω) is an
Mf ([0, 1])-valued resampling measure with E[χα(ω)] = χ̄α satisfying

χ̄α((0, 1]) = 1. (3.49)

• (c), (C2)[subcase limk→∞ kK̄k =∞]: The scaling in regime (II1) yields
(3.43) with I = [0,∞). The scaling limit M∗ is the time-changed standard
Fleming-Viot process

M∗α = Z0,1,0
θ (`(α)) , α ∈ [0,∞) (3.50)

with
– (c): `(α) = α, h(j) = 1/

√
Kj.

– (C2)[limk→∞ kK̄k =∞]: `(α) = µ
µ−1α, h(j) = 1/Kj.

• (d), (C2)[subcase limk→∞ kK̄k = N̄ ], (C3)[second subcase]: The
scaling in regime (II2) yields (3.43) with I = [0, 1). The scaling limit M∗

is the time-changed standard Fleming-Viot process 9

M∗α = Z0,1,0
θ

(
log

(
1

(1− α)R

))
, α ∈ [0, 1) (3.51)

with
– (d): R = M(1− a).
– (C2)[subcase limk→∞ kK̄k = N̄ ]: R = N̄ µ

µ−1 .

– (C3)[second subcase]: R = 1− a.

For reasons explained in Remark 8.2, in cases (c), (d), (C2), (C3)[second sub-
case] only convergence in P-probability and not P-a.s. is obtained. �

Remark 3.20. We expect that also slow clustering occurs, namely, in the case (e)
that was not treated in Theorems 3.15 and 3.17 (recall Remark 3.16). �

9Greven et al. (2014) contains a typo: there the time scaling 1/(1− α)R was wrongly written

as 1/(1− αR).
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3.3. Summary of the effects of the random environment.
1. Theorem 3.1 says that the hierarchical Cannings process in random environment
is well-defined for P-a.e. ω, while Theorem 3.2 shows that it converges to an ω-
dependent equilibrium that preserves the single-component mean.
2. Theorem 3.6 (mono-scale) and Theorem 3.7 (multi-scale) identify the behaviour
of the k-block averages in the limit as N → ∞ in terms of the McKean-Vlasov
process with parameters that depend on ω and k. The volatility dk depends on the
parameters cl, λl, 0 ≤ l < k, and on the law Lρ via the recursion relation in (3.17),
which is a randomized version of the recursion relation in Greven et al. (2014).
3. Theorems 3.3 and 3.13 show that the dichotomy “coexistence versus clustering”
is not affected by the random environment: the same conditions apply to the homo-
geneous hierarchical Cannings process studied in Greven et al. (2014). Apparently,
for the nature of the equilibrium only the large-scale properties of the random
environment matter. Since the resampling measures are stationary under transla-
tions with total masses whose sigma-algebra at infinity is trivial, only the average
medium behaviour is relevant. The proof of the dichotomy in Theorem 3.3 requires
assumption (2.43) rather than assumption (2.41). We believe this strengthening to
be redundant, but a proof would require considerable extra work.
4. Theorem 3.10 shows that the effect of the random environment is to lower the
volatility parameter dk on every hierarchical scale k compared to the average envi-
ronment. The intuition behind this is that the random environment causes fluctua-
tions in the resampling, which in turn reduce the clustering. The sandwich between
the volatilities for the zero environment and the average environment is useful to
control the scaling.
5. Theorem 3.15 (polynomial coefficients) and Theorem 3.17 (exponential coeffi-
cients) show that for Cases (b) and (B), where migration and resampling occur at
comparable rates, the phenomenon of lower volatility dk in random environment
persists in the limit as k → ∞: even though the scaling of dk as k → ∞ is the
same as for the average environment, it has a different prefactor (e.g. M solving
(3.35) is strictly smaller than M∗ solving (3.35) with Lρ replaced by δ1, as is easily
shown by applying Jensen’s inequality). For all other cases both the scaling and
the prefactor are the same as for the average environment.
6. Theorem 3.19 shows that for Cases (b), (B), (C1), (C3)[first subcase] the scaling
of the clusters in the random environment changes compared to that in the average
environment: the random environment is visible even in the scaling limit. The
effect of the random environment is to slow down the growth of the clusters, i.e., to
enhance the diversity of types. For all other cases the scaling of the clusters is the
same as for the average environment.

4. Existence, uniqueness, duality and equilibrium

In this section, we prove Theorems 3.1–3.2. In Section 4.1, we construct the
dual process with the help of a graphical representation based on Poisson random
measures. In Section 4.2, we exhibit the duality. In Section 4.3, we establish the ex-
istence and uniqueness of the dual process and show the existence of its equilibrium.
In Section 4.4, we use these results to prove Theorems 3.1–3.2. Theorems 4.1–4.4
below do not need a separate proof: this is verbatim the same as the proof for the
homogeneous environment given in Greven et al. (2014).
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4.1. The spatial coalescent in random environment. In this section, we introduce a
hierarchical coalescent process in random environment that will serve as a dual to
the hierarchical Cannings process in random environment.

The coalescent is a Markov process taking values in the set of partitions of N
labelled by the points of a geographical space. We recall the basic objects and
notations, and refer to Greven et al. (2014, Section 2) for details.

LetG be a discrete geographical space. Our target geographical space isG = ΩN .
This will be approximated by a sequence of geographical spaces

GN,K = {0, . . . , N − 1}K , K ∈ N, (4.1)

which are to be thought of as a sequence of blocks filling ΩN . We will also need to
consider the mean-field geographical space

G = {0, ∗}, (4.2)

where {∗} is a cemetery location. The state space of the spatial coalescent is the
set of G-labelled partitions defined as

ΠG,n =
{
πG = {(π1, g1), (π2, g2), . . . , (πb, gb)} : (4.3)

{π1, . . . , πb} ∈ Πn, g1, . . . , gb ∈ G, b ∈ [n]
}
, (4.4)

where n ∈ N and

Πn = set of partitions π = {πi ⊂ [n]}bi=1 of [n] into disjoint families πi, i ∈ [b].
(4.5)

We equip the set ΠG,n with the discrete topology. Let a be a continuous-time
random walk transition (rate) kernel on G. When G = ΩN we use the hierarchical
random walk with kernel a = a(N) in (2.6), when G = GN,K we use the same
hierarchical random walk kernel but with ck = 0 for k > K, and when G = {0, ∗}
we use the random walk with kernel a(0, ∗) = c, a(∗, 0) = 0.

Given the random environment ω (recall Section 2.2.1), the spatial coalescent in
random environment is the Markov process on state space ΠG,n with the following
dynamics:

• [Migration] Each partition block performs an independent random walk
on G with random walk kernel a∗, where a∗(g1, g2) = a(g2, g1), g1, g2 ∈ G,
is the conjugate random walk kernel.

• [Local coalescence] Independently at each location g ∈ G, the l-tuples of
the partition elements at g coalesce into a single partition element at g at
rate

λb,l(ω) =

∫
(0,1]

rl(1− r)b−lΛ
[g](ω)(dr)

r2
, (4.6)

where b is the current total number of partition elements and Λ[g](ω) is the
resampling measure at g in environment ω.
• [Non-local coalescence with reshuffling] In the case G = ΩN , inde-

pendently at each location g ∈ B|ξ|, ξ ∈ ΩTN , the l out of b tuples of the
partition elements in B|ξ| coalesce into a single partition element at g at
rate

N−2kλ
(ξ)
b,l (ω), λ

(ξ)
b,l (ω) =

∫
(0,1]

rl(1− r)b−lΛ
ξ(ω)(dr)

r2
. (4.7)
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Subsequently, all the partition elements located in B|ξ| are uniformly reshuf-
fled, i.e., all the partition elements in B|ξ| get a new location that is drawn
uniformly from B|ξ|. In what follows, denote by

b(ξ) = b(πΩN ,n, B|ξ|) = |{(πi, ηi) ∈ πΩN ,n : ηi ∈ B|ξ|}| ∈ N (4.8)

the total number of partition blocks with labels in B|ξ|.

Note that in the case G = ΩN the partition elements of the coalescent perform a
hierarchical random walk on ΩN in the environment ω with migration coefficients
given by (recall (2.6))

ck(ω)(N, η) = ck +N−1 λMCk+1(η)(ω), η ∈ ΩN , k ∈ N0, (4.9)

where MCk(η) is the unique site at height k above η ∈ ΩN and λMCk+1(η)(ω) =
ΛMCk+1(η)(ω) ((0, 1]) (recall the notation introduced in Section 2.2 and see Fig. 2.3).
The extra term in the right-hand side of (4.9) comes from the reshuffling that takes
place prior to the resampling.

The coalescence rate of two partition elements in B|ξ| equals (recall (2.39))

N−2|ξ|λξ(ω), λξ(ω) = λ|ξ|ρ
ξ(ω), ξ ∈ ΩTN . (4.10)

We specify the spatial coalescent as a Markov process on ΠG = ∪n∈NΠG,n by
providing its generator. To that end, we need a space of test functions on ΠG.
Namely, let CG be the algebra of bounded continuous functions F : ΠG → R such
that for all F ∈ CG there exists an n = n(F ) ∈ N and a bounded function

Fn : ΠG,n → R (4.11)

with the property that F (·) = Fn(·|n). Consider the linear operator L(G)∗(ω) : CG →
CG defined as

L(G)∗(ω) = L
(G)∗
mig + L

(G)∗
coal (ω), (4.12)

where the operators L
(G)∗
mig , L

(G)∗
coal (ω) : CG → CG are defined for πG ∈ ΠG and F ∈ CG

as

(L
(G)∗
mig F )(πG) =

b(πG|n)∑
i=1

∑
g,f∈ΩN

a∗(g, f)
[
Fn
(
migg→f,i(πG,n)

)
− F (πG)

]
(4.13)

and

(L
(G)∗
coal (ω)F )(πG) =

∑
k∈N0

∑
ξ∈Ω

(k)
N

N−2k

×
∑

J⊂[b(ξ)],
|J|≥2

(
λ

(ξ)
b(ξ),|J|(ω)

[
Fn
(
reshB|ξ| ◦ coalJ,ξ(πΩN ,n)

)
− F (πΩN )

]) (4.14)

Here, the migration map migg→f,i(πG|n) changes the spatial coordinate of the i-th
partition block from g to f (if such a partition element exists), the coalescence
map coalJ,g(πG,n) coalesces the partition blocks with indices in J and location g
(if any) into one block, while the reshuffling map reshB|ξ| independently relocates
each partition element located in B|ξ| to a new location in B|ξ| that is randomly
chosen.

Theorem 4.1 (Existence and uniqueness). For every π ∈ ΠG,
the (L(G)∗(ω), CG, δπ)-martingale problem is well-posed. �
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We denote the solution of the (L(G)∗(ω), C(G), δπ)-martingale problem by

C(G)(ω) =
(
C(G)(ω; t)

)
t≥0

, C(G)(ω; 0) = δπ. (4.15)

For every n ∈ N, when restricted to ΠG,n, C(G)(ω) becomes a strong Markov process

C
(G)
n (ω) with the Feller property.

4.2. Dualities. By a slight abuse of notation, we associate with π ∈ Πn the mapping
π : [n] → [b] defined as π(i) = k, where k ∈ [b] is such that i ∈ πk. In words: k is
the label of the unique family containing i.

Consider the map

H(n)
ϕ (x, πG,n) =

∫
Eb

(
b⊗
i=1

xgπ−1(i)

(
dui
))

ϕ
(
uπ(1), . . . , uπ(n)

)
, (4.16)

where n ∈ N, φ ∈ Cb(P(E)n), x = (xη)η∈G ∈ P(E)G,

πG,n = {(π1, g1), . . . , (πb, gb)} ∈ ΠG,n, {π1, . . . , πb} ∈ Πn, g1, . . . , gb ∈ G,
(4.17)

b = b(πG,n) = |πG,n| and

π−1(k) = min{i ∈ [n] : π(i) = k}, k ∈ [b]. (4.18)

Theorem 4.2 (Duality). Fix N ∈ N\{1}. For each of the choices G in (4.1) and
(4.2),

E[H(n)
ϕ (X(G)(ω, t),C(G)(ω, 0)|n)] = E[H(n)

ϕ (X(G)(ω, 0),C(G)(ω, t)|n)] (4.19)

for all n ∈ N and φ ∈ Cb(P(E)n), where the same ω is used on both sides. �

This theorem is a consequence of the generator relation(
L(G)(ω)H(n)

ϕ (·, πG,n)
)

(x) =
(
L(G)∗(ω)H(n)

ϕ (x, ·)
)

(πG) for P-a.e. ω. (4.20)

This relation has been verified for the homogeneous model in Greven et al. (2014),
but here works the same.

4.3. Well-posedness of the martingale problems and equilibria. Theorem 3.1 can be
formulated for geographic spaces that are countable Abelian groups, in particular,
the hierarchical group and the Euclidean lattice. For us the following generalization
of Theorem 4.1 suffices.

Theorem 4.3 (Well-posedness). For each of the choices G in (4.1) and (4.2), the
following holds: For P-a.e. ω and every π ∈ ΠG, the (L(G)(ω), C(G), δπ)-martingale
problem is well-posed. �

Theorem 4.4 (Equilibrium). Fix N ∈ N\{1}. Fix n ∈ N and start the C(ΩN )(ω)-
process in a labelled partition {(πi, ηi)}ni=1, where {πi}ni=1 form a partition of N and
{ηi}ni=1 represent the labels. If x is a random state with mean θ ∈ P(E) whose law
is invariant and ergodic under translations, then

lim
t→∞

L
[
H(n)
ϕ

(
x,C(ΩN )

n (ω; t)
)]

= L
[
H(n)
ϕ

(
θ,C(ΩN )

n (∞)
)]

for P-a.e. ω (4.21)

for all φ ∈ Cb(P(E)n). �
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In order to prove Theorem 4.4, we follow the argument in Dawson et al. (1995,
Section 3)). The partition-valued process converges to a limiting partition. If the
locations of the partition elements would follow a homogeneous random walk, then
the key to the argument would be the averaging property one can prove via Fourier
analysis

lim
t→∞

∑
ζ∈ΩN

pt(η, ζ)f(ζ) =

∫
ΩN

f(ξ)ν(dξ) ∀ η ∈ ΩN , f ∈ Cb(ΩN ), (4.22)

where pt(·, ·) is the time-t transition kernel of the random walk on ΩN and ν(·) is
the Haar measure on ΩN (see Evans and Fleischmann, 1996). We need to show
that the same holds for our random walk in random environment ω, which goes as
follows.

Place a Poisson clock at every ξ ∈ ΩTN\ΩN . Let the clock at ξ ring at rate

N−(|ξ|−1)
[
c|ξ|−1 +N−1λξ(ω)

]
. (4.23)

At any moment of time, let the random walk look at the ancestral line above its
current position (see Fig. 2.3) and redistribute itself uniformly over the block around
its current position whose hierarchical label corresponds to the height of the first
clock on that ancestral line that rings. The resulting random walk is the same as
the hierarchical random walk in environment ω with migration coefficients given by
(4.9).

Next, let Kt(η) be the highest hierarchical level at which prior to time t a Poisson
clock that lies on the ancestral line above η has rang. Then at time t the random
walk starting from η is uniformly distributed on the Kt(η)-block around η. Hence
we have∑

ζ∈ΩN

pωt (η, ζ)f(ζ) =
∑
k∈N0

P (Kt(η) = k)

×

N−k ∑
ζ∈Bk(η)

f(ζ) +
∑

ζ∈ΩN\Bk(η)

pωt (η, ζ)f(ζ)

 , (4.24)

where pωt (·, ·) is the time-t transition kernel of the random walk in ω. Fix η ∈
ΩN and f ∈ Cb(ΩN ). The first term between the square brackets in (4.24)
tends to

∫
ΩN

f(ξ)ν(dξ) as k → ∞. The second term is bounded from above by

‖f‖∞ pωt (η,ΩN\Bk(η)), which tends to zero as k → ∞. Finally, since all Poisson
clocks ring at a strictly positive rate, we have

P
(

lim
t→∞

Kt(η) =∞
)

= 1. (4.25)

It therefore follows that the right-hand side of (4.24) tends to the right-hand side
of (4.22) as t→∞.

4.4. Consequences for the Cannings process. The claims in Theorems 3.1–3.2 follow
from Theorems 4.3–4.4. As argued in Greven et al. (2014), the proof follows the
strategy for the two-type case given in Evans (1997, Theorem 4.1), which says that
for spatial coalescent processes well-posedness and existence carry over from the
dual process to the original process.

We next prove Corollary 3.14.
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Proof : We analyze both νNθ and νθ with the help of duality relations and show that
the dual representation of the former converges to the dual representation of the
latter.

Step 1: νθ. We have to construct a dual process for the entrance law of a Markov
chain, namely, the interaction chain running from level ∞ down to level 0. We
consider the process that is dual to the interaction chain at level j. This dual
process is a discrete-time Markov chain whose transition kernel we can determine,
for fixed j and in the limit as j → ∞, via an explicit construction. This dual
Markov chain is a spatial coalescent on {0, 1, . . . , j}, or on N when we consider all
j simultaneously and are interested in its limit state as j →∞.

We first focus on the dual transition kernel at one particular level. In the in-
teraction chain this is defined via the equilibrium of the McKean-Vlasov process.
How did this equilibrium arise? We consider a mean-field system of size Nk with
parameters ck, dk, Λk and take the mean-field dual started in n individuals at
mutual distance k. This dual is shown to converge, in the limit as N → ∞ and
on time scale tNN

k with tN → ∞ and tN = o(N), to a limiting process that is a
coalescent on the geographic space k ∪ {4}, with 4 a cemetery state, such that
the process jumps from k to 4 at rate ck and does Kingman coalescence at rate
dk and Λ-coalescence according to Λk(MCk(0))(ω). This limiting process is run for
infinite time to obtain the dual transition kernel at the k-th step. This partition at
4 is used as input for the next step of the dual with label k + 1. Altogether this
procedure defines the full Markov chain, i.e., the new site and the new partition
element. We denote the path of the dual Markov chain by

(Π∞k )k∈N0
, with Π∞∞ its limiting state as k →∞. (4.26)

(Recall that partitions are ordered and hence the limiting state exists.) The line
of argument is the same for each k. A detailed argument can be found in Greven
et al. (2014, Corollary 2.12).

We need an explicit description as an N-marked partition-valued process, namely,
the above mentioned random walk, moving one step to the right on N, doing King-
man coalescence at rate dk and Λ-coalescence according to Λk(MCk(η)) in state k,
provided the rate-ck clock does not ring first.

The dual chain after j steps gives the expression Eθ[〈M (j)
0 , f〉n](ω), which in the

limit as j →∞ equals
∫ 1

0
Πηνθ(ω)(dx) 〈xη, f〉n by the definition of νθ(ω). The dual

expectation is the expression E[〈θ, f〉|Π∞∞|](ω). It therefore suffices to show that the
latter is obtained from the dual representation of νNθ (ω) as N →∞.

Remark 4.5. What is the dual counterpart of Theorem 3.6? The connection between
the renormalized system and the interaction chain on the level of the dual is as
follows. Consider the dual process for the j-level hierarchical system for finite N ,
starting with n partition elements at one site and letting t→∞ and N →∞ in the
following way. Consider time scales (tkN )k∈N0

with tkN/N
k+1 → 0 and tkN/N

k →∞
as N → ∞. Then the coalescent reaches a partition Πk+1

∞ , with the remaining
partition elements in Bk uniformly distributed. After that move to the next time
scale. Finally, first take N →∞ and then take

Π∞∞ as the limiting partition element for j →∞. (4.27)

By our scaling result in (3.25), this object gives us the dual process of the interaction
chain at level j. �
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Step 2: νNθ . We return to the representation of νNθ , respectively, its marginal law
at level 0. The convergence of the dual chain for the Cannings process on ΩN , and
its limit as t → ∞ followed by N → ∞ to the dual chain of the interaction chain,
will follow from the fact that the partitions become successively finer and hence
converge to a limit partition, and the fact that the time scales for the random walk
to reach distance k separate as N → ∞. Since the monomials are convergence
determining, this will yield the claim.

We have to show that the coalescent on ΩN , starting with n individuals at site
0, converges to a limit process as t → ∞, which we can investigate in the limit as
N →∞. We need to show that this process has the property that, when we consider
the times where the coalescent makes jumps to the next larger block, we get an
embedded Markov chain with index in N0, describing the successive maximal jump
sizes and values in partitions. The corresponding partition converges to ΠN

∞ as the
index k tends to infinity. The claim is that, as N →∞, this Markov chain converges
to a birth process in the first component, which moves one step to the right, with
Kingman-coalescence at rate dk and Λ-coalescence according to Λk(MCk(0))(ω),
provided the rate-ck clock does not ring first. This gives Π∞k . As k → ∞ we get
(4.27). This is done in Dawson and Greven (1996) for the Kingman coalescent, but
the necessary modification is straightforward. �

5. Dichotomy: coexistence versus clustering

In this section, we prove Theorem 3.3. The question is whether C(G)(ω), the
hierarchical coalescent in the environment ω defined in (4.15), converges to a single
labelled partition element as t→∞ with probability one. To answer this question,
we have to investigate whether two tagged partition elements coalesce with proba-
bility one or not. Recall that, by the projective property of the coalescent, we may
focus on the subsystem of just two dual individuals, because this translates into the

same dichotomy for C
(G)
n (ω) for any n ∈ N, and hence for the entrance law starting

from n partition elements. However, there is additional reshuffling at all higher
levels, which is triggered by a corresponding block-coalescence event. Therefore,
we need to consider two coalescing random walks with slightly adapted migration
coefficients, lacking in particular the random walk property.

Recall the notation introduced in Sections 2.1.1–2.1.3 and 2.2.1. Recall that
MCk(η) is the unique site at height k above η ∈ ΩN (see Fig. 2.3). Consider two
independent copies

Y (ω) = (Yt(ω))t≥0, Y ′(ω) = (Y ′t (ω))t≥0, (5.1)

of the hierarchical random walk on ΩN in the environment ω with migration co-
efficients given by (4.9) and coalescence rates given by (4.10). Write Pω, Pω,′ for
the marginal laws of Y (ω), Y ′(ω) and P̄ω = Pω × Pω,′ for the joint law of the pair
Ȳ (ω) = (Y (ω), Y ′(ω)). Consider the time-t accumulated hazard for coalescence:

HN (ω; t) =
∑
k∈N0

N−k
∑

η,η′∈ΩN
dΩN

(η,η′)≤k

λMCk(η)(ω)

∫ t

0

1{Ys(ω)=η,Y ′s (ω)=η′} ds, (5.2)

where we use that MCk(η) = MCk(η′) when dΩN (η, η′) ≤ k. The rate N−2k

to choose a k-block for the coalescence is multiplied by Nk because all partition
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elements in that block can trigger a coalescence event, which explains the factor
N−k in (5.2).

Let limt→∞HN (ω; t) = HN (ω;∞). We have coalescence of the two random
walks (“common ancestor”) with probability 1 when HN (ω;∞) = ∞ P̄ω-a.s., but
separation of the two random walks (“different ancestors”) with positive probability
when HN (ω;∞) <∞ P̄ω-a.s. In Section 5.1 we identify the dichotomy for the mean
hazard Ēω[HN (ω;∞)] combining Fourier analysis with potential theory of reversible
Markov chains to handle the fact that our migration is no longer a random walk.
In Section 5.2 we use a zero-one law to show that the same dichotomy holds for the
hazard HN (ω;∞).

5.1. Mean hazard.

Lemma 5.1. For every N ∈ N\{1} and P-a.e. ω,

Ēω[HN (ω;∞)] =∞ ⇐⇒
∑
k∈N0

1

ck +N−1λk+1

k∑
l=0

λl =∞. (5.3)

�

Proof : Write

pωt (η, ζ) = Pω{Yt(ω) = ζ | Y0(ω) = η}, η, ζ ∈ ΩN , (5.4)

to denote the time-t transition kernel. Let

Gω((0, 0), (η, η′)) =

∫ ∞
0

pωt (0, η)pωt (0, η′) dt, (η, η′) ∈ ΩN × ΩN , (5.5)

denote the Green function for Ȳ (ω). Then (5.2) gives

Ēω[HN (ω;∞)] =
∑
k∈N0

N−k
∑

η,η′∈ΩN
dΩN

(η,η′)≤k

λMCk(η)(ω)Gω((0, 0), (η, η′))

=
∑
k∈N0

N−k
∑
ξ∈Ω

(k)
N

λξ(ω)
∑
η∈ΩN

MCk(η)=ξ

∑
η′∈Bk(η)

Gω((0, 0), (η, η′))

=
∑
k∈N0

N−k
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

η,η′∈B|ξ|

Gω((0, 0), (η, η′))

(5.6)

(recall (2.32)). The proof comes in two steps. In Step 1, we pretend that the ω-
dependent term in the right-hand side of (4.9) is replaced by its mean, i.e., the two
hierarchical random walks are homogenous with migration coefficients c̄k given by

c̄k(N) = E[ck(ω)(N, η)] = ck +N−1 λk+1, (5.7)

and show that the same dichotomy as in (5.3) holds. In Step 2, we explain why
this replacement does not affect the dichotomy. The Green function of the two
homogeneous hierarchical random walks will be denoted by G((0, 0), (η, η′)).
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Step 1. In what follows, we use the explicit form of the transition kernel pt(η, ζ),
η, ζ ∈ ΩN , for the homogeneous hierarchical random walk computed in Dawson
et al. (2005) with the help of Fourier analysis. Namely,

pt(0, η) =
∑
j≥k

Kjk(N)
exp[−hj(N)t]

N j
, t ≥ 0, η ∈ ΩN : dΩN (0, η) = k ∈ N0,

(5.8)
where

Kjk(N) =

 0, j = k = 0,
−1, j = k > 0,
N − 1, otherwise,

j, k ∈ N0, (5.9)

and

hj(N) =
N − 1

N
rj(N) +

∑
i>j

ri(N), j ∈ N, (5.10)

with

rj(N) =
1

D(N)

N − 1

N

∑
i≥j

c̄i−1(N)

N2i−j−1
, j ∈ N, (5.11)

where D(N) is the normalizing constant such that
∑
j∈N rj(N) = 1. Note that the

expressions in (5.10)–(5.11) simplify considerably in the limit as N → ∞, namely,
the term with i = j dominates and

hj(N) ∼ rj(N) ∼ c̄j−1(N)

D(N)N j−1
, j ∈ N, D(N) ∼ c̄0(N). (5.12)

Also note that, because of (2.9) and (2.15), the following holds:

For N ∈ N\{1}, the quantities hj(N), rj(N), D(N) are bounded from
above and below by positive finite constants times the right-hand side
of (5.12) uniformly in the index j.

(5.13)

To compute the sum in (5.6), we need to distinguish two cases: (1) ξ = 0k ∈ Ω
(k)
N ,

the unique site in ΩTN at height k above 0 ∈ ΩN ; (2) ξ ∈ Ω
(k)
N \{0k}.

(1). ξ = 0k. Write∑
η,η′∈B|ξ|

G((0, 0), (η, η′)) =
∑

0≤p,q≤k

N [p]N [q]G((0, 0), (η(p), η(q))), (5.14)

where η(p) is any site in ΩN such that dΩN (0, η(p)) = p, and

N [p] = |Bp(0)\Bp−1(0)| =
{
Np −Np−1, p > 0,
1, p = 0.

(5.15)

With the help of (5.8) we obtain

G((0, 0), (η(p), η(q))) =
∑
m≥p

∑
n≥q

Kmp(N)Knq(N)N−m−n
1

hm(N) + hn(N)
. (5.16)

Inserting (5.9) and (5.12), we get

r.h.s. (5.16) ∼ c̄0(N)

(1 + 1{p=q})c̄p∧q(N)Np∨q , N →∞, (5.17)
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where the asymptotics comes from the terms with m = p + 1 and n = q + 1.
Combining (5.14–5.17), we obtain

N−k
∑

η,η′∈Bk(0k)

G((0, 0), (η, η′))

∼ N−k
 ∑

0≤p≤k

N2p c̄0(N)

2c̄p(N)Np
+ 2

∑
0≤p<q≤k

Np+q c̄0(N)

c̄p(N)Nq

 ∼ c̄0(N)

2c̄k(N)
,

(5.18)
where the asymptotics comes from the term with p = k.

(2). ξ ∈ Ω
(k)
N \{0k}. Now, pt(0, η) is the same for all η ∈ B|ξ|, and so we have

N−k
∑

ξ∈Ω
(k)
N \{0k}

λξ(ω)
∑

η,η′∈B|ξ|

G((0, 0), (η, η′))

= Nk
∑

ξ∈Ω
(k)
N \{0k}

λξ(ω)G((0, 0), (η(k), η(k)))

∼ Nk
∑
d∈N

∑
ξ∈Ω

(k)
N

d
Ω

(k)
N

(0k,ξ)=d

λξ(ω)
c̄0(N)

2Nk+dc̄k+d(N)

=
1

2

∑
d∈N

c̄0(N)

c̄k+d(N)

(
1

Nd

∑
ξ∈Ω

(k)
N

d
Ω

(k)
N

(0k,ξ)=d

λξ(ω)

)
,

(5.19)

where we use (5.16–5.17) with p = q = k, and d
Ω

(k)
N

denotes the distance within

Ω
(k)
N .

Combining (4.10), (5.6), (5.18)–(5.19), we arrive at

Ē[HN (ω;∞)] ∼ 1
2 c̄0(N)

∑
k∈N0

1

c̄k(N)

k∑
l=0

λl

{
1
2 1{l=k}Θ(ω; 0, k)+1{l<k}Θ(ω; k−l, l)

}
,

(5.20)
where we abbreviate

Θ(ω; a, b) =
1

N [a]

∑
ξ∈Ω

(b)
N

d
Ω

(b)
N

(0b,ξ)=a

ρξ(ω), a, b ∈ N0. (5.21)

Now, by (2.41) we have, for some C <∞,

E
[
Θ(ω; a, b)

]
= 1, E

[
Θ(ω; a, b)Θ(ω; a′, b′)

]
≤ C ∀ a, b, a′, b′ ∈ N0. (5.22)

Because {ρξ(ω) : ξ ∈ ΩTN} is stationary, ergodic and tail trivial (recall (2.42)), it
follows from a standard second-moment estimate that the sum in the right-hand of
(5.20) is infinite if and only if its expectation w.r.t. P is infinite. Since

E(r.h.s.(5.20)) =
∑
k∈N0

1

c̄k(N)

k∑
l=0

λl
{

1
2 1{l=k} + 1{l<k}

}
, (5.23)
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we get the claim in (5.3) for the hierarchical random walk with homogeneous migra-
tion coefficients c̄k(N) defined in (5.7) (the factor 1

2 is harmless for the convergence
or divergence of the right-hand side of (5.23)).
Step 2. It remains to show that the same dichotomy holds for the coefficients in (4.9)
rather than (5.7). We start with the observation that the hierarchical random walk
in random environment is symmetric and therefore is reversible with respect to the
Haar measure on ΩN . We have the representation (see Bovier and den Hollander,
2015, Chapter 7)

Gω((0, 0), (η, η′)) =

∫ ∞
0

pωt (0, η)pωt (0, η′) dt

=
Pω(0,0)(τ(η,η′) <∞)

aω((η, η′))Pω(η,η′)(τ̂(η,η′) =∞)
, (η, η′) ∈ ΩN × ΩN ,

(5.24)

where aω((a, b)) =
∑

(c,d) a
ω((a, b), (c, d)) is the total rate at which the random

walk jumps out of (a, b), and

τ(a,b) = inf
{
t ≥ 0: Yt(ω) = (a, b)

}
,

τ̂(a,b) = inf
{
t ≥ 0: Yt(ω) = (a, b), ∃ 0 < s < t : Ys(ω) 6= (a, b)

}
,

(5.25)

are the first hitting time, respectively, the first return time of (a, b). The point of
(5.24) is that both the numerator and the denominator can be controlled with the
help of the Dirichlet Principle, as follows.

Let

Eω(f, f) =
∑

(a,b),(c,d)

aω((a, b), (c, d))

aω((a, b))
[f((a, b))− f((c, d))]2 (5.26)

be the Dirichlet form associated with the two random walks in random environment.
By classical potential theory, the escape probability in the denominator of (5.24)
is given by the capacity of the pair (η, η′) and ∞,

Pω(η,η′)(τ̂(η,η′) =∞) = capω((η, η′),∞) = inf
f : ΩN→[0,1]

f((η,η′))=1,f(∞)=0

Eω(f, f), (5.27)

where f(∞) = 0 stands for lim(η,η′)→∞ f((η, η′)) = 0 with (η, η′) → ∞ short
hand for dΩN (0, η) + dΩN (0, η′) → ∞ (recall (2.2)). The hitting probability in the
numerator of (5.24) can also be expressed in terms of capacities after we use a
renewal argument. Write

Pω(0,0)(τ(η,η′) <∞) =
Pω(0,0)(τ(η,η′) < τ̂(0,0))

1− Pω(0,0)(τ̂(0,0) < τ(η,η′))

=
Pω(0,0)(τ(η,η′) < τ̂(0,0))

Pω(0,0)(τ(η,η′) < τ̂(0,0)) + Pω(0,0)(τ(η,η′) = τ̂(0,0) =∞)
.

(5.28)

We have

Pω(0,0)(τ(η,η′) < τ̂(0,0)) = capω((0, 0), (η, η′)) = inf
f : ΩN→[0,1]

f((η,η′))=1,f((0,0))=0

Eω(f, f). (5.29)

Moreover,

Pω(0,0)(τ(η,η′) = τ̂(0,0) =∞) = Pω(0,0)(τ̂(0,0) =∞)− Pω(0,0)(τ(η,η′) <∞, τ̂(0,0) =∞).

(5.30)
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The first term equals capω((0, 0),∞), while the second term is bounded from above
by Pω(0,0)(τ(η,η′) < ∞), which tends to zero as (η, η′) → ∞ when Gω < ∞, i.e.,

when the random walk in random environment is transient. Below we will show
that, under assumption (2.43), Gω <∞ if and only if G <∞.

We are now ready to explain why the estimates in Step 1 carry over. The
transition rates of the random walk in random environment are given by

aω((a, b)(c, d)) =

 aω,(N)(a, c), b = d,
aω,(N)(b, d), a = c,
0, else.

(5.31)

where aω,(N) is the transition kernel in (2.6), but with ck replaced by ck(ω)(N, η)
in (4.9):

aω,(N)(η, ζ) =

{∑
k≥dΩN

(η,ζ)

(
ck−1 +N−1λMCk(η)(ω)

)
/N2k−1, η 6= ζ,

0, η = ζ,
η, ζ ∈ ΩN .

(5.32)

By (4.10), we have λMCk(η)(ω) = λkρ
MCk(η)(ω). Assumption (2.43) implies δ ≤

λMCk(η)(ω)/λk ≤ δ−1 for all k ∈ N0, η ∈ ΩN and P-a.e. ω, which in turn implies

δ ≤ aω((a, b)(c, d))

a((a, b)(c, d))
≤ δ−1 ∀ a, b, c, d ∈ ΩN for P-a.e. ω, (5.33)

where a is the transition kernel in (2.6), but with ck replaced by c̄k(N) in (5.7).
Inserting these bounds into the formulas for the capacities in (5.27) and (5.29), and
recalling (5.24), we see that

∃ δ′ > 0: δ′ ≤ Gω((0, 0), (η, η′))

G((0, 0), (η, η′))
≤ δ′−1 ∀ η, η′ ∈ ΩN for P-a.e. ω. (5.34)

This shows that the Green function for the random walk in random environment
is comparable to the Green function of the homogeneous random walk. Hence, the
argument in Step 1 carries over.

Note that Pω(0,0)(τ̂(0,0) =∞) in (5.30) is comparable to P(0,0)(τ̂(0,0) =∞), which

is a strictly positive constant when G < ∞. Consequently, by the observation
made below (5.30), also Pω(0,0)(τ(η,η′) = τ̂(0,0) = ∞) in (5.30) is comparable to

P(0,0)(τ(η,η′) = τ̂(0,0) =∞) when G,Gω <∞.
It remains to show that, under assumption (2.43), Gω <∞ if and only if G <∞.

This is easy. Indeed, if G < ∞, then P(0,0)(τ̂(0,0) = ∞) > 0, hence Pω(0,0)(τ̂(0,0) =

∞) > 0, and hence Gω <∞ by (5.24) because Pω(0,0)(τ(η,η′) <∞) ≤ 1. Conversely,

if G = ∞, then P(0,0)(τ̂(0,0) = ∞) = 0, hence Pω(0,0)(τ̂(0,0) = ∞) = 0, and hence

Gω =∞ by (5.24) because Pω(0,0)(τ(η,η′) <∞) > 0. � �

5.2. Zero-one law. To conclude the proof of the dichotomy in Theorem 3.3, we use
the following zero-one law.

Lemma 5.2 (Zero-one law). For every N ∈ N\{1} and P-a.e. ω, HN (ω;∞) =∞
if and only if Ēω[HN (ω;∞)] =∞. �

Proof : The proof comes in five steps.
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Step 1. For M,N ∈ N, let H
(M)
N (ω;∞) denote the truncation of HN (ω;∞) obtained

by setting λk = 0 for k > M (no resampling in blocks of hierarchical size larger
than M). The key to the proof is the following second-moment estimate:

∃ C <∞ : Ēω
[(
H

(M)
N (ω;∞)

)2] ≤ C(Ēω[H(M)
N (ω;∞)

])2 ∀M,N ∈ N.
(5.35)

Before proving (5.35), we complete the proof of Theorem 3.3. By Cauchy-
Schwarz, for any non-negative random variable V we have

P̄ω(V > 0) ≥ (Ēω[V ])2/Ēω[V 2]. (5.36)

Picking V = H
(M)
N (ω;∞)/Ēω[H

(M)
N (ω;∞)] in (5.36) and using (5.35), we obtain

P̄ω
(
H

(M)
N (ω;∞)/Ēω

[
H

(M)
N (ω;∞)

]
> 0
)
≥ 1

C
∀M,N ∈ N. (5.37)

Since H
(M)
N (ω;∞) ≤ HN (ω;∞) and the lower bound in (5.37) is uniform in M

and N , it follows that if Ēω[HN (ω;∞)] = limM→∞ Ēω[H
(M)
N (ω;∞)] = ∞, then

P̄ω(HN (ω;∞) = ∞) ≥ 1/C. By (5.2), {ω : HN (ω;∞) = ∞} is an element of
the sigma-algebra at infinity defined in (2.42), which is trivial. The latter event
therefore has probability either 0 or 1, and since it has positive probability we get
the claim.
Step 2. Write out (recall (5.2))

Ēω
[(
H

(M)
N (ω;∞)

)2]
=

M∑
k,l=0

N−k−l
∑

η,η′∈ΩN
dΩN

(η,η′)≤k

∑
ζ,ζ′∈ΩN

dΩN
(ζ,ζ′)≤l

λMCk(η)(ω)λMCl(ζ)(ω)

× Ēω
[∫ ∞

0

ds 1{Ys(ω)=η,Y ′s (ω)=η′}

∫ ∞
0

du 1{Yu(ω)=ζ,Y ′u(ω)=ζ′}

]
=

M∑
k,l=0

N−k−l
∑

η,η′∈ΩN
dΩN

(η,η′)≤k

∑
ζ,ζ′∈ΩN

dΩN
(ζ,ζ′)≤l

λMCk(η)(ω)λMCl(ζ)(ω)

× 2Gω((0, 0), (η, η′))Gω((η, η′), (ζ, ζ ′))

= 2

M∑
k,l=0

N−k−l
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

ξ′∈Ω
(l)
N

λξ
′
(ω)

×
∑

η,η′∈B|ξ|

Gω((0, 0), (η, η′))
∑

ζ,ζ′∈B|ξ′|

Gω((η, η′), (ζ, ζ ′)).

(5.38)
In what follows, we consider the hierarchical random walk with homogeneous mi-
gration coefficients c̄k defined in (5.7). In Step 4 we incorporate the ω-dependence.

Use symmetry to replace
∑M
k,l=0 by 2

∑M
k,l=0 1{k<l} +

∑M
k,l=0 1{k=l}. Due to the

ultrametricity of the hierarchical distance and the isotropy of the hierarchical ran-
dom walk, we have G((η, η′), (ζ, ζ ′)) = G((0, 0), (ζ, ζ ′)) for all η, η′ ∈ B|ξ| in the
following three cases (where ξ < ξ′ means that ξ′ is an ancestor of ξ):

(1) k < l, ξ ≮ ξ′ and ζ, ζ ′ ∈ B|ξ′|.
(2) k < l and ξ < ξ′ and ζ, ζ ′ ∈ B|ξ′|\B|ξ|.
(3) k = l, ξ 6= ξ′ and ζ, ζ ′ ∈ B|ξ′|.
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Therefore we have

Ē
[(
H

(M)
N (ω;∞)

)2]
= 2Ē

[
H

(M)
N (ω;∞)

]2
+R (5.39)

with R a correction term given by

R = 4
∑

0≤k<l≤M

N−k−l
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

ξ′∈Ω
(l)
N

λξ
′
(ω) 1{ξ<ξ′}

∑
η,η′∈B|ξ|

G((0, 0), (η, η′))

×
∑

ζ,ζ′∈B|ξ′|
ζ∈B|ξ| and/or ζ′∈B|ξ|

[
G((η, η′), (ζ, ζ ′))−G((0, 0), (ζ, ζ ′))

]

+ 2
∑

0≤k≤M

N−2k
∑
ξ∈Ω

(k)
N

[λξ(ω)]2
∑

η,η′∈B|ξ|

G((0, 0), (η, η′))

×
∑

ζ,ζ′∈B|ξ|

[
G((η, η′), (ζ, ζ ′))−G((0, 0), (ζ, ζ ′))

]
.

(5.40)
If R would be absent from (5.39), then we would have proved (5.35) with C = 2.
Thus, it remains to show that R can only raise the constant. We will do this by

showing that R ≤ O(N−2) Ē[H
(M)
N (ω;∞)]2 as N → ∞, uniformly in M , and by

appealing to the observation made in (5.13).
Step 3. By translation invariance, G((η, η′), (ζ, ζ ′)) = G((0, 0), (ζ − η, ζ ′ − η′)). By
isotropy,

∑
ζ,ζ′∈B|ξ| G((0, 0), (ζ − η, ζ ′ − η′)) =

∑
ζ,ζ′∈B|ξ| G((0, 0), (ζ, ζ ′)) for all

η, η′ ∈ B|ξ|. Hence, in the first sum in (5.40) the term with ζ, ζ ′ ∈ B|ξ| vanishes,
while the second sum in (5.40) vanishes altogether, and so R simplifies to

R = 8
∑

0≤k<l≤M

N−k−l
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

ξ′∈Ω
(l)
N

λξ
′
(ω) 1{ξ<ξ′}

∑
η,η′∈B|ξ|

G((0, 0), (η, η′))

×
∑
ζ∈B|ξ|

ζ′∈B|ξ′|\B|ξ|

[
G((0, 0), (ζ − η, ζ ′ − η′))−G((0, 0), (ζ, ζ ′))

]
.

(5.41)
By isotropy,

∑
ζ∈B|ξ| G((0, 0), (ζ − η, ζ ′ − η′)) =

∑
ζ∈B|ξ| G((0, 0), (ζ, ζ ′ − ζ)) for all

η, η′ ∈ B|ξ| when ζ ′ ∈ B|ξ′|\B|ξ|, and so R simplifies further to

R = 8
∑

0≤k<l≤M

N−k−l
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

ξ′∈Ω
(l)
N

λξ
′
(ω) 1{ξ<ξ′}

∑
η,η′∈B|ξ|

G((0, 0), (η, η′))

×
∑
ζ∈B|ξ|

 ∑
ζ′′∈Bl(0)\Bk(0)

G((0, 0), (ζ, ζ ′′))−
∑

ζ′∈B|ξ′|\B|ξ|

G((0, 0), (ζ, ζ ′))

 . (5.42)

If 0 ∈ B|ξ′|, then Bl(0) = B|ξ′|, in which case the term between brackets equals∑
ζ′∈B|ξ|

G((0, 0), (ζ, ζ ′))−
∑

ζ′′∈Bk(0)

G((0, 0), (ζ, ζ ′′)). (5.43)

If also 0 ∈ B|ξ| ⊂ B|ξ′|, then also Bk(0) = B|ξ|, in which case the latter difference
vanishes. Hence we obtain the bound

R ≤ 8
∑

0≤k<l≤M

N−k−l
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

ξ′∈Ω
(l)
N

λξ
′
(ω) 1{ξ<ξ′}

∑
η,η′∈B|ξ|

G((0, 0), (η, η′))
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×

1{0�ξ, 0≤ξ′}
∑

ζ,ζ̄∈B|ξ|

G((0, 0), (ζ, ζ̄)) + 1{0�ξ′}
∑
ζ∈B|ξ|

ζ̄∈Bl(0)\Bk(0)

G((0, 0), (ζ, ζ̄))

 .
(5.44)

The sums over η, η′ and ζ, ζ̄ can be computed with the help of (5.16). Recalling
(5.17)–(5.19), we obtain∑

η,η′∈B|ξ|

G((0, 0), (η, η′)) =
∑

ζ,ζ̄∈B|ξ|

G((0, 0), (η, η′))

∼ N2k c̄0(N)

2Nk+d(ξ)c̄k+d(ξ)(N)
= Nk c̄0(N)

2Nd(ξ)c̄k+d(ξ)(N)

(5.45)

with d(ξ) = d
Ω

(k)
N

(0k, ξ) and

∑
ζ∈B|ξ|

ζ̄∈Bl(0)\Bk(0)

G((0, 0), (ζ, ζ̄)) ∼
∑
ζ∈B|ξ|

ζ̄∈Bl(0)\Bk(0)

c̄0(N)

N l+d′(ξ′)c̄d′′(ζ̄)(N)

= N−l+k
∑

ζ̄∈Bl(0)\Bk(0)

c̄0(N)

Nd′(ξ′)c̄d′′(ζ̄)(N)
∼ Nk c̄0(N)

Nd′(ξ′)c̄l(N)

(5.46)

with d′(ξ′) = d
Ω

(l)
N

(0l, ξ′) and d′′(ζ̄) = dΩN (0, ζ̄). Here we use that ξ 6= 0k when

0 � ξ and ξ′ 6= 0l when 0 � ξ′, and also that l + d′(ξ′) > d′′(ζ̄) for all ζ̄ ∈ Bl(0).
Inserting (5.45)–(5.46) into (5.44), we get

R ≤ 8 [1 + o(1)]
∑

0≤k<l≤M

Nk−l
∑
ξ∈Ω

(k)
N

λξ(ω)
∑

ξ′∈Ω
(l)
N

λξ
′
(ω) 1{ξ<ξ′, 0�ξ′}

×

[
1{0�ξ, 0≤ξ′}

(
c̄0(N)

2Nd(ξ)c̄k+d(ξ)(N)

)2

+ 1{0�ξ′}
c̄0(N)

2Nd(ξ)c̄k+d(ξ)(N)

c̄0(N)

Nd′(ξ′)c̄l(N)

]
.

(5.47)

Step 4. If 0 � ξ, then d(ξ) ∈ N. Hence the first part of (5.47) equals 8 [1 + o(1)]
times

∑
0≤k<l≤M

Nk−lλkλl

l∑
d=1

(
c̄0(N)

2Ndc̄k+d(N)

)2 ∑
ξ∈Ω

(k)
N

d(ξ)=d

ρξ(ω)ρξ
l−k

(ω), (5.48)

where we recall (4.10) and write ξl−k to denote the ancestor of ξ at height l. Because
{ρξ(ω) : ξ ∈ ΩTN} is stationary, ergodic and tail trivial (recall (2.42)), the last sum

scales as ∼ NdE[ρ0k(ω)ρ0l(ω)], where the expectation is finite because of (2.41).
Hence, (5.48) is

≤ C[1 + o(1)] 1
4 c̄0(N)2

∑
0≤k<l≤M

Nk−lλkλl

l∑
d=1

1

Ndc̄k+d(N)2
. (5.49)
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The last sum scales as ∼ 1/Nc̄k+1(N)2, and so (5.48) is

≤ C[1 + o(1)] 1
4 c̄0(N)

M∑
k=0

λk
c̄k+1(N)2

M∑
l=k+1

λlN
k−l−1 = O(N−2) Ē[H

(M)
N (ω;∞)]2,

(5.50)
where the equality follows from (5.20) with k, l truncated at M .

If 0 � ξ′, then d′(ξ′) ∈ N and d(ξ) = l−k+d′(ξ′). Hence, the second part of (5.47)
equals 8 [1 + o(1)] times∑

0≤k<l≤M

Nk−lλkλl
∑
d′∈N

c̄0(N)

2N l−k+d′ c̄l+d′(N)

c̄0(N)

Nd′ c̄l(N)

∑
ξ∈Ω

(k)
N

d(ξ)=l−k+d′

ρξ(ω)ρξ
l−k

(ω).

(5.51)

The last sum is ≤ C[1 + o(1)]N l−k+d′ . Hence (5.51) is

≤ C[1 + o(1)] 1
2 c̄0(N)2

∑
0≤k<l≤M

Nk−lλkλl
∑
d′∈N

1

Nd′ c̄l+d′(N)c̄l(N)
. (5.52)

The last sum scales as ∼ 1/Nc̄l+1(N)c̄l(N), and so (5.51) is

≤ C[1+o(1)] 1
2 c̄0(N)2

M∑
k=0

λk

M∑
l=k+1

λl
c̄l+1(N)c̄l(N)

Nk−l−1 =O(N−2) Ē[H
(M)
N (ω;∞)]2.

(5.53)
Step 5. We can again use (5.34) to show that the proof carries over to the random
walk in random environment. �

Lemmas 5.1–5.2 combine to yield Theorem 3.3 (recall the discussion at the begin-
ning of this section).

6. Multi-scale analysis

In this section, we prove Theorem 3.6. We first consider a mean-field system,
i.e., the geographic space is G = {1, . . . , N} with N →∞. In Section 6.1, we look
at this system on time scale t (on which the single components evolve) and on time
scale Nt (on which the block average evolves). In Section 6.2, we use the results
to analyze the system on ΩN as N → ∞. Our general strategy runs parallel to
that in Greven et al. (2014) for the homogeneous model. We only point out which
new issues arise. Thus, this section is not autonomous, the principal steps of the
arguments are given but not all formulas are repeated, and for an understanding of
the fine details the reader must check the relevant passages in Greven et al. (2014).

6.1. The mean-field finite-system scheme. As geographic space and transition ker-
nel, we take

Ω = {1, . . . , N}, a(i, j) =
1

N
, i, j ∈ Ω. (6.1)

As migration rate, we take c0, and as resampling measures

Λi = λ0χ
i, i ∈ Ω, (6.2)

with total masses ρi = χi((0, 1]). We assume that (χi)i∈N is stationary and ergodic
such that %i has mean 1. We also allow a component with Fleming-Viot resampling
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at rate d0. The corresponding stochastic system is denoted by (Z(N)(t))t≥0 with

Z(N)(t) = (Z
(N)
1 (t), . . . , Z

(N)
N (t)).

We consider time scales t and Nt for the components, respectively, the block
average:

(Z(N)(t))t≥0,

(Z̄(N)(t))t≥0 with Z̄(N)(t) =
1

N

N∑
i=1

Z
(N)
i (Nt).

(6.3)

Theorem 6.1 ([Mean-field finite-system scheme). Suppose that the initial
state is i.i.d. with mean measure θ ∈ P(E). Then

lim
N→∞

L
[
(Z(N)(t))t≥0

]
=
⊗
i∈N
L
[
(Zc0,d0,Λ

i

θ (t))t≥0

]
(6.4)

and

lim
N→∞

L
[
(Z̄(N)(t))t≥0

]
= L

[
(Z0,d1,0

θ (t))t≥0

]
, (6.5)

where (Zc,d,Λθ (t))t≥0 is the McKean-Vlasov process defined in Section 3.2.1. �

Proof : We follow Greven et al. (2014, Section 6). The proof of (6.4) carries over
in a straightforward way. In the proof of (6.5) a new issue arises: the increasing
process of the limit process incorporates an additional averaging over the random
environment controlling the resampling for the single components. This is handled
as follows.

Calculate the generator for a polynomial of Z̄(N)(t), namely, a function F of the
form

F (z) = 〈f, z⊗n〉, f ∈ Cb(En,R), (6.6)

applied to a z ∈ E of the form z = 1
N

∑N
i=1 zi. This expression can be expanded

in terms of sums of products of monomials of single components. The action of the
generator was calculated and analysed in Greven et al. (2014, Section 6). We can
argue in the same way with the following changes. In the action of the generator,
integrals are taken with respect to the random sequence of resampling measures
(Λi)i∈Ω rather than a fixed resampling measure Λ. This entails that for the block
average we get a sum of terms where the random sequence (ρi)i∈Ω appears as
weights. This in turn requires us to change the definition of the set of configurations
on which the generator converges in the limit as N →∞ (see Greven et al., 2014,
Eq. (6.41)–(6.42)) as follows.

Let B∗ be the set of x = (xi)i∈Ω ∈ P(E)N with

lim
N→∞

L

[
1

N

N∑
i=1

δ(χi(ω),xi)

]
= Γ ∈ P

(
Mf ([0, 1])× P(E)

)
, (6.7)

where

Γ( · ,P(E)) = L[χ1], Γ(dx1 | χ1) = νc0,0,χ
1

(dx1), x1 ∈ P(E). (6.8)

In order to calculate the sum of the resampling operators as in Greven et al. (2014,
Eq. (6.46)), we have to account for the presence of χi, i ∈ Ω, and invoke the law of
large numbers for the expression in the variance formula, namely, 2c0/(2c0 +λ0ρ

i+
2d0), i ∈ Ω. We write the latter as

c0
c0 + µ0ρi + d0

, i ∈ Ω. (6.9)
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The expressions appearing in the generator, which are averages of local functions
of the configuration and their shifts to any of the N locations, result in the same
expression as the one we obtain by using (6.9) averaged over i ∈ Ω. In the limit
as N → ∞, this leads to the recursion formula in (3.17) for k = 0. With these
changes, the argument runs as in the case of the homogeneous environment. �

6.2. The hierarchical mean-field limit. In this section, we prove the results claimed
in Section 3.2.3. The strategy of the proof is to approximate our system with
infinitely many hierarchies of components and time scales by systems with finitely
many hierarchies of components and time scales, uniformly in N . The latter are
analyzed by using the multiscale analysis of the mean-field system. In Section 6.2.1,
we consider 2-level systems with N2 components, in Section 6.2.2 k-level systems
with Nk components, and in Section 6.2.3 we pass to the limit k →∞ of infinitely
many hierarchies. Along the way, we make frequent reference to Dawson, Greven
and Vaillancourt (Dawson et al., 1995) and the work on the homogeneous version
of the model in Greven et al. (2014).

6.2.1. The 2-level system on 3 time scales. The geographic space is

GN,2 = {0, 1, . . . , N − 1}2 = G2
N,1. (6.10)

We pick d0 > 0, c0, c1, µ0, µ1 > 0 and ck, µk = 0 for k ≥ 2. We choose the random
environment that is obtained by restricting the random environment of Section 2
to the subtree corresponding to the 2-block around 0. We show that, on time scales
t and Nt, we obtain the same limiting objects as described in Section 6.1, but with
additional volatility and block resampling.

For the 1-block averages, we use the notation

Y (N)
η (t) = N−1

∑
σ∈GN,1

X
(N)
(σ,η)(t), η ∈ GN,1, (6.11)

and for the 2-block average (= total average)

Z(N)(t) = N−2
∑

(σ,η)∈GN,2

X
(N)
(σ,η)(t) = N−1

∑
η∈GN,1

Y (N)
η (t). (6.12)

Proposition 6.2 ([Two-level rescaling). Under the above assumptions,

lim
N→∞

L
[(
X

(N)
(σ,η)(t)

)
t≥0

]
= L

[(
Z
c0,d0,Λ

MC1(·,η)(ω)
θ (t)

)
t≥0

]
∀ (σ, η) ∈ GN,2,

lim
N→∞

L
[(
Y (N)
η (Nt)

)
t≥0

]
= L

[(
Z
c1,d1,Λ

MC2(·,·)(ω)
θ (t)

)
t≥0

]
∀ η ∈ GN,1,

lim
N→∞

L
[(
Z(N)(N2t)

)
t≥0

]
= L

[(
Z0,d2,0
θ (t)

)
t≥0

]
,

(6.13)
with

d1 = ELρ
[
c0(µ0ρ(ω) + d0)

c0 + (µ0ρ(ω) + d0)

]
, d2 = ELρ

[
c1(µ1ρ(ω) + d1)

c1 + (µ1ρ(ω) + d1)

]
. (6.14)

�
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To prove the above results in the homogeneous environment, we used uniform
estimates for higher-order perturbations of generators. These no longer hold in the
random environment, due to the unboundedness of the random resampling rates
ρ(·,η)(ω). (There is no problem under assumption (2.43), and the proof carries over
from Greven et al. (2014).)

To handle this problem, we first consider the system where the coefficients
λMCk(·,η)(ω), k = 1, 2, are truncated at level M < ∞. For this system, we show,
with the help of a coupling argument, that on time scale Nkt, k = 1, 2, and aver-
aged over the random environment and the dynamics, the effect of the truncation
goes to zero as M →∞. The same holds for the limiting objects, so that we get the
claim by using the existence of the expectation in combination with the stationarity
of ω.

To get tightness of the approximating sequence of processes, as in Greven et al.
(2014, Eq. (7.52), p. 117), we use the fact that the laws conditioned on the envi-
ronment ω of the averages in (6.11)–(6.12) are tight. To prove the latter, we use
the criterion of Joffe and Metivier in the form as given in Dawson (1993, p. 55),
observing that χMCk(·,η)(ω), η ∈ GN,1, k = 1, 2, are integrable uniformly in N . To
check the criterion, we observe that we can code the information on the random
environment into the initial condition of the process. With this observation, the
proof works as for the homogeneous environment.

6.2.2. The k-level system on k + 1 time scales. The reasoning addresses the same
points raised above and runs otherwise exactly as in Greven et al. (2014, Section
7.2).

6.2.3. The infinite-level system on infinitely many time scales. The problem is again
the extension of the uniform perturbation arguments, which have to be adapted to
guarantee that cutting off higher hierarchical levels leads to an approximation by
finite systems, for which we can apply the reasoning in the previous section, on the
relevant time scales. To get the necessary arguments and estimates, we refer the
reader to the material in Greven et al. (2014, Sections 8.1–8.2).

The argument used for the homogeneous environment to obtain uniforms bounds
does not apply because the perturbation of the migration and the resampling com-
ing from the hierarchical levels ≥ k + 1 is unbounded. However, the perturbation
terms can be stochastically bounded by a random variable that has a finite expec-
tation over the random environment. Again, it suffices to show with the help of a
coupling argument that the stochastic dynamics with k hierarchical levels approx-
imates the infinite stochastic dynamics on time scales tN l with 0 ≤ l ≤ k. Apart
from that, the argument is the same.

6.3. Dichotomy in the hierarchical mean-field limit. In this section, we prove The-
orem 3.13. First, we argue that the entrance law exists, a fact that was established
in Dawson et al. (1995)[Section 6(a), Proposition 6.2] for the Fleming-Viot model,
based on a variance estimate and the convergence of the sum in the coexistence
criterion. The argument from that paper carries over despite the ω-dependence of
the transition kernels of the interaction chain (read this of from (6.16) and (6.18)
below).
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Next, we argue that the dichotomy holds. Here, we again follow the strategy

for the homogeneous environment by calculating the variance of 〈M (j)
η,0, f〉 for every

η ∈ Ω∞ and f ∈ Cb(E,R) and showing that as j → ∞ this variance converges
to zero, respectively, remains positive, depending on whether the sum in (3.30) is
infinite or finite.

The variance formula reads

Varνc,d,Λθ
(〈 · , f〉) =

2c

2c+ λρ(ω) + 2d
Varθ(f). (6.15)

Consequently, by iteration,

Var〈M (j)
η,0, f〉 =

[
j∏

k=0

2ck
2ck + λkρk(ω) + 2dk

]
Varθ(f), (6.16)

where d = (dk)k∈N0
is determined by the recursion relation in (3.17). Taking

logarithms, we see that the product tends to a positive limit as j →∞ if and only
if ∑

k∈N0

1

ck
(µkρk(ω) + dk) <∞. (6.17)

By assumptions (2.41)–(2.42), the sum converges ω-a.s. if and only if∑
k∈N0

1

ck
(µk + dk) <∞. (6.18)

Indeed, the variance of the sum in (6.17) equals the variance of the ρ-field times∑
k∈N0

(µkck )2, and the latter is bounded from above by the square of the average of

the sum. As shown in Greven et al. (2014, Theorem 3.7(c)), the criterion in (6.18)
is the same as the criterion in (3.30).

7. The orbit of the renormalization transformations

In Section 7.1, we show the ordering in Theorem 3.10. In Sections 7.2–7.3, we
derive the scaling behaviour in Theorems 3.15–3.17.

7.1. Random environment lowers the volatility.

Proof of Theorem 3.10: Recall the notation introduced in Section 2.2. Fix c and λ.
Let d be the solution of the recursion relation in (3.17). Let d0, d1 be the solutions
when Lρ is replaced by δ0, δ1 (recall that ρ has mean 1 under Lρ). As initial values
take d0

0 ≤ d0 ≤ d1
0. We use induction on k to show that d0

k < dk < d1
k for all k ∈ N.

Define (see Fig. 7.4)

f0
k (x) =

ckx

ck + x
, fk(x) = ELρ

[
ck(µkρ+ x)

ck + (µkρ+ x)

]
, f1

k (x) =
ck(µk + x)

ck + (µk + x)
.

(7.1)
Because a 7→ ck(µka+x)/[ck + (µka+x)] is strictly increasing and strictly concave
on [0,∞) for all x ∈ [0,∞), it follows that f0

k (x) < fk(x) < f1
k (x) for all x ∈ [0,∞).

Hence, if d0
k ≤ dk ≤ d1

k, then d0
k+1 = f0

k (d0
k) < fk(d0

k) ≤ fk(dk) = dk+1 and

dk+1 = fk(dk) < f1
k (dk) ≤ f1

k (d∗k) = d1
k+1. �
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ck

x

Figure 7.4. Qualitative pictures of x 7→ f0
k (x) (bottom), x 7→ fk(x)

(middle) and x 7→ f1
k (x) (top). All three functions are strictly increasing

and strictly concave on [0,∞), and tend to ck as x→∞.

The same argument proves the claim made in Section 3.3 that M < M∗ for the
fixed points of (3.35) (random environment) and its analogue with Lρ replaced by
δ1 (average environment).

7.2. Scaling of the volatility: polynomial coefficients.

Proof of Theorem 3.15: We look at each of the four parameter regimes separately.
Recall (3.33)–(3.34).

(a) Let Kk = µk/ck−1, Rk = ck/ck−1 and 0k = dk/ck−1. Rewrite (3.17) as

0k+1 = gk(0k) with gk(x) = ELρ
[

(Kkρ+ x)

Rk + (Kkρ+ x)

]
. (7.2)

Since gk is non-decreasing on [0,∞), we have the sandwich

gk(0) ≤ 0k+1 ≤ gk(∞) = 1. (7.3)

We are in the regime where limk→∞Kk = K =∞ and limk→∞Rk = R = 1. Hence
limk→∞ gk(0) = 1, and so (7.3) yields limk→∞ dk/ck = limk→∞0k/Rk = 1/R = 1.

(b) Again use (7.2). We are in the regime where limk→∞Kk = K ∈ (0,∞) and
limk→∞Rk = R = 1. Hence, we see that gk converges point-wise to g given by

g(x) = ELρ
[

(Kρ+ x)

R+ (Kρ+ x)

]
. (7.4)

Both g and gk are strictly increasing and strictly concave on [0,∞), with g([0,∞]) ⊆
[0, 1] and gk([0,∞]) ⊆ [0, 1], with unique attracting fixed points M ∈ (0, 1) and
Mk ∈ (0, 1), and with M the solution of (3.35). To show that limk→∞0k = M , we
need two facts.

Lemma 7.1. Let sk = supx∈[0,1] |gk(x)− g(x)|. Then limk→∞ sk = 0. �

Proof : Estimate

(Kkρ+ x)

Rk + (Kkρ+ x)
− (Kρ+ x)

R+ (Kρ+ x)
=

R

R+ (Kρ+ x)
− Rk
Rk + (Kkρ+ x)

=
(RKk −RkK)ρ+ (R−Rk)x

[R+ (Kρ+ x)][Rk + (Kkρ+ x)]
≤ (RKk −RkK)

KRk
+
R−Rk
RRk

x.

(7.5)
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This gives

sk ≤
R

K

∣∣∣∣Kk

Rk
− K

R

∣∣∣∣+

∣∣∣∣ 1

Rk
− 1

R

∣∣∣∣ . (7.6)

Let k →∞ to get the claim. �

Lemma 7.2. Function g is a strict contraction around M , i.e., there exists a
β ∈ (0, 1) such that supx∈[0,∞)(g(x)−M)/(x−M) = β. �

Proof : Consider the linear function L(x) = g(0) + [1 − g(0)
M ]x, x ∈ [0,∞), which

satisfies L(0) = g(0) and L(M) = M = g(M) (see Fig. 7.5). Note that g ≥ L on
[0,M ] while g ≤ L on [M,∞). Hence, we have

0 ≤ g(x)−M
x−M

≤ L(x)−M
x−M

= 1− g(0)

M
. (7.7)

Since g(0) > 0, we get the claim with β = 1− g(0)
M . �

g(x)

L(x)

x
M

t

Figure 7.5. Comparison of g and L.

We can now complete the proof as follows. Let ∆k = |0k −M |. Then

∆k+1 = |0k+1 −M | ≤ |0k+1 − g(0k)|+ |g(0k)−M |
= |gk(0k)− g(0k)|+ |g(0k)−M | ≤ sk + β∆k.

(7.8)

Iteration yields

∆k+1 ≤
k∑
l=0

βlsk−l + βk+1∆0. (7.9)

It follows from Lemma 7.1–7.2 that limk→∞∆k = 0. Hence limk→∞ dk/ck =
limk→∞ 0k/Rk = M/R = M .

(c–d) Like in Case (a), the scaling turns out to be the same as for the average
environment. The proof is based on a comparison between the recursions for the
random environment and the average environment (last two items in (7.1)). The
key idea is the following lemma, which can be viewed as a stability property.
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Lemma 7.3. Let d0 = d1
0. Then, the solution of the recursion dk+1 = fk(dk),

k ∈ N0, is the same as the solution of the recursion d1
k+1 = f1

k (d1
k), k ∈ N0, when

in the latter recursion the coefficient µk is replaced by µkrk with

rk =
Nk
Dk

, Nk = ELρ
[

ckρ

ck(1 +Kkρ) + dk

]
, Dk = ELρ

[
ck

ck(1 +Kkρ) + dk

]
.

(7.10)
�

Proof : Check that

ck(µkrk + dk)

ck + (µkrk + dk)
= ELρ

[
ck(µkρ+ dk)

ck + (µkρ+ dk)

]
= dk+1, (7.11)

and use induction on k. �

Since ρ 7→ ck/[ck(1 +Kkρ) + dk] is non-increasing, we have Nk ≤ DkELρ [ρ] = Dk,
and so rk ≤ 1. The following result shows that rk tends to 1 as k → ∞ in Cases
(c) and (d).

Lemma 7.4. If limk→∞Kk = K = 0, then limk→∞ rk = 1. �

Proof : For any C ∈ (0,∞), we may estimate

Nk ≥
ck

ck(1 +KkC) + dk
ELρ

[
ρ 1{ρ≤C}

]
, Dk ≤

ck
ck + dk

. (7.12)

Since limk→∞Kk = 0, we have limk→∞(ck+dk)/[ck(1+KkC)+dk] = 1, and hence

lim inf
k→∞

Nk
Dk
≥ ELρ

[
ρ 1{ρ≤C}

]
. (7.13)

Now let C → ∞ and use that limC→∞ ELρ [ρ 1{ρ≤C}] = ELρ [ρ] = 1 by monotone
convergence. �

Lemma 7.3 implies that the scaling of dk is the same as the scaling of d1
k after µk

is replaced by µkrk. But the latter scaling was derived in Greven et al. (2014), and
a glance at the results for Cases (c) and (d) obtained there shows that the scaling
is unaffected by the extra factor rk because of Lemma 7.4. �

A technical remark is in order, for which we refer the reader to Greven et al.
(2014, Section 11.3). We have assumed that k 7→ µk is regularly varying at infinity
(recall (3.33)). Because limk→∞ rk = 1, also k 7→ rkµk is regularly varying at
infinity. Therefore, (rkµk)k∈N0

can be approximated from above and from below
by sequences that have the same scaling behaviour but are smoothly varying, i.e.,
for all n ∈ N their n-th order discrete differences are regularly varying as well. This
approximation is harmless because the maps c 7→ d and µ 7→ d are component-wise
non-decreasing (a fact that is immediate from (3.17)), and so the approximating
sequences provide a sandwich for the scaling. Now, if the tail exponent of rkµk
is non-integer, i.e., b /∈ N in (3.33), then for all n ∈ N the n-th order discrete
differences are asymptotically monotone. This observation is important because it
implies that certain sequences arising in Greven et al. (2014, Section 11.3) have
summable variation, a property that is crucial for the proof of the scaling. If the
tail exponent is integer, i.e., b ∈ N in (3.33), then the asymptotic monotonicity still
holds for all n ≤ b, which turns out to be enough for the argument.
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The extra regularity conditions on Lc, Lµ in (3.33), which are stated in Greven
et al. (2014, Eqs. (1.79)–(1.81)), need no modification: (rkµk)k∈N0

has the same
slowly varying function Lµ as (µk)k∈N0 .

7.3. Scaling of the volatility: exponential coefficients.

Proof of Theorem 3.17: We look at each of the five parameter regimes (= univer-
sality classes) separately. Recall (3.37–3.38).
(A). Use (7.2). We are in the regime where limk→∞Kk = K =∞ and limk→∞Rk =
c. The same argument as in the proof of Case (a) yields

lim
k→∞

dk/ck = lim
k→∞

0k/Rk = 1/c. (7.14)

(B). Let K̄k = µ̄k/c̄k−1 and R̄k = c̄k/c̄k−1. Then Kk = cK̄k and Rk = cR̄k by
(3.37), and so (7.2) becomes

0k+1 = ḡk(0k) with ḡk(x) = ELρ
[

(cK̄kρ+ x)

cR̄k + (cK̄kρ+ x)

]
. (7.15)

We are in the regime where limk→∞ K̄k = K̄ ∈ (0,∞) and limk→∞ R̄k = R̄ = 1.
The same argument as in Case (b) therefore yields limk→∞ dk/ck = limk→∞ 0k/Rk
= M̄/cR̄ = M̄/c with M̄ the unique attracting fixed point of

ḡ(x) = ELρ
[

(cK̄ρ+ x)

c+ (cK̄ρ+ x)

]
, (7.16)

which is the analogue of (7.4).
(C1). This case is the same as Case (B), but with K̄ = 0. The analogue of (7.16)
reads ḡ(x) = x/(c + x). Since ḡ has M̄ = 1 − c ∈ (0, 1) as unique attracting fixed
point, we can copy the proof of Case (b) to get limk→∞ dk/ck = limk→∞ 0k/Rk =
(1−c)/cR̄ = (1−c)/c. Note: In the proof of Case (b) we used that g(0) > 0, which
fails here. However, even when d0 = 0, the iterates dk, k ∈ N, are bounded away
from 0 because the attracting fixed points of fk, k ∈ N, are bounded away from 0.
Hence we may restrict the entire argument to [ε, 1] for some ε > 0 instead of [0, 1],
and use that g(ε) > 0 (recall Fig. 7.5).
(C2). This case is like Case (c). Since K̄ = 0, we can copy the proof of Case (c)
and show that the same scaling holds as in the average environment.
(C3). This case is like Case (d). Since K̄ = 0, we can copy the proof of Case (d)
and show that the same scaling holds as in the average environment. �

8. Identification of the universality classes of cluster formation

In this section, we prove Theorem 3.19. In Section 8.1, we deal with cases (a),
(A) and (b), (B), (C1), in Section 8.2 with cases (c), (C2) and (d), (C3). The
strategy of proof is the same as for the homogeneous environment, except at a few
points where the random environment comes into play seriously. We focus on the
necessary modifications. Like Section 6, this section is not completely autonomous,
and for an understanding of the fine details the reader must check the relevant
passages in Greven et al. (2014).

Before we begin, we recall why we may choose the starting configuration to be
identically equal to θ, the mean of the starting configuration. The initial state and
the environment of our Cannings process are such (recall Theorem 3.6) that the
scaling limit in (3.22) yields on average θ on level j + 1.
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8.1. Random cluster size.

Proof of cases (b), (B), (C1), (C3)[first subcase]: In Step 1, we give the
proof for an i.i.d. random environment. In Step 2, we extend the proof to a sta-
tionary and ergodic random environment.
Step 1. We consider the setMf ([0, 1])×P(E), describing the environment and the
state of a block. If the random environment is i.i.d., then the sequence(

χ(η,j+1−α)(ω),M
(j)
−(j+1−α)

)
α∈N0

(8.1)

is a time-inhomogeneous Markov chain. Let (K
∗,(j)
α )α∈N0

be its sequence of tran-

sition kernels. (We suppress the index η from M
(j)
η,−(j+1−α) because its law is the

same for all η ∈ ΩN .) It suffices to prove three properties:

(1) The sequence of transition kernels (K
∗,(j)
α )α∈N0

converges as j →∞ to the
sequence (K∗,∞α )α∈N0

of transition kernels given by

K∗,∞α ((χ, θ), ·) = L
[
χα ⊗ ν1,M̃,2K̃χα(ω)

θ

]
(·), (8.2)

where M̃, K̃ are defined in (3.47) and (χα(ω))α∈N0 in (3.48).
(2) The map

((0,∞)× (0,∞)× P([0, 1])) 3 (c, d,Λ) 7→ νc,d,Λθ ∈ P(P(E)) (8.3)

is continuous.
(3) The map

P(E) 3 θ 7→ νc,d,Λθ ∈ P(P(E)) (8.4)

is continuous.

Items (1) and (3) imply the convergence of the process in (8.1), while item (2) is
needed in the proof item (1).

Proof of (1)–(3): Here a key is the duality relation for the McKean-Vlasov limit
process. This duality arises as a special case of our duality relation by choosing a
suitable geographic space. This coalescent is obtained by taking as space {0, ∗},
where the rates for all transitions in ∗ are zero (cemetery) state and jumps occur
from 0 to ∗ at rate c. Kingman coalescence occurs at rate d and the Λ-coalescence
is given via Λ (all as long as we are in 0). For a detailed discussion, see Greven
et al. (2014, Section 4).

With the help of duality we can identify the equilibrium measure νc,d,Kχθ by
using a measure-determining sequence of test functions. The parameters c, d, χ
enter via the rate of jump to the cemetery state (parameter c), the rate of pairwise
coalescence (parameter d), and the rate of coalescence (parameter χ). In the latter,
the ratio χ/χ((0, 1]) determines the probability for partition elements to coalesce in
groups (Λ-coalescence). In this equilibrium representation, the coalescent has run
for infinite time.

(1) With L acting on χj+1−α(ω), we have

K∗,(j)α ((χ, θ), ·) = L
[
(χj+1−α)⊗ ν1,dj+1−α/cj+1−α,2Kj+1−αχ

j+1−α(ω)
θ

]
(·). (8.5)

From Theorems (3.15) and (3.17), we know that dj+1−α/cj+1−α and Kj+1−α con-

verge to M̃ and K̃ as j →∞. The point is to show for every α ∈ N0 the equilibrium
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measure in the right-hand side converges as j →∞. By the stationarity of the ran-
dom environment, the law of χj+1−α(ω) is independent of j. Hence (2) and (3)
yield the claim.

(2) The continuity in (8.3) can be deduced from the dual representation in the
McKean-Vlasov limit dynamic, in particular, from the fact that the coalescent
has run for infinite time, and depends continuously on the migration rate c and
the Kingman coalescence rate d, respectively, the rates for the Λ-coalescence. The
coalescent has a monotone decreasing number of partition elements off the cemetery
where all rates are zero and reaches the cemetery state after a finite time. This
means we have a Markov chain hitting a trap in finite time and therefore depends
continuously on the finitely many involved jump-rates.

(3) The continuity in (8.4) is deduced from the dual representation. We have to show
that the dual expectation depends continuously on θ, which goes as follows. First
note that the monomials { 〈· , f〉` : f ∈ Cb(E,R), ` ∈ N} are measure-determining
on (E,B). The dual expectation is a finite sum over terms arising from partition
elements that are coalescing before jumping to the cemetery state. If ` partition
elements remain, then the θ-dependence is via 〈θ, f〉`, which is a continuous function
of θ. �

Step 2. To deal with a stationary and ergodic random environment, we condition
on the sequence (χα)α∈N0

. This leads to a sequence of Markov chains in random
environment, indexed by j, for which the result in (1) holds, as explained above.
After that we argue that (1)–(3) again imply the claim, because of the stationarity
and the fact that we need only consider finite α.

Next, we consider the finite-dimensional laws of the Markov chain in random
environment conditional on (χα)α∈N0 and we verify the appropriate versions of
(1)–(3). To this end, we extend the duality to a space-time duality and obtain an
expression for the mixed space-time moments in terms of triples of parameters

(ck, dk, χk)k=j+1,j,...,j+1−L, (8.6)

with L being the order of the marginal distribution we consider.
In the space-time dual, we work with frozen partition elements which are acti-

vated (then once and forever) at a present time. Namely, we add partition elements
marked by a label in [0,∞], which indicates from which time on the mechanisms of
the coalescent are activated. Before this time, the partition element neither moves
nor coalesces. This allows us to characterize the finite-dimensional marginals of the
forward process. Suppose that we want to study the finite-dimensional distribu-
tions associated with times 0 ≤ t1 < t2 < t3 . . . < tn < t. Then, we take individuals
marked with 0, t− tn, t− tn−1, . . . , t− t1, consider the test functions in the duality
relations for the time horizon t1, t2, . . . , tn, t, and form the product. The duality
relation holds again. Compare with Greven et al. (2016, Corollary 1.20).

In this setting, (1)–(3) turn into claims about the expectation of the duality
expression under the law of the space-time coalescent, after which the argument
proceeds as above. �

Proof of cases (a), (A): The limiting transition kernel of the rescaled interaction
chain for a given environment degenerates to a transition kernel concentrated on
the traps. We have

K =∞, lim
k→∞

dk/ck = 1. (8.7)
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We must therefore show that

lim
K→∞

L
[
ν1,1,2Kχ
θ

]
= L

[∫
E

θ(du)δδu

]
. (8.8)

Taking the dual representation, we see that as K →∞ the rate of the Λ-coalescence
tends to infinity, implying that the coalescent converges before it jumps, and co-
alesces into a single partition element. The duality relation says that the original
McKean-Vlasov process is in a mono-type equilibrium, where the type is chosen at
random according to θ. The claim now follows because for K(θ, ·) =

∫
E
θ(du)δδu(·)

the state δu is a trap, so that the limiting Markov chain is constant for every α 6= 0,
the constant being chosen according to θ for every realization of the random envi-
ronment. �

8.2. Random cluster order.

Proof of cases (c), (C2) and (d), (C3)[second subcase]: In cases (c) and
(d), averaging takes place via a law of large numbers and the situation is simi-
lar to the homogeneous environment, for which the results in Theorem 3.19 are of
the same type, and it is only the formula for d that changes.

The claim is that the interaction chain, which is a space-time rescaled Markov
chain and a measure-valued square-integrable martingale, converges to a limit that
is a measure-valued diffusion and a square-integrable martingale. In Dawson et al.
(1995, Section 6(b)), it was pointed out how, for the case of the Fleming-Viot
process, this convergence reduces to the study of the process of conditioned vari-
ances along the path, which in turn reduces to showing the following asymptotic
relations for these objects. Pick α1, α2 ∈ I with α2 < α1, and suppose that
limj→∞ kα(j)/j = β(α) with 0 ≤ β(α1) < β(α2) ≤ 1. If the scaled Markov chain is
such that

lim
j→∞

Var
(〈
f,M

(j)
−kα1

(j)

〉 ∣∣∣ M (j)
−kα2

(j) = θ
)

=
β(α2)− β(α1)

β(α2)
Varθ(f),

f ∈ Cb(E,R), (8.9)

with β(α) = 1 − α, then by applying the transformation β(α) = e−s the right-
hand side turns into the expression (1 − e−(s1−s2)) Varθ(f). Since this scales like
(s1−s2) Varθ(f) for s1 ↓ s2, we see that the standard Fleming-Viot process Y (s)s≥0

appears as the scaling limit. Since s = log(1/(1 − α)), we get the time-scaled
Fleming-Viot process Y (log(1/(1− α))α∈[0,1) (see Dawson et al., 1995, Section 6).

With suitable time transformations, we can also handle the other forms of scaling
j → kα(j) in Definition 3.18. Namely, we have to identify the function F (α1, α2)
appearing in front of Varθ(f) and find the transformation α = L(s) such that

∆F (s2) = lim
s1↓s2

F (L(s1), L(s2))

s1 − s2
≡ 1, (8.10)

so that again the standard Fleming-Viot process (Y (s))s≥0 appears as the scaling
limit. Since s=L−1(α), we get the time-scaled Fleming-Viot process (Y(L−1(α))α∈I .

It was pointed out in Greven et al. (2014, Section 9.3) how (8.9) is established
for the homogeneous hierarchical Cannings process by using the scaling analysis
of the coefficients d = (dk)k∈N0 . In our case, we need to work with a random
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sequence (µkρk(ω))k∈N0
instead of (µk)k∈N0

, where ρk(ω) arises from the term Λ =
Λ(η,k)((0, 1])(ω) in the following variance formula∫
E

µc,d,Λθ (dx)
(
〈f, x〉2 − 〈f, θ〉2

)
=

2c

2c+ λρk(ω) + 2d
Varθ(〈f, x〉), f ∈ Cb(E,R).

(8.11)

We thus have to see whether the product (with ρk(ω) = ρMCk(0)(ω))

j2∏
k=j1

2ck
2ck + λkρk(ω) + 2dk

, (8.12)

appearing in the expression for the variance in (8.9), does indeed exhibit averaging
based on the tail triviality of the random sequence (ρk(ω))k∈N0

(see Greven et al.,
2014, Eq. (8.14)).

To that end, we abbreviate

mk(ω) =
µkρk(ω) + dk

ck
, (8.13)

consider the relation

Var
(〈
M

(j2)
j1

, f
〉
|M (j2)

j2+1 = θ
)

=

 j2∑
k=j1

dk+1

ck

j2∏
l=k+1

1

1 +ml(ω)

 Var(〈θ, f〉) (8.14)

and analyse its behaviour as j → ∞ for appropriate choices of j1 = j1(j) and
j2 = j2(j). We must show that, for P almost all ω, (8.14) behave asymptotically
like the right-hand side of (8.9), and we must identify the associated F , ∆F and
L.

In order to decide how the product scales as j2− j1 →∞, we take logarithms to
turn this into the question whether the sum

j2∑
k=j1

µkρk(ω) + dk
ck

=

j2∑
k=j1

mk(ω) (8.15)

has a certain scaling behaviour, and we link this to the scaling behaviour of µk/ck
and dk/ck for k →∞ (which we know from Theorems 3.15 and 3.17) to derive the
relevant asymptotics. We have to show that this asymptotics does not depend on
ω and is equal to that with ρk(ω) replaced by its mean 1. To achieve the latter, we
use the stationarity of (ρk(ω))k∈N0

, plus the fact that it has bounded and decaying
covariances (recall (2.41)–(2.42)). The key is the following lemma.

Lemma 8.1. Define S(j1, j2)(ω) =
∑j2
k=j1

mk(ω). Then,

lim
j2−j1→∞

S(j1, j2)(ω)

E[S(j1, j2)(ω)]
= 1 in P-probability. (8.16)

Proof : Define

χk(j1, j2) =
µk/ck∑j2

k=j1
(µk + dk)/ck

, j1 ≤ k ≤ j2. (8.17)

Then

S(j1, j2)(ω)

E[S(j1, j2)(ω)]
− 1 =

j2∑
k=j1

χk(j1, j2)[ρk(ω)− 1]. (8.18)
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With the help of Chebyshev’s inequality we see that it suffices to show that

lim
j→∞

j2∑
k=j1

j2∑
l=j1

χk(j1, j2)χl(j1, j2)Cov[ρk(ω), ρl(ω)] = 0. (8.19)

We have Cov[ρk(ω), ρl(ω)] = C|k−l| with limm→∞ Cm = 0. Since, by our assump-
tions on (ck)k∈N0

and (µk)k∈N0
, we have

lim
j2−j1→∞

max
j1≤k≤j2

χk(j1, j2) = 0,
∑

j1≤k≤j2

χk(j1, j2) ≤ 1, (8.20)

the claim follows. �

Remark 8.2. The role of Lemma 8.1 is to show that the same clustering behaviour
occurs in the random environment as in the homogeneous environment. We are only
able to prove convergence in P-probability and not P-a.s. In the prefactor in the
right-hand side of (8.14) weighted averages over j1, j2-dependent sliding windows of
the random environment appear, which would need to be shown to converge P-a.s.
It is unclear how to do this, even for an i.i.d. random environment.

Lemma 8.1 implies that the term between square brackets in (8.14) scales like

∆(j1, j2) =

j2∑
k=j1

dk+1

ck
exp

[
−

j2∑
l=k+1

µl + dl
cl

]
in P-probability as j2 − j1 →∞,

(8.21)
where we use that liml→∞(µl + dl)/cl = 0 in all cases of interest. In the remainder
of the proof, we pick j1 = kα1(j) and j2 = kα2(j) with α2 < α1, with kα(j) as in
Definition 3.18, and compute the limit of (8.21) as j → ∞. We omit writing b·c
at places where labels are obviously integer. We determine kα and identify F , L
(recall the discussion leading up to (8.10)) for the different cases, in the order (c),
(C2), (d), (C3). Recall that Kk = µk

ck
and K̄k = µ̄k

c̄k
.

Case (c). Pick kα(j) = j+1−αh(j) with h(j) = 1/
√
Kj , and insert dk ∼

√
ckµk =

ck
√
Kk and dk+1 ∼ dk, to obtain that (8.21) scales like

∆(j) =

j+1−α2/
√
Kj∑

k=j+1−α1/
√
Kj

√
Kk exp

− j+1−α2/
√
Kj∑

l=k+1

(
Kl +

√
Kl

) . (8.22)

Putting x = (j + 1 − k)
√
Kj , and using that limk→∞Kk = 0, limk→∞ k2Kk = ∞

and Kk ∼ Kl ∼ Kj uniformly in k, l in both sums, we get

lim
j→∞

∆(j) =

∫ α1

α2

dx exp[−(x− α2)] = 1− exp[−(α1 − α2)]. (8.23)

Pick α = L(s) = s. Then ∆F ≡ 1. Since s = L−1(α) = α, this proves the claim.

Case (C2)[subcase limk→∞ kK̄k =∞]. Pick kα(j) = j + 1− αh(j) with h(j) =
1/K̄j , and insert dk ∼ µk/(µ− 1) = K̄kck/(µ− 1) and dk+1 ∼ µdk, to obtain that
(8.21) scales like

∆(j) =
µ

µ− 1

j+1−α2/K̄j∑
k=j+1−α1/K̄j

K̄k exp

− µ

µ− 1

j+1−α2/K̄j∑
l=k+1

K̄l

 . (8.24)
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Putting x = (j + 1− k)K̄j , and using that limk→∞ K̄k = 0, limk→∞ kK̄k =∞ and
K̄k ∼ K̄l ∼ K̄j uniformly in k, l in both sums, we get

lim
j→∞

∆(j) =
µ

µ− 1

∫ α1

α2

dx exp

[
− µ

µ− 1
(x− α2)

]
= 1− exp

[
− µ

µ− 1
(α1 − α2)

]
.

(8.25)
Pick α = L(s) = µ−1

µ s. Then ∆F ≡ 1. Since s = L−1(α) = µ
µ−1α, this proves the

claim.

Case (d). Pick kα(j) = (1 − α)(j + 1), and insert dk ∼ M/σk, σkck ∼ k/(1 − a)
and dk+1 ∼ dk, to obtain that (8.21) scales like

∆(j) = M(1− a)

(1−α2)(j+1)∑
k=(1−α1)(j+1)

1

k
exp

− (1−α2)(j+1)∑
l=k+1

(
Kl +

M(1− a)

l

) . (8.26)

Putting x = (j + 1− k)/(j + 1), and using that limk→∞ k2Kk = 0, we get

lim
j→∞

∆(j) = M(1− a)

∫ α1

α2

dx

1− x
exp

[
−M(1− a)

∫ x

α2

dy

1− y

]
= M(1− a) (1− α2)−M(1−a)

∫ α1

α2

dx (1− x)−1+M(1−a)

= 1−
(

1− α1

1− α2

)M(1−a)

.

(8.27)

Pick α = L(s) = 1−e−s/R with R = M(1−a). Then ∆F ≡ 1. Since s = L−1(α) =
log(1/(1− α)R) we get the claim.

Case (C2)[subcase limk→∞ kK̄k = N̄ ]. This is the same as case (d) with M(1−a)
replaced by N̄ µ

µ−1 .

Case (C3)[second subcase]. This is the same as case (d) with M replaced by
1. �
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