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Abstract. We develop a Mellin transform framework which allows us to simulta-
neously analyze the four known exactly solvable 1 ` 1 dimensional lattice polymer
models: the log-gamma, strict-weak, beta, and inverse-beta models. Using this
framework we prove the conjectured fluctuation exponents of the free energy and
the polymer path for the stationary point-to-point versions of these four models.
The fluctuation exponent for the polymer path was previously unproved for the
strict-weak, beta, and inverse-beta models. An independent and concurrent work
by Balázs et al. (2018) also gives the path fluctuation result for the beta model.

1. Introduction

The directed polymer in a random environment was first introduced by Huse
and Henley (1985) to model the interaction between a long chain of molecules and
random impurities. This was later reformulated by Imbrie and Spencer (1988)
as a random walk in a random environment. See the recent lectures notes by
Comets (2017) for additional historical background and a survey of techniques
used to study directed polymers. In the 1 ` 1 dimensional case, a large class of
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polymer models are expected to lie in the KPZ universality class. For this class,
the polymer path and free energy fluctuation exponents are conjectured to be 2{3
and 1{3, respectively, and the probability distribution of the rescaled free energy is
conjectured to converge to the Tracy-Widom GUE distribution.

There are a few 1 ` 1 dimensional polymer models for which these results have
been proved. Balázs et al. (2011), prove the fluctuation exponents for a Hopf-Cole
solution to the KPZ equation with Brownian initial condition. This solution can be
interpreted as the free energy of a stationary continuum directed polymer. Amir
et al. (2011) study the Hopf-Cole solution to the KPZ equation with narrow-wedge
initial condition and prove Tracy-Widom limit distribution for large time. For the
semi-discrete Brownian directed polymer introduced by O’Connell and Yor (2001),
the fluctuation exponents are proved by Seppäläinen and Valkó (2010), and the limit
distribution is proved by Borodin and Corwin (2014) and Borodin et al. (2014).

In the setting of lattice directed polymers, there are four models for which re-
sults about the scaling exponents or limit distributions are known. The log-gamma
directed polymer was introduced by Seppäläinen (2012), where the fluctuation ex-
ponents were proved. The limit distribution result was proved by Borodin et al.
(2013). The strict-weak polymer model was simultaneously introduced by Corwin
et al. (2015) and O’Connell and Ortmann (2015). Its limit distribution was proved
through different methods in these two papers. The beta directed polymer was
introduced by Barraquand and Corwin (2017), where its limit distribution was also
calculated. The fourth model is the inverse-beta model, introduced by Thiery and
Le Doussal (2015), in which they conjecture a formula for the Laplace transform
of the polymer partition function and, contingent on this conjecture, show Tracy-
Widom limit distribution for the rescaled free energy.

In this paper we provide a Mellin transform framework with which we are able
to treat these four lattice polymer models simultaneously and prove the fluctuation
exponents of the free energy and the polymer path for their stationary versions.
While for the log-gamma model these results were previously shown by Seppäläinen
(2012), for the strict-weak, beta, and inverse-beta models, the path fluctuation
results are new. An independent and concurrent work by Balázs et al. (2018) also
gives the path fluctuation result for the beta model.

Our methods rely upon a Burke-type stationarity property that each of these
models possesses. This stationarity, along with a coupling argument, are used to
prove a variance formula which is then amenable to analysis. This method was
first used by Cator and Groeneboom (2006) to prove the order of the variance of
the length of the longest weakly North-East path in Hammersley’s process with
sources and sinks. Balázs et al. (2006) adapt this method to prove the order of
the fluctuations of the passage time and the fluctuations of the maximal path for
last passage percolation with exponential weights. Seppäläinen (2012) used this
method to prove the order of the fluctuation of the free energy and the polymer
path fluctuations for the point-to-point log-gamma model with stationary boundary
conditions, and upper bounds on the fluctuation exponents for the non-stationary
point-to-point and point-to-line models. Seppäläinen and Valkó (2010) prove the
scaling exponents for the O’Connell-Yor polymer, and Moreno Flores et al. (2014)
extend the result to the intermediate disorder regime. Our paper closely follows the
methods in Seppäläinen (2012); the Mellin transform framework provides a unified
way to apply these methods to the four models.
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In our related paper Chaumont and Noack (2017) we prove that in the setting
of 1 ` 1 dimensional lattice directed polymers, the only four models possessing the
Burke-type stationarity property are the log-gamma, strict-weak, beta, and inverse-
beta models.

Notation: N “ t1, 2, . . .u, Z` “ t0, 1, . . .u, and R denotes the real numbers.
Let txu denote the greatest integer less than or equal to x. Let _ and ^ denote
maximum and minimum, respectively. Given a real valued function f , let supppfq “
tx : fpxq ‰ 0u denote the support of the function f (note that we do not insist on
taking the closure of this set). Given a random variable X with finite expectation,
we letX “ X´ErXs. For A Ă R write ´A “ t´a : a P Au and A´1 “ ta´1 : a P Au
assuming that 0 R A. The symbol b is used to denote (independent) product
distribution.

1.1. The polymer model. On each edge e of the Z
2
` lattice we place a positive

random weight. The superscripts 1 and 2 will be used to denote horizontal and
vertical edge weights, respectively. For z P N2, let Y 1

z and Y 2
z denote the hori-

zontal and vertical incoming edge weights. We assume that the collection of pairs
tpY 1

z , Y
2
z quzPN2 is independent and identically distributed with common distribu-

tion pY 1, Y 2q, but do not insist that Y 1
z is independent of Y 2

z . Call this collection
the bulk weights. For x P N ˆ t0u, let R1

x denote the horizontal incoming edge
weight, and for y P t0u ˆ N, let R2

y denote the vertical incoming edge weight. We

assume the collections tR1
xuxPNˆt0u and tR2

yuyPt0uˆN are independent and identi-

cally distributed with common distributions R1 and R2, and refer to them as the
horizontal and vertical boundary weights, respectively. We further assume that the
horizontal boundary weights, the vertical boundary weights, and the bulk weights
are independent of each other. This assignment of edge weights is illustrated in
Figure 1.1. We call

ω “ tR1
x, R

2
y, pY

1
z , Y

2
z q : x P N ˆ t0u, y P t0u ˆ N, z P N

2u (1.1)

the polymer environment. We use P and E to denote the probability measure and
corresponding expectation of the polymer environment.

R2
0,j

R1
i,0

Y 1
z

Y 2
z

z

Figure 1.1. Assignment of edge weights.
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A path is weighted according to the product of the weights along its edges. For
pm,nq P Z2

`ztp0, 0qu we define a probability measure on all up-right paths from
p0, 0q to pm,nq. See Figure 1.2 for an example of an up-right path. Let Πm,n
denote the collection of all such paths. We identify paths x‚ “ px0, x1, . . . , xm`nq
by their sequence of vertices, but also associate to paths their sequence of edges
pe1, . . . , em`nq, where ei “ txi´1, xiu. Define the quenched polymer measure on
Πm,n,

Qm,npx‚q :“
1

Zm,n

m`nź

i“1

ωei ,

where ωe is the weight associated to the edge e and

Zm,n :“
ÿ

x‚PΠm,n

m`nź

i“1

ωei

is the associated partition function. At the origin, define Z0,0 :“ 1. Taking the
expectation E of the quenched measure with respect to the edge weights gives the
annealed measure on Πm,n,

Pm,npx‚q :“ ErQm,npx‚qs.

The annealed expectation will be denoted by Em,n.

Figure 1.2. An up-right path from p0, 0q to p5, 5q.

We specify the edge weight distributions for the four stationary polymer models.
The notationX „ Gapα, βq is used to denote that a random variable is gammapα, βq
distributed, i.e. has density Γpαq´1βαxα´1e´βx supported on p0,8q, where Γpαq “ş8

0
xα´1e´xdx is the gamma function. X „ Bepα, βq is used to say that X is

betapα, βq distributed, i.e. has density Γpα`βq
ΓpαqΓpβqx

α´1p1 ´ xqβ´1 supported on p0, 1q.

We then use X „ Ga´1pα, βq and X „ Be´1pα, βq to denote that X´1 „ Gapα, βq
and X´1 „ Bepα, βq, respectively. We also use X „

`
Be´1pα, βq ´ 1

˘
to denote

that X ` 1 „ Be´1pα, βq.

‚ Inverse-gamma (IG): This is also known as the log-gamma model. As-
sume µ ą θ ą 0, β ą 0 and

R1 „ Ga´1pµ ´ θ, βq R2 „ Ga´1pθ, βq

pY 1, Y 2q “ pX,Xq where X „ Ga´1pµ, βq.
(1.2)
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‚ Gamma (G): This is also known as the strict-weak model. Assume
θ, µ, β ą 0 and

R1 „ Gapµ ` θ, βq R2 „ Be´1pθ, µq

pY 1, Y 2q “ pX, 1q where X „ Gapµ, βq.
(1.3)

‚ Beta (B): Assume θ, µ, β ą 0 and

R1 „ Bepµ` θ, βq R2 „ Be´1pθ, µq

pY 1, Y 2q “ pX, 1 ´Xq where X „ Bepµ, βq.
(1.4)

‚ Inverse-beta (IB): Assume µ ą θ ą 0, β ą 0 and

R1 „ Be´1pµ ´ θ, βq R2 „
`
Be´1pθ, β ` µ´ θq ´ 1

˘

pY 1, Y 2q “ pX,X ´ 1q where X „ Be´1pµ, βq.
(1.5)

The name of each model refers to the distribution of the bulk weights. We call
these models the four basic beta-gamma models.

1.2. Results. If X is a positive random variable with density ρ, define

LXpxq :“ ´
1

xρpxq
CovplogX,1tXďxuq (1.6)

for all x such that ρpxq ą 0. Given a path x‚ P Πm,n, define the exit points of the
path from the horizontal and vertical axes by

t1 :“ maxti : pi, 0q P x‚u and t2 :“ maxtj : p0, jq P x‚u. (1.7)

The following proposition gives exact formulas for the expectation and variance
of the free energy, which is a starting point for analysis of these four models.

Proposition 1.1. Assume that the polymer environment has edge weight distribu-

tions R1, R2, pY 1, Y 2q as in one of (1.2) through (1.5). Then for all pm,nq P Z
2
`,

ErlogZm,ns “ mErlogR1s ` nErlogR2s,

VarrlogZm,ns “ ´mVarrlogR1s ` nVarrlogR2s ` 2Em,n

«
t1ÿ

i“1

LR1pR1
i,0q

ff
, (1.8)

VarrlogZm,ns “ mVarrlogR1s ´ nVarrlogR2s ` 2Em,n

«
t2ÿ

j“1

LR2pR2
0,jq

ff
. (1.9)

Using these exact formulas, we can obtain the following bounds on the variance
of the free energy when pm,nq grow in a characteristic direction.

Theorem 1.2. Assume that the polymer environment has edge weight distributions

R1, R2, pY 1, Y 2q as in one of (1.2) through (1.5), and let pm,nq “ pmN , nN q8
N“1

be a sequence such that

|mN ´NVarrlogR2s| ď γN2{3 and |nN ´NVarrlogR1s| ď γN2{3 (1.10)

for some fixed γ ą 0. Then there exist positive constants c, C, and N0 depending

only on µ, θ, β, γ such that for all N ě N0,

cN2{3 ď VarrlogZm,ns ď CN2{3.

The same constants c, C, N0 can be taken for all µ, θ, β, γ varying in a compact set.
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Theorem 1.2 and a Borel-Cantelli argument give the following law of large num-
bers.

Corollary 1.3. With assumptions as in Theorem 1.2 the following limit holds P-

almost surely

lim
NÑ8

logZm,n
N

“ ErlogR1sVarrlogR2s ` ErlogR2sVarrlogR1s. (1.11)

For the four basic beta-gamma models, the right-hand side of (1.11) is given by

Apµ, θ, βq
´ B

Bθ
Bpµ, θq

¯
´
´ B

Bθ
Apµ, θ, βq

¯
Bpµ, θq ` Cpµ, θq,

where the functions A,B, and C are given in Table 1.3 and Ψnpxq :“ Bn`1

Bxn`1 log Γpxq
denotes the polygamma function of order n.

Model Apµ, θ, βq Bpµ, θq Cpµ, θq

IG log β Ψ0pθq ´ Ψ0pµ´ θq ´Ψ0pµ´ θqΨ1pθq ´ Ψ0pθqΨ1pµ´ θq

G log β Ψ0pµ` θq ´ Ψ0pθq Ψ0pµ` θqΨ1pθq ´ Ψ0pθqΨ1pµ` θq

B Ψ0pµ` θ ` βq Ψ0pµ` θq ´ Ψ0pθq Ψ0pµ` θqΨ1pθq ´ Ψ0pθqΨ1pµ` θq

IB ´Ψ0pµ´ θ ` βq Ψ0pθq ´ Ψ0pµ´ θq ´Ψ0pµ´ θqΨ1pθq ´ Ψ0pθqΨ1pµ´ θq

Figure 1.3. Functions for the limiting rescaled free energy of the
four basic beta-gamma models.

The following is a result for when the sequence pmN , nNq does not satisfy con-
dition (1.10). The statement is given for when the horizontal direction is too large,
but an analogous result holds for the vertical direction.

Corollary 1.4. Assume that the polymer environment has edge weight distributions

R1, R2, pY 1, Y 2q as in one of (1.2) through (1.5) and that m,n Ñ 8. Define N by

n “ NVarrlogR1s and assume

N´αpm ´NVarrlogR2sq Ñ c1 ą 0

for some α ą 2{3. Then as N Ñ 8

N´α{2 plogZm,n ´ ErlogZm,nsq

converges in distribution to a centered normal with variance c1VarrlogR
1s.

The variance formulas in Proposition 1.1 connect the variance of the free energy
to the exit points of the path from the boundaries (1.7). This allows us to obtain
bounds on the polymer path fluctuations under the annealed measure.

Given a path x‚ P Πm,n, for 0 ď k ď m and 0 ď l ď n define

v0plq :“ minti : pi, lq P x‚u v1plq :“ maxti : pi, lq P x‚u

w0pkq :“ mintj : pk, jq P x‚u w1pkq :“ maxtj : pk, jq P x‚u.
(1.12)

This is illustrated in Figure 1.4.
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k

l

v1plqv0plq

w0pkq

w1pkq

Figure 1.4. Example path with v0, v1, w0, w1 illustrated.

Theorem 1.5. Assume that the polymer environment has edge weight distributions

R1, R2, pY 1, Y 2q as in one of (1.2) through (1.5), and let pm,nq “ pmN , nN q8
N“1

be a sequence satisfying (1.10) for some fixed γ ą 0. Let 0 ď τ ă 1. Then there

exist positive constants b0, C, c0, c1, N0 depending only on µ, θ, β, γ, τ such that

for b ě b0 and N P N,

Pm,npv0ptτnuq ď τm ´ bN2{3 or v1ptτnuq ě τm ` bN2{3q ď
C

b3
, (1.13)

Pm,npw0ptτmuq ď τn ´ bN2{3 or w1ptτmuq ě τn ` bN2{3q ď
C

b3
, (1.14)

and for all N ě N0,

c0 ď Pm,npv1ptτnuq ě τm ` c1N
2{3 or w1ptτmuq ě τn ` c1N

2{3q. (1.15)

The same constants can be taken for all µ, θ, β, γ, τ varying in a compact set.

Structure of the paper: In Section 2 we define the down-right property then
state and prove consequences of this property. In Section 3 we introduce the Mellin
transform framework, which allows us to treat the four basic beta-gamma models
simultaneously, and prove Proposition 1.1. In Section 4 we prove the upper bound
of Theorem 1.2. In Section 5 we prove bounds (1.13) and (1.14) of Theorem 1.5.
In Section 6 we prove the lower bound of Theorem 1.2 and bound (1.15) of Theo-
rem 1.5. In Appendix A we verify that each of the four basic beta-gamma models
satisfies the conditions of Hypothesis 3.6. Appendix B collects technical lemmas
used in Sections 3 and 4. Appendix C collects facts used in the proof of Proposi-
tion 6.1.

Acknowledgements: This work is part of our dissertation research at the Univer-
sity of Wisconsin-Madison. We thank our advisors Timo Seppäläinen and Benedek
Valkó for their guidance and insights.
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2. The down-right property

Write α1 “ p1, 0q, α2 “ p0, 1q. For k “ 1, 2 define ratios of partition functions

Rkx :“
Zx

Zx´αk

for all x such that x´ αk P Z
2
`.

Note that these extend the definitions of R1
i,0 and R2

0,j , since for example Zi,0 “śi
k“1R

1
k,0. We say that π “ tπkukPZ is a down-right path in Z

2
` if πk P Z

2
` and

πk`1 ´ πk P tα1,´α2u for each k P Z. To each edge along a down-right path we
associate the random variable

Λtπk´1,πku :“

#
R1
πk

if tπk´1, πku is horizontal,

R2
πk´1

if tπk´1, πku is vertical.

The following definition is a weaker form of the Burke property (see Theorem 3.3
of Seppäläinen, 2012).

Definition 2.1. Say the polymer model has the down-right property if for all
down-right paths π “ tπkukPZ, the random variables

Λpπq :“ tΛtπk´1,πku : k P Zu

are independent and each R1
πk

and R2
πk

appearing in the collection are respectively

distributed as R1 and R2.

The partition functions satisfy the recurrence relation

Zx “ Y 1
x Zx´α1

` Y 2
x Zx´α2

for x P N
2. (2.1)

This recurrence relation then implies the recursions

R1
x “ Y 1

x ` Y 2
x

R1
x´α2

R2
x´α1

R2
x “ Y 1

x

R2
x´α1

R1
x´α2

` Y 2
x

for x P N
2. (2.2)

Using the recursions (2.2) we can reduce the down-right property to a simple preser-
vation in distribution.

Lemma 2.2. Let R1, R2, pY 1, Y 2q be positive random variables such that R1, R2

and the pair pY 1, Y 2q are independent. Put
` rR1, rR2

˘
:“ pY 1 ` Y 2R1{R2, Y 1R2{R1 ` Y 2q.

Then the polymer model with edge weights R1, R2, pY 1, Y 2q has the down-right prop-

erty if and only if
` rR1, rR2

˘ d
“

`
R1, R2

˘
.

Proof of Lemma 2.2: Given a down-right path π, define its lower-left interior

Intpπq :“ tx P Z
2
` such that x` pm,nq P tπu for some m,n P Nu.

If the polymer model with edge weights R1, R2, pY 1, Y 2q has the down-right prop-
erty, taking π to be the unique down-right path with interior tp0, 0qu implies that

pR1
1,1, R

2
1,1q

d
“ pR1, R2q. Then (2.2) and the fact that

`
R1

1,0, R
2
0,1, pY

1
1,1, Y

2
1,1q

˘ d
“

`
R1, R2, pY 1, Y 2q

˘
imply that p rR1, rR2q

d
“ pR1, R2q.



Fluctuation exponents for stationary polymers 517

For the converse direction, we first prove the statement for π with finite interior.
The case when the interior is empty is true by assumption. Assume that the down-
right property holds for all paths π with |Intpπq| “ n. Given a path π with |Intpπq| “
n` 1 there exists x such that π traverses the right-down corner tx´α1, x, x´α2u.
Let rπ be the path which traverses the same points as π with the exception of
instead passing through the down-right corner tx´α1, x´ α1 ´ α2, x´α2u. Then

|Intprπq| “ n and so
`
R1
x´α2

, R2
x´α1

˘ d
“

`
R1, R2

˘
. Using (2.2), the assumption that

p rR1, rR2q
d
“ pR1, R2q and the independence of pY 1

x , Y
2
x q from the collection Λprπq

gives us that the collection Λpπq has the desired property.
To prove the statement for arbitrary π, pick a finite sub-collection F of Λpπq.

Then there exists rπ such that Intprπq is finite and F Ă Λprπq. Since the statement
holds for down-right paths with finite interior, we are done. �

Proposition 2.3. Each of the four basic beta-gamma models, (1.2) through (1.5),
possesses the down-right property.

Proof : The p rR1, rR2q
d
“ pR1, R2q condition in Lemma 2.2 has been checked for the

inverse-gamma, gamma, beta, and inverse-beta models by Lemma 3.2 of
Seppäläinen (2012), Lemma 6.3 of Corwin et al. (2015), Lemma 3.1 of Balázs et al.
(2018), and Proposition 3.1 of Thiery (2016) respectively. �

The following lemma is an immediate consequence of the down-right property
and the starting point for the proof of Proposition 1.1.

Lemma 2.4. If the polymer model with edge weights R1, R2, pY 1, Y 2q possesses

the down-right property and logR1, logR2 both have finite variance, then for all

pm,nq P Z2
`,

(a) ErlogZm,ns “ mErlogR1s ` nErlogR2s,
(b) VarrlogZm,ns “ ´mVarrlogR1s ` nVarrlogR2s ` 2CovpSN , SSq,
(c) VarrlogZm,ns “ mVarrlogR1s ´ nVarrlogR2s ` 2CovpSE , SW q,

where

SN :“ logZm,n ´ logZ0,n “
mÿ

i“1

logR1
i,n, SS :“ logZm,0 “

mÿ

i“1

logR1
i,0,

SE :“ logZm,n ´ logZm,0 “
nÿ

j“1

logR2
m,j , SW :“ logZ0,n “

nÿ

j“1

logR2
0,j .

(2.3)

Proof : By the down-right property SS is independent of SW , SN is independent of
SE , and

VarrSN s “ VarrSSs “ mVarrlogR1s, VarrSEs “ VarrSW s “ nVarrlogR2s.

These facts along with the equalities logZm,n “ SN `SW “ SE `SS gives (a) and

VarrlogZm,ns “ VarrSN s ` VarrSW s ` 2CovpSN , SW q

“ VarrSN s ` VarrSW s ` 2CovpSN , SE ` SS ´ SN q

“ ´VarrSN s ` VarrSW s ` 2CovpSN , SSq

“ ´mVarrlogR1s ` nVarrlogR2s ` 2CovpSN , SSq.

Similarly,

VarrlogZm,ns “ ´nVarrlogR2s `mVarrlogR1s ` 2CovpSE , SW q.

�
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3. The Mellin transform framework

In this section we develop a framework which allows us to treat the four basic
beta-gamma models simultaneously.

Given a function f : p0,8q Ñ r0,8q, write Mf for its Mellin transform

Mf paq :“

ż 8

0

xa´1fpxqdx

for any a P R such that the integral converges. Define

DpMf q :“ interiorpta P R : 0 ă Mfpaq ă 8uq.

Definition 3.1. Given a function f : p0,8q Ñ r0,8q such that DpMfq is non-
empty, we define a family of densities on p0,8q parametrized by a P DpMf q:

ρf,apxq :“ Mfpaq´1xa´1fpxq. (3.1)

We write X „ mf paq to denote that the random variable X has density ρf,a.

Remark 3.2. If f : p0,8q Ñ r0,8q is such that DpMf q is non-empty, then Mf is
C8 throughout DpMf q. Furthermore, if X „ mf paq, then

(a) logX has finite exponential moments. That is, there exists some ǫ ą 0 such
that

Ereǫ| logX|s ď ErXǫs ` ErX´ǫs “
Mf pa ` ǫq `Mf pa´ ǫq

Mf paq
ă 8.

(b) For all k P N,

Bk

Bak
Mf paq “ MfpaqErplogXqks.

(c) ErlogXs “ ψ
f
0 paq and VarrlogXs “ ψ

f
1 paq, where

ψfnpaq :“
Bn`1

Ban`1
logMfpaq for n P Z`.

The following remark says that random variables with densities of the form (3.1)
are closed under inversion.

Remark 3.3. If f : p0,8q Ñ r0,8q is such that DpMf q is non-empty and gpxq :“
fp 1

x
q for x P p0,8q, then for all a P DpMf q,

(a) X „ mf paq ô X´1 „ mgp´aq,
(b) Mf paq “ Mgp´aq and therefore DpMgq “ ´DpMfq,
(c) ψfnpaq “ p´1qn`1ψgnp´aq for all n P N.

Definition 3.4. Let f j : p0,8q Ñ r0,8q be such that DpMfj q is non-empty for
j “ 1, 2. We say that the polymer environment is Mellin-type with respect to
pf1, f2q if pR1, R2q „ mf1pa1q bmf2pa2q for some aj P DpMfjq.

When the polymer environment is Mellin-type with parameters pa1, a2q, we use
Ppa1,a2q, Epa1,a2q, Varpa1,a2q, Covpa1,a2q in place of P, E, Var, Cov respectively.
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3.1. The four basic beta-gamma models are Mellin-type. We first specify functions
f to obtain each of the random variables appearing in the four basic beta-gamma
models. Note that the fourth column in Table 3.5 specifies the distribution of the

random variable corresponding to f . We let Bpa, bq “ ΓpaqΓpbq
Γpa`bq denote the beta

function and recall that Ψnpxq “ Bn`1

Bxn`1 log Γpxq. For the Table 3.5 we assume b ą 0
and a P DpMf q.

fpxq DpMf q Mf paq mf paq

e´bx p0,8q Γpaq{ba Gapa, bq

e´b{x p´8, 0q Γp´aqba Ga´1p´a, bq
p1 ´ xqb´1

1t0ăxă1u p0,8q Bpa, bq Bepa, bq

p1 ´ 1
x

qb´1
1txą1u p´8, 0q Bp´a, bq Be´1p´a, bq

p x
x`1

qb p´b, 0q Bp´a, b` aq Be´1p´a, b` aq ´ 1

fpxq ψfnpaq

e´bx Ψnpaq ´ δn,0 log b

e´b{x p´1qn`1pΨnp´aq ´ δn,0 log bq
p1 ´ xqb´1

1t0ăxă1u Ψnpaq ´ Ψnpa` bq
p1 ´ 1

x
qb´1

1txą1u p´1qn`1pΨnp´aq ´ Ψnp´a` bqq
p x
x`1

qb Ψnpa ` bq ` p´1qn`1Ψnp´aq

Figure 3.5. Mellin framework data for the distributions appear-
ing in the four basic beta-gamma models.

To express the distribution of the polymer environment in each of the four basic
beta-gamma models given in (1.2) through (1.5) within this Mellin framework, we
let

pR1, R2, Xq „ mf1pa1q bmf2pa2q bmf1pa3q, (3.2)

where the functions f1, f2 and parameters aj, j “ 1, 2, 3 are given in Table 3.6.
Recall that in each of the models, pY 1, Y 2q are given in terms of X . For Table 3.6
we assume µ, β ą 0.

Model f1pxq f2pxq pa1, a2, a3q

IG e´β{x e´β{x pθ ´ µ,´θ,´µq θ P p0, µq
G e´βx p1 ´ 1

x
qµ´1

1txą1u pµ ` θ,´θ, µq θ P p0,8q
B p1 ´ xqβ´1

1t0ăxă1u p1 ´ 1
x

qµ´1
1txą1u pµ ` θ,´θ, µq θ P p0,8q

IB p1 ´ 1
x

qβ´1
1txą1u p x

x`1
qpβ`µq pθ ´ µ,´θ,´µq θ P p0, µq

Figure 3.6. Functions and parameters to fit the four basic beta-
gamma models into the Mellin framework.

Remark 3.5. For each fixed value of the bulk parameter a3, we obtain a family of
models with boundary parameters a1 and a2 satisfying a1 ` a2 “ a3. For any such
a1 and a2, by Proposition 2.3 these models will have the down-right property.
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3.2. Coupling of polymer environments. In order to compare polymer environments
with different parameters, we use a coupling to express the boundary weights as
functions of i.i.d. uniformp0, 1q random variables.

If f : p0,8q Ñ r0,8q is such that DpMf q is non-empty, write F f for the CDF
of the random variable X „ mf paq. Specifically, F f : DpMf q ˆ r0,8q Ñ r0, 1s is
given by

F f pa, xq “
1

Mf paq

ż x

0

ya´1fpyqdy.

Define the quantile function

Hf pa, pq :“ inftx : p ď F f pa, xqu. (3.3)

If the random variable η is uniformly distributed on the interval p0, 1q, thenHf pa, ηq
„ mf paq.

Suppose that a polymer environment ω is Mellin-type with respect to pf1, f2q
with parameters pb1, b2q. Let tη1i , η

2
j : i, j P Nu be i.i.d. uniformp0, 1q random

variables that are independent of the bulk weights tpY 1
z , Y

2
z q : z P N2u. Write

pP, pE, and yVar for the probability measure and the corresponding expectation and
variance of these uniform random variables and the bulk weights. Define the coupled
environment

ωpb1,b2q :“ tHf1

pb1, η
1
i q, Hf2

pb2, η
2
j q, pY 1

z , Y
2
z q : i P N, j P N, z P N

2u. (3.4)

Note that this environment is equal in distribution to the original environment ω.
To specifically denote weights accumulated by a path, the partition function,

the quenched measure, and the annealed expectation, associated to the coupled
environment ωpb1,b2q, define

W pb1, b2qpx‚q :“
m`nź

k“1

ω
pb1,b2q
pxk´1,xkq for x‚ P Πm,n

Zm,npb1, b2q :“
ÿ

x‚PΠm,n

W pb1, b2qpx‚q

Qpb1,b2q
m,n pAq :“

1

Zm,npb1, b2q

ÿ

x‚PA

W pb1, b2qpx‚q for A Ă Πm,n

Epb1,b2q
m,n r‚s :“ pE

”
EQ

pb1 ,b2q
m,n r‚s

ı
.

(3.5)

Recall the definition of the exit points tj (1.7). We can decompose the weight
accumulated along a path to isolate the dependence on boundary weights

W pb1, b2qpx‚q “
t1ź

i“1

Hf1

pb1, η
1
i q

t2ź

j“1

Hf2

pb2, η
2
j q

m`nź

k“pt1_t2q`1

ω
pb1,b2q
pxk´1,xkq. (3.6)

Notice that one of the first two products will be empty and the third product
involves only the bulk weights.

If we assume that f : p0,8q Ñ r0,8q has open support, is continuous on its
support, and DpMf q is non-empty, then F f is continuously differentiable on the
set DpMf q ˆ supppfq. By the implicit function theorem, Hf is continuously differ-
entiable and for all pa, pq P DpMf q ˆ p0, 1q, we have

BHf

Ba
pa, pq “

´ BF f

Ba pa,Hf pa, pqq
BF f

Bx pa,Hf pa, pqq
“ Hf pa, pqLf pa,Hfpa, pqq (3.7)
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where Lf is given by

Lf pa, xq :“
x´a

fpxq

ż x

0

pψf0 paq ´ log yqya´1fpyqdy

“ ´
x´a

fpxq

ż 8

x

pψf0 paq ´ log yqya´1fpyqdy.

(3.8)

The second equality follows from the definition of ψf0 paq. Notice that

Lf pa, xq “ ´
1

xρf,apxq
CovplogX,1tXďxuq “ LXpxq (as defined in (1.6))

when X „ mf paq, and therefore Lfpa, xq ě 0.
The following hypothesis collects technical conditions for the function f used in

the sequel.

Hypothesis 3.6. Suppose that f : p0,8q Ñ r0,8q is such that DpMf q is non-empty,
f has open support, is differentiable on its support, and for all compactK Ă DpMf q
there exists a constant C depending only on K such that the following hold for all
a P K:

Lfpa, xq ď Cp1 ` | log x|q for all x P supppfq, (3.9)
ż 1

0

ˇ̌
ˇ B

Ba
Lf pa,Hf pa, pqq

ˇ̌
ˇdp ď C. (3.10)

Remark 3.7. If X „ mf paq where f satisfies Hypothesis 3.6, then by (3.9) and Re-
mark 3.2, LXpXq has finite exponential moments. By Lemma A.2 in the appendix,
each of the functions f corresponding to the random variables appearing in the four
basic beta-gamma models (see Table 3.5) satisfies Hypothesis 3.6.

Lemma 3.8. Assume that the polymer environment is Mellin-type with respect to

pf1, f2q, where f1 and f2 satisfy Hypothesis 3.6. Further assume that log Y 1 and

log Y 2 have finite variance. Recall the notation (2.3). Then for all pm,nq P Z2
`,

CovpSN , SSq “ Em,nr
t1ÿ

i“1

LR1pR1
i,0qs, (3.11)

CovpSE , SW q “ Em,nr
t2ÿ

j“1

LR2pR2
0,jqs. (3.12)

Proof : By assumption, there exists pa1, a2q P DpMf1qˆDpMf2q such that pR1, R2q
„ mf1pa1q b mf2pa2q. There exist open neighborhoods Uj about aj contained in
DpMfj q for j “ 1, 2. We then show that

B

Bb1
E

pb1,a2qrSN s “ Covpb1,a2qpSN , SSq for all b1 P U1, (3.13)

B

Bb2
E

pa1,b2qrSEs “ Covpa1,b2qpSE , SW q for all b2 P U2, (3.14)

and that the mappings b1 ÞÑ Covpb1,a2qpSN , SSq and b2 ÞÑ Covpa1,b2qpSE , SW q are
continuous. We begin with (3.13). We will vary the parameter b1 of the weights R

1
i,0

while keeping the parameter a2 of the weights R2
0,j fixed. Let

rE be the expectation

over tR2
0,j, pY

1
x , Y

2
x qujPN,xPNˆN. By Remark 3.2 and Lemma B.1, Epb1,a2qrS2

N s ă 8

for all b1 P U1. Then Epb1,a2qrSN s “ Eb1 rrErSN ss where Eb1 denotes the expectation
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over tR1
i,0umi“1 when R1 „ mf1pb1q. We now invoke Lemma B.2. Specifically, we

use r “ m, Xk “ R1
k,0, fk “ f1 for all k “ 1, . . . ,m and ApR1

1,0, . . . , R
1
m,0q “ rErSN s

to get, for all b1 P U1,

B

Bb1
E

pb1,a2qrSN s “
B

Bb1
E
b1 rApX1, . . . , Xmqs “ Covb1pApX1, . . . , Xmq, SSq

“ Covpb1,a2qpSN , SSq

and U1 Q b1 ÞÑ Covpb1,a2qpSN , SSq is continuous. The third equality follows from
the fact that the collection tR2

0,j , pY
1
x , Y

2
x qujPN,xPNˆN is independent of SS . The

second moment condition of Lemma B.2 is satisfied since for all b1 P U1,

E
b1 rApX1, . . . , Xrq

2s “ E
b1 rprErSN sq2s ď E

b1 rrErS2
N ss “ E

pb1,a2qrS2
N s ă 8.

A similar argument yields (3.14).
Using the coupling (3.4)

Em,nr
t1ÿ

i“1

LR1pR1
i,0qs “ Epa1,a2q

m,n r
t1ÿ

i“1

Lf
1

pa1, H
f1

pa1, η
1
i qqs. (3.15)

Taking the derivative of (3.6) and using (3.7), for j “ 1, 2

B

Bbj
logpW pb1, b2qpx‚qq “

tjÿ

k“1

B

Bbj
logHfj

pbj , η
j
kq “

tjÿ

k“1

Lf
j

pbj , H
fj

pbjη
j
kqq. (3.16)

Therefore

B

Bbj
W pb1, b2qpx‚q “ W pb1, b2qpx‚q

tjÿ

k“1

Lf
j

pbj , H
fj

pbjη
j
kqq (3.17)

which implies that

B

Bbj
logZm,npb1, b2q “ EQ

pb1,b2q
m,n r

tjÿ

k“1

Lf
j

pbj , H
fj

pbj , η
j
kqqs. (3.18)

We now prove (3.11). Similar to (3.5), in the coupled environment we use S‚pb1, b2q

to make explicit the dependence of S‚ on the parameters b1 and b2. Recall that pE
is the expectation of the coupled environment. For ǫ ą 0 small enough such that
ra1 ´ ǫ, a1 ` ǫs Ă U1,

ż a1`ǫ

a1´ǫ

Covpb1,a2qpSN , SSqdb1 “ E
pa1`ǫ,a2qrSN s ´ E

pa1´ǫ,a2qrSN s

“ pErSN pa1 ` ǫ, a2q ´ SN pa1 ´ ǫ, a2qs

“ pEr

ż a1`ǫ

a1´ǫ

B

Bb1
logZm,npb1, a2qdb1s

“

ż a1`ǫ

a1´ǫ

pEr
B

Bb1
logZm,npb1, a2qsdb1

(3.19)

where the first equality follows from (3.13), the third equality follows because SW
does not depend on b1 and SN pb1, a2q “ logZm,npb1, a2q´SW pa2q. The last equality

follows from (3.18) and Tonelli’s theorem (by the non-negativity of Lf
1

).
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Recall that b1 ÞÑ Covpb1,a2qpSN , SSq is continuous. Once we show that the map-
ping

b1 ÞÑ pEr
B

Bb1
logZm,npb1, a2qs “ Epb1,a2q

m,n r
t1ÿ

i“1

Lf
1

pb1, H
f1

pb1, η
1
i qqs (3.20)

is continuous, using (3.19) and (3.15) we will have (3.11). The continuity of (3.20)

follows from the continuity of b1 ÞÑ EQ
pb1 ,a2q
m,n r

řt1
k“1 L

f1

pb1, H
f1

pb1, η
1
kqqs, the domi-

nated convergence theorem, and the bound

pE
“

sup
|b1´a1|ďǫ

EQ
pb1 ,a2q
m,n r

t1ÿ

k“1

Lf
1

pb1, H
f1

pb1, η
1
kqqs

‰

ď pEr sup
|b1´a1|ďǫ

mÿ

k“1

Lf
1

pb1, H
f1

pb1, η
1
kqqs

ď CpEr
mÿ

k“1

1 ` | logHf1

pa1 ´ ǫ, η1kq| ` | logHf1

pa1 ` ǫ, η1kq|s ă 8

where we use the non-negativity of Lf
1

to replace t1 by its upper bound m, then use

assumption (3.9) of Hypothesis 3.6 (with the fact that Hf1

pb, xq is non-decreasing
in b) and part (a) of Remark 3.2.

A similar argument shows that

Covpa1,a2qpSE , SW q “ Epa1,a2q
m,n r

t2ÿ

j“1

Lf
2

pa2, R
2
0,jqs.

This completes the proof. �

We can now give the proof of Proposition 1.1.

Proof of Proposition 1.1: By assumption, the polymer environment is distributed
as in (3.2), where f1 and f2 satisfy Hypothesis 3.6 by Remark 3.7. By Remark
3.2, for each of the four models log u and log v have finite variance. Thus the
conditions of Lemma 3.8 are satisfied. Combining Proposition 2.3 with Lemma 2.4,
and Lemma 3.8 yields the result. �

4. Proof of the variance upper bound

The first lemma of this section allows us to compare the variance of the free
energy at different parameter values.

Lemma 4.1. Assume that the polymer environment is distributed as in (3.2). Let

ǫ be small enough such that for all |λ| ď ǫ, a1 ` λ P DpMf1q and a2 ´ λ P DpMf2q.
Then there exists a positive constant C depending only on pa1, a2q, β, and ǫ such

that for all pm,nq P Z2
`, the following holds for all |λ| ď ǫ,

ˇ̌
ˇVarpa1,a2qrlogZm,ns ´ Varpa1`λ,a2´λqrlogZm,ns

ˇ̌
ˇ ď Cpm ` nq|λ|

Proof : Let ra1 “ a1 ` λ and ra2 “ a2 ´ λ. Applying Proposition 1.1 (recalling that

ψ
f
1 paq “ VarrlogXs when X „ mf paq) then using the coupling (3.5) yields, for
j “ 1, 2:
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1

2

´
Varpra1,ra2qrlogZm,ns ´ Varpa1,a2qrlogZm,ns

¯
(4.1)

“
p´1qj

2

”
m
`
ψ
f1

1 pra1q ´ ψ
f1

1 pa1q
˘

´ n
`
ψ
f2

1 pra2q ´ ψ
f2

1 pa2q
˘ı

(4.2)

` Epra1,ra2q
m,n

«
tjÿ

k“1

Lf
j

praj , Hfj

praj , ηjkqq

ff
´ Epa1,a2q

m,n

«
tjÿ

k“1

Lf
j

paj , H
fj

paj , η
j
kqq

ff
.

(4.3)

Since ψf
1

1 and ψ
f2

1 are continuously differentiable, there is a constant C1 such
that line (4.2) is bounded by C1pm ` nq|λ|. Suppressing the m,n dependence, we
then split line (4.3) as

“ pEEQpra1,ra2q

«
tjÿ

k“1

Lf
j

praj , Hfj

praj , ηjkqq

ff
´ pEEQpra1,ra2q

«
tjÿ

k“1

Lf
j

paj , H
fj

paj , η
j
kqq

ff

(4.4)

` pEEQpra1,ra2q

«
tjÿ

k“1

Lf
j

paj , H
fj

paj , η
j
kqq

ff
´ pEEQpa1 ,a2q

«
tjÿ

k“1

Lf
j

paj , H
fj

paj , η
j
kqq

ff

(4.5)

For line (4.4), since tj is all that is random under EQ
pra1,ra2q

, we can replace tj by
m_ n. Thus

| line (4.4)| ď pE
m_nÿ

k“1

ˇ̌
ˇLfj

praj , Hfj

praj , ηjkqq ´ Lf
j

paj , H
fj

paj , η
j
kqq

ˇ̌
ˇ

“ pm _ nq

ż 1

0

ˇ̌
ˇLfj

praj , Hfj

praj , ηqq ´ Lf
j

paj , H
fj

paj , ηqq
ˇ̌
ˇ dη

“ pm _ nq

ż 1

0

ˇ̌
ˇ̌
ˇ

ż raj

aj

B

Ba
Lf

j

pa,Hfj

pa, ηqqda

ˇ̌
ˇ̌
ˇ dη

ď pm _ nq

ˇ̌
ˇ̌
ˇ

ż raj

aj

ż 1

0

ˇ̌
ˇ̌ B

Ba
Lf

j

pa,Hfj

pa, ηqq

ˇ̌
ˇ̌ dηda

ˇ̌
ˇ̌
ˇ

ď pm _ nqC2|λ|. (4.6)

In the last step we used the fact that f j satisfy assumption (3.10) in Hypothesis
3.6 by Remark 3.7.

We can write line (4.5) as

pE
“ ℓjÿ

k“1

Lf
j

paj , H
fj

paj , η
j
kqq

`
Qpra1,ra2qptj ě kq ´Qpa1,a2qptj ě kq

˘‰
,

where ℓ1 “ m and ℓ2 “ n. By Lemma B.3, Qpa1`λ,a2´λqpt1 ě kq is stochastically
non-decreasing in λ, and Qpa1`λ,a2´λqpt2 ě kq is stochastically non-increasing in

λ. Using the bound on (4.2), the bound (4.6), and the non-negativity of Lf
j

, line
(4.5) is non-negative if j “ 1 and λ ą 0 or j “ 2 and λ ă 0. This implies

(4.1) ě ´Cpm` nq|λ|.
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If j “ 2 and λ ą 0 or j “ 1 and λ ă 0, then (4.5) is non-positive, so

(4.1) ď Cpm ` nq|λ|.

This completes the proof. �

Lemma 4.2. Assume that the polymer environment is distributed as in (3.2). Then
there exists a positive constant C depending only on pa1, a2q and β such that for all

pm,nq P Z2
` the following two inequalities hold:

Em,nr
t1ÿ

i“1

LR1pR1
i,0qs ď CpEm,nrt1s ` 1q, Em,nr

t2ÿ

j“1

LR2pR2
0,jqs ď CpEm,nrt2s ` 1q.

Proof : Let Li “ LR1pR1
i,0q, Li “ Li ´ ErLis, and Sk “

řk
i“1 Li. Note that Li „

LR1pR1q has finite exponential moments by Remark 3.7. Using Cauchy-Schwarz,
Markov’s inequality, and the bound ErS8

ks ď Ck4, we estimate

E
“
1tSkąkuSk

‰
ď pPtSk ą kuq

1{2
pkVarL1q1{2 ď

ˆ
ErS8

ks

k8

˙1{2

pkCq1{2 ď Ck´3{2.

Thus
8ÿ

k“1

E
“
1tSkąkuSk

‰
ď C.

Using this, we then get

Em,n

«
t1ÿ

i“1

LR1pR1
i,0q

ff
“ Em,n

«
t1ÿ

i“1

Li ` ELi

ff

“ Em,nrt1sErL1s ` Em,n

«
t1ÿ

i“1

Li

ff

“ Em,nrt1sErL1s `
mÿ

k“1

E rQm,npt1 “ kqSks

ď Em,nrt1sErL1s `
mÿ

k“1

`
kE rQm,npt1 “ kqs ` E

“
1tSkąkuSk

‰˘

ď Em,nrt1sErL1s ` Em,nrt1s ` C

ď C pEm,nrt1s ` 1q .

The proof for t2 is analogous. �

Proposition 4.3. Assume that the polymer environment is distributed as in (3.2).
Assume that the sequence pm,nq “ pmN , nNq8

N“1 satisfies

|m´Nψ
f2

1 pa2q| _ |n´Nψ
f1

1 pa1q| ď κN

where κN ď γN2{3 and γ is some positive constant.

Then there exist positive constants C1, C2, C3, δ, δ1 depending only on pa1, a2q, β,
and γ such that for N P N and 1 _ C1κN ď u ď δN ,

P
 
Qm,nptj ě uq ě e

´δu2

N

(
ď C2

´N2

u4
Em,nrtjs `

N2

u3

¯
for j “ 1, 2,

while for N P N and u ě 1 _ C1κN _ δN ,

P
 
Qm,nptj ě uq ě e´δ1u

(
ď 2e´C3u for j “ 1, 2.
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Proof : Let ǫ ą 0 be small enough such that for all |λ| ď ǫ, a1pλq :“ a1`λ P DpMf1q
and a2pλq :“ a2 ´ λ P DpMf2q. For the moment fix λ1 P r0, ǫs, λ2 P r´ǫ, 0s, and
u ě 1. The λj will give the perturbation pa1pλjq, a2pλjqq of the parameters pa1, a2q
which will be used when dealing with the exit time tj . Using the coupling in (3.5),
(3.6) gives: for both j “ 1, 2 and any path x‚ such that tjpx‚q ě u,

W pa1, a2qpx‚q

W pa1pλjq, a2pλjqqpx‚q
“

tjź

k“1

Hfj

paj , η
j
kq

Hfj pajpλjq, η
j
kq

ď

tuuź

k“1

Hfj

paj , η
j
kq

Hfj pajpλjq, η
j
kq
,

since Hf pa, xq is non-decreasing in a. Therefore

Qpa1,a2q
m,n ptj ě uq “

1

Zm,npa1, a2q

ÿ

x‚PΠm,n

1tx‚ěuuW pa1, a2qpx‚q

ď
Zm,npa1pλjq, a2pλjqq

Zm,npa1, a2q

tuuź

k“1

Hfj

paj , η
j
kq

Hfj pajpλjq, η
j
kq
.

Then for all real numbers z, r

P

!
Qm,nptj ě uq ě e´z

)
ďpP

! tuuź

k“1

Hfj

paj , η
j
kq

Hfjpajpλjq, η
j
kq

ě e´r
)

(4.7)

` pP
!Zm,npa1pλjq, a2pλjqq

Zm,npa1, a2q
ě er´z

)
. (4.8)

We now split the proof into two cases.
Case 1: 1 _ C1κN ď u ď δN . Let b, δ ą 0 be small enough such that bδ ď ǫ.

These constants will be determined through the course of the proof. Put λ1 “ bu
N

and λ2 “ ´ bu
N
. The condition u ď δN guarantees that ´ǫ ď λ2 ă 0 ă λ1 ď ǫ. Now

plug in r “ tuu
´
ψ
fj

0 pajpλjqq ´ ψ
fj

0 pajq
¯

´ δu2

N
and z “ δu2

N
to obtain

RHS of (4.7) “ pP
! tuuÿ

k“1

logHfj paj , η
j
kq ´ logHfj pajpλjq, η

j
kq ě

δu2

N

)
ď C

N2

u3

(4.9)

by Chebyshev’s inequality and the fact that Hf pa, ηq „ mf paq. The constant C
here depends only on pa1, a2q, ǫ, and δ. We will now show how to tune b and δ as
functions of pa1, a2q and ǫ to get a meaningful bound on

(4.8) “pP
!
logZm,npa1pλjq, a2pλjqq ´ logZm,npa1, a2q ě

pE
“
logZm,npa1, a2q ´ logZm,npa1pλjq, a2pλjqq

‰
` r ´ z

)
.

(4.10)

Since the parameters satisfy a1pλjq ` a2pλjq “ a3, by Remark 3.5, the down-right
property is still satisfied for the perturbed model with parameters

`
a1pλjq, a2pλjq

˘
.
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Using Proposition 1.1 we can evaluate the right-hand side inside the above proba-
bility

“m
´
ψ
f1

0 pa1q ´ ψ
f1

0 pa1pλjqq
¯

` n
´
ψ
f2

0 pa2q ´ ψ
f2

0 pa2pλjqq
¯

` tuu
´
ψ
fj

0 pajpλjqq ´ ψ
fj

0 pajq
¯

´ 2δ
u2

N

“pm ´Nψ
f2

1 pa2qq
´
ψ
f1

0 pa1q ´ ψ
f1

0 pa1pλjqq
¯

` pn´Nψ
f1

1 pa1qq
´
ψ
f2

0 pa2q ´ ψ
f2

0 pa2pλjqq
¯

`N
”
ψ
f2

1 pa2q
´
ψ
f1

0 pa1q ´ ψ
f1

0 pa1pλjqq
¯

` ψ
f1

1 pa1q
´
ψ
f2

0 pa2q ´ ψ
f2

0 pa2pλjqq
¯ı

` tuu
´
ψ
fj

0 pajpλjqq ´ ψ
fj

0 pajq
¯

´ 2δ
u2

N

ě ´ κN
bu

N
C 1 ´Np

bu

N
q2C 1 ` up

bu

N
qC2 ´ 2δ

u2

N

“
u

N

”
C2bu´ C 1b2u´ 2δu´ C 1bκN

ı
(4.11)

for some positive constants C 1 and C2. This can be obtained by taking a 2nd-order

Taylor expansion of the functions ψf
j

0 , keeping in mind that ψf
j

1 ą 0. In the last
inequality we also used u ě 1.

Now fixing b small enough followed by then fixing δ small enough we can ensure

that the entire quantity (4.11) is ě C3 u2

N
for some positive constant C3 as long as

u ě C1κN for some positive C1. With these restrictions,

(4.8) ďpP
!
logZm,npa1pλjq, a2pλjqq ´ logZm,npa1, a2q ě C3 u

2

N

)

ď
N2

pC3q2u4
yVar

“
logZm,npa1pλjq, a2pλjqq ´ logZm,npa1, a2q

‰

ďC
N2

u4

´
yVar

“
logZm,npa1, a2q

‰
` pm` nq

bu

N

¯

ďC
´N2

u4
Em,nrtjs `

N2

u3

¯
.

The second to last and last inequalities are applications of Lemma 4.1, Proposition
1.1, and Lemma 4.2. Combining this result with (4.9) finishes the first case.

Case 2: 1 _ C1κN _ δN ď u. Take δ, ǫ fixed from the first case, let δ1 P p0, δs,
and ǫ1 P p0, ǫs. The constants δ1 and ǫ1 will be determined throughout the course of

the proof. This time, put λ1 “ ǫ1, λ2 “ ´ǫ1, r “ tuu
`
ψ
fj

0 pajpλjqq ´ψ
fj

0 pajq
˘

´ δ1u,
and z “ δ1u. Then

(4.7) “pP
! tuuÿ

k“1

logHfj paj , η
j
kq ´ logHfjpajpλjq, η

j
kqq ě δ1u

)
. (4.12)

By Remark 3.2 the random variables in the summation have finite exponential
moments. A large deviation estimate gives us the existence of a positive constant
C3 such that (4.12)ď e´C3u.
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We now consider (4.10). A similar analysis to that in Case 1 tells us that the
right-hand side inside of the above probability

ě ´C 1ǫ0κN ´ C 1ǫ20N ` C2ǫ0u´ 2δ1u

ě u
´
C2ǫ0 ´

C 1ǫ20
δ

´ 2δ1

¯
´ C 1ǫ0κN (4.13)

for some positive constants C 1 and C2 (the second inequality follows from u ě δN).
Now fixing ǫ0 small enough followed by then fixing δ1 small enough we can ensure
that (4.13) ě Cu for some positive constant C as long as u ě C1κN for some positive
C1 (here we increase the previous constant C1 found in Case 1 if necessary). With
these constraints,

(4.8) ď pP
!
logZm,npa1pλjq, a2pλjqq ´ logZm,npa1, a2q ě Cu

)
.

Since the perturbed parameters are such that the polymer environment still has
the down-right property, the random variable inside the above probability can be
expressed as two sums of i.i.d. random variables, each of which has entries with finite
exponential moments. Therefore a large deviation estimate gives the existence of a
positive constant C3 such that (4.8) ď e´uC3 . Combining this with (4.12) completes
the proof. �

Remark 4.4. If ǫ ą 0 is small enough such that for all |λ| ď ǫ, a1 ` λ P DpMf1q
and a2 ´ λ P DpMf2q, then the constants in Proposition 4.3 can be chosen such
that the conclusion also holds for the polymer environment with parameters pa1 `
λ, a2 ´ λ, a3q for any |λ| ď ǫ.

Using the previous proposition, we can now bound the annealed expectation of
the exit points of the polymer path from the axes.

Corollary 4.5. Suppose all of the assumptions of Proposition 4.3 hold. Then there

exists a positive constant C depending only on pa1, a2q, β, and γ such that for both

j “ 1, 2,

Em,nrtjs ď CN2{3 for all N P N.

Proof of Corollary 4.5: Since all of the constants C1, C2, C3, δ, δ1 determined by
Proposition 4.3 depend only on pa1, a2q, β, and γ, it is sufficient to show that the
constant C to be determined in this proof depends only on these five constants and
γ. Let r ě 1 _ C1γ. Then rN

2{3 ě 1 _ C1κN . Suppressing the m,n dependence,

Ertjs “

ż 8

0

P ptj ě uqdu

ď rN2{3 `

ż rN2{3_δN

rN2{3

P ptj ě uqdu`

ż 8

rN2{3_δN

P ptj ě uqdu. (4.14)
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We now bound the integrals in line (4.14) individually.

ż 8

rN2{3_δN

P ptj ě uqdu “

ż 8

rN2{3_δN

ż e´δ1u

0

PtQptj ě uq ě xudxdu

`

ż 8

rN2{3_δN

ż 1

e´δ1u

PtQptj ě uq ě xudxdu.

ď

ż 8

δN

e´δ1udu

`

ż 8

rN2{3_δN

ż δ1
0

PtQptj ě uq ě e´suue´suu dsdu

ď
1

δ1
e´δ1δN `

ż 8

rN2{3_δN

ż δ1
0

2e´pC3`squu dsdu ď C,

(4.15)

where in the first inequality we bounded the first integrand by one and made the
substitution x “ e´su for the second. For the second inequality, we apply Proposi-
tion 4.3 to get that PtQptj ě uq ě e´suu ď PtQptj ě uq ě e´δ1uu ď 2e´C3u for all

u ě rN2{3 _ δN and all 0 ă s ď δ1.
We now bound the first integral of (4.14). Without loss of generality, assume

that rN2{3 ă δN . Then

ż rN2{3_δN

rN2{3

P ptj ě uqdu “

ż δN

rN2{3

ż e´δ u2

N

0

PtQptj ě uq ě xudxdu

`

ż δN

rN2{3

ż 1

e
´δ u2

N

PtQptj ě uq ě xudxdu

ď

ż δN

rN2{3

e´δ u2

N du

`

ż δN

rN2{3

ż δ

0

PtQptj ě uq ě e´su2

N ue´su2

N
u2

N
dsdu

ď δNe´δr2N1{3

`

ż 8

rN2{3

ż 1

e
´s u2

N

C2p
N2

u4
Ertjs `

N2

u3
qdsdu

ď C ` C2

´Ertjs

3r3
`
N2{3

2r2

¯
, (4.16)

where for the first inequality we bound the first integrand by one and make the

substitution x “ e´su2

N for the second. For the second inequality we apply Propo-

sition 4.3 to get that PtQptj ě uq ě e´su2

N u ď PtQptj ě uq ě e´δ u2

N u ď

C2

´
N2

u4 Ertjs ` N2

u3

¯
for all rN2{3 ď u ď δN and all 0 ă s ď δ.

Combining the bounds on (4.15), (4.16) and (4.14), we have: for all r ě 1_C1γ,

Ertjs ď rN2{3 ` C ` C2

`Ertjs

3r3
`
N2{3

2r2
˘
.

We can now fix r large enough with respect to C and C2 then rearrange to get the
desired result. �

We can now give the proof of the upper bound of the variance of the free energy.
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Proof of upper bound of Theorem 1.2: Averaging (1.8) and (1.9) of Proposition 1.1

then applying Lemma 4.2 followed by Corollary 4.5 (recalling that ψf
j

1 pajq “
VarrlogRjs) gives

VarrlogZm,ns “ Em,nr
t1ÿ

i“1

LR1pR1
i,0qs ` Em,nr

t2ÿ

j“1

LR2pR2
0,jqs

ď CpEm,nrt1s ` Em,nrt2s ` 2q

ď CN2{3,

which concludes the proof. �

The following corollary is obtained by combining Proposition 4.3 and Corol-
lary 4.5.

Corollary 4.6. Assume that the polymer environment is distributed as in (3.2)
and the sequence pm,nq “ pmN , nN q8

N“1 satisfies (1.10) for some positive constant

γ. Then there exists positive constants b0, C2, C3, δ, and δ1 depending only on

pa1, a2q, β, and γ such that for all N P N and b0 ď b ď δN1{3,

P
 
Qm,nptj ě bN2{3q ě e´δb2N1{3(

ď
2C2

b3
for j “ 1, 2, (4.17)

while for all N P N and b ě b0 _ δN1{3,

P
 
Qm,nptj ě bN2{3q ě e´δ1bN

2{3(
ď 2e´C3bN

2{3

for j “ 1, 2. (4.18)

Lemma 4.7. Assume that the polymer environment is distributed as in (3.2) and
the sequence pm,nq “ pmN , nN q8

N“1 satisfies (1.10) for some positive constant γ.

Then there exist constants b0 ě 1 and C ą 0 depending only on pa1, a2q, β, and γ
such that for all b ě b0 and N P N,

Pm,nptj ě bN2{3q ď
C

b3
for j “ 1, 2.

Therefore, for all 0 ă p ă 3 there exists a positive constant C 1 depending on

pa1, a2q, β, γ, and p such that for all N P N,

Em,n

”´ tj

N2{3

¯pı
ď C 1 for j “ 1, 2.

Proof of Lemma 4.7: By Corollary (4.6) there exist positive constants b0, C2, C3, δ,

δ1 with b0 ě 1 such that (4.17) holds for b0 ď b ď δN1{3 while (4.18) holds for
b ě δN1{3 _ b0.

We first estimate for b ď δN1{3,

Pm,nptj ě bN2{3q “

ż 1

0

P
 
Qm,nptj ě bN2{3q ě x

(
dx

“

ż δ

0

P
 
Qm,nptj ě bN2{3q ě e´sb2N1{3(

b2N1{3e´sb2N1{3

ds

(4.19)

`

ż 8

δ

P
 
Qm,nptj ě bN2{3q ě e´sb2N1{3(

b2N1{3e´sb2N1{3

ds

(4.20)

ď
2C2

b3
` e´δb2N1{3

ď
C

b3
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for some positive constant C, where we made the substitution x “ e´sb2N1{3

, used
(4.17) to bound the probability inside the integral of (4.19), and bounded the prob-
ability inside the integral of (4.20) by 1. For b ě δN1{3, we make the substitution

x “ e´sbN2{3

to get

Pm,nptj ě bN2{3q “

ż 1

0

P
 
Qm,nptj ě bN2{3q ě x

(
dx

“

ż δ1
0

P
 
Qm,nptj ě bN2{3q ě e´sbN2{3(

bN2{3e´sbN2{3

ds (4.21)

`

ż 8

δ1

P
 
Qm,nptj ě bN2{3q ě e´sbN2{3(

bN2{3e´sbN2{3

ds

(4.22)

ď 2e´C3bN
2{3

` e´δ1bN
2{3

ď
C

b3

increasing the constant C if necessary, where we used (4.18) to bound the proba-
bility inside the integral of (4.21) and bounded the probability inside the integral
of (4.22) by 1. �

Proof of Corollary 1.4: Letm1 “ tNVarrlogR2su. Since Zm,n “ Zm1,n

mź

i“m1`1

R1
i,n,

N´α{2logZm,n “ N´α{2logZm1,n `N´α{2
mÿ

i“m1`1

logR1
i,n.

The sequence pm1, nq satisfies (1.10). Using Chebyshev’s inequality and the up-
per bound of Theorem 1.2 shows that the term N´α{2logZm1,n converges to zero
in probability. By the down-right property, the summands in the second term
are i.i.d. with mean zero and variance VarrlogR1s. By the central limit theorem,

N´α{2
řm
i“m1`1 logR

1
i,n converges in distribution to a centered normal with vari-

ance c1VarrlogR
1s. �

5. Proof of the path fluctuation upper bound

Given 0 ď k ă m and 0 ď l ă n, we define a partition function Z
pk,lq
m,n and

quenched polymer measure Q
pk,lq
m,n on up-right paths from pk, lq to pm,nq by using

the collections tR1
i,l : k`1 ď i ď mu and tR2

k,j : l`1 ď j ď nu as weights along the

edges of the south and west boundaries of the rectangle rk,ms ˆ rl, ns respectively,
and the weights tpY 1

z , Y
2
z q : z P tk ` 1, . . . ,mu ˆ tl ` 1, . . . , nuu for the remaining

edges. When the original polymer environment (1.1) has the down-right property,

it follows that Z
pk,lq
m,n has the same distribution as Zm´k,n´l.

For an up-right path x‚ from pk, lq to pm,nq, define

t
pk,lq
1 px‚q :“ maxti : pk ` i, lq P x‚u, t

pk,lq
2 px‚q :“ maxtj : pk, l ` jq P x‚u.

Recall the definition (1.12).
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Lemma 5.1. Assume that the polymer environment satisfies the down-right prop-

erty. Then for all 0 ď k ă m, 0 ď l ă n, and u ě 0,

Qm,npv1plq ě k ` uq “ Qpk,lq
m,n pt

pk,lq
1 ě uq

d
“ Qm´k,n´lpt1 ě uq, (5.1)

Qm,npw1pkq ě l ` uq “ Qpk,lq
m,n pt

pk,lq
2 ě uq

d
“ Qm´k,n´lpt2 ě uq. (5.2)

Proof : For 0 ď i ă m and 0 ď j ă n, we let

Zpi,jq,pm,nq :“
ÿ

x‚

pm´iq`pn´jqź

k“1

ωpxk´1,xkq

denote the partition function for up-right paths from pi, jq to pm,nq, where the sum
is taken over all such paths. A decomposition shows that

Zpk,lq
m,n “

mÿ

i“k`1

˜
iź

a“k`1

R1
a,l

¸
Y 2
i,l`1Zpi,l`1q,pm,nq

`
nÿ

j“l`1

˜
jź

b“l`1

R2
k,b

¸
Y 1
k`1,jZpk`1,jq,pm,nq

“
mÿ

i“k`1

Zi,l

Zk,l
Y 2
i,l`1Zpi,l`1q,pm,nq `

nÿ

j“l`1

Zk,j

Zk,l
Y 1
k`1,jZpk`1,jq,pm,nq “

Zm,n

Zk,l
.

We then have that for r P t0, . . . ,m´ ku,

Qpk,lq
m,n pt

pk,lq
1 “ rq “

1

Z
pk,lq
m,n

˜
rź

i“1

R1
k`i,l

¸
Y 2
k`r,l`1Zpk`r,l`1q,pm,nq

“
1

Z
pk,lq
m,n

Zk`r,l

Zk,l
Y 2
k`r,l`1Zpk`r,l`1q,pm,nq

“
Zk`r,lY

2
k`r,l`1Zpk`r,l`1q,pm,nq

Zm,n

“ Qm,npv1plq “ k ` rq.

Summing over r ě u gives the first equality in (5.1). The equality in distribution
follows from the down-right property. An analogous argument gives (5.2). �

We can now prove the upper bound on the polymer path fluctuations under the
annealed measure.

Proof of Theorem 1.5: By assumption, the polymer environment is distributed as
in (3.2). If τ “ 0 this reduces to Lemma 4.7. If τ P p0, 1q put pk, lq “ ptτmu, tτnuq.

By part (c) of Remark 3.2, VarrRis “ ψ
fi

1 paiq for i “ 1, 2. Multiplying (1.10) by
p1 ´ τq, up to integer corrections the sequence pm ´ k, n´ lq satisfies

|m´ k ´Mψ
f2

1 pa2q| _ |n´ l ´Mψ
f1

1 pa1q| ď γ0M
2{3, (5.3)

where M “ p1 ´ τqN and γ0 “ γp1 ´ τq1{3. We then apply Lemma 5.1 to get

Qm,npv1ptτnuq ě τm ` bN2{3q ď Qm,npv1ptτnuq ě tτmu ` bN2{3q

d
“ Qm´k,n´lpt1 ě bN2{3q.
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Applying Lemma 4.7, we get

Pm,npv1ptτnuq ě τm ` bN2{3q ď
C

b3
. (5.4)

The same argument in the vertical direction gives us

Pm,npw1ptτmuq ě τn ` bN2{3q ď
C

b3
. (5.5)

To prove the corresponding bounds for v0 and w0 we now let k “ tτm ´ bN2{3u
and l “ tτn´bN2{3 n

m
u. Again pm´k, n´lq will satisfy (5.3) for a different constant

γ0. Since w1pkq ě tτnu implies that v0ptτnuq ď k, it follows that

Qm,npv0ptτnuq ď τm ´ bN2{3q ď Qm,npw1pkq ě tτnuq

“ Qpk,lq
m,n pt

pk,lq
2 ě tτnu ´ lq

ď Qpk,lq
m,n pt

pk,lq
2 ě CbN2{3q

d
“ Qm´k,n´lpt2 ě CbN2{3q,

for some constant C depending on pa1, a2q, β, and γ. Applying Lemma 4.7 gives

Pm,npv0ptτnuq ď τm ´ bN2{3q ď
C

b3
. (5.6)

An analogous argument shows that

Pm,npw0ptτmuq ď τn ´ bN2{3q ď
C

b3
. (5.7)

Combining bounds (5.4) and (5.6) gives (1.13), and (5.5) with (5.7) gives (1.14),
completing the proof. �

6. Proof of the variance and path fluctuation lower bounds

Proposition 6.1. Assume that the polymer environment is distributed as in (3.2)
and the sequence pm,nq “ pmN , nN q8

N“1 satisfies (1.10) for some positive constant

γ. Then there exist positive constants c0, ǫ0, N0 depending only on pa1, a2q, β and

γ such that for all N ě N0,

P
`
logZm,n ě c0N

1{3
˘

ě ǫ0.

From this proposition we can obtain the lower bound of Theorem 1.2:

VarrlogZm,ns ě E
“
plogZm,nq2 : logZm,n ě c0N

1{3
‰

ě P
`
logZm,n ě c0N

1{3
˘
pc0N

1{3q2

ě ǫ0c
2
0N

2{3.

Proof of Proposition 6.1: Let ǫ ą 0 be small enough such that for all |λ| ď ǫ,
a1 ` λ P DpMf1q and a2 ´ λ P DpMf2q. Define

rm “ tm
ψ
f2

1 pa2 ´ λq

ψ
f2

1 pa2q
u, rn “ tn

ψ
f1

1 pa1 ` λq

ψ
f1

1 pa1q
u.
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m

n

rm

rn

Figure 6.7. Case 1: ψf12 and ψf22 are both positive.

Taking Taylor expansions gives

m´ rm “ λ
ψ
f2

2 pa2q

ψ
f2

1 pa2q
m` opλqm

rn´ n “ λ
ψ
f1

2 pa1q

ψ
f1

1 pa1q
n` opλqn.

(6.1)

Let b be a large fixed constant which will be determined through the course of the
proof. Then there exists N0 P N such that for all N ě N0, bN

´1{3 ď ǫ. Then with
λ “ bN´1{3, the sequence prm, rnq satisfies

|rm´Nψ
f2

1 pa2 ´ λq| _ |rn´Nψ
f1

1 pa1 ` λq| ď γ0N
2{3

for some positive constant γ0. By Table C.9 and (C.1) in the Appendix, in each of

the four basic beta-gamma models, either ψf
1

2 pa1q and ψ
f2

2 pa2q are both positive
(inverse-beta model for certain choices of parameters and inverse-gamma model

for all choices of parameters), ψf
1

2 pa1q is negative and ψf
2

2 pa2q is positive (gamma

and beta models), or ψf
1

2 pa1q is positive and ψf
2

2 pa2q is non-positive (inverse-beta
model with the remaining choices of parameters). By flipping the x and y axes in
the second case, we only need to consider the first and third cases.

For the case where ψf
1

2 pa1q and ψf
2

2 pa2q are both positive define AN “ m ´ rm
and BN “ rn´ n. This case is illustrated in Figure 6.7. By (6.1) and increasing N0

if necessary, there exist positive constants c1, c2, C1, C2 such that for N ě N0,

c1bN
2{3 ď AN ď C1bN

2{3,

c2bN
2{3 ď BN ď C2bN

2{3.

In the case where ψf
1

2 pa1q ą 0 and ψf
2

2 pa2q ď 0 we define c :“ 1
2

pmĂm ` n
rn q and let

m “ crm, n “ crn. This case is illustrated in Figure 6.8. This pm,nq will satisfy

|m´Mψ
f2

1 pa2 ´ λq| _ |n ´Mψ
f1

1 pa1 ` λq| ď γ0c
1{3M2{3

where M “ cN . A Taylor expansion gives

c “ 1 `

˜
ψ
f2

2 pa2q

ψ
f2

1 pa2q
´
ψ
f1

2 pa1q

ψ
f1

1 pa1q

¸
λ

2
` opλq
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m

n

rm

rn

m

n

Figure 6.8. Case 2: ψf12 ą 0 and ψf22 ď 0.

and thus

m ´m “
λ

2

˜
ψ
f2

2 pa2q

ψ
f2

1 pa2q
`
ψ
f1

2 pa1q

ψ
f1

1 pa1q

¸
m ` opN2{3q,

n ´ n “
λ

2

˜
ψ
f2

2 pa2q

ψ
f2

1 pa2q
`
ψ
f1

2 pa1q

ψ
f1

1 pa1q

¸
n ` opN2{3q.

The quantity
ψ

f2

2
pa2q

ψ
f2

1
pa2q

`
ψ

f1

2
pa1q

ψ
f1

1
pa1q

is positive since ψf
1

1 and ψf
2

1 are both positive and

ψ
f2

1 pa2qψf
1

2 pa1q ` ψ
f1

1 pa1qψf
2

2 pa2q ą 0 by Lemma C.2 in the Appendix. Letting

A “ m´m and B “ n´ n, there exist positive constants c1
1, c

1
2, C

1
1, C

1
2 such that

c1
1bM

2{3 ďAM ď C 1
1bM

2{3,

c1
2bM

2{3 ďBM ď C 1
2bM

2{3.

Recall that Ppa1,a2q is used to denote the probability measure on the polymer
environment with parameters a1 and a2. Let pra1,ra2q “ pa1 ` λ, a2 ´ λq. Our goal
is to show that

P
pa1,a2q

`
logZm,n ě ErlogZm,ns ` c0N

1{3
˘

ě ǫ0.

We will do so by making estimates using the pra1,ra2q environment and then use a
coupling of the two environments to transfer the results to the pa1, a2q environment.

We would first like to show that in the pra1,ra2q environment, with high probability
the quenched probability gives most of the weight to paths which exit the x-axis
at a point of order bN2{3. That is: there exist positive constants C3, C such that,
given any ε ą 0,

P
pra1,ra2q

 
Qm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě 1 ´ ε

(
ě 1 ´

C

b3
(6.2)

holds for all sufficiently large N .
We start by using Lemma 5.1 to relate an upper bound on t1 to a lower bound

on t2.

Qm,npt1 ďAN q
d
“ Qm,rnpv1pBN qďAN q “ Qm,rnpw1pAN qąBN q

d
“ QĂm,rnpt2 ąBN q.
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Using this and Corollary 4.6, there exists δ ą 0 such that

P
pra1,ra2q

 
Qm,npt1 ą c1bN

2{3q ě 1 ´ e´ δ
N
B2

N

(

ě P
pra1,ra2q

 
Qm,npt1 ą AN q ě 1 ´ e´ δ

N
B2

N

(

“ P
pra1,ra2q

 
Qm,npt1 ď AN q ď e´ δ

N
B2

N

(

“ P
pra1,ra2q

 
QĂm,rnpt2 ą BN q ď e´ δ

N
B2

N

(

ě 1 ´ Cb´3.

This implies that

P
pra1,ra2q

 
Qm,npt1 ď c1bN

2{3q ě e´ δ
N
B2

N

(
ď Cb´3.

Applying the upper bound (4.17) directly with C3 ą C2, we obtain

P
pra1,ra2q

 
Qm,npt1 ą C3bN

2{3q ě e´ δ
N
B2

N

(
ď Cb´3

for another positive constant C. Taking a union bound we put the two bounds
together and get

P
pra1,ra2q

 
Qm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě 1 ´ 2e´ δ

N
B2

N

(
ě 1 ´ Cb´3.

Taking N large enough, we get (6.2).
The argument for the case where we use pm,nq and A,B is unchanged, with the

exception of using the scaling parameter M rather than N . This difference can be
absorbed into the constants.

In order to make use of the bound (6.2) for the system with the original pa1, a2q

environment we create a new measure qP which has both a1 and ra1 distributed
weights along the x-axis and estimate the Radon-Nikodym derivative of the pa1, a2q
environment with respect to this new environment.

Let qω denote the environment that has the same weights as the pa1, a2q environ-
ment except for the weights R1

i,0 for 1 ď i ď tC3bN
2{3u, which will be distributed

with parameter ra1. Let qP denote the probability measure of this environment.
Then for each path x‚ with c1bN

2{3 ď t1px‚q ď C3bN
2{3, the weight of the path in

the pra1,ra2q environment and the weight of the path in the qω environment agree.

Thus, defining Zm,npAq :“
ř
x‚PA

śm`n
k“1 ωpxk´1,xkq,

Zm,npc1bN
2{3 ď t1 ď C3bN

2{3q (6.3)

is the same in distribution under Ppra1,ra2q and qP. We can now make use of the bound
(6.2).

Using a third-order Taylor expansion, the same series of calculations which leads
to inequality (4.11) in the proof of Proposition 4.3 gives the existence of a constant
C 1 ą 0 such that:

E
pra1,ra2qrlogZm,ns ´ E

pa1,a2qrlogZm,ns “ m
´
Ψf10 pra1q ´ Ψf10 pa1q

¯

` n
´
Ψf20 pra2q ´ Ψf20 pa2q

¯

ě ´γbN1{3C 1 ` 4c4b
2N1{3 ´ b3C 1

ě c4b
2N1{3

(6.4)
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where c4 :“ 1
8

´
ψ
f2

1 pa2qψf
1

2 pa1q ` ψ
f1

1 pa1qψf
2

2 pa2q
¯

is positive by Lemma C.2 in

the Appendix. The last inequality is obtained by first fixing b large enough then
increasing N0 if necessary.

We now split the probability

P
pra1,ra2q

 
Qm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě 1 ´ ε

(

“ P
pra1,ra2q

"
1

Zm,n
Zm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě 1 ´ ε

*

ď qP
!
Zm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě p1 ´ εqeE

pra1,ra2qrlogZm,ns´ 1

2
c4b

2N1{3
)

(6.5)

` P
pra1,ra2q

!
Zm,n ď eE

pra1,ra2qrlogZm,ns´ 1

2
c4b

2N1{3
)

ď qP
!
Zm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě p1 ´ εqeE

pa1,a2qrlogZm,ns` 1

2
c4b

2N1{3
)

(6.6)

` P
pra1,ra2q

!
Zm,n ď eE

pra1,ra2qrlogZm,ns´ 1

2
c4b

2N1{3
)
. (6.7)

The transition from Ppra1,ra2q to qP in (6.5) is due to the equality in distribution of
(6.3) under these measures. Inequality (6.6) comes from (6.4).

For (6.7) we can use Chebyshev’s inequality then the upper bound of the variance
to get

(6.7) ď
C

b3
.

Thus (6.6) ě 1 ´ C
b3

for some new positive constant C. Let g be the Radon-

Nikodym derivative dqP{dPpa1,a2q. Recall that the distributions differ only on the
weights along the x-axis up until site tC3bN

2{3u. Thus

gpωq “

ˆ
Mf1pa1q

Mf1pra1q

˙tC3bN
2{3u tC3bN

2{3uź

i“1

ωλi,0.

We can evaluate Epa1,a2qrg2s explicitly. Increasing N0, if necessary, so that 2λ ď ǫ,

E
pa1,a2qrω2λ

i,0s “
1

Mf1pa1q

ż 8

0

x2λxa1´1f1pxqdx “
Mf1pa1 ` 2λq

Mf1pa1q
.

Now

E
pa1,a2qrg2s “

ˆ
Mf1pa1q

Mf1pra1q

˙2tC3bN
2{3u tC3bN

2{3uź

i“1

E
pa1,a2qrω2λ

i,0s

“

ˆ
Mf1pa1qMf1pa1 ` 2λq

Mf1pa1 ` λq2

˙tC3bN
2{3u

.

Taking logarithms of both sides,

logEpa1,a2qrg2s

“ tC3bN
2{3u

´
logMf1pa1q ` logMf1pa1 ` 2bN´1{3q ´ 2 logMf1pa1 ` bN´1{3q

¯
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Recall that B2

Ba2 logMf1paq “ ψ
f1

1 paq ą 0. Then

lim
NÑ8

logEpa1,a2qrg2s

“ C3b lim
NÑ8

logMf1pa1q ` logMf1pa1 ` 2bN´1{3q ´ 2 logMf1pa1 ` bN´1{3q

N´2{3

“ C3b
2 lim
NÑ8

ψ
f1

0 pa1 ` 2bN´1{3q ´ ψ
f1

0 pa1 ` bN´1{3q

N´1{3

“ C3b
3ψ

f1

1 pa1q ą 0

Increase N0 if necessary so that for all N ě N0,

E
pa1,a2qrg2s ď e2C3b

3

.

Defining the event

D “
!
Zm,npc1bN

2{3 ď t1 ď C3bN
2{3q ě p1 ´ ǫqeE

pa1,a2qrlogZm,ns` 1

2
c4b

2N1{3
)
,

we get

1 ´
C

b3
ď (6.6) “ qPpDq

“ E
pa1,a2qrg1Ds

ď
`
E

pa1,a2qrg2s
˘1{2`

P
pa1,a2qpDq

˘1{2

ď eC3b
3`
P

pa1,a2qpDq
˘1{2

.

Thus

ǫ0 :“ p1 ´
C

b3
q2e´2C3b

3

ď P
pa1,a2qpDq.

Finally we have that

ǫ0 ď P
pa1,a2qpDq ď P

pa1,a2q
´
Zm,n ě p1 ´ εqeE

pa1,a2qrlogZm,ns` 1

2
c4b

2N1{3
¯

“ P
pa1,a2q

´
logZm,n ě logp1 ´ εq ` E

pa1,a2qrlogZm,ns ` c4b
2N1{3

2

¯

ď P
pa1,a2q

`
logZm,n ě E

pa1,a2qrlogZm,ns ` c0N
1{3

˘
.

Increasing N0 if necessary and taking c0 “ 1
4
c4b

2 the final inequality holds for all
N ě N0. This concludes the proof. �

We can use the variance lower bound to obtain a lower bound on the exit points
of the path from the horizontal and vertical axes.

Corollary 6.2. Assume that the polymer environment is distributed as in (3.2)
and the sequence pm,nq “ pmN , nN q8

N“1 satisfies (1.10) for some positive constant

γ. Then there exist positive constants c0, c1, N0 depending only on pa1, a2q, β and

γ such that for all N ě N0,

c0 ď Pm,npt1 ą c1N
2{3 or t2 ą c1N

2{3q.
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Proof : Averaging (1.8) and (1.9) of Proposition 1.1 then applying Lemma 4.2 fol-
lowed by the lower bound of Theorem 1.2 gives the existence of positive constants
c, C, N0 such that for all N ě N0

cN2{3 ď VarrlogZm,ns “ Em,nr
t1ÿ

i“1

LR1pR1
i,0qs ` Em,nr

t2ÿ

j“1

LR2pR2
0,jqs

ď CpEm,nrt1 ` t2s ` 2q.

Letting c1 :“ c{6C and increasing N0 if necessary followed by an application of the
Cauchy-Schwartz inequality along with Lemma 4.7 gives

3c1 ď Em,nr
t1 ` t2

N2{3
s ď 2c1 ` Em,nr

t1 ` t2

N2{3
: t1 ` t2 ą 2c1N

2{3s

ď 2c1 ` C 1Pm,npt1 ` t2 ą 2c1N
2{3q

1

2

for some positive constant C 1. Thus

c0 :“ p
c1

C 1
q2 ď Pm,npt1 ` t2 ą 2c1N

2{3q ď Pm,npt1 ą c1N
2{3 or t2 ą c1N

2{3q,

which completes the proof. �

We now prove the path fluctuation lower bound.

Proof of (1.15): If τ “ 0, this reduces to Corollary 6.2. If τ P p0, 1q put pk, lq “
ptτmu, tτnuq. Then the sequence pm ´ k, n ´ lq satisfies (1.10) with a new scaling
parameter M “ p1 ´ τqN . By the down-right property and Lemma 5.1

Qm´k,n´lpt1 ą u or t2 ą uq
d
“ Qpk,lq

m,n pt
pk,lq
1 ą u or t

pk,lq
2 ą uq

“ Qm,npv1plq ą k ` u or w1pkq ą l ` uq

ď Qm,npv1plq ą τm `
u

2
or w1pkq ą τn `

u

2
q

provided that u ě 2. Corollary 6.2 applied to the sequence pm´k, n´ lq completes
the proof. �

Appendix Appendix A Verification of Hypothesis 3.6

Lemma A.1. If the function f satisfies the conditions of Hypothesis 3.6 and

gpxq :“ fp 1
x

q for x P p0,8q, then g also satisfies the conditions of Hypothesis

3.6.

Proof : Note that supppgq “ supppfq´1. Fix a compact K Ă DpMgq and let a P K.

By parts (c) and (b) of Remark 3.3, ψg0paq “ ´ψf0 p´aq and ´K Ă DpMf q. Thus
there exists a positive constant C depending only ´K such that for all b P ´K,
(3.9) and (3.10) hold. It therefore suffices to show the following two relations hold:

Lgpa, xq “ Lf p´a,
1

x
q for all x P supppgq (A.1)

ż 1

0

ˇ̌
ˇ B

Ba
Lgpa,Hgpa, pqq

ˇ̌
ˇdp “

ż 1

0

ˇ̌
ˇ B

Bb
Lfpb,Hf pb, pqq

ˇ̌
ˇdp (A.2)

where the right hand side of (A.2) is evaluated at b “ ´a.

(A.1) can be proven by using ψg0paq “ ´ψf0 p´aq and making the substitution
y ÞÑ 1

y
in the first integral appearing in (3.8).
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(A.2) will now follow from (A.1) and

Hgpa, 1 ´ pq “
1

Hfp´a, pq
for all p P p0, 1q.

To see that this equality holds, let X „ mgpaq and x ą 0. Using part (a) of Remark
3.3

F gpa, xq “ PpX ď xq “ PpX´1 ě x´1q “ 1 ´ PpX´1 ă x´1q “ 1 ´ F f p´a, x´1q.
(A.3)

Fix p P p0, 1q and recall the definition of H‚, (3.3). Note that Hf p´a, pq and
Hgpa, 1 ´ pq lie in supppfq and supppgq “ supppfq´1 respectively. Plugging x “
Hgpa, 1 ´ pq into (A.3) gives

1 ´ p “ F gpa,Hgpa, 1 ´ pqq “ 1 ´ F f
`

´ a,
1

Hgpa, 1 ´ pq

˘
.

Rearranging yields

F f
`

´ a,
1

Hgpa, 1 ´ pq

˘
“ p “ F f p´a,Hf p´a, pqq.

Since x ÞÑ F f p´a, xq is one-to-one on supppfq we have the desired result. �

Lemma A.2. Each of the functions f in Table 3.5 satisfy Hypothesis 3.6.

Proof : Fix b ą 0. By Lemma A.1 it suffices to show the three functions

fpxq “ e´bx, fpxq “ p1 ´ xqb´1
1t0ăxă1u, fpxq “

` x

x` 1

˘b

satisfy the conditions of Hypothesis 3.6. In Seppäläinen (2012) (equation 3.30 and
the computation following equation 4.7), Seppäläinen showed that the function
fpxq “ e´x satisfies these conditions. A simple rescaling then shows that these
conditions are also satisfied for fpxq “ e´bx.

We will write C0paq, C1paq, . . . to indicate the positive constants Ckpaq have
a continuous dependence on a. We claim it is sufficient to show that if fpxq “
p1 ´ xqb´1

1t0ăxă1u or fpxq “ p x
x`1

qb, then for all x P supppfq the following three
bounds hold:

Lfpa, xq ď C0paqp1 ` | log x|q (A.4)

|x
f 1pxq

fpxq
|Lfpa, xq ď C1paqp1 ` | log x|q (A.5)

|Gf pa, xq| ď C2paqp1 ` plog xq2q (A.6)

where

Gf pa, xq : “
x´a

fpxq

ż x

0

pψf1 paq ` ψ
f
0 paq log y ´ plog yq2qya´1fpyqdy (A.7)

“ ´
x´a

fpxq

ż 8

x

pψf1 paq ` ψ
f
0 paq log y ´ plog yq2qya´1fpyqdy.

Note that the second equality in the definition of Gf pa, xq follows from the defini-

tions of ψf0 paq and ψf1 paq in part (c) of Remark 3.2. (A.4) clearly implies (3.9). To
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show (3.10) is satisfied, using (3.7), we calculate

B

Ba
Lf pa,Hf pa, pqq “

BLf

Ba
pa,Hf pa, pqq `

B

Ba
Hf pa, pq

BLf

Bx
pa,Hf pa, pqq

“

ˆ
BLf

Ba
pa, xq ` xLf pa, xq

BLf

Bx
pa, xq

˙ˇ̌
ˇ̌
x“Hf pa,pq

.

Since

BLf

Ba
pa, xq ` xLf pa, xq

BLf

Bx
pa, xq “pψf0 paq ´ 2 logxqLf pa, xq ´ aLfpa, xq2

`Gf pa, xq ´ x
f 1pxq

fpxq
Lfpa, xq2,

the conditions (A.4), (A.5), and (A.6) imply the existence of a positive constant
C3paq such that for all x P supppfq,

ˇ̌
ˇBL

f

Ba
pa, xq ` xLf pa, xq

BLf

Bx
pa, xq

ˇ̌
ˇ ď C3paq

`
1 ` plog xq2

˘
.

Condition (3.10) now follows from

ż 1

0

ˇ̌
ˇ̌ B

Ba
Lfpa,Hf pa, pqq

ˇ̌
ˇ̌ dp ď C3paq

ż 1

0

`
1 ` plogHfpa, pqq2

˘
dp

“ C3paq
`
1 ` ψ

f
1 paq ` pψf0 paqq2

˘
ă 8.

The last equality is justified by parts (a) and (c) of Remark 3.2 along with the fact
that Hf pa, ηq „ mfpaq when η is uniformly distributed on p0, 1q.

We first show (A.4), (A.5) and (A.6) for the case fpxq “ p1 ´ xqb´1
1t0ăxă1u.

Let a P DpMf q “ p0,8q. Then there exists some positive constant C4paq such that
the following two inequalities hold:

ˇ̌
ψ
f
0 paq ´ log y

ˇ̌
ya´1fpyq ď

"
C4paqp1 ´ log yqya´1 if 0 ă y ă 1

2

C4paqp1 ´ yqb´1 if 1

2
ď y ă 1

ˇ̌
ψ
f
1 paq ` ψ

f
0 paq log y ´ plog yq2

ˇ̌
ya´1fpyq ď

"
C4paq

`
1 ` plog yq2

˘
ya´1 if 0 ă y ă 1

2

C4paqp1 ´ yqb´1 if 1

2
ď y ă 1.

Since a ą 0, (3.8) and (A.7) give: for 0 ă x ă 1
2
,

Lfpa, xq ď
2bC4paq

xa

ż x

0

p1 ´ log yqya´1dy ď C0paqp1 ` | log x|q (A.8)

ˇ̌
Gf pa, xq

ˇ̌
ď

2bC4paq

xa

ż x

0

`
1 ` plog yq2

˘
ya´1dy ď C2paq

`
1 ` plog xq2

˘
.

Similarly, the secondary expressions in (3.8) and (A.7) give: for 1{2 ď x ă 1,

Lf pa, xq ď
2aC4paq

p1 ´ xqb´1

ż 1

x

p1 ´ yqb´1dy ď C0paqp1 ´ xq (A.9)

ˇ̌
Gf pa, xq

ˇ̌
ď

2aC4paq

p1 ´ xqb´1

ż 1

x

p1 ´ yqb´1dy ď C2paqp1 ´ xq
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where we increased C0paq and C2paq if necessary. Thus the bounds (A.4) and (A.6)
hold. Moreover, by (A.8) and (A.9),

ˇ̌
x
f 1pxq

fpxq

ˇ̌
Lf pa, xq “ |b´ 1|

x

1 ´ x
Lf pa, xq ď

"
C1paqp1 ` | log x|q if 0 ď x ă 1

2

C1paq if 1

2
ď x ă 1

proving the bound (A.5).
We now consider the case fpxq “ p x

x`1
qb. Let a P DpMf q “ p´b, 0q. Then

ˇ̌
ψ
f
0 paq ´ log y

ˇ̌
ya´1fpyq ď

"
C4paqp1 ´ log yqya`b´1 if 0 ă y ă 1

C4paqp1 ` log yqya´1 if y ě 1

ˇ̌
ψ
f
1 paq ` ψ

f
0 paq log y ´ plog yq2

ˇ̌
ya´1fpyq ď

"
C4paq

`
1 ` plog yq2

˘
ya`b´1 if 0 ă y ă 1

C4paqp1 ` plog yq2qya´1 if y ě 1.

Since a ` b ą 0, (3.8) and (A.7) give: for 0 ă x ă 1,

Lfpa, xq ď
2bC4paq

xa`b

ż x

0

p1 ´ log yqya`b´1dy ď C0paqp1 ` | log x|q

ˇ̌
Gf pa, xq

ˇ̌
ď

2bC4paq

xa`b

ż x

0

`
1 ` plog yq2

˘
ya`b´1dy ď C2paq

`
1 ` plog xq2

˘
.

Similarly, since a ă 0, the secondary expressions in (3.8) and (A.7) give: for x ě 1,

Lf pa, xq ď
2bC4paq

xa

ż 8

x

p1 ` log yqya´1dy ď C0paqp1 ` | log x|q

ˇ̌
Gf pa, xq

ˇ̌
ď

2bC4paq

xa

ż 8

x

p1 ` plog yq2qya´1dy ď C2paqp1 ` plog xq2q

where we increased C0paq and C2paq if necessary. Thus the bounds (A.4) and (A.6)

hold. Since |xf
1pxq
fpxq | “ b 1

x`1
ď b, (A.4) implies (A.5) completing the proof. �

Appendix Appendix B Lemmas used in Section 3 and Section 4

Lemma B.1. Assume the polymer environment is such that logR1, logR2, log Y 1,

and log Y 2 have finite second moments. Then ErplogZxq2s ă 8 for any x P Z
2
`.

Proof : Since logZk,0 “
řk
i“1 R

1
i,0 and logZ0,ℓ “

řℓ
j“1 logR

2
0,j , logZx has finite

second moment for each x P Z2
`zN2. If x P N2, the recursion (2.1) implies that

plog Y 1
x ` logZx´α1

q ^ plog Y 2
x ` logZx´α2

q

ď
logZx

2
ď plog Y 1

x ` logZx´α1
q _ plog Y 2

x ` logZx´α2
q.

Thus

plogZxq2 ď 4plog Y 1
x ` logZx´α1

q2 ` 4plog Y 2
x ` logZx´α2

q2.

Since log Y 1 and log Y 2 have finite second moments, an inductive argument finishes
the proof. �

Lemma B.2. Suppose fk : p0,8q Ñ r0,8q for k “ 1, . . . , r and a0 ă a ă a1 are

real numbers such that ra0, a1s Ă
Şr
k“1DpMfkq. Suppose we have a collection of

independent random variables tXkurk“1 where Xk „ mfkpaq for all 1 ď k ď r. Let

Ea be the expectation corresponding to the product measure induced by tXkurk“1.
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Let S “
řr
k“1 logXk and A : Rr Ñ R be a measurable function such that

EarApX1, . . . , Xrq
2s ă 8 for all a P ra0, a1s. Then

B

Ba
E
arApX1, . . . , Xrqs “ CovapApX1, . . . , Xrq, Sq for all a P pa0, a1q

and pa0, a1q Q a ÞÑ B
BaE

arApX1, . . . , Xrqs is continuous.

Proof : The joint density of plogX1, logX2, . . . , logXrq is given by

gpx1, . . . , xrq “
ea

řr
k“1

xk

śr
k“1Mfkpaq

rź

k“1

fkpexkq.

Thus the density of S is given by

hapsq “
easśr

k“1Mfkpaq

ż

Rr´1

f1pex1qf2pex2´x1q . . . frpe
s´xr´1qdx1, . . . , xr´1 (B.1)

Therefore the joint density of plogX1, logX2, . . . , logXrq given that S “ s is

gpx1, . . . , xrq1t
ř

r
k“1

xk“su

hapsq
“

śr
k“1 fkpexkq1t

ř
r
k“1

xk“suş
Rr´1 f1pex1qf2pex2´x1q . . . frpes´xr´1qdx1, . . . , xr´1

,

which has no a dependence. Thus

B
BaE

arApX1, . . . , Xrqs “ B
Ba

ż

R

E
arApX1, . . . , Xrq|S “ sshapsqds

“

ż

R

E
arApX1, . . . , Xrq|S “ ss B

Bahapsqds

“

ż

R

E
arApX1, . . . , Xrq|S “ sshapsq

`
s´

rÿ

k“1

B
Ba logMfkpaq

˘
ds

“ CovapApX1, . . . , Xrq, Sq.

The last equality comes from ErSs “
řr
k“1 ErlogXks “

řr
k“1

B
Ba logMfkpaq, by

part (a) of Remark 3.2. The interchanging of the derivative and the integral is
justified by the bound

ż

R

Er|ApX1, . . . , Xrq|
ˇ̌
S “ ss sup

aPra0,a1s

ˇ̌
ˇ̌ B

Ba
hapsq

ˇ̌
ˇ̌ ds ă 8. (B.2)

Once we show that there is a constant C depending only on a0 and a1 such that

sup
aPra0,a1s

ˇ̌
ˇ̌ B

Ba
hapsq

ˇ̌
ˇ̌ ď Cp1 ` |s|qpha0psq ` ha1psqq (B.3)

we will have the bound (B.2) since
ż

R

Er|ApX1, . . . , Xrq|
ˇ̌
S “ ssp1 ` |s|qhaj psqds “ E

aj r|ApX1, . . . , Xrq|p1 ` |S|qs

ď E
aj rApX1, . . . , Xrq

2s
1

2E
aj rp1 ` |S|q2s

1

2 .

The last expression is finite since Eaj rApX1, . . . , Xrq2s ă 8 by assumption, and S
is a finite sum of independent random variables each of which has finite exponential
moments, by part (a) of Remark 3.2. Notice that the bound (B.2) also implies that
a ÞÑ B

BaE
arApX1, . . . , Xrqs is continuous. All that is left to do is verify the bound
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(B.3). To accomplish this, notice that equation (B.1) implies that B
Ba log hapsq “

s´ EarSs. So

sup
aPra0,a1s

ˇ̌
ˇ̌ B

Ba
hapsq

ˇ̌
ˇ̌ ď C1p1 ` |s|q sup

aPra0,a1s

hapsq

where C1 :“ 1_ supaPra0,a1s |EarSs|. Thus it suffices to show that supaPra0,a1s hapsq

ď C2

´
ha0psq ` ha1psq

¯
for some constant C2 independent of s. By part (c) of

Remark 3.2, a ÞÑ EarSs is an increasing function. Therefore, for all s ď Ea0rSs the
function a ÞÑ hapsq is non-increasing on ra0, a1s. Thus

sup
aPra0,a1s

hapsq ď ha0psq for all s ď E
a0 rSs.

On the other hand, if s ą Ea0 rSs, then B
Ba log

´
hapsq exp papEa1 rSs ´ Ea0 rSsqq

¯
“

s ´ EarSs ` Ea1 rSs ´ Ea0 rSs ą 0 for all a P ra0, a1s. Thus for all s ą Ea0 rSs, a ÞÑ

hapsq exp
´
apEa1 rSs ´ Ea0rSsq

¯
is increasing on the interval ra0, a1s. Therefore,

sup
aPra0,a1s

hapsq ď C3ha1psq for all s ą E
a0 rSs

where C3 “ exp
´

pa1 ´ a0qpEa1 rSs ´ Ea0 rSsq
¯
. We now get the desired result with

C2 “ 1 ` C3. �

Lemma B.3. Assume that the polymer environment is distributed as in (3.2) and
let ǫ be small enough such that for all |λ| ď ǫ, a1`λ P DpMf1q and a2´λ P DpMf2q.

Let pm,nq P N2 and k P N. Then, with notation as in (3.5), Q
pa1`λ,a2´λq
m,n pt1 ě kq

is stochastically non-decreasing in λ and Q
pa1`λ,a2´λq
m,n pt2 ě kq is stochastically non-

increasing in λ.

Proof :

B

Bbi
Qpb1,b2q
m,n ptj ě kq “

B

Bbi

¨
˝ 1

Zm,npb1, b2q

ÿ

x‚PΠm,n

1ttjěkuW pb1, b2qpx‚q

˛
‚. (B.4)

If i ‰ j, the sum in (B.4) has no bi dependence, so

B

Bbi
Qpb1,b2q
m,n ptj ě kq “

´1

pZm,npb1, b2qq2

ˆ
B

Bbi
Zm,npb1, b2q

˙ ÿ

x‚PΠm,n

1ttjěkuW pb1, b2qpx‚q,

which is non-positive by (3.18). If i “ j, then by (3.17) and (3.18),

B

Bbi
Qpb1,b2q
m,n pti ě kq “

ř
x‚PΠm,n

1ttiěku
B

Bbi
W pb1, b2qpx‚q

Zm,npb1, b2q

´

ˆ
B

Bbi
logZm,npb1, b2q

˙ ř
x‚PΠm,n

1ttiěkuW pb1, b2qpx‚q

Zm,npb1, b2q

“ CovQ
pb1,b2q
m,n

` tiÿ

k“1

Lf
i

pbi, H
fi

pbi, η
i
kqq,1ttiěku

˘
,

which is non-negative. �
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Appendix Appendix C Properties of ψfn

Model ψf1

n pa1q ψf2

n pa2q

IG p´1qn`1pΨnpµ´ θq ´ δn,0 log βq p´1qn`1pΨnpθq ´ δn,0 log βq

G Ψnpµ` θq ´ δn,0 log β p´1qn`1pΨnpθq ´ Ψnpµ` θqq

B Ψnpµ` θq ´ Ψnpµ` θ ` βq p´1qn`1pΨnpθq ´ Ψnpµ` θqq

IB p´1qn`1pΨnpµ´ θq ´ Ψnpµ´ θ ` βqq Ψnpµ´ θ ` βq ` p´1qn`1Ψnpθq

Figure C.9. ψfn functions for each of the four basic beta-gamma models.

By Abramowitz and Stegun (1964) (p.260 line 6.4.1) the polygamma function of

order n, Ψnpxq “ Bn`1

Bxn`1 log Γpxq, has integral representation

Ψnpxq “ p´1qn`1

ż 8

0

tne´xt

1 ´ e´t
dt. (C.1)

Lemma C.1. For any n P N, the map a ÞÑ
Ψn`1paq
Ψnpaq is strictly increasing on p0,8q.

Proof : Fix n P N and a P p0,8q. We will show that B2

Ba2 log |Ψnpaq| ą 0.
After substituting y “ e´t in (C.1) we get

|Ψnpaq| “

ż 8

0

ya´1fpyqdy “ Mf paq

where fpyq :“ p´ log yqn

1´y 1t0ăyă1u. Note that DpMf q “ p0,8q. Now given a random

variable X „ mf paq, by part (c) of Remark 3.2,

B2

Ba2
log |Ψnpaq| “

B2

Ba2
logMf paq “ VarrlogXs ą 0,

since X is non-degenerate. �

Lemma C.2. Assume the polymer environment is distributed as in (3.2). Then

ψ
f1

1 pa1qψf
2

2 pa2q ` ψ
f2

1 pa2qψf
1

2 pa1q ą 0.

Proof : Recall that ψf
j

1 are always positive and by (C.1) Ψn has sign p´1qn`1

throughout p0,8q.
For the inverse-gamma model (1.2) with fixed constants β ą 0 and µ ą θ ą 0,

Table C.9 implies that ψf
j

2 pajq ą 0 for j “ 1, 2. The conclusion follows immediately.
For the gamma model (1.3) with fixed positive constants β, µ, and θ, by Table C.9

ψ
f1

1 pa1qψf
2

2 pa2q ` ψ
f2

1 pa2qψf
1

2 pa1q “ ´Ψ1pθ ` µqΨ2pθq ` Ψ1pθqΨ2pθ ` µq.

The quantity on the right hand side is positive if and only if

Ψ2pθ ` µq

Ψ1pθ ` µq
ą

Ψ2pθq

Ψ1pθq

which holds true by Lemma C.1 with n “ 1.
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For the beta model (1.4) with fixed positive constants β, µ, and θ, using Table C.9

ψ
f1

1 pa1qψf
2

2 pa2q ` ψ
f2

1 pa2qψf
1

2 pa1q ą 0 ô

ψ
f1

2 pa1q

ψ
f1

1 pa1q
ą ´

ψ
f2

2 pa2q

ψ
f2

1 pa2q
ô

Ψ2pθ ` µ ` βq ´ Ψ2pθ ` µq

Ψ1pθ ` µ ` βq ´ Ψ1pθ ` µq
ą

Ψ2pθ ` µq ´ Ψ2pθq

Ψ1pθ ` µq ´ Ψ1pθq
. (C.2)

By Cauchy’s mean value theorem there exist constants θ ă ξ1 ă θ ` µ ă ξ2 ă

θ ` µ ` β such that the left and right-hand sides of (C.2) equal Ψ3pξ2q
Ψ2pξ2q and Ψ3pξ1q

Ψ2pξ1q

respectively. Lemma C.1 with n “ 2 now gives (C.2).
For the inverse-beta model (1.5) with fixed constants β ą 0 and µ ą θ ą 0, by

Table C.9, ψf
1

2 pa1q ą 0, ψf
2

1 pa2q ą Ψ1p´θ`µ`βq, and ψf
2

2 pa2q ą Ψ2p´θ`µ`βq.
Therefore

ψ
f1

1 pa1qψf
2

2 pa2q`ψf
2

1 pa2qψf
1

2 pa1q

ą ψ
f1

1 pa1qΨ2p´θ ` µ` βq ` Ψ1p´θ ` µ` βqψf
1

2 pa1q

“ Ψ1p´θ ` µqΨ2p´θ ` µ ` βq ´ Ψ1p´θ ` µ ` βqΨ2p´θ ` µq.

Letting x “ ´θ ` µ, the last line is positive if and only if

Ψ2px` βq

Ψ1px` βq
ą

Ψ2pxq

Ψ1pxq

which holds true by Lemma C.1 with n “ 1. �
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