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Abstract. We develop a Mellin transform framework which allows us to simulta-
neously analyze the four known exactly solvable 1 + 1 dimensional lattice polymer
models: the log-gamma, strict-weak, beta, and inverse-beta models. Using this
framework we prove the conjectured fluctuation exponents of the free energy and
the polymer path for the stationary point-to-point versions of these four models.
The fluctuation exponent for the polymer path was previously unproved for the
strict-weak, beta, and inverse-beta models. An independent and concurrent work
by Baldzs et al. (2018) also gives the path fluctuation result for the beta model.

1. Introduction

The directed polymer in a random environment was first introduced by Huse
and Henley (1985) to model the interaction between a long chain of molecules and
random impurities. This was later reformulated by Imbrie and Spencer (1988)
as a random walk in a random environment. See the recent lectures notes by
Comets (2017) for additional historical background and a survey of techniques
used to study directed polymers. In the 1 + 1 dimensional case, a large class of
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polymer models are expected to lie in the KPZ universality class. For this class,
the polymer path and free energy fluctuation exponents are conjectured to be 2/3
and 1/3, respectively, and the probability distribution of the rescaled free energy is
conjectured to converge to the Tracy-Widom GUE distribution.

There are a few 1 + 1 dimensional polymer models for which these results have
been proved. Baldzs et al. (2011), prove the fluctuation exponents for a Hopf-Cole
solution to the KPZ equation with Brownian initial condition. This solution can be
interpreted as the free energy of a stationary continuum directed polymer. Amir
et al. (2011) study the Hopt-Cole solution to the KPZ equation with narrow-wedge
initial condition and prove Tracy-Widom limit distribution for large time. For the
semi-discrete Brownian directed polymer introduced by O’Connell and Yor (2001),
the fluctuation exponents are proved by Seppéliinen and Valké (2010), and the limit
distribution is proved by Borodin and Corwin (2014) and Borodin et al. (2014).

In the setting of lattice directed polymers, there are four models for which re-
sults about the scaling exponents or limit distributions are known. The log-gamma
directed polymer was introduced by Seppildinen (2012), where the fluctuation ex-
ponents were proved. The limit distribution result was proved by Borodin et al.
(2013). The strict-weak polymer model was simultaneously introduced by Corwin
et al. (2015) and O’Connell and Ortmann (2015). Its limit distribution was proved
through different methods in these two papers. The beta directed polymer was
introduced by Barraquand and Corwin (2017), where its limit distribution was also
calculated. The fourth model is the inverse-beta model, introduced by Thiery and
Le Doussal (2015), in which they conjecture a formula for the Laplace transform
of the polymer partition function and, contingent on this conjecture, show Tracy-
Widom limit distribution for the rescaled free energy.

In this paper we provide a Mellin transform framework with which we are able
to treat these four lattice polymer models simultaneously and prove the fluctuation
exponents of the free energy and the polymer path for their stationary versions.
While for the log-gamma model these results were previously shown by Seppélainen
(2012), for the strict-weak, beta, and inverse-beta models, the path fluctuation
results are new. An independent and concurrent work by Baldzs et al. (2018) also
gives the path fluctuation result for the beta model.

Our methods rely upon a Burke-type stationarity property that each of these
models possesses. This stationarity, along with a coupling argument, are used to
prove a variance formula which is then amenable to analysis. This method was
first used by Cator and Groeneboom (2006) to prove the order of the variance of
the length of the longest weakly North-East path in Hammersley’s process with
sources and sinks. Baldzs et al. (2006) adapt this method to prove the order of
the fluctuations of the passage time and the fluctuations of the maximal path for
last passage percolation with exponential weights. Seppéldinen (2012) used this
method to prove the order of the fluctuation of the free energy and the polymer
path fluctuations for the point-to-point log-gamma model with stationary boundary
conditions, and upper bounds on the fluctuation exponents for the non-stationary
point-to-point and point-to-line models. Seppéldinen and Valké (2010) prove the
scaling exponents for the O’Connell-Yor polymer, and Moreno Flores et al. (2014)
extend the result to the intermediate disorder regime. Our paper closely follows the
methods in Seppiliinen (2012); the Mellin transform framework provides a unified
way to apply these methods to the four models.
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In our related paper Chaumont and Noack (2017) we prove that in the setting
of 1 + 1 dimensional lattice directed polymers, the only four models possessing the
Burke-type stationarity property are the log-gamma, strict-weak, beta, and inverse-
beta models.

Notation: N = {1,2,...}, Z, = {0,1,...}, and R denotes the real numbers.
Let |x| denote the greatest integer less than or equal to x. Let v and A denote
maximum and minimum, respectively. Given a real valued function f, let supp(f) =
{x : f(x) # 0} denote the support of the function f (note that we do not insist on
taking the closure of this set). Given a random variable X with finite expectation,
welet X = X—E[X]. For A c Rwrite —A = {-a:aec Ajand A™! = {a7! :a € A}
assuming that 0 ¢ A. The symbol ® is used to denote (independent) product
distribution.

1.1. The polymer model. On each edge e of the Zi lattice we place a positive
random weight. The superscripts 1 and 2 will be used to denote horizontal and
vertical edge weights, respectively. For z € N2 let Y! and Y? denote the hori-
zontal and vertical incoming edge weights. We assume that the collection of pairs
{(Y},Y?)}.en2 is independent and identically distributed with common distribu-
tion (Y1, Y?), but do not insist that Y! is independent of Y2. Call this collection
the bulk weights. For x € N x {0}, let R. denote the horizontal incoming edge
weight, and for y € {0} x N, let Rf/ denote the vertical incoming edge weight. We
assume the collections {R;}meNx{o} and {Ri}ye{O}XN are independent and identi-
cally distributed with common distributions R and R?, and refer to them as the
horizontal and vertical boundary weights, respectively. We further assume that the
horizontal boundary weights, the vertical boundary weights, and the bulk weights
are independent of each other. This assignment of edge weights is illustrated in
Figure 1.1. We call

w= (R, R (YA,Y?) ix e N x {0}y € (0} x N,z € N?) (L1)

the polymer environment. We use P and E to denote the probability measure and
corresponding expectation of the polymer environment.

1
Y.
2 2
Ro,j Y;
1
R;

FIGURE 1.1. Assignment of edge weights.
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A path is weighted according to the product of the weights along its edges. For
(m,n) € Z2\{(0,0)} we define a probability measure on all up-right paths from
(0,0) to (m,n). See Figure 1.2 for an example of an up-right path. Let Il ,
denote the collection of all such paths. We identify paths x, = (zo, 21, ..., Tm+tn)
by their sequence of vertices, but also associate to paths their sequence of edges

(e1,..-,€min), where e; = {x;_1,x;}. Define the quenched polymer measure on
Hm,nu
m+n
Qm n = H We;

where w, is the weight associated to the edge e and

m+n

Lo 1= Z H We;

z, €l , =1

is the associated partition function. At the origin, define Zyo := 1. Taking the
expectation E of the quenched measure with respect to the edge weights gives the
annealed measure on Il,, ,,

Pmn( ) - E[an( )]
The annealed expectation will be denoted by E,, .

FIGURE 1.2. An up-right path from (0,0) to (5,5).

We specify the edge weight distributions for the four stationary polymer models.
The notation X ~ Ga(c, ) is used to denote that a random variable is gamma(a, )
distributed, i.e. has density T'(a) ! %2~ 1e=# supported on (0, c0), where I'(a) =
§o #®"te~®dx is the gamma function. X ~ Be(a, ) is used to say that X is

beta(a, B) distributed, i.e. has density F(S;;fﬂ)) @=1(1 — z)%~1 supported on (0, 1).
We then use X ~ Ga™!(a, ) and X ~ Be !(a, B) to denote that X! ~ Ga(a, )
and X! ~ Be(a, 3), respectively. We also use X ~ (Befl(a,ﬁ) — 1) to denote
that X + 1 ~ Be (a, B).
e Inverse-gamma (IG): This is also known as the log-gamma model. As-
sume g > 60 >0, 5> 0 and

R'~Ga'(u—6,8 R*~Ga '(6,8)

(Y1 Y?) = (X,X) where X ~Ga '(uB). (12)
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¢ Gamma (G): This is also known as the strict-weak model. Assume
0, 1, 5 >0 and

R'~Ga(u+6,8) R>~Be (6, p)

(YLY%) =(X,1) where X ~ Ga(y, ). (13)
e Beta (B): Assume 6, y, 5 > 0 and
R' ~Be(u+6,8)  R*>~Be (0, p) 14
(YLY?)=(X,1-X)  where X ~ Be(u,f). '
e Inverse-beta (IB): Assume p > 6 >0, 8> 0 and
R'~Be '(u—0,8) R*~ (Be '(0,8+p—0)—1) 15)

(YLY3H =(X,X—-1) where X ~Be (i)

The name of each model refers to the distribution of the bulk weights. We call
these models the four basic beta-gamma models.

1.2. Results. If X is a positive random variable with density p, define
1
Lx(x) = ———
@)=~
for all z such that p(xz) > 0. Given a path z, € I, ,,, define the exit points of the
path from the horizontal and vertical axes by

t1 := max{i: (i,0) € .} and to :=max{j: (0,5) € z.}. (1.7)

Cov(log X, 1{x<s}) (1.6)

The following proposition gives exact formulas for the expectation and variance
of the free energy, which is a starting point for analysis of these four models.

Proposition 1.1. Assume that the polymer environment has edge weight distribu-
tions R', R%,(Y',Y?) as in one of (1.2) through (1.5). Then for all (m,n) € Z2,

E[log Z,n.n] = mE[log R'] + nE[log R?],

ty
Var{log Zym.n] = —mVar{log R'] + nVar{log R*] + 2E,, ., Z Lri(Rig)|, (1.8)
i=1
to
Var[log Zm.n] = mVar[log R'] — nVar[log R?] + 2E,, Z Lg: (Rg.,j) (1.9)
j=1

Using these exact formulas, we can obtain the following bounds on the variance
of the free energy when (m,n) grow in a characteristic direction.

Theorem 1.2. Assume that the polymer environment has edge weight distributions
RYR% (Y',Y?) as in one of (1.2) through (1.5), and let (m,n) = (mnx,nn)%_,
be a sequence such that

|my — NVar{log R?]| < yN*?3 and Iny — NVar{log R']| < yN?3 (1.10)

for some fized v > 0. Then there exist positive constants ¢, C, and Ny depending
only on w, 0,3, such that for all N = Ny,

eN?3 < Var[log Zmn] < CN?/3.

The same constants ¢, C, Ny can be taken for all u, 8, 3, varying in a compact set.



514 Hans Chaumont and Christian Noack

Theorem 1.2 and a Borel-Cantelli argument give the following law of large num-
bers.

Corollary 1.3. With assumptions as in Theorem 1.2 the following limit holds P-
almost surely
. logZpn
lim ———

N—0

= E[log R'|Var{log R?] + E[log R*]Var{log R']. (1.11)
For the four basic beta-gamma models, the right-hand side of (1.11) is given by

A(1,0,5) (55B01.0)) — (401.0.5)) B(p.6) + C(1, ).

n+1

where the functions A, B, and C are given in Table 1.3 and ¥,,(z) := (hnﬂ log T'(z)
denotes the polygamma function of order n.

| Model || A(p, 0, 8) | B(u,0) | C(u,0) |
G log 5 Fol0] — Voly— 1 [ Vol (0) — Fol0)¥1—0)
G log 3 Wo(pu+6) —Wo(0) | Vol +0)¥:1(0) — Wo(0)W1(p+0)
B (o0 5] | ol + ) 00(0) | Tl O, 0) —a(0) 000
B || —Wo(r— 0+ 5) | Wol0) — Woli—0) |~ — 0)¥1(0) — Bo(0) 01— 0)

FIGURE 1.3. Functions for the limiting rescaled free energy of the
four basic beta-gamma models.

The following is a result for when the sequence (my,ny) does not satisfy con-
dition (1.10). The statement is given for when the horizontal direction is too large,
but an analogous result holds for the vertical direction.

Corollary 1.4. Assume that the polymer environment has edge weight distributions
RY, R% (Y1,Y?) as in one of (1.2) through (1.5) and that m,n — . Define N by
n = NVar{log R'] and assume

N~%m — NVar[log R*]) = ¢1 >0
for some a > 2/3. Then as N — o
N~=%2 (1og Zy n — E[10g Zm.n])
converges in distribution to a centered normal with variance c1Var{log R'].

The variance formulas in Proposition 1.1 connect the variance of the free energy
to the exit points of the path from the boundaries (1.7). This allows us to obtain
bounds on the polymer path fluctuations under the annealed measure.

Given a path z, € Il,;, ,,, for 0 < k <m and 0 < < n define

vo(l) := min{i : (¢,1) € z.} v1(l) := max{i : (i,1) € x.}

wo(k) := min{j : (k,j) € x.} wi (k) := max{j : (k,j) € z.}. (1.12)

This is illustrated in Figure 1.4.
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FI1GURE 1.4. Example path with vg, v1, wg, w; illustrated.

Theorem 1.5. Assume that the polymer environment has edge weight distributions
RY R2 (Y1,Y?) as in one of (1.2) through (1.5), and let (m,n) = (mn,nyN)%_;
be a sequence satisfying (1.10) for some fixzed v > 0. Let 0 < 7 < 1. Then there
exist positive constants by, C, cg, c1, No depending only on u, 0, B, v, T such that
forb=bp and N € N,

Q

Pn(vo(|mn]) < 7m — bN?3 or vy (|7n]) = 7m + bN?3) < = (1.13)
P (wo(|Tm]) < 7n — bN?? or wy(|mm]) = mn + bN?3) < b%’ (1.14)

and for all N = Ny,
co < Pon(vi(|mn]) = mm + e N?2 or wy(|mm]) = ™ + ¢t N¥3). (1.15)

The same constants can be taken for all u, 0, B, v, T varying in a compact set.

Structure of the paper: In Section 2 we define the down-right property then
state and prove consequences of this property. In Section 3 we introduce the Mellin
transform framework, which allows us to treat the four basic beta-gamma models
simultaneously, and prove Proposition 1.1. In Section 4 we prove the upper bound
of Theorem 1.2. In Section 5 we prove bounds (1.13) and (1.14) of Theorem 1.5.
In Section 6 we prove the lower bound of Theorem 1.2 and bound (1.15) of Theo-
rem 1.5. In Appendix A we verify that each of the four basic beta-gamma models
satisfies the conditions of Hypothesis 3.6. Appendix B collects technical lemmas
used in Sections 3 and 4. Appendix C collects facts used in the proof of Proposi-
tion 6.1.

Acknowledgements: This work is part of our dissertation research at the Univer-
sity of Wisconsin-Madison. We thank our advisors Timo Seppéldinen and Benedek
Valkoé for their guidance and insights.
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2. The down-right property
Write a1 = (1,0), ag = (0,1). For k = 1,2 define ratios of partition functions

RN .= Za

x
szak

for all z such that x — oy, € Zi.

Note that these extend the definitions of R}, and Rg ;, since for example Z; o =
H2:1 R,1€70. We say that m = {mg}rez is a down-right path in Z% if 7, € Z2 and
Tr+1 — Tk € {1, —aa} for each k € Z. To each edge along a down-right path we
associate the random variable

Rik,l if {mp_1, T} is vertical.

A ': {R}Tk if {mx_1, 7} is horizontal,
{mh—1,7k} *

The following definition is a weaker form of the Burke property (see Theorem 3.3
of Seppiliinen, 2012).

Definition 2.1. Say the polymer model has the down-right property if for all
down-right paths m = {7y }kez, the random variables
A(m) == { Ay rpy k€LY

are independent and each R}rk and Rfrk appearing in the collection are respectively
distributed as R' and R2.

The partition functions satisfy the recurrence relation
Zy =Y} 2y oy + Y22y o,  forxzeN (2.1)

This recurrence relation then implies the recursions

R =y} 4 y2ae

xT R2
2 e for z e N2. (2.2)
R} =Y, +Y;?
Ri*ﬂ@

Using the recursions (2.2) we can reduce the down-right property to a simple preser-
vation in distribution.

Lemma 2.2. Let R', R?,(Y1,Y?) be positive random variables such that R', R?
and the pair (Y',Y?) are independent. Put

(R', R?) := (Y' + Y2R'/R?, Y'R?/R' + Y?).
Then the polymer model with edge weights R*, R%, (Y1, Y?) has the down-right prop-
erty if and only if (}N{l, IN€2) 4 (Rl, R2).
Proof of Lemma 2.2: Given a down-right path 7, define its lower-left interior
Int(r) := {x € Z2 such that z + (m,n) € {r} for some m,n € N}.

If the polymer model with edge weights R', R?, (Y, Y?) has the down-right prop-

erty, taking 7 to be the unique down-right path with interior {(0,0)} implies that

(Rl;,R3;) £ (R, R?. Then (2.2) and the fact that (R}, RZ,, (Y], V7)) 2

(R, R%, (Y, Y?)) imply that (R', R%) £ (R', R2).
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For the converse direction, we first prove the statement for = with finite interior.
The case when the interior is empty is true by assumption. Assume that the down-
right property holds for all paths 7 with |Int(7)| = n. Given a path = with |Int(7)| =
n + 1 there exists « such that 7 traverses the right-down corner {z — a1, z, x — as}.
Let 7 be the path which traverses the same points as 7w with the exception of

instead passing through the down-right corner {z — a1,z — a1 — as,x — as}. Then
[Int(7)| = n and so (RL_,,,R2_,,) L (R',R?). Using (2.2), the assumption that
(R',R?) £ (R',R?) and the independence of (Y!,YV;2) from the collection A(%)
gives us that the collection A(m) has the desired property.

To prove the statement for arbitrary 7, pick a finite sub-collection F of A(w).
Then there exists 7 such that Int(7) is finite and F < A(T). Since the statement

holds for down-right paths with finite interior, we are done. (I

Proposition 2.3. Fach of the four basic beta-gamma models, (1.2) through (1.5),
possesses the down-right property.

Proof: The (R, R?) £ (R', R?) condition in Lemma 2.2 has been checked for the
inverse-gamma, gamma, beta, and inverse-beta models by Lemma 3.2 of
Seppéldinen (2012), Lemma 6.3 of Corwin et al. (2015), Lemma 3.1 of Baldzs et al.
(2018), and Proposition 3.1 of Thiery (2016) respectively. O

The following lemma is an immediate consequence of the down-right property
and the starting point for the proof of Proposition 1.1.

Lemma 2.4. If the polymer model with edge weights R', R, (Y1,Y?) possesses
the down-right property and log R', log R% both have finite variance, then for all
(m,n) e Zi,

(a) E[log Zy,.n] = mE[log R'] + nE[log R?],

(b) Var[log Z, n] = —mVar{log R'] + nVar{log R?] + 2Cov(Sn, Ss),

(c) Var[log Z,.n] = mVar[log R'] — nVar{log R?] + 2Cov(Sg, Sw),
where

Sn = log Zpn —log Zy ,, = Z log Rl-lﬁn, Ss :=log Zm,0 = Z log R},m
i=1 i=1 (23)

Sg :=logZp n —1og Zm 0= Z long,m-7 Sw =1log Zp.n = Z logRgﬁj.
j=1

j=1
Proof: By the down-right property Sg is independent of Sy, Sy is independent of
SE, and

Var[Sy] = Var[Ss] = mVar[log R'], Var[Sg] = Var[Sw] = nVar[log R*].
These facts along with the equalities log Z,, , = Sy + Sw = Sg + Sg gives (a) and
Var[log Z,, | = Var[Sn] + Var[Sw] + 2Cov(Sn, Sw)
Var[Sn] + Var[Sw] + 2Cov(Sn, Sg + Ss — Sn)
—Var[Sny] + Var[Sw] + 2Cov(Sn, Ss)
—mVar[log R'] + nVar[log R?] + 2Cov(Sy, Ss).

Similarly,
Var[log Zm.n] = —nVar[log R?] + mVar[log R'] + 2Cov(SE, Sw ).
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3. The Mellin transform framework

In this section we develop a framework which allows us to treat the four basic
beta-gamma models simultaneously.
Given a function f : (0,0) — [0, 0), write My for its Mellin transform

Q0
My(a) = J 27 f(x)dx
0
for any a € R such that the integral converges. Define
D(My) := interior({a e R : 0 < My(a) < 0}).
Definition 3.1. Given a function f : (0,00) — [0,00) such that D(My) is non-
empty, we define a family of densities on (0, 00) parametrized by a € D(Mjy):

pra(®) = Mp(a) 2 f(z). (3.1)
We write X ~ my(a) to denote that the random variable X has density py q.
Remark 3.2. If f: (0,00) — [0,00) is such that D(My) is non-empty, then My is
C* throughout D(Mjy). Furthermore, if X ~ my(a), then

(a) log X has finite exponential moments. That is, there exists some € > 0 such
that
My¢(a+e€)+ Ms(a—e)

E[eclos XI] < E[X€] + E[X €] = A () < 0.
rla

(b) For all ke N,

ak
oak

(c) E[log X] = { (a) and Var[log X] = ¢{ (a), where

Mj(a) = My(a)E[(log X)*].

) n+1
Yl (a) = FyrE log My(a) for neZy.

The following remark says that random variables with densities of the form (3.1)
are closed under inversion.

Remark 3.3. If f: (0,00) — [0,00) is such that D(My) is non-empty and g(x) :=
f(%) for z € (0,00), then for all a € D(Mj),

(a) X ~my(a) & X1 ~my(—a),

(b) My(a) = My(—a) and therefore D(M,) = —D(M;),

(c) ¥i(a) = (—=1)"*g(—a) for all n € N.

Definition 3.4. Let f7 : (0,00) — [0,0) be such that D(M;) is non-empty for
7 = 1,2. We say that the polymer environment is Mellin-type with respect to
(fY, f3) if (R*, R*) ~ myi(a1) @ my2(az) for some aj € D(My;).

When the polymer environment is Mellin-type with parameters (a;,as), we use
Plan,a2) lan,a2) yar(an.a2) Coy(a1:42) in place of P, E, Var, Cov respectively.
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3.1. The four basic beta-gamma models are Mellin-type. We first specify functions
f to obtain each of the random variables appearing in the four basic beta-gamma
models. Note that the fourth column in Table 3.5 specifies the distribution of the

random variable corresponding to f. We let B(a,b) = F(?)F(g) denote the beta

function and recall that ¥, (x)
and a € D(Mjy).

)n+1
01”*1

logT'(z). For the Table 3.5 we assume b > 0

| f(=) | D(My) | My(a) | mg(a) |
e b (0, 00) I'(a)/b® Ga(a,b)
e b (—00,0) I(—a)b® Ga '(—a,b)
(1—2)" "jgacny | (0,0) B(a,b) Be(a, b)
(1-3P 11,4 [(-%0,00| B(—a,b) Be '(—a,b)
(ﬁ)b (=b,0) | B(—a,b+a) Befl(fa, b+a)—1
f(z) | ¥l (a) |
e~ b U, (a) — 0p,0logd
G 0" (Un(—a) — Snologh)
(1—=) ]l{O<z<1} Un(a) —¥y,(a+b)
1-2) 1]]-{m>1} (=)™ (¥p(—a) — ¥p(—a+b))
(—1) U, (a+b) + (1)1, (—a)

FiGUrE 3.5. Mellin framework data for the distributions appear-
ing in the four basic beta-gamma models.

To express the distribution of the polymer environment in each of the four basic
beta-gamma models given in (1.2) through (1.5) within this Mellin framework, we
let

(R R?, X) ~myi(a1) @ myz(as) @ mpi(as), (3.2)
where the functions f!, f? and parameters a;, j = 1,2,3 are given in Table 3.6.
Recall that in each of the models, (Y1, Y?2) are given in terms of X. For Table 3.6
we assume u, 3 > 0.

| Model || fH(@) | e | (a1,a9,a3) | |
IG e Ple e Ple (0 —p,—0,—p) | O (0,p)
G e P (1- % “7111{I>1} (w+6,—6,u) | 0 (0,0)
B (1—2)~ ]]-{O<z<1} Q-2 "oy | (+0,-0,p) | 0€(0,0)
1B 1- )7 "y (D [0 —p—0.—p) [0€(0,p)

FIGURE 3.6. Functions and parameters to fit the four basic beta-
gamma models into the Mellin framework.

Remark 3.5. For each fixed value of the bulk parameter az, we obtain a family of
models with boundary parameters a; and as satisfying a; + a2 = a3. For any such
a1 and agy, by Proposition 2.3 these models will have the down-right property.
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3.2. Coupling of polymer environments. In order to compare polymer environments
with different parameters, we use a coupling to express the boundary weights as
functions of i.i.d. uniform(0, 1) random variables.

If f:(0,00) — [0,00) is such that D(My) is non-empty, write F/ for the CDF
of the random variable X ~ my(a). Specifically, F/ : D(My) x [0,00) — [0,1] is
given by

f 1 J a—1
Flam) = g | v sy
Define the quantile function

HY(a,p) := inf{z : p < F/(a,2)}. (3.3)
If the random variable 7 is unlformly distributed on the interval (0, 1), then H7 (a,n)
~ my(a).

Suppose that a polymer environment w is Mellin-type with respect to (f*, f?)
with parameters (by,b2). Let {nj,n? : i,j € N} be iid. uniform(0,1) random
variables that are independent of the bulk weights {(Y},Y2?) : z € N?}. Write
]?D, IAE, and Var for the probability measure and the corresponding expectation and

variance of these uniform random variables and the bulk weights. Define the coupled
environment

W) = (B (b1, ), HY (boyn?), (Y, Y2) :ieNjeN,ze N}, (34)

Note that this environment is equal in distribution to the original environment w.

To specifically denote weights accumulated by a path, the partition function,
the quenched measure, and the annealed expectation, associated to the coupled
environment w(®1:%2)  define

m+n
Wb, bo) () = [ [ win™,  fora. ey,
k=1
Zmn(b1,b2) = > W(by1,bo)(a.)
2.€m (3.5)
1
(brba)( gy — N W (b, b for A< I,y
Qm,n ( ) Zmn(bl,bg) Z 1 2)( ) )

B (o] = B | B [-J] .

Recall the definition of the exit points ¢; (1.7). We can decompose the weight
accumulated along a path to isolate the dependence on boundary weights
m+n
W (by, bo)(x an (b1, ) an bod) | w2, (36
k=(t1vte)+1
Notice that one of the first two products will be empty and the third product
involves only the bulk weights.

If we assume that f : (0,00) — [0,00) has open support, is continuous on its
support, and D(M}) is non-empty, then F7 is continuously differentiable on the
set D(My) x supp(f). By the implicit function theorem, H7 is continuously differ-
entiable and for all (a,p) € D(M/) x (0,1), we have

oH’ (75; (a, Hf (a,p)) f P P
e = g e = W an e ) 30
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where L7 is given by

—a

Fa,z) = = ’ I(a) — 1o a—l
L'(a,z) @) L (¥p (a) —logy)y* " f(y)dy .
= —%L (¥4 (a) — logy)y® ' f(y)dy.

The second equality follows from the definition of 1/){; (a). Notice that

L = ————Cov(log X, 1 =L defined in (1.6

(a,x) e ov(log X, Ix<q}) x () (as defined in (1.6))
when X ~ m¢(a), and therefore Lf(a,z) > 0.

The following hypothesis collects technical conditions for the function f used in

the sequel.

Hypothesis 3.6. Suppose that f : (0,00) — [0, ) is such that D(M/) is non-empty,
f has open support, is differentiable on its support, and for all compact K < D(Mjy)
there exists a constant C depending only on K such that the following hold for all
ae K:

LY (a,2) < C(1 + |logz|) for all x € supp(f), (3.9)

1
J ’iL-f (a, H (a,p))dp < C. (3.10)
0 (9a

Remark 3.7. If X ~ my(a) where f satisfies Hypothesis 3.6, then by (3.9) and Re-
mark 3.2, Lx (X) has finite exponential moments. By Lemma A.2 in the appendix,
each of the functions f corresponding to the random variables appearing in the four
basic beta-gamma models (see Table 3.5) satisfies Hypothesis 3.6.

Lemma 3.8. Assume that the polymer environment is Mellin-type with respect to
(fY, f%), where f! and f? satisfy Hypothesis 5.6. Further assume that logY?' and
log Y? have finite variance. Recall the notation (2.3). Then for all (m,n) € Z2,

t1

Cov(Sn, Ss) = Emn[ Y, L (Rip)], (3.11)
=1
to

Cov(Sg, Sw) = Emn[ Y| Lr2(R3 ;)] (3.12)
j=1

Proof: By assumption, there exists (a1, a2) € D(M 1) x D(M2) such that (R', R?)
~ mygi(a1) @ my2(az). There exist open neighborhoods U; about a; contained in
D(Mj;) for j =1,2. We then show that

a%IE(bl’”)[SN] = Cov®%2) (S, Sg) for all by € Uy, (3.13)

1

a%E%bﬂ[sE] = Covl®:%2) (S, Syy) for all by € Us, (3.14)
2

and that the mappings b; — Cov(®1:%2)(Sy, Sg) and by — Cov(®1:22)(Sg, Syy) are
continuous. We begin with (3.13). We will vary the parameter by of the weights R},
while keeping the parameter as of the weights Rg_’ ; fixed. Let E be the expectation
over {R3 ;, (Y.}, Y,2)} jenwenxn. By Remark 3.2 and Lemma B.1, E¢1e2)[S2] < o0

for all by € Uy. Then E®1:22)[Sy] = E» [E[Sx]] where E? denotes the expectation
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over {R}(}i", when R' ~ myi(b1). We now invoke Lemma B.2. Specifically, we
use r =m, Xp = R}, fo = f forallk = 1,...,m and A(R},,...,RL ) = E[Sy]
to get, for all by € Uy,

i]E(bI;U«Z) [SN] —

0
ab —E"[A(X1,..., Xpn)] = Cov" (A(X1, ..., Xn), S5)
1

0bq
= Cov*2)(Sy, Ss)
and Uy 3 by — Cov( a2)(5’ N,Sg) is continuous The third equality follows from
the fact that the collection {ROJ,( 1 Y2)}jen zenxn is independent of Sg. The
second moment condition of Lemma B.2 is satisfied since for all b; € Uy,
E"[A(Xy,. .., X,)?] = En[(E[Sn])?] < EM[E[S%]] = E¢192)[S3] < o0

A similar argument yields (3.14).
Using the coupling (3.4)

t1 t1
1 1
Em,n[Z Lpi(Rio)] = Efy?fr{@)[Z LY (a1, HY (a1,n}))]. (3.15)
' i1

Taking the derivative of (3.6) and using (3.7), for j = 1,2

0 & 0 & :
a5, 108(W (b1, ba) ) = a—ong by 11t Z (b)) (3.16)
Therefore
0 b jJ fj j
ap; W b b) (@) = Wb bo)(w) ) L7 by HY (b)) (3.17)
k=1
which implies that
0 Q(blvbz) & 17 fI i
ﬁlogzm,n(blabQ):E mn [ZL (bj, H'"(bj, m,))]- (3.18)
j k=1

We now prove (3.11). Similar to (3.5), in the coupled environment we use S, (b1, b2)
to make explicit the dependence of S, on the parameters b; and bs. Recall that E
is the expectation of the coupled environment. For € > 0 small enough such that
[a1 —€,a1 + €] < U,

a1+e€
J Covlt192)(Sy, Sg)dby = El@rtea)[§y] — Elm—ea)[gy]

= E[Sn(a1 + €, a2) — Sy (a1 — €, a2)]

ate (3.19)
[J a 1 10g Zm n(bh CLQ)dbl]

a]—e€

al

I

ate 4
f Bl log Zyn (b1, 2)ldby
(

where the first equality follows from (3.13), the third equality follows because Sy
does not depend on by and Sy (b1, az2) = log Zp, » (b1, az)—Sw(az). The last equality
follows from (3.18) and Tonelli’s theorem (by the non-negativity of L7 ).
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Recall that b; — (Cov(bl"“)(SN, Ss) is continuous. Once we show that the map-
ping

t1
b > B o8 Zyn (b1, 02)] = B[ L7, B (o)) (320)
by i=1
is continuous, using (3.19) and (3.15) we will have (3.11). The continuity of (3.20)
follows from the continuity of by — B [0, LY (by, HT (by, ni))], the domi-
nated convergence theorem, and the bound
t

IAE[ sup EQﬁz}ﬁQZ)Z b1, bl,ﬁk))]]

[b1—a1|<e k=1

m
~

<E[ sup Y Lf (01, H (b1, }))]

[b1—a1|<e

m
CE[Y. 1+ |log H' (a1 — e,n})| + [log H'" (ar + e, n})]] < o
k=1
where we use the non-negativity of L¥ " to replace t; by its upper bound m, then use
assumption (3.9) of Hypothesis 3.6 (with the fact that H/ (b, z) is non-decreasing
in b) and part (a) of Remark 3.2.
A similar argument shows that

to
Cov(®:92) (S, Sw) = EE [ 1 (a2, B ).
j=1

This completes the proof. (Il
We can now give the proof of Proposition 1.1.

Proof of Proposition 1.1: By assumption, the polymer environment is distributed
as in (3.2), where f! and f? satisfy Hypothesis 3.6 by Remark 3.7. By Remark
3.2, for each of the four models logu and logv have finite variance. Thus the
conditions of Lemma 3.8 are satisfied. Combining Proposition 2.3 with Lemma 2.4,
and Lemma 3.8 yields the result. O

4. Proof of the variance upper bound

The first lemma of this section allows us to compare the variance of the free
energy at different parameter values.

Lemma 4.1. Assume that the polymer environment is distributed as in (3.2). Let
€ be small enough such that for all [\ <€, ay+ A€ D(My) and ag — A€ D(My2).
Then there exists a positive constant C' depending only on (a1, az), B, and € such
that for all (m,n) € Z2, the following holds for all |\| <,

Var(al,ag) [10g Zm,n] o Var(al +Xa2—X) [1Og Zm,n] < C(m + n)|/\|

Proof: Let a1 = a; + A and G2 = aa — \. Applying Proposition 1.1 (recalling that
¢! (a) = Var[log X] when X ~ my(a)) then using the coupling (3.5) yields, for
j=12
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% (Var(al’a2)[log Zm.n] — Var(4:92)[log Zmﬁn]) (4.1)
= O (] )~ o (@) (o] @) ~ v (@) (4.2
+E al a2) lZ Lj] (a;, H 7 %ﬂ?k))} - al e [Z Lf] (a;, H aaﬂ?k))]

(4.3)

Since 7,/1{1 and 1/1{2 are continuously differentiable, there is a constant C such
that line (4.2) is bounded by Cy(m + n)|\|. Suppressing the m,n dependence, we
then split line (4.3) as

t; %
~ (d1,d2) i~ i~ i ~ (a1,d2) Z rJ j
— REQ™ lz Lf](aj,Hf](@jmi))} —Rp@™™ lZLﬂ(%Hﬂ(@jvni))}
= B (4.4)
o ¢ tj ) . .
+ RBpe® lZ (aj, B (az,m})) | — BB lZ LY (a;, HY (ami))l
= k=1
(4.5)

For line (4.4), since ¢; is all that is random under EQ™ we can replace t; by
m v n. Thus

fine (1.0 <E 3, |27 iy T goR) = £ (ag, 1Y (g, 0])|

= ) [ 17 g 1 )~ £ a1 o)

=<mvn>f

mvn

Jaﬂ j L (a, HY (a,n))da| dn

a

ij (a, H" (a, ))‘dnda

<(mv n)C2|)\|. (4.6)

In the last step we used the fact that f7 satisfy assumption (3.10) in Hypothesis
3.6 by Remark 3.7.
We can write line (4.5) as

Z LY (aj, B (aj,m))) (Q@ 3 (1; = k) — QUr2)(t; > k)],

where ¢; = m and fo = n. By Lemma B.3, Q(@+}®2=2 (¢, > k) is stochastically
non-decreasing in A, and Q(®1+}®=N (¢, > k) is stochastically non-increasing in
\. Using the bound on (4.2), the bound (4.6), and the non-negativity of LY’, line
(4.5) is non-negative if j = 1 and A > 0 or j = 2 and A < 0. This implies

(4.1) = =C(m + n)|A|.
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Ifj=2and A>0o0rj=1and A <0, then (4.5) is non-positive, so
(4.1) < C(m +n)|A|.
This completes the proof. ([

Lemma 4.2. Assume that the polymer environment is distributed as in (3.2). Then
there exists a positive constant C' depending only on (a1, a2) and B such that for all
(m,n) e Zi the following two inequalities hold:

Emm[i: Lt (RL)] < C(Epn[ta] + 1), Emm[i Lp2(R2,)] < C(Bmnlta] + 1).
— j=1

Proof: Let L; = Lpi(RLy), L; = L; — E[L;], and Sy, = >};_, L;. Note that L; ~
Lri(R') has finite exponentlal moments by Remark 3.7. Using Cauchy-Schwarz,
Markov’s inequality, and the bound E[S$] < Ck*, we estimate

2 E[S5]) "
E[1(s,>rySk] < (P{Sk > k})"* (kVarL,)'* < (k—gk) (kC)'? < Ck™%2,
Thus
a0
D IE[Lise=1) k] < C.
k=1

Using this, we then get

ty
Z L (R} )
i=1

= Epn[ti]E[L1] + i E[Qm,n(t1 = k)Sk]

NgE

< Enn[ti]E[L1] + ), (KE[Qmn(ty = k)] + E [Lis,>1Sk])

k=1
< Em,n[tl]E[Ll] + Em,n[tl] + C
The proof for t5 is analogous. O

Proposition 4.3. Assume that the polymer environment is distributed as in (3.2).
Assume that the sequence (m,n) = (my,nn)%_, satisfies

2 1
m = N¢{ (a2)| v [n = N¢f (a1)] < kn
where Ky < ]\]2/3 and 7y is some positive constant.
Then there exist positive constants C1, Ca, C3, 6,01 depending only on (a1, az), 3,
and v such that for N e N and 1 v Ci6y < u <IN,
N? N? _
( mn[%‘]‘i’F) forj=1,2,

611.

P{Qm,n(tj = U) =e } Co
while for Ne N andu>1v Ciky v IN,
P{Qmn(t; =u) = e D"} <2e7%%  forj=1,2.
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Proof: Let € > 0 be small enough such that for all [A| < €, a1(A) := a1 +X € D(M1)
and az(A) := az — A € D(My2). For the moment fix A\; € [0,€], A2 € [—¢,0], and
u > 1. The \; will give the perturbation (a1 (\;), a2();)) of the parameters (a1, az)
which will be used when dealing with the exit time ¢;. Using the coupling in (3.5),
(3.6) gives: for both j = 1,2 and any path z, such that t;(z.) > u,

W(a,a0)(z.) 4 HI( ag,ni “ "(aj,m))
W(a1(X)), az(A;))(z.) HHf( )1 <HHﬂ (aj(A), 7))

)

since Hf(a, z) is non-decreasing in a. Therefore

1

Q(a1,a2)(t > u) Z ]_{m.}u}W(al,aQ)(x.)

<Zmanla1(X;) az ﬁ aj’nk)
Zm.n(a1,az) palle] N )
Then for all real numbers z,r
) Hf aJ777k) —r
P{Qm,n(tj >u) > } {]:[ Teond } (4.7)
+ B Zmon (Zli al,ﬁgm >eE ) (48)

We now split the proof into two cases.
Case 1: 1 v Ciky < u < IN. Let b,0 > 0 be small enough such that b§ < €
These constants will be determined through the course of the proof. Put \; = —“

and A\ = fb“ The condition u < 0N guarantees that —e < Ao <0 < A\; <e. Now
pluginr = |u J<1/)0 (a;(A;)) — ¥} (aj)) - 5L and z = T to obtain

Lo . ‘ - ; Su? N2
RHS of (4.7) = ]P’{ Z log HY (aj,m.) —log HY (a; (X)), n}) = W} < C?
k=1
(4.9)

by Chebyshev’s inequality and the fact that HY(a,n) ~ my(a). The constant C
here depends only on (aj,as), €, and §. We will now show how to tune b and § as
functions of (a1, az2) and € to get a meaningful bound on

(4.8) :J@{mg Zm (@1 (%), a2(0;)) — 108 Zom (a1, az) =

[lomen(al,ag) log Zm n(ai(N;), az(A; ))] 4 z}
(4.10)

Since the parameters satisfy a1(A;) + a2(A;) = as, by Remark 3.5, the down-right
property is still satisfied for the perturbed model with parameters (al(/\j), ag(/\j)).
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Using Proposition 1.1 we can evaluate the right-hand side inside the above proba-
bility

=m0 (@) — ¥ (@) + 1 (4 (@) — 0 (@20,))
+[“J< 4 (a;(0) - gj(a-)) —26“—2
=(m = N () (4] (1) - %(()0
+ (0= N (@) (] (a2) = 0 (a2(0))
§(@) -l (a (M o]
(98 (03 00) — i (0)) —20%

bu _, bu.s -, bu, , u?
> — — — —_ —_—
HNNC (N)O+U(N)O 2(SN

=% [C”bu — C'b*u — 26u — C/inN] (4.11)

+ N[l (02) (v (o) (4 (@) =0 (@)

for some positive constants C’ and C” This can be obtained by takmg a 2nd-order
Taylor expansion of the functions 1/10 , keeping in mind that 1/11 > 0. In the last
inequality we also used u > 1.

Now fixing b small enough followed by then fixing  small enough we can ensure
that the entire quantity (4.11) is = C"” % for some positive constant C” as long as
u = C1kN for some positive Cy. With these restrictions,

2
(4.8) <P{10g Zmn(a1(Xj),a2(N;)) —1og Zy, n (a1, az) = C”’UN}

N2

(O///) Var[l()g Zm "(al()‘ ) 2()‘ )) — log Zm,n(ala a2)]

b
( r[1og Zm,n(a1,az2)] +(m+n)Nu)
2
1

N N?
<O< Ennlt;] + 3 )
The second to last and last inequalities are applications of Lemma 4.1, Proposition
1.1, and Lemma 4.2. Combining this result with (4.9) finishes the first case.

Case 2: 1 v Cikn v ON < u. Take 0, € fixed from the first case, let §; € (0, 6],
and €1 € (0,¢€]. The constants §; and €; will be determined throughout the course of
the proof. This time, put A\; = €1, Ay = —e1, r = |u J(wo (a;j(N\;)) — 1/10 (aj)) — du,
and z = d1u. Then

luf

(4.7) {;llogﬂfj(%mk) log HY (a; (%), 7)) = 51U}- (4.12)

By Remark 3.2 the random variables in the summation have finite exponential
moments. A large deviation estimate gives us the existence of a positive constant
Cs such that (4.12)< e~ v,
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We now consider (4.10). A similar analysis to that in Case 1 tells us that the
right-hand side inside of the above probability

= _CIEQK/N — C/EgN + C//EQU — 261u
C'et
é

> u(C’”eo - - 251) — Clegkn (4.13)

for some positive constants C’ and C” (the second inequality follows from u > dN).
Now fixing ¢y small enough followed by then fixing d; small enough we can ensure
that (4.13) = Cu for some positive constant C' as long as u = Cyk for some positive
Cy (here we increase the previous constant Cy found in Case 1 if necessary). With
these constraints,

(4.8) < B{10g Zunn(a1 (), 42()) — 108 Zyn (a1, a2) > Cuf.

Since the perturbed parameters are such that the polymer environment still has
the down-right property, the random variable inside the above probability can be
expressed as two sums of i.i.d. random variables, each of which has entries with finite
exponential moments. Therefore a large deviation estimate gives the existence of a
positive constant C3 such that (41.8) < e~ %“3. Combining this with (4.12) completes
the proof. (I

Remark 4.4. If € > 0 is small enough such that for all |\| <€, a1 + A € D(M/1)
and az — A € D(My2), then the constants in Proposition 4.3 can be chosen such
that the conclusion also holds for the polymer environment with parameters (a; +
A, a2 — A ag) for any |\ <e.

Using the previous proposition, we can now bound the annealed expectation of
the exit points of the polymer path from the axes.

Corollary 4.5. Suppose all of the assumptions of Proposition 4.5 hold. Then there
exists a positive constant C depending only on (a1, as), 8, and v such that for both
J=12,

Emnltj] < CN?3 for all N € N.

Proof of Corollary 4.5: Since all of the constants Cy, Co, Cs, 4, 01 determined by
Proposition 4.3 depend only on (a1, as), 8, and , it is sufficient to show that the
constant C' to be determined in this proof depends only on these five constants and
v. Let r > 1 v Cyv. Then rN?/3 > 1 v C1ky. Suppressing the m,n dependence,

Q0

E[tj] = J P(tj 2 u)du
0

rN2/3y§N 0

P(t; = u)du + J P(t; > u)du. (4.14)

<rN?3 4 J
rN2/3v5N

rN2/3
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We now bound the integrals in line (4.14) individually.

s1u

f S Py s wdu— f B J © RO, > u) > w)dud

rN2/3véN rN2/3v§N Jo

+ ro Jl P{Q(t; > u) > z}dudu.

rN2/3v§N Je— 01w

0
< f e Nty
SN

0 01
+ f J P{Q(t; = u) = e *“}e **udsdu

rN2/3v§N JO

1 o0 51
< —e 00N 4 J J 2e~(Cs+9)uy dsdu < C,
61 N2/3y§N
(4.15)

where in the first inequality we bounded the first integrand by one and made the
substitution z = e~** for the second. For the second inequality, we apply Proposi-
tion 4.3 to get that P{Q(t; = u) = e™*"} < P{Q(t; = u) = e~ 1"} < 2~ for all
w=rN23 v 6N and all 0 < s < 6.

We now bound the first integral of (4.14). Without loss of generality, assume
that rN?/3 < §N. Then

TN2/3V6N
J u)du = J J ]P’{Q u) = z}dzdu
rN2/3 N2/3

f f , P{Q(t; = u) > x}dadu
N2/3 Je= 9N
< f e~ du

’I‘N2/3

d u? 2 u?
f f P{Q(t; = u) = e N }e N —dsdu
N2/3 N

o0 2 2
_§r2N1/3 N N
< 5N6 + J;Nz/s L*S% 02(?E[tj] + ?)dsdu

Bl | N
C’LCZ( R )

where for the first inequality we bound the first integrand by one and make the

(4.16)

substitution x = 6_5% for the second. For the second inequality we apply Propo-
sition 4.3 to get that P{Q(t; = u) = e_s%} < P{QE; = u) = e 5% N} <
C2(JZ—ZE[tj] + ]l—;) for all TN?/3 < u < 0N and all 0 < s < 6.

Combining the bounds on (4.15), (4.16) and (4.14), we have: for all r > 1 v C1v,

_ 2/3
2/3 Elty] N
E[t;] <rN +C+02(33 +2r2).
We can now fix r large enough with respect to C' and Cs then rearrange to get the
desired result. (]

We can now give the proof of the upper bound of the variance of the free energy.
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Proof of upper bound of Theorem 1.2: Averaging (1.8) and (1.9) of Proposmon 1.1

then applying Lemma 4.2 followed by Corollary 4.5 (recalling that wl (a;) =
Var[log R’]) gives

tl t2
Var[log Z,n] = Emn[z L (Rz'l,o)] + Emn[z L2 (Rg,j)]
i=1 j=1
< C(Empnlti] + Emnlte] +2)
< ON2/3,
which concludes the proof. ([l
The following corollary is obtained by combining Proposition 4.3 and Corol-
lary 4.5.

Corollary 4.6. Assume that the polymer environment is distributed as in (3.2)
and the sequence (m,n) = (my,nn)N_, satisfies (1.10) for some positive constant
~v. Then there exists positive constants by, Co, Cs, §, and 6, depending only on
(a1,a2), B, and v such that for all N € N and by < b < SN/3,

20 .
} < b32 forj =1,2, (4.17)

N1/3

P(Quunlty > BN 5 =17

while for all N € N and b > by v 6N'/3,
P{Qunn(t; = DN?3) > e 0N < 96=CabN*  for 1 9, (4.18)

Lemma 4.7. Assume that the polymer environment is distributed as in (3.2) and
the sequence (m,n) = (mn,nnN)N_, satisfies (1.10) for some positive constant .
Then there exist constants by = 1 and C > 0 depending only on (a1,a2), B, and v
such that for all b = by and N € N,

C
Pon(t; bN2/3)\b—3 forj=1,2.

Therefore, for all 0 < p < 3 there exists a positive constant C' depending on
(a1,a2), B, v, and p such that for all N € N,

tji \P ’ .
Em)n[(m> ] <C for]=1,2.
Proof of Lemma /J.7: By Corollary (4.6) there exist positive constants by, Ca, Cs3, 4,
51 with by = 1 such that (4.17) holds for by < b < §N/3 while (4.18) holds for
b= SNY3 v by.

We first estimate for b < §N/3,

1
Pyn(t; = bN?3) = f P{Qum.n(t; = ON??) > z}dx
0

9
= L P{Qm,n(tj = bNQ/B) = 675b2N1/3}b2N1/3675b2N1/3dS
(4.19)

o]
+J P{Qm,n(tj > bN2/3) > e—sb2N1/3}b2N1/36—sb2N1/3dS
s
(4.20)
202 _SLENL/3 C
< =R +e < =
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for some positive constant C, where we made the substitution = = e~ sV*N 1/3, used
(4.17) to bound the probability inside the integral of (4.19), and bounded the prob-
ability inside the integral of (4.20) by 1. For b > §N'/3, we make the substitution

o 2/3
x=e "N to get

1
Prn(t; = bN?/3) = J P{Qum.n(t; = ON??) > z}dx
0
01 2/3 2/3
= J P{Qumn(t; = bN?3) = 7PN ApNZBe =N gs (4.21)
0

0
! L P{Qun(t; = DN3) > om0 Jp 230N g
1
(4.22)

< 96N muens  C
b3
increasing the constant C' if necessary, where we used (4.18) to bound the proba-

bility inside the integral of (4.21) and bounded the probability inside the integral
of (4.22) by 1. (]

Proof of Corollary 1./: Let m; = | NVar[log R%]|. Since Z,.n = Zimy . H R}

i,m?
i=mi+1

N=log Zpn = N*10g Zpp, o + N~ Y logRL,.

i=mi+1

The sequence (mq,n) satisfies (1.10). Using Chebyshev’s inequality and the up-
per bound of Theorem 1.2 shows that the term N—%/?log Zm,,n converges to zero
in probability. By the down-right property, the summands in the second term
are i.i.d. with mean zero and variance Var[log R']. By the central limit theorem,

N—e2ym log R}

o converges in distribution to a centered normal with vari-
i=mi+1 n

ance c¢; Var[log R']. O

5. Proof of the path fluctuation upper bound

Given 0 < k < m and 0 < [ < n, we define a partition function Z,(,fjfl) and

quenched polymer measure Q%CQ on up-right paths from (k,) to (m,n) by using
the collections {R}; : k+1 < i < m} and {Ri,j :1+1 < j < n} as weights along the
edges of the south and west boundaries of the rectangle [k, m] x [, n] respectively,
and the weights {(Y},Y?):ze {k+1,...,m} x {{+1,...,n}} for the remaining
edges. When the original polymer environment (1.1) has the down-right property,

it follows that Z,(ff,’fl) has the same distribution as Z,,— n—;.
For an up-right path z, from (k,1) to (m,n), define

tgk’l)(aj,) :=max{i: (k+1i,]) €}, tgk’l)(:zr,) :=max{j: (k,l +j) € x.}.

Recall the definition (1.12).
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Lemma 5.1. Assume that the polymer environment satisfies the down-right prop-
erty. Then for all0 <k <m,0<Il<mn, andu =0,

Qun(01(1) = k+u) = QED(E > u) L Quupni(tr = u),  (5.1)
Qun(wi(k) =1+ u) = QEVS > u) £ Qpi(ta = ). (5.2)

Proof: For 0 <i<m and 0 < j <n, we let

(m—i)+(n—j)

J) (m,n) *= Z H Wia—1,ax)

denote the partition function for up-right paths from (4, j) to (m, n), where the sum
is taken over all such paths. A decomposition shows that

Zf(i’?ll): Z ( 1_[ Ral) zl+1Z(zl+1) (m,n)

i=k+1 \a=k+1
n J
+ Z ( H R%,b) Vi1 Z (1,5, (mom)
Jj=l+1 \b=l+1
- Zzl 2 . Zk] Zmn
= Y Zz m,n + . Y Z myn) — —.
i:;l T Vo1 2k omm) j;ﬂ Zn1 Erridusninomm = 75

We then have that for r € {0,...,m — k},

(k.1 1 =
QD (¢ (" =) = P (H Rllc+i,l> Y2151 Z et i41), (mom)

i=1
1 Zk+rl 7
= Z(k’l) Z k+7‘ I1+1%4(k+r,0+1),(m,n)

2
Zk‘f‘T;lYkJrr,lJrlZ(kJrT,lJrl),(m,n)
Zm,n

Qman(1(l) =k +7).

Summing over r = u gives the first equality in (5.1). The equality in distribution
follows from the down-right property. An analogous argument gives (5.2). O

We can now prove the upper bound on the polymer path fluctuations under the
annealed measure.

Proof of Theorem 1.5: By assumption, the polymer environment is distributed as
n (3.2). If 7 = 0 this reduces to Lemma 4.7. If 7 € (0,1) put (k,1) = (|rm],|mn]).

By part (c) of Remark 3.2, Var[R'] = wlf (a;) for ¢ = 1,2. Multiplying (1.10) by
(1 —7), up to integer corrections the sequence (m — k,n — ) satisfies

[ — k= M (a2)| v [n— 1 — My] (ar)] < 1M, (5.3)
where M = (1 —7)N and 9 = (1 — 7)'/3. We then apply Lemma 5.1 to get
Qumn(vi([Tn]) = Tm + bN?3) < Quun(vi(|n]) = [Tm] + DN?)
L Quutn—i(t1 = DN?3).
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Applying Lemma 4.7, we get

C
Pyn(vi(lmn]) = mm + bN?/3) < 5 (5.4)
The same argument in the vertical direction gives us
C
Pyn(wi(|Tm]) = mn + bN?/3) < = (5.5)

To prove the corresponding bounds for vy and wy we now let k = |[7m — bN 2/ 3]
and | = [Tn—bN?/32|. Again (m—k,n—1) will satisfy (5.3) for a different constant
Yo. Since wy (k) = |mn] implies that vo(|7n]) < k, it follows that

Qmn(vo(lTn]) < 7m — bN*?) < Qpun(wi (k) > |7n))
= QR = ] - 1)
< QED YD = CoN??)
L Qukni(ts = CON??),
for some constant C depending on (ai,asz), 8, and . Applying Lemma 4.7 gives

C

Pon(vo(|mn]) < 7m — bN?3) < i (5.6)
An analogous argument shows that
C
Ppn(wo(|mm|) < 7n — bN?/3) < 7 (5.7)

Combining bounds (5.4) and (5.6) gives (1.13), and (5.5) with (5.7) gives (1.14),
completing the proof. (I

6. Proof of the variance and path fluctuation lower bounds

Proposition 6.1. Assume that the polymer environment is distributed as in (3.2)
and the sequence (m,n) = (my,nn)N_, satisfies (1.10) for some positive constant
v. Then there exist positive constants cg, €9, No depending only on (a1, az2), 8 and
v such that for all N = Ny,

P(10g Zm.n = coN'?) = €.

From this proposition we can obtain the lower bound of Theorem 1.2:

Var[log Zp,.n] = E[(log me)2 log Zym = cONl/B]
> P(log Zm,n = 001\71/3)(c0]\71/3)2

> N3,

Proof of Proposition 6.1: Let € > 0 be small enough such that for all |A\| < e,
a1+ A€ D(My1) and az — A € D(Mjy2). Define

ol (aa =)

Wl (a1 +N)
2 n——m—g "
¥] (az)

mel o (ar)

I =1 I
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m m
FIGURE 6.7. Case 1: wgl and 1/152 are both positive.

Taking Taylor expansions gives

f?
m—m= /\1/}?‘.2 (a2)m + o(A)m
v (e2) (6.1)
~ %fl(al)
—n=A A)n.
n—n wlfl(al)n+0( n

Let b be a large fixed constant which will be determined through the course of the
proof. Then there exists Ny € N such that for all N > Ny, bN /3 < e. Then with
A = bN~1/3 the sequence (7, 7) satisfies

~ f2 ~ f 2/3

| — N{ (a2 —N)| v [ — Ny (a1 + N)| <N
for some positive constant 7. By Table C.9 and (C.1) in the Appendix, in each of

1 2
the four basic beta-gamma models, either ¥ (a1) and 1] (a3) are both positive
(inverse-beta model for certain choices of parameters and inverse-gamma model

1 2
for all choices of parameters), /] (a;) is negative and 1) (az) is positive (gamma

1 2

and beta models), or 1] (a;) is positive and 1] (a3) is non-positive (inverse-beta
model with the remaining choices of parameters). By flipping the z and y axes in
the second case, we only need to consider the first and third cases.

1 2
For the case where ¢ (a1) and ¢ (az) are both positive define Ay = m — i
and By = . —n. This case is illustrated in Figure 6.7. By (6.1) and increasing Ny
if necessary, there exist positive constants ¢y, ca, C1, Co such that for N > Ng,

c1bN?® < Ay < C1bN?/3,
csbN?? < By < CobN?/3.

In the case where 1/)2fl(a1) >0 and 1/)52 (az) < 0 we define ¢ := (£ + 2) and let

m = cm, T = cni. This case is illustrated in Figure 6.8. This (7, 7) will satisfy
2 1
m— My (a — N)| v |7 — M] (a1 + N)| < yoc/2M?3
where M = ¢N. A Taylor expansion gives

) (az) w"l(al)) A
c=1 > — —5 —+o(A
+<w1 @) ol a2V
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n

mom m

FIGURE 6.8. Case 2: 95" > 0 and 95> < 0.

and thus
m—Tm = 2 (1/}22(@) + 1/%1 (a1)> m + o(N?/3),
2 Yy (az) z/Jlf (a1)
n—n= A ( g.z(@) + 1/{1(%)) n + o(N?/3)
2\¢f (a2) o (@)

¥l (az) % (a1)

+

) @) T e ()

w{ (ag)wg (a1) + z/Jlf (al)wg (az) > 0 by Lemma C.2 in the Appendix. Letting

A =m —m and B =7 — n, there exist positive constants ¢/, ¢;, C7, C4 such that
c’le2/3 <Am < CibM2/3,

chbM?/3 <Bpr < CHHM?/3.

1 2
The quantity is positive since 1/){ and 1/){ are both positive and

ai

Recall that P(@1:92) i used to denote the probability measure on the polymer
environment with parameters a; and as. Let (41,d2) = (a1 + A, a2 — A). Our goal
is to show that

P22) (1og Zyn,n > E[10g Zn,n] + coN'?) > €.

We will do so by making estimates using the (@1, d2) environment and then use a
coupling of the two environments to transfer the results to the (a1, az) environment.

We would first like to show that in the (@1, d2) environment, with high probability
the quenched probability gives most of the weight to paths which exit the z-axis
at a point of order bN?/3. That is: there exist positive constants Cs, C' such that,
given any € > 0,

P(al,ag){Q Cle2/3 <t < C3bN?3) > } 1-— Q (6.2)

holds for all sufficiently large N.
We start by using Lemma 5.1 to relate an upper bound on t; to a lower bound
on tQ.

Qmn(t1 SAN) L Qmis(v1(BN) < AN) = Qw1 (Ax) > By) £ Qin.is(ta> By).
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Using this and Corollary 4.6, there exists § > 0 such that
P@3)£Q,, (1 > c;bN??) > 1 — e ¥ PR}
> P@LE(Q, (> Ay) = 1 — e NPV}
= PO {(Q,, (t1 < Ay) < e FPV}
= Ppla1.a2 {Q t2>BN)<ef%BZZV}
>1-Cb 3.
This implies that
PO (Q,0 (0 < 1DN) > e H PV} < O,
Applying the upper bound (4.17) directly with C3 > Cs, we obtain
P@3(Q,, o (t > C3bN?3) > e FBY} < Cp~2

for another positive constant C'. Taking a union bound we put the two bounds
together and get

P@32)£Q,, (1bN?? <ty < C5bN??) > 1 —2e %BX} > 1 - b2,

Taking N large enough, we get (6.2).

The argument for the case where we use (7, 7) and A, B is unchanged, with the
exception of using the scaling parameter M rather than N. This difference can be
absorbed into the constants.

In order to make use of the bound (6.2) for the system with the original (a1, az)
environment we create a new measure P which has both ap and a; distributed
weights along the z-axis and estimate the Radon-Nikodym derivative of the (a1, az)
environment with respect to this new environment.

Let & denote the environment that has the same weights as the (a;, as) environ-
ment except for the weights R}, for 1 < i < |C3bN?3|, which will be distributed

with parameter @;. Let P denote the probability measure of this environment.
Then for each path z, with ¢;bN?*/3 < t1(z.) < C5bN?/3, the weight of the path in
the (@1,ad2) environment and the weight of the path in the & environment agree.
Thus, defining Zpn,n(A) == 3, 4 TS @enos00)-

Zmn(c1bN?3 <t < C3bN?/3) (6.3)

is the same in distribution under P(@1:32) and P. We can now make use of the bound
(6.2).

Using a third-order Taylor expansion, the same series of calculations which leads
to inequality (4.11) in the proof of Proposition 4.3 gives the existence of a constant
C’ > 0 such that:

E(alﬁz)[log Zmn] — E(ahaz)[log Zmn] =m (\1151 (a1) — \I/(J)C1 (al))
(W (@) — v (a2))
> —AbNY3C! 4 4c b2 NY3 — p3C!

> e, bB°N3

(6.4)
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where ¢4 = é(@/}{z (ag)@bgl (a1) + @[1{1 (al)@bgz (a2)> is positive by Lemma C.2 in
the Appendix. The last inequality is obtained by first fixing b large enough then
increasing Ny if necessary.

We now split the probability

PO Q. L (1DNP < 1) < C3bN?3) > 1 — ¢}

_ plan ) {

Zmn(c1bN?3 < t) < C3bN?3) > 1 — g}

Zm,n m,n
< ]IVD{Zmyn(cleQ/g <t < CngQ/B) > (1 . E)e]]‘:(al’az)[logZm,n]*%mszl/?’} (65)
1 panaz) {Z < e]E@lﬁz)[1ogzm,n]—%c41b2zvl/3}
< ]\f]) {Zm n(cle2/3 < tl < Cng2/3) Z (1 _ s)e]E(al’a2)[10%Z7n,71]+%C4b2N1/3} (66)
+ P(@82) {Zm o < BT log Zm’nJ*%“bQNUS} : (6.7)
The transition from P@1:32) to P in (6.5) is due to the equality in distribution of
(6.3) under these measures. Inequality (6.6) comes from (6.4).

For (6.7) we can use Chebyshev’s inequality then the upper bound of the variance
to get

. C
(().() < b_3

Thus (6.6) > 1 — & for some new positive constant C. Let g be the Radon-

Nikodym derivative df”/d]P’(“l*@). Recall that the distributions differ only on the
weights along the z-axis up until site |C3bN?3|. Thus

M (ar) | [N 0N
w)=|—""=-o
9() (M.ﬂ(al))

We can evaluate E(91:92)[¢?] explicitly. Increasing Np, if necessary, so that 2\ < e,

A
wiﬂo.
i=1

1 ®© M 1(a1 + 2/\)
E(0192)[u23] = 7f g () dy = L 20
[ 1,0] Mfl(al) 0 f ( ) Mfl(&l)
Now
2/3] |C3bN?/3|
M 1(0:1) 2|C3bN*/"|
E(a11a2) 2 — f E(al,a2) 2)\
[g ] <Mf1 (61) 111 [WZ,O]
(

_ (Mpla)Mp (a1 +22) [CsbN?7?]
. Mjyi(ar + A)? :

Taking logarithms of both sides,
log B(122)[¢?]
— |C5bN2] (log Mys (a1) + log Myi (ar + 26N %) = 21og My (ar + bN~%))
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Recall that % log Ms1(a) = 1/){1 (a) > 0. Then

lim log E(®1:92)[4?]

N—0

log My1(aq) + log M1 (ar + 26N ~1/3) — 21log M1 (aq + bN~Y3)

= Cgb lim

N—w N72/3
1 1
o lim Wl (a1 + 26N —13) — ¢ (ay + BN —1/3)
3 N—-w N71/3

= Cb%9{ (a1) > 0
Increase Ny if necessary so that for all N > Ny,
E(ahaz)[g?] < 6203b3.

Defining the event

)

D= {Zm n(cle2/3 <t < Ong2/3) > (1 - e)e]E(al’a2)[log Zm,n]+%04b2N1/3}

we get

~

1- b% < (6.6) =P(D)
= E1%2)[g1p]
< (E(al,az)[g2])1/2 (P(al,ag)(D))
< Ost” (plaraz) (D)) /2,

1/2

Thus

0= (1— b%)?e*?CsbB < Plave) (D),

Finally we have that

e < P(4192)(D) < Plor22) (Zm > (1—g)eE " los Zm,nH%chN”“‘)
ai,a ai,a cyb>N1/3
= plan,a2) (log Zmm = log(l—¢) + E(® 2)[log Zmn] + %)
< P(al’“2)(log L = E(al’a2)[log Zmn] + cONl/g).

Increasing Ny if necessary and taking ¢y = i04b2 the final inequality holds for all
N = Ny. This concludes the proof. (I

We can use the variance lower bound to obtain a lower bound on the exit points
of the path from the horizontal and vertical axes.

Corollary 6.2. Assume that the polymer environment is distributed as in (3.2)
and the sequence (m,n) = (my,nn)¥_, satisfies (1.10) for some positive constant
~. Then there exist positive constants co, ¢c1, No depending only on (a1, az2), 8 and
v such that for all N = Ny,

Co < Pm,n(tl > ClN2/3 or tg > ClN2/3).
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Proof: Averaging (1.8) and (1.9) of Proposition 1.1 then applying Lemma 4.2 fol-
lowed by the lower bound of Theorem 1.2 gives the existence of positive constants
¢, C, Ny such that for all N > Ny

t1 to
cN*® < Var[log Zmn] = Emnl Y Lri (REg)] + Emnl Y| Lr2(R3 ;)]
i=1 j=1
< C(Epmanlts + t2] +2).
Letting ¢; := ¢/6C and increasing Ny if necessary followed by an application of the
Cauchy-Schwartz inequality along with Lemma 4.7 gives
t1 +to t1 +to
N2/3 N2/3
<21 + C'Ppn(ty + by > 20, N?/3)3

3¢1 < Bl 1 <2¢1 4 Bl by + by > 26 N3]

for some positive constant C’. Thus

cp 1= (%)2 < Pm,n(tl + i > 201N2/3) < Pm,n(tl > c1N2/3 or tg > ClNQ/B),

which completes the proof. O
We now prove the path fluctuation lower bound.

Proof of (1.15): If 7 = 0, this reduces to Corollary 6.2. If 7 € (0,1) put (k,l) =
(Imm],]mn]). Then the sequence (m — k,n —[) satisfies (1.10) with a new scaling
parameter M = (1 — 7)N. By the down-right property and Lemma 5.1

Qm—kn—1(t1 > u or tog > u) = Q(kl (t(kl > u or ték’l) > u)
=Qmn(i1(l) > k+wuorwi (k) >1+u)
< Qman(v1(l) > Tm + g or wy (k) > mn + g)

provided that u = 2. Corollary 6.2 applied to the sequence (m — k,n —1) completes
the proof. O

Appendix Appendix A Verification of Hypothesis 3.6

Lemma A.1. If the function f satisfies the conditions of Hypothesis 3.6 and
g(z) == f(L) for & € (0,0), then g also satisfies the conditions of Hypothesis
3.0.

Proof: Note that supp(g) = supp(f)~!. Fix a compact K < D(M,) and let a € K.
By parts (c) and (b) of Remark 3.3, ¢(a) = —¢} (—a) and —K < D(M;). Thus
there exists a positive constant C' depending only —K such that for all b € — K,
(3.9) and (3.10) hold. It therefore suffices to show the following two relations hold:

1
LI(a,z) = L' (—a,—) for all x € supp(g) (A1)
T
Yo Yo :
| |52 @mr @l = [ | 52001 6. (A-2)
0 5& 0 0b
where the right hand side of (A.2) is evaluated at b = —a.
(A.1) can be proven by using ¥{(a) = —wg(—a) and making the substitution

Y — é in the first integral appearing in (3.8).
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(A.2) will now follow from (A.1) and

1

Hila,1-p) = H(—a,p)

for all p € (0,1).
To see that this equality holds, let X ~ m,(a) and > 0. Using part (a) of Remark
3.3

FI(a,z) =P(X <z)=PX 'z ) =1-PX '<al)=1-F/(-a,az").
(A.3)

Fix p € (0,1) and recall the definition of H*, (3.3). Note that H/(—a,p) and
H9(a,1 — p) lie in supp(f) and supp(g) = supp(f)~! respectively. Plugging » =
H9(a,1 — p) into (A.3) gives

1

1=p = P00 =) = 1= P/ (— 0 ).

Rearranging yields

FI( !

4 —— VY=p=F(—a. H (- .
¢ =) ~p = P e ()
Since z + F/(—a, ) is one-to-one on supp(f) we have the desired result. O

Lemma A.2. Fach of the functions f in Table 5.5 satisfy Hypothesis 3.0.

Proof: Fix b > 0. By Lemma A.1 it suffices to show the three functions
f((E) = e_bmu f((E) = (1 - x)b_l]]-{0<m<1}u f((E) = (

T \b
T+ 1)
satisfy the conditions of Hypothesis 3.6. In Seppéldinen (2012) (equation 3.30 and
the computation following equation 4.7), Seppélidinen showed that the function
f(z) = e™® satisfies these conditions. A simple rescaling then shows that these
conditions are also satisfied for f(z) = =%,

We will write Cy(a),C1(a),... to indicate the positive constants Ci(a) have
a continuous dependence on a. We claim it is sufficient to show that if f(z) =
(1 —2)" M gcgery or f(z) = (3%7)°, then for all 2 € supp(f) the following three
bounds hold:

LY (a,x) < Co(a)(1 + | log ) (A.4)
|xf;'((;’)) IL (a,2) < C1(a)(1 + |log z]) (A.5)
G (a, )] < Ca(a)(1 + (logz)?) (A.6)
where
6 (a.)s = 7 [ 0] (a) + @) togy — Qo )y (AT
= - ;C(_; Loo(wf(a) + 9 (a)logy — (logy)*)y" " £ (y)dy.

Note that the second equality in the definition of G/ (a,z) follows from the defini-
tions of 1/)5 (a) and 1/1{(a) in part (c) of Remark 3.2. (A.4) clearly implies (3.9). To
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show (3.10) is satisfied, using (3.7), we calculate

0 . oLt 0 ¢ oLf .
1t f - = f Iy = = f
(0 1 (0,9)) = S (0, Y (0,) + 51 (0,9) 5 (0, 7 (0,1)
oLt oLt
= =—(a,z) + 2L’ a,x—a,x) .
(%@ + o2 00) S (0e) s
Since
oLt

. oLf .
E(aa I) + ‘rLj (a,x)%(a,x) :(1/15(@) - 210g$)Lj (a,a:) - aLf(av'r)Q
f'(x) 2
+G¥(a,z) — 2= L (a, x)?,
(@) -2 1 0,)
the conditions (A.4), (A.5), and (A.6) imply the existence of a positive constant
C3(a) such that for all x € supp(f),

f f
aaia(a,x) + fo(a, x)%(a, x)’ < Cs(a) (1 + (1oga:)2).

Condition (3.10) now follows from

N
0|0

1
o 0o dp < Cata) [ (14 (om0, 0))

= C3(a) (1 + ¥{(a) + (¥{(a))?) < 0.

The last equality is justified by parts (a) and (c) of Remark 3.2 along with the fact
that Hf (a,n) ~ my(a) when 7 is uniformly distributed on (0, 1).

We first show (A.4), (A.5) and (A.6) for the case f(z) = (1 —x)" ' 1jp<pery.
Let a € D(My) = (0,0). Then there exists some positive constant Cs(a) such that
the following two inequalities hold:

“lifo<y<i

f _ a—1 <
[ (a) = logyly* ™' f(y) < { 1<y<1
+ (logy)z)y“*1 ifo<y< %

o (@) + v @) ogy — (o)~ 1(0) < | o

Since a > 0, (3.8) and (A.7) give: for 0 <z < 1,

by (a) (®
LY (a,z) < &i() f (1 —logy)y“ 'dy < Co(a)(1 + |log z|) (A.8)

T 0

by (a) (°
|Gf(a, a:)| < %i() L (1 + (log y)Q)yafldy < Cg(a)(l + (1oga:)2).

Similarly, the secondary expressions in (3.8) and (A.7) give: for 1/2 <z < 1,

a a 1
LY (a,2) < #L (1 —y)"tdy < Cp(a)(1 — ) (A.9)
67 0) < ot [ -y < Cata)1 - 0
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where we increased Cp(a) and Cy(a) if necessary. Thus the bounds (A.4) and (A.6)

hold. Moreover, by (A.8) and (A.9),
| f Ci(a)(1+ |logz|) if0<az<3
Ci(a) ifi1<z<l1

2) = lb— 1 (a,2) < {

proving the bound (A.5).
We now consider the case f(z) = (%), Let a € D(My) = (=b,0). Then

a+b—1 :
flq) — a—1 ¢,y < §Cal@)(1 —logy)y™™ ifo<y<l
W)O (a) 1Ogy‘y Fly) < {C’4(a)(1 +logy)y* ! ify>1
a+b—1
f f N 20,01 £(y)) < | C2(@ (1 + (logy)?)y™ ™71 if0 <y <1
o (@ + (@) ory — ozl ) < { i) T (oem W 0 =
Since a + b > 0, (3.8) and (A.7) give: for 0 <z < 1,
2°Cy(a) * _
La,) < 208 [0 - logy)y™r*dy < Co(a)1 + [1ogr)
0
2bC4((Z)

‘Gf(a, a:)’ < —atb J (1 + (log y)z)y‘”b*ldy < Cg(a)(l + (1oga:)2).
0

Similarly, since a < 0, the secondary expressions in (3.8) and (A.7) give: for z > 1,
2bC4(CL)
Ia
2bC4(CL)

xa

o0
Lf(a,:zc) < f (1 +logy)y* tdy < Co(a)(1 + |logz|)

|G (a,2)] < ro(l + (logy)*)y*~"dy < Ca(a)(1 + (log 2)*)

where we increased Cp(a) and Cy(a) if necessary. Thus the bounds (A.4) and (A.6)
hold. Since

—L- <b, (A4) implies (A.5) completing the proof. O

Appendix Appendix B Lemmas used in Section 3 and Section 4

Lemma B.1. Assume the polymer environment is such that log R', log R%, logY'!,
and log Y? have finite second moments. Then E[(log Z,)*| < o0 for any x € Z2.

Proof: Since log Zyo = S, R} and log Zo, = S

j=1
second moment for each z € Z2 \N%. If 2 € N?, the recursion (2.1) implies that

(logY,! +1log Zy o,) A (logY2 +10g Zy—a,)

log Z,
< og2 < (log Y; +10g Zy—o,) v (log Yf +log Zy_u,).

log R ;, log Z, has finite

Thus
(log Z.)* < 4(log V! +10g Zy—0,)? + 4(log Y2 + 108 Zy—a,)?.

Since log Y'* and log Y2 have finite second moments, an inductive argument finishes
the proof. (I

Lemma B.2. Suppose fi : (0,00) — [0,0) for k =1,...,r and ap < a < a; are
real numbers such that [ao,al] My D(My, ). Suppose we have a collection of
independent random variables {X}i_, where X ~ my, (a) for all 1 <k <r. Let
E® be the expectation corresponding to the product measure induced by {Xi}h_;.
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Let S = Y, _,log Xy and A : R — R be a measurable function such that
E[A(Xy,...,X,)?%] < oo for all a € [ag,a1]. Then

;EG[A(Xl, oo, Xp)] = Co*(A(Xy, ..., X,),S)  forall ac€(ag,a1)
a
and (ag, a1) 3 a— ZE[A(Xy,...,X,)] is continuous.

Proof: The joint density of (log X1,log Xs,...,log X,) is given by

G‘Zk 1Tk

g(xl,...,:cr) 1_[ Mf nfk zk
k=1 k

Thus the density of S is given by

JRT% fr(e®) fa(e®2= ) oo fr(eT T ), L ey (BU1)

eas

H;:l My, (a)
Therefore the joint density of (log X1,log Xo,...,log X,.) given that S = s is

ha(s) =

9@, @) sy m=sy [Thor fe(€™) iz op=s)
ha(s) Spror f1(em) fa(em2=or) o fr(es=@r=1)day, ... xp 1’

which has no a dependence. Thus

LEA(Xy,..., X)) =2 RE“[A(Xl, ooy X0)|S = s]ha(s)ds
= J ETA(X1, ..., X0)|S = s]-Zha(s)ds
R

_ JRE"[A(Xl, XIS = sha(s)(s — Y 2 log My, (a)) ds
k=1
— Cov(A(X1,..., X)), S).

The last equality comes from E[S] = 3}, _; E[log Xi] = Y);_; < log My, (a), by
part (a) of Remark 3.2. The interchanging of the derivative and the integral is
justified by the bound

0
—h,

3 1a(5)

f E[JA(X1,...,X,)|[S =s] sup ds < o0. (B.2)
R

a€lap,a1]

Once we show that there is a constant C' depending only on ag and a; such that

iha(S) < O+ |s])(Pao (s) + ha, (s)) (B.3)

sup o

a€lap,a1]

we will have the bound (B.2) since
JIE[|A(X1,..., 1S = 11+ [s])ha, (5)ds = B [JA(X1, ..., X,)|(1 + |S])]
R

<E%[A(Xy,..., X,)?]PE% (1 + |S])?]>.

The last expression is finite since E%[A(X1, ..., X,)?] < o by assumption, and S
is a finite sum of independent random variables each of which has finite exponential
moments, by part (a) of Remark 3.2. Notice that the bound (B.2) also implies that
a— —Ea [A(X1,...,X,)] is continuous. All that is left to do is verify the bound
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(B.3). To accomplish this, notice that equation (B.1) implies that - logh (s) =
s —E°[S]. So

iha(s)

% < Ci(1+1s|]) sup ha(s)

a€lap,a1]

sup
a€lag,a1]

where C1 1= 1V SUDye[aq,q,] [E*[S]|- Thus it suffices to show that sup,c(q,.a,] a(s)

< Gy (hao(s) + ha, (s)> for some constant Cy independent of s. By part (c) of
Remark 3.2, a — E?[S] is an increasing function. Therefore, for all s < E[S] the
function @ — h,(s) is non-increasing on [ag, a;]. Thus

sup  ha(s) < hey(s) for all s <E®[S].
a€lap,a1]
On the other hand, if s > E®[S], then 2 log(ha(s) exp (a(E“[S] — E%o [S]))) -
s —E*[S] + E*[S] —E%[S] > 0 for all a € [ag,a1]. Thus for all s > E*[S], a —
ha(s) exp (a(E‘“ [S] — E® [S’])> is increasing on the interval [ag, a1]. Therefore,
sup  hg(s) < Cshg,(s) for all s > E*[S]
a€lap,a1]
where C3 = exp ((a1 — ap)(E*[S] — E% [S])) We now get the desired result with
Cy=1+Cs. [l

Lemma B.3. Assume that the polymer environment is distributed as in (3.2) and
let € be small enough such that for all |\| < €, ay+X € D(My1) and ag—X € D(Myz).

Let (m,n) € N? and k € N. Then, with notation as in (3.5), %}Jk’@_)‘) (t1 = k)

1s stochastically non-decreasing in \ and Q (a1+d.az= ’\)( > k)

increasing in \.

is stochastically non-

Proof:

o 1
(b1;b2 L I 1%
Q 620 =7 | Zonoriy, 20 LesnWOnb)@) | (B4)

z, €Il n
If i # j, the sum in (B.4) has no b; dependence, so

0

-1 0
ab Q(bl b2)(t > k) —_———— (—Z )n(bl,bz)) Z ]].{tjzk}W(bl,bg)(Ji,),

(Zm,n (bla b2))2 0bz " z.€1l,,
which is non-positive by (3.18). If ¢ = j, then by (3.17) and (3.18),

ZI.EHm,n ]]'{ti>k} aiblw(blv b2)(x-)
Zm,n(bla b2)

Q(bl,bz)(t >k) =

0 ZI).eHm,n ]]'{tiZk}W(bl’ b2)(17.)
<ab log Zm n(bl’ bz)) Zm,n (bla b2)

t;
(b1 ,b2) i i i
= COVQm’ln ’ ( Z Lj (bZaHf (biank))v ]]-{tiZk})v
k=1

which is non-negative. O
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Appendix Appendix C Properties of v

| Model || 1/)£1 (a1) | 1/’7{2 (a2) |
IG (=D)" " (Wn(p — 0) — dnolog f) (= )"“( n(0) — 5n olog )
G Wn(p+0) —6bnolog B (D" (¥n(0) — Tnlp+90))
B Vn(p+0)—Vn(u+0+5) (D" (Tn(0) — Tnlp +90))
IB (D" (g —0) —Va(p—0+5)) | Yn(p—0+5) + (=1)" "0, (0)

FIGURE C.9. 9/ functions for each of the four basic beta-gamma models.

By Abramowitz and Stegun (1964) (p.260 line 6.4.1) the polygamma function of
order n, ¥, (x) = % logT'(z), has integral representation

dt. (C.1)

Lemma C.1. For anyn € N, the map a — \I’&,%(lé';) is strictly increasing on (0, 00).

Proof: Fix n € N and a € (0,00). We will show that % log |¥,,(a)| > 0.
After substituting y = e~ in (C.1) we get

¥, (a)] = f Y f(y)dy = My(a)

where f(y) := & logy) L{o<y<1}. Note that D(My) = (0,00). Now given a random
variable X ~ mf( ) by part (¢) of Remark 3.2,

0* 0?
a2 log | ¥, (a)| = ﬁlong(a) = Var[log X] > 0,
since X is non-degenerate. O

Lemma C.2. Assume the polymer environment is distributed as in (3.2). Then
1 2 2 1
¥f (@) (az) + 9] (a2)ed (@) >0

Proof: Recall that wfj are always positive and by (C.1) ¥, has sign (—1)"*!
throughout (0, ).
For the inverse-gamma model (1.2) with fixed constants § > 0 and p > 6 > 0,

Table C.9 implies that wg ’ (a;) > 0 for j = 1,2. The conclusion follows immediately.
For the gamma model (1.3) with fixed positive constants /3, u, and 6, by Table C.9

1 2 2 1
W (a)¥] (a2) + o] (a2)v] (ar) = =01 (0 + ) Us(0) + W1 (0) W2 (6 + p).
The quantity on the right hand side is positive if and only if

Wa(6 + p) - Wy (0)
\111(9 +,u) \111(9)

which holds true by Lemma C.1 with n = 1.
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For the beta model (1.4) with fixed positive constants 3, p, and 8, using Table C.9

W] (an)od (as) + i (azwz (a1) >0 -
(@) v (@) _
(an !l (az)
Va0 +p+8)— \Ilz(9+u) _ Wa(0 + 1) — Wa(0) ©2)

(0 +p+B)— W0+ 1) ‘1’1(9+N) —W(0)

By Cauchy’s mean value theorem there exist constants < & < 0+ pu < & <

0 + u + 8 such that the left and right-hand sides of (C.2) equal %Egz; nd g:gg;

respectively. Lemma C.1 with n = 2 now gives (C.2).
For the inverse-beta model (1.5) with fixed constants 8 > 0 and p > 6 > 0, by

Table C.0, ¢4 (a1) > 0, 9! (a2) > Uy (—0+ pu+ B), and ¥ (az) > Wo(—0+ i+ B).
Therefore
£ f? f? £
Vi (a1)Yy (a2)+¢q (a2)yy (a1)
1 'l
> (a1)@o(—0 + g+ B) + Ui (0 + p+ B)Yd (ar)
=Wi(—0+ )P (=0 +pu+B) — Ui (=04 p+ B)Ta(—0 + p).
Letting ¢ = —0 + p, the last line is positive if and only if

Uy (z + B) - Vs (2)
Ui(z+p)  Vi(z)
which holds true by Lemma C.1 with n = 1. (]
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