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Abstract. In this work we analyze the concept of swap-invariance, which is a
weaker variant of exchangeability. An integrable random vector ξ in R

n is called
swap-invariant if E

∣

∣

∑

j ujξj
∣

∣ is invariant under all permutations of (ξ1, . . . , ξn) for
each u ∈ R

n. A random sequence is called swap-invariant if all finite dimensional
subsequences are swap-invariant. It has been shown by Molchanov et al. (2014)
that the ergodic theorem holds for swap-invariant sequences. We derive two rep-
resentations of swap-invariant sequences in terms of certain ergodic limits and of
a sequence that is exchangeable under an appropriate probability measure. Swap-
invariance can be extended to random measures on [0, 1] or R+ . Using the results
for sequences, it is shown that the ergodic theorem holds for swap-invariant random
measures. This allows us to derive a representation in terms of the ergodic limit
and an exchangeable random measure.

1. Introduction

Two integrable random vectors ξ and η in R
n are called zonoid equivalent if

E |〈u, ξ〉| = E |〈u, η〉| for every u ∈ R
n, where 〈 · , · 〉 denotes the Euclidean inner

product. A vector ξ of integrable random variables is called swap-invariant if ξ ◦ π
and ξ are zonoid equivalent for all permutations π of {1, . . . , n}. Swap-invariance
is weaker than exchangeability. Both exchangeability and swap-invariance are ex-
tended to random sequences by requiring the respective properties for all finite-
dimensional distributions. Swap-invariant sequences were introduced by Molchanov
et al. (2014). They prove that a swap-invariant sequence ξ satisfies the ergodic
theorem, that is n−1

∑n
j=1 ξj → X almost surely as n → ∞ for some random vari-

able X , see their Theorem 17. For exchangeable sequences this is a consequence of
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de Finetti’s theorem. In Molchanov et al. (2014) it is shown that a swap-invariant
sequence can be related to an exchangeable sequence by a transformation and a
simultaneous change of the probability measure. Their proof is based on a result
by Hardin (1981), Theorem 1.1, that the distribution of an integrable random vec-
tor ξ in R

n is uniquely determined by the absolute moments E |1 + 〈u, ξ〉| for all
u ∈ R

n.
Section 2 is devoted to a detailed analysis of the connections between swap-

invariant and exchangeable sequences. First it is shown that each swap-invariant
sequence of random variables with only two positive values is exchangeable. Fur-
ther we present a simple construction method for swap-invariant sequences, which
consists in a multiplication of a given swap-invariant or exchangeable sequence by
a random factor and a simultaneous change of the probability measure. Then we
prove that two large classes of swap-invariant sequences can always be represented
in this way, namely by using an ergodic limit as the random factor; in Theorem 2.6
we use the ergodic limit of the sequence itself, in Theorem 2.17 the limit of p-norms
of the means. The proofs are based on the results of Molchanov et al. (2014);
Hardin (1981).

In Section 3 our results are extended to random measures on [0, 1] and R+ .
Exchangeable random measures are well known, see for example Kallenberg (1983),
Chapter 9; Kallenberg (2002), Chapter 12; Kallenberg (2005). Our definition of
swap-invariance is strictly weaker than exchangeability. More precisely, if a random
measure ξ is exchangeable, then the vector (ξ(A1), . . . , ξ(An)) is exchangeable for
all disjoint Aj with equal Lebesgue measure; if ξ is swap-invariant, then this vector
is merely swap-invariant.

Similar to the case of sequences we provide a construction method for swap-
invariant random measures, which is based on a change of the probability measure.
We give an example of a swap-invariant non-exchangeable point process derived
from a Poisson process. It is demonstrated that a swap-invariant random measure
on [0, 1] can be represented as ξ = ξ([0, 1]) η where η is exchangeable under a cer-
tain probability measure. Finally the ergodic theorem for swap-invariant random
measures is shown, that is ξ(An)/λ(An) → X almost surely as n → ∞ for some in-
tegrable random variableX . Here (An)n≥1 is any increasing sequence of measurable
sets such that λ(An) < ∞ and λ(An) → ∞ as n → ∞. The ergodic limit always
exists, and it is independent of the sequence of sets under certain assumptions. As
a consequence we obtain the representation

ξ = Xη (1.1)

where the random measure η is exchangeable under a certain probability measure.
A variant of this theorem is proven for the special case of exchangeable random
measures.

2. Swap-invariant sequences

2.1. Sequences with finitely many values.

Lemma 2.1. Let d ≥ 1 and ξ and ξ∗ be integrable random vectors in R
d. If ξ and

ξ∗ are zonoid equivalent, then also the vectors (|ξ1|, . . . , |ξd|) and (|ξ∗1 |, . . . , |ξ
∗
d |) are

zonoid equivalent.
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Proof : Note that for each u ∈ R
d the function f(x) =

∣

∣

∑d
j=1 uj|xj |

∣

∣ on R
d is mea-

surable, even, and positively homogeneous. By Molchanov et al. (2014), Theorem 2,
we obtain Ef(ξ) = Ef(ξ∗) for such f , which proves the assertion. �

For n ≥ 1 we write Perm(n) for the family of permutations of {1, . . . , n}.

Theorem 2.2. Let ξ be a swap-invariant random vector whose coordinates take
only values a and b with |a| 6= |b|. Then ξ is exchangeable.

Proof : First assume that 0 ≤ a < b. Fix n ≥ 2. For 1 ≤ d ≤ n we denote by Nd

the set of vectors k ∈ {1, . . . , n}d such that 1 ≤ k1 < k2 < . . . < kd . Furthermore
we define N =

⋃

1≤d≤n Nd . For k ∈ N the dimension of the vector k is denoted

by |k|. For a random vector ξ in {a, b}n define

zξ(k) = Emax
{

ξk1 , . . . , ξk|k|

}

, k ∈ N .

We first prove that the distribution of ξ is uniquely determined by zξ and then show
that zξ is invariant under permutations of ξ if ξ is swap-invariant. The marginal
distributions of ξ are denoted as follows:

p(k;m) = P(ξk1 = m1, . . . , ξkd
= md)

where 1 ≤ d ≤ n, k ∈ Nd , and m ∈ {a, b}d. Then, for k ∈ N ,

p(k; (a, . . . , a)) =
b− zξ(k)

b− a
. (2.1)

We show that all marginal probabilities are functions of zξ . This is obvious for
k ∈ N1 since (2.1) yields

p(k1; a) =
b − zξ(k1)

b− a
, and p(k1; b) = 1− p(k1; a) .

Now let 1 ≤ d ≤ n− 1 and suppose that the probabilities p(k;m) are known for all

k ∈ Nd and m ∈ {a, b}d. Fix k ∈ Nd+1 . For 1 ≤ j ≤ d + 1 and m ∈ {a, b}d+1, we
obtain by summation over the jth coordinate that

p
(

(k1, . . . , kj−1, kj+1, . . . , kd+1) ; (m1, . . . ,mj−1,mj+1, . . . ,md+1)
)

=

p
(

k; (m1, . . . ,mj−1, a,mj+1, . . . ,md+1)
)

(2.2)

+ p
(

k; (m1, . . . ,mj−1, b,mj+1, . . . ,md+1)
)

.

By (2.1) and (2.2) all probabilities for the chosen k can be calculated iteratively.
This shows that all marginal probabilities are determined by zξ . Now let π ∈
Perm(n). If ξ is swap-invariant, then zξ(k) = Emax

{

ξ1, . . . , ξ|k|
}

for k ∈ N
by Molchanov et al. (2014), Theorem 2, and therefore zξ = zξ◦π . By the above
argument ξ and ξ ◦ π have the same distribution. Therefore ξ is exchangeable.

To show the claim for general a and b note that the random vector |ξ| is swap-
invariant by Lemma 2.1, and hence it is exchangeable by the proof above. Since
|a| 6= |b|, it follows that ξ is exchangeable. �

It is not difficult to construct a random sequence in {−1,+1} that is swap-
invariant but not exchangeable, e.g. using the method of Proposition 2.3. Moreover
Example 2.5 provides a swap-invariant but non-exchangeable sequence whose coor-
dinates take three values.
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2.2. Construction method. The next proposition provides a method to construct
swap-invariant sequences from another swap-invariant sequence. It is a direct con-
sequence of the definition of swap-invariance.

Proposition 2.3. Let η be a sequence that is swap-invariant under a probability
measure Q. Further let X be a random variable with X 6= 0 Q-almost surely and
c = EQ

[

|X |−1
]

< ∞. Define another probability measure P by

dP

dQ
=

1

c |X |
.

Then the sequence ξj = Xηj (j ≥ 1) is swap-invariant under P.

Note that in Proposition 2.3 we have P ∼ Q. By Molchanov et al. (2014),
Theorem 17, there exists a random variable Y such that EQ|Y | < ∞ and

n−1
n
∑

j=1

ηj → Y a.s. (2.3)

Therefore also

n−1
n
∑

j=1

ξj → XY a.s. (2.4)

If the convergence (2.3) is in L1(Q) (which is the case, for example, if η is exchange-
able and integrable under Q), then the convergence (2.4) is in L1(P).

Example 2.4. Let η be a random sequence that is i.i.d. under Q with EQ|η1| < ∞
and η1 6= 0 Q-almost surely. Set X = η−1

1 in Proposition 2.3. Then the sequence
ξ1 = 1, ξj = ηj/η1 (j ≥ 2) is swap-invariant under P. ξ is not exchangeable

under P. For the exchangeability of ξ under P would imply that ξ2
d
= 1 under P

and Q, whence η1 = η2 Q-almost surely.

The following example shows that there exists a swap-invariant but not exchange-
able sequence that takes only three values, in contrast to Theorem 2.2.

Example 2.5. Consider the special case of Example 2.4 where η1 takes values 1 and
2 with probability 1/2. We obtain the following finite-dimensional distributions
of ξ:

P(ξ2 = m2, . . . , ξn = mn)

=
21−n

3

(

1

{

m2, . . . ,mn ∈ {1, 2}
}

+ 2 · 1
{

m2, . . . ,mn ∈ {1/2, 1}
}

)

where n ≥ 2 and m2, . . . ,mn ∈ {1/2, 1, 2}. An explicit calculation yields

EP

∣

∣

∣

∣

n
∑

j=1

ujξj

∣

∣

∣

∣

=
21−n

3

∑

m1,...,mn∈{1,2}

∣

∣

∣

∣

n
∑

j=1

ujmj

∣

∣

∣

∣

.

So ξ is swap-invariant under P.

2.3. Ergodic representation. As stated in Molchanov et al. (2014), Theorem 17, for
each swap-invariant sequence, the mean converges almost surely to an integrable
random variable. We now demonstrate that, if the ergodic limit is different from
zero and if the convergence is in L1, the limit can be used to characterize swap-
invariant sequences as scaled exchangeable sequences under another probability
measure. Thereby again the result of Hardin (1981) is applied.
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Theorem 2.6. Let ξ be a random sequence that is swap-invariant under a probabil-
ity measure P such that n−1

∑n
j=1 ξj → X P-almost surely and in L1(P) as n → ∞

with P(X 6= 0) = 1. Then there exists a random sequence η that is exchangeable
and integrable under the probability measure Q defined by

dQ

dP
=

|X |

EP|X |

such that ξ = Xη P-almost surely.

Proof : Define

ηj =







ξj/X on {X 6= 0}

0 on {X = 0}
, j ≥ 1.

For j ≥ 1, EP|ξj | < ∞ implies EQ|ηj | < ∞. Let n ≥ 1, u ∈ R
n, and π ∈ Perm(n).

For m ≥ n, the swap-invariance of ξ under P yields

EP

∣

∣

∣

∣

m−1
m
∑

k=1

ξk +

n
∑

j=1

ujξj

∣

∣

∣

∣

= EP

∣

∣

∣

∣

m−1
m
∑

k=n+1

ξk +

n
∑

j=1

(

uj +m−1
)

ξj

∣

∣

∣

∣

= EP

∣

∣

∣

∣

m−1
m
∑

k=n+1

ξk +

n
∑

j=1

(

uπ(j) +m−1
)

ξj

∣

∣

∣

∣

= EP

∣

∣

∣

∣

m−1
m
∑

k=1

ξk +

n
∑

j=1

uπ(j)ξj

∣

∣

∣

∣

.

Letting m → ∞ we obtain

EP

∣

∣

∣

∣

X +
n
∑

j=1

ujξj

∣

∣

∣

∣

= EP

∣

∣

∣

∣

X +
n
∑

j=1

uπ(j)ξj

∣

∣

∣

∣

.

After change of measure this gives EQ

∣

∣1 +
∑n

j=1 ujηj
∣

∣ = EQ

∣

∣1 +
∑n

j=1 uπ(j)ηj
∣

∣.

Since this holds for all u ∈ R
n, it follows by Hardin (1981), Theorem 1.1, that η is

exchangeable under Q. �

Example 2.7. Let (Zj)j≥1 be i.i.d. standard normal random variables under a
probability measure P, and let (bj)j≥1 be a sequence of real numbers such that
β =

∑

j≥1 b
2
j < ∞. Define a random sequence (ξ)j≥1 by ξj = exp ζj where

ζj = Zj +

∞
∑

k=1

bkZk + µj , µj = −
1

2
(1 + β + 2bj) .

Note that ξi
d
= ξj if and only if bi = bj . In Molchanov et al. (2014), Examples 15

and 25, it is shown that ξ is swap-invariant under P and that the limit

X = lim
n→∞

n−1
n
∑

j=1

ξj = exp

(

∞
∑

k=1

bkZk −
1

2
β

)

exists P-almost surely and in L1(P). By Theorem 2.6 the random sequence

ηj =
ξj
X

= exp

(

Zj − bj −
1

2

)

is exchangeable under Q.
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In the context of Theorem 2.6 de Finetti’s theorem implies a relation between ξ1
and X that we state in the following corollary. As usual the σ-algebra generated by
the open sets in R

∞ is denoted by B(R∞), the tail σ-algebra of B(R∞) by T , the
shift-invariant σ-algebra by I, and the σ-algebra of sets that are invariant under
all finite permutations by E . For a random sequence η we define the corresponding
σ-algebras on the basic probability space by

Tη = η−1T , Iη = η−1I, Eη = η−1E .

It is well known that, if η is exchangeable, then Tη = Iη = Eη almost surely, i.e.
their completions are equal, see for example Kallenberg (2005), Corollary 1.6. The
sign of x ∈ R is denoted by sign(x).

Corollary 2.8. Under the conditions of Theorem 2.6

EP[sign(X)ξj |Tη] = EP[ |X | |Tη] a.s. , j ≥ 1,

where η is defined as in Theorem 2.6.

Proof : First note that P and Q are equivalent, so we may say that an equality or
convergence holds ‘almost surely’ without specifying the probability measure. Now
on the one hand the definition of η implies that n−1

∑n
k=1 ηk → 1 almost surely as

n → ∞. On the other hand Kallenberg (2005), Theorem 1.1, yields

n−1
n
∑

k=1

ηk → EQ[ηj |Tη] =
EP[ |X |ηj|Tη]

EP[ |X | |Tη]
=

EP[sign(X)ξj |Tη]

EP[ |X | |Tη]
a.s. , j ≥ 1. �

2.4. p-norm representation. The connection between swap-invariant sequences and
exchangeable sequences established in the preceding section is restricted to cases
where the ergodic limit is attained in L1 and is almost surely different from zero.
Now we present another method, using p-norms, where the second condition can
be dropped. However L1-convergence is still required.

For a sequence x ∈ R
∞ the vector of the first n components of x is denoted by

x(n) = (x1, . . . , xn). We define, for x ∈ R
∞, n ≥ 1, and 1 ≤ p < ∞,

‖x‖(n)p =

(

n−1
n
∑

j=1

|xj |
p

)1/p

, ‖x‖p = lim sup
n→∞

‖x‖(n)p ∈ R+ ,

and

‖x‖(n)∞ = max {|xj | ; 1 ≤ j ≤ n} , ‖x‖∞ = lim sup
n→∞

‖x‖(n)∞ ∈ R+ .

For the proof of the main result in this section, Theorem 2.12, some preliminary
results are required.

Proposition 2.9. Let X,Y,Xn , Yn (n ≥ 1) be non-negative random variables such
that Xn → X as n → ∞ almost surely and in L1, Yn and Y are bounded by K for
some K > 0, and Yn → Y almost surely on the event {X > 0}. Then XnYn → XY
almost surely and in L1.

Proof : We have

E |XnYn −XY | = E |(Xn −X)(Yn − Y )| + E |X(Yn − Y )| + E |(Xn −X)Y |

≤ 2KE |Xn −X | + E
[

|X(Yn − Y )| 1{X > 0}
]

+KE |Xn −X | .
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All three terms on the right-hand side converge to zero as n → ∞. �

The following lemma is a consequence of Molchanov et al. (2014), Theorem 2,
and Kallenberg (2002), Lemma 1.35.

Lemma 2.10. Let ‖ · ‖ be a norm on R
d where d ≥ 1, and ξ1 , ξ2 two random

vectors in R
d that are integrable under a probability measure P, and either both

symmetric or both supported by R
d
+ . For i ∈ {1, 2} assume EP‖ξi‖ > 0 and define

a probability measure Qi by
dQi

dP
=

‖ξi‖

EP‖ξi‖
.

If ξ1 and ξ2 are zonoid equivalent under P, then EP‖ξ1‖ = EP‖ξ2‖ and

Q1(ξ1/‖ξ1‖ ∈ A) = Q2(ξ2/‖ξ2‖ ∈ A) , A ∈ B(Rd).

Lemma 2.11. Fix p ∈ [1,∞]. Let ξ1 , ξ2 be two symmetric sequences of random

variables such that ξ
(n)
1 and ξ

(n)
2 are zonoid equivalent under P for each n ≥ 1, and

‖ξi‖
(n)
p → ‖ξi‖p P-a.s. and in L1(P) as n → ∞ .

Then EP‖ξ1‖p = EP‖ξ2‖p , and if EP‖ξ1‖p > 0, the probability measures Qi defined
by

dQi

dP
=

‖ξi‖p
EP‖ξi‖p

, i = 1, 2,

satisfy Q1

(

ξ1/‖ξ1‖p ∈ B
)

= Q2

(

ξ2/‖ξ2‖p ∈ B
)

for all B ∈ B(R∞).

Proof : To simplify notation we omit the subscript p at ‖x‖(n)p and ‖x‖p for x ∈ R
∞

and n ≥ 1 throughout the proof.

Let n ≥ 1. Since ξ
(n)
1 and ξ

(n)
2 are zonoid equivalent, Lemma 2.10 implies that

EP‖ξ1‖
(n)

= EP‖ξ2‖
(n)

. Letting n → ∞ yields EP‖ξ1‖ = EP‖ξ2‖ .

Now assume EP‖ξ1‖ > 0. Choose N ≥ 1 such that EP‖ξ1‖
(n) > 0 for n ≥ N .

For n ≥ N and i ∈ {1, 2} define probability measures Q
(n)
i by

dQ
(n)
i

dP
=

‖ξi‖
(n)

EP‖ξi‖
(n)

.

By Lemma 2.10

Q
(n)
1

(

ξ
(n)
1 / ‖ξ1‖

(n) ∈ A
)

= Q
(n)
2

(

ξ
(n)
2 / ‖ξ2‖

(n) ∈ A
)

for A ∈ B(Rn). It follows that, for n ≥ N , 1 ≤ k ≤ n, and A ∈ B(Rk),

Q
(n)
1

(

ξ
(k)
1

‖ξ1‖
(n)

∈ A

)

= Q
(n)
1

(

ξ
(n)
1

‖ξ1‖
(n)

∈ A× R
n−k

)

(2.5)

= Q
(n)
2

(

ξ
(n)
2

‖ξ2‖
(n)

∈ A× R
n−k

)

= Q
(n)
2

(

ξ
(k)
2

‖ξ2‖
(n)

∈ A

)

.

Now let f be a bounded continuous function from R
k to R+ . Then, for i ∈ {1, 2},

E
(n)
i f

(

ξ
(k)
i

‖ξi‖
(n)

)

=
1

EP‖ξi‖
(n)

∫

{‖ξi‖(n)>0}

‖ξi‖
(n)

f

(

ξ
(k)
i

‖ξi‖
(n)

)

dP (2.6)
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where E
(n)
i denotes the expectation with respect to Q

(n)
i . Now we apply Proposi-

tion 2.9 to the random variables

Xn = ‖ξi‖
(n)

, X = ‖ξi‖ ,

Yn =











f

(

ξ
(k)
i

‖ξi‖
(n)

)

on
{

‖ξi‖
(n)

> 0
}

0 on
{

‖ξi‖
(n)

= 0
}

,

Y =











f

(

ξ
(k)
i

‖ξi‖

)

on {‖ξi‖ > 0}

0 on {‖ξi‖ = 0}

.

In particular, note that for a point ω with ‖ξi(ω)‖ > 0 we have ‖ξi(ω)‖
(n)

> 0 for
all sufficiently large n. Hence the continuity of f implies that Yn → Y as n → ∞
P-almost surely on the event {‖ξi‖ > 0}. We conclude that the right-hand side
of (2.6) converges to

1

EP‖ξi‖

∫

{‖ξi‖>0}

‖ξi‖ f

(

ξ
(k)
i

‖ξi‖

)

dP = Ei f

(

ξ
(k)
i

‖ξi‖

)

where Ei denotes the expectation with respect to Qi . Using equality of the distri-

butions in (2.5) yields E1 f
(

ξ
(k)
1 / ‖ξ1‖

)

= E2 f
(

ξ
(k)
2 / ‖ξ2‖

)

. By approximation it

follows that Q1

(

ξ
(k)
1 / ‖ξ1‖ ∈ A

)

= Q2

(

ξ
(k)
2 / ‖ξ2‖ ∈ A

)

for each A ∈ B(Rk). Since

this holds for all k ≥ 1, we obtain Q1

(

ξ1/ ‖ξ1‖ ∈ B
)

= Q2

(

ξ2/ ‖ξ2‖ ∈ B
)

for each
B ∈ B(R∞). �

Theorem 2.12. Fix p ∈ [1,∞]. Let ξ be a random sequence that is swap-invariant

under a probability measure P such that ‖ξ‖(n)p → ‖ξ‖p as n → ∞ P-almost surely

and in L1(P), and EP‖ξ‖p > 0. Define another probability measure Q by

dQ

dP
=

‖ξ‖p
EP‖ξ‖p

.

(i) There exists a random sequence ζ that is exchangeable under Q such that

ε ξj = ‖ξ‖p ζj P-a.s. , j ≥ 1

where ε is a random variable that takes values ±1 with probabilities 1/2 and
is independent of ξ under P.

(ii) If ξ is either symmetric or non-negative, then there exists a random se-
quence η that is exchangeable under Q such that

ξj = ‖ξ‖p ηj P-a.s. , j ≥ 1 .

Proof : To simplify notation we again omit the subscript p at ‖x‖(n)p and ‖x‖p for
x ∈ R

∞ and n ≥ 1.
First assume that ξ is symmetric under P. Let d ≥ 1 and π ∈ Perm(d), and

denote by ξ ◦ π the random sequence that results from ξ by applying the permu-
tation π to the first d members. Then ‖ξ‖ = ‖ξ ◦ π‖. Moreover ξ(n) and (ξ ◦ π)(n)
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are zonoid equivalent under P for all n ≥ 1. Define

ηj =







ξj
‖ξ‖

on {‖ξ‖ > 0}

0 on {‖ξ‖ = 0}

, j ≥ 1.

By Lemma 2.11

Q
(

η ∈ B
)

= Q

(

ξ

‖ξ‖
∈ B

)

= Q

(

ξ ◦ π

‖ξ‖
∈ B

)

= Q
(

η ◦ π ∈ B
)

.

for all B ∈ B(R∞). This shows that η is exchangeable under Q. It remains to show
that ξj = 0 P-almost surely on the event {‖ξ‖ = 0} for all j ≥ 1. Define random
sequences ξ> and ξ= by

ξ>j = ξj 1{‖ξ‖ > 0} , ξ=j = ξj 1{‖ξ‖ = 0}

for j ≥ 1. For n ≥ 1 and u ∈ R
n we have

EP

∣

∣

∣

∣

n
∑

j=1

ujξ
>
j

∣

∣

∣

∣

= EP1{‖ξ‖ > 0}

∣

∣

∣

∣

n
∑

j=1

ujξj

∣

∣

∣

∣

= EP‖ξ‖

∣

∣

∣

∣

n
∑

j=1

ujηj

∣

∣

∣

∣

= EP‖ξ‖EQ

∣

∣

∣

∣

n
∑

j=1

ujηj

∣

∣

∣

∣

.

Hence ξ> is swap-invariant under P. This implies that also ξ= is swap-invariant

under P. Since ‖ξ‖(n) → ‖ξ‖ P-almost surely and in L1(P),

‖ξ=‖(n) → ‖ξ‖ 1{‖ξ‖ = 0} = 0 P-a.s. and in L1(P) .

Since ‖ξ=‖(n)1 ≤ ‖ξ=‖(n) by the Hölder inequality, we conclude that ‖ξ=‖(n)1 → 0 P-

almost surely and in L1(P). The swap-invariance of ξ= implies that EP‖ξ=‖
(n)
1 =

EP|ξ=1 | for all n ≥ 1. Therefore EP|ξ=j | = EP|ξ=1 | = 0, hence ξ=j = 0 P-almost
surely.

If ξ is not symmetric, we may define a random sequence ρ by ρj = ε ξj for j ≥ 1
where ε has the stated properties. Then ρ is symmetric and swap-invariant under P.
Applying the preceding proof to ρ proves (i). In particular, if ξ is non-negative,
then also the sequence (|ζ1|, |ζ2|, . . .) is exchangeable under Q, which shows the
second statement of (ii). �

In the following example a symmetric random sequence ξ is defined that is swap-
invariant but not exchangeable. Since each component as well as the ergodic limit
is zero with positive probability, neither Molchanov et al. (2014), Theorem 21, nor
Theorem 2.6 can be used to obtain a representation in terms of an exchangeable
sequence. However Theorem 2.12 can be applied.

Example 2.13. Let ρ be a random sequence that is i.i.d. under a probability mea-
sure R such that ρ1 takes values −1, 0, +1 with equal probability 1/3. Further let
X = 1 + |ρ1|. Define another probability measure P by

dP

dR
=

3

2
X−1,
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and a random sequence ξj = Xρj (j ≥ 1). Then ξ is swap-invariant under P by
Proposition 2.3 and has finite-dimensional distributions

P(ξ1 = m1, . . . , ξn = mn)

= 31−n ·

(

1

2
1

{

m1 = 0, m2, . . . ,mn ∈ {−1, 0, 1}
}

+
1

4
1

{

m1 ∈ {−2, 2} , m2, . . . ,mn ∈ {−2, 0, 2}
}

)

where n ≥ 1 and m1, . . . ,mn ∈ {−2,−1, 0, 1, 2}. In particular,

P(ξ1 = 0) =
1

2
, P(ξ1 = ±2) =

1

4
,

and, for j ≥ 2,

P(ξj = 0) =
1

3
, P(ξj = ±1) = P(ξj = ±2) =

1

6
.

Thus ξ is symmetric and not exchangeable under P. Since P(ξj = 0) > 0 for all
j, we cannot divide the sequence by one of its members in order to obtain an
exchangeable sequence as done in Molchanov et al. (2014), Theorem 21. Further
note that

n−1
n
∑

j=1

ρj → ERρ1 = 0 R-a.s. ,

which implies n−1
∑n

j=1 ξj → 0 P-almost surely. Thus Theorem 2.6 is not
applicable here either. In order to apply Theorem 2.12 fix p = 1. Since the sequence
(|ρj |)j≥1 is i.i.d. under R,

n−1
n
∑

j=1

|ρj | → ER|ρ1| =
2

3
R-a.s. and in L1(R) .

It follows that

‖ξ‖(n)1 = Xn−1
n
∑

j=1

|ρj| →
2

3
X = ‖ξ‖1 P-a.s. and in L1(P)

and EP‖ξ‖1 = 1. Thus the conditions of Theorem 2.12 are satisfied. We apply the
definitions in Theorem 2.12,

dQ

dP
=

2

3
X, ηj =

3

2
ρj , j ≥ 1,

and find that Q = R. Theorem 2.12 says that η is exchangeable under Q, which
can be immediately confirmed here.

An interesting special case of Theorem 2.12 is that of non-negative sequences
and p = 1. In this case the limit in Theorem 2.12 is the ordinary ergodic limit and
the probability measure Q is defined as in Theorem 2.6. However the conditions
are weaker than in Theorem 2.6 because the ergodic limit can be zero with positive
P-probability here.

Example 2.14. The lognormal sequence in Example 2.7 satisfies the assumptions of
Theorem 2.6, and therefore also those of Theorem 2.12 for p = 1.
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A slightly more general case is p = 1 and no sign restrictions on ξ. Application of
Theorem 2.12 requires the mean of absolute values n−1

∑n
j=1 |ξj | to converge almost

surely and in L1. However if ξ is swap-invariant, it follows from Lemma 2.1 that
also the sequence of absolute values, (|ξ1|, |ξ2|, . . .), is swap-invariant, so the almost
sure convergence is guaranteed by Molchanov et al. (2014), Theorem 17. Therefore
only the L1-convergence remains to be checked. By Scheffé’s lemma, this reduces
to the condition E |ξ1| = E ‖ξ‖1 . Also note that the inequality E |ξ1| ≥ E ‖ξ‖1
is always guaranteed by Fatou’s lemma. We summarize the situation for the case
p = 1 as follows:

Proposition 2.15. Let ξ be a swap-invariant random sequence. Then n−1
∑n

j=1 |ξj |

converges almost surely to an integrable random variable ‖ξ‖1 as n → ∞. If
E |ξ1| = E ‖ξ‖1 , then this convergence is in L1.

From Theorem 2.12 we finally derive a representation of the ergodic limit of
symmetric or non-negative swap-invariant sequences. Again the general case is
obtained by noting that, for a swap-invariant sequence ξ, the symmetric sequence
ε ξ is swap-invariant as well. In the derivation of Theorem 2.17 the formula for the
conditional expectation under a change of the probability measure is used in the
following form where the Radon-Nikodým derivative may be zero with non-zero
probability.

Proposition 2.16. Let (Ω,F ,P) be a probability space, G a sub-σ-algebra of F , Z a
random variable with Z ≥ 0 and EPZ = 1, Q another probability measure defined
by dQ/dP = Z, and Y a random variable with EQ|Y | < ∞. Then EP|ZY | < ∞,
and

1{Z0 > 0}EQ[Y |G] = Ẑ0 EP[ZY |G] Q-a.s.

where

Z0 = EP[Z|G] , Ẑ0 =







Z−1
0 on {Z0 > 0}

0 on {Z0 = 0}
.

Theorem 2.17. Let ξ be a symmetric or non-negative sequence of random variables
that satisfies the conditions of Theorem 2.12 for some p ∈ [1,∞], and choose η as
in Theorem 2.12 (ii). Then

n−1
n
∑

j=1

ξj → ‖ξ‖p Ŷ0 EP[ξ1|Tη] P-a.s. and in L1(P) as n → ∞, (2.7)

where

Y0 = EP

[

‖ξ‖p
∣

∣Tη
]

, Ŷ0 =







Y −1
0 on {Y0 > 0}

0 on {Y0 = 0}
.

Moreover,
{

‖ξ‖p > 0
}

∈ Tη , P
(

{Y0 > 0}∆
{

‖ξ‖p > 0
}

)

= 0 .

Proof : Since η is Q-integrable and exchangeable under Q, it follows by Kallenberg
(2002), Theorem 10.6, that

n−1
n
∑

j=1

ηj → EQ[η1|Tη] Q-a.s. and in L1(Q) .
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By Proposition 2.16,

1{Y0 > 0} EQ[η1|Tη] = Ŷ0 EP[ξ1|Tη] Q-a.s. (2.8)

We write ‖ξ‖ for ‖ξ‖p in the following. Multiplying both sides of (2.8) by ‖ξ‖ shows
that

1{Y0 > 0} n−1
n
∑

j=1

ξj → ‖ξ‖ Ŷ0 EP[ξ1|Tη] Q-a.s. as n → ∞ . (2.9)

In order to see that the convergence (2.9) holds P-almost surely, define E =
{‖ξ‖ > 0}. On Ec we have ξj = 0 P-almost surely for all j ≥ 1. On E the
measures P and Q are equivalent, so the convergence holds also P-almost surely
on E.

We now show that E ∈ Tη . We may assume that ηj = 0 on Ec for j ≥ 1. Define
An = {ηj = 0 ; j ≥ n} for n ≥ 1. Note that

An ⊂ {ξj = 0 ; j ≥ n} ⊂ Ec,

and Ec ⊂ An by assumption. Hence Ec = An for all n ≥ 1, and therefore Ec ∈ Tη .
We next show the last statement, which then implies that the convergence (2.7)

holds P-almost surely. Now EP[Y01A] = EP[ ‖ξ‖1A] for each A ∈ Tη by definition
of conditional expectation. Define F = {Y0 > 0}. Note that EP[Y01A] > 0 if and
only ifP(F ∩ A) > 0, and EP[ ‖ξ‖1A] > 0 if and only if P(E ∩ A) > 0. We conclude
that P(F ∩ A) > 0 if and only if P(E ∩ A) > 0. It follows that P(F c \ Ec) =
P(F c ∩ E) = 0 because F c ∈ Tη . Moreover P(Ec \ F c) = P(Ec ∩ F ) = 0 because
Ec ∈ Tη . Thus P(F c∆Ec) = 0.

To see that the convergence (2.7) holds in L1(P) note that

1{Y0 > 0} = 1{‖ξ‖ > 0}

P-almost surely and therefore also Q-almost surely. It follows that

EP

∣

∣

∣

∣

n−1
n
∑

j=1

ξj − ‖ξ‖ Ŷ0 EP[ξ1|Tη]

∣

∣

∣

∣

= EP‖ξ‖

∣

∣

∣

∣

n−1
n
∑

j=1

ηj − Ŷ0 EP[ξ1|Tη]

∣

∣

∣

∣

=
1

EP‖ξ‖
EQ

∣

∣

∣

∣

n−1
n
∑

j=1

ηj − Ŷ0 EP[ξ1|Tη]

∣

∣

∣

∣

=
1

EP‖ξ‖
EQ

∣

∣

∣

∣

n−1
n
∑

j=1

ηj − 1{Y0 > 0} EQ[η1|Tη]

∣

∣

∣

∣

=
1

EP‖ξ‖
EQ

∣

∣

∣

∣

n−1
n
∑

j=1

ηj − 1{‖ξ‖ > 0} EQ[η1|Tη]

∣

∣

∣

∣

=
1

EP‖ξ‖
EQ

∣

∣

∣

∣

n−1
n
∑

j=1

ηj −EQ[η1|Tη]

∣

∣

∣

∣

.

The right-hand side converges to zero as n → ∞. �
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Theorem 2.17 says that under the stated conditions

n−1
n
∑

j=1

ξj →
‖ξ‖p EP[ξ1|Tη]

EP

[

‖ξ‖p
∣

∣Tη
] P-a.s. on

{

‖ξ‖p > 0
}

as n → ∞.

In contrast to the representations of the ergodic limit in Theorem 21 and Proposi-
tion 22 in Molchanov et al. (2014), we may allow P(ξj = 0) > 0 for all j here. For
non-negative ξ and p = 1, we summarize the results of Theorems 2.12 and 2.17 in
the following corollary; note that this includes variants of Theorem 2.6 and Corol-
lary 2.8.

Corollary 2.18. Let ξ be a sequence of non-negative random variables that is
swap-invariant under a probability measure P such that

n−1
n
∑

j=1

ξj → X P-a.s. and in L1(P) as n → ∞

with EPX > 0. Define the probability measure Q by

dQ

dP
=

X

EPX
.

Then there exists a random sequence η that is exchangeable under Q such that
ξj = Xηj P-almost surely for j ≥ 1. Moreover EP[X |Tη] = EP[ξ1|Tη] P-almost
surely.

3. Swap-invariant random measures

3.1. Swap-invariance vs. exchangeability. Let (Ω,F ,P) be a probability space and
(S,S) a measurable space. A random measure ξ on S is a map ξ : Ω × S → R+

such that ξ( · ,M) is a R+-valued random element for each M ∈ S, and ξ(ω, · ) is a
measure on S for each ω ∈ Ω. The intensity measure of ξ is E ξ(M) for M ∈ S. A
random measure ξ on S is called σ-finite if there exists a fixed measurable partition
(Sj)j≥1 of S such that ξ(Sj) < ∞ almost surely for every j ≥ 1. We only consider
the cases S = [0, 1] and R+ in this article, and S denotes the Borel σ-algebra
B([0, 1]) or B(R+), respectively.

Definition 3.1. A random measure ξ on S = [0, 1] or R+ is called exchangeable

if (ξ(A1), . . . , ξ(An))
d
= (ξ(B1), . . . , ξ(Bn)) for any disjoint A1 , . . . , An ∈ S, n ≥ 1,

and any disjoint B1 , . . . , Bn ∈ S with λ(Aj) = λ(Bj) for 1 ≤ j ≤ n.

Some equivalent formulations are given in Kallenberg (1983), Lemma 9.0. We
investigate random measures that have a weaker property than exchangeability.

Definition 3.2. A random measure ξ on S = [0, 1] or R+ is called swap-invariant if
E
∣

∣

∑n
j=1 uj ξ(Aj)

∣

∣ = E
∣

∣

∑n
j=1 uj ξ(Bj)

∣

∣ for all n ≥ 1, u ∈ R
n, disjoint A1 , . . . , An ∈

S, and disjoint B1 , . . . , Bn ∈ S such that λ(Aj) = λ(Bj), E ξ(Aj) < ∞, and
E ξ(Bj) < ∞ for 1 ≤ j ≤ n.

Note that the integrands in Definition 3.2 are undefined for those points ω ∈ Ω
where two terms in the sum are infinite with opposite signs. However this can
happen only with probability zero due to the integrability assumptions.

Several equivalent formulations of swap-invariance on a general measure space
as well as their couterparts in the case of exchangeable random measures are given
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in Nagel (2016). Note that if ξ is a swap-invariant random measure on S, then, for
each A ∈ S with E ξ(A) < ∞, λ(A) = 0 implies ξ(A) = 0 almost surely. Clearly,
every exchangeable random measure is swap-invariant. Two more connections be-
tween the concepts of swap-invariance and exchangeability are now established.
Proposition 3.3 provides a construction of swap-invariant random measures from
a given swap-invariant random measure. In particular, one can use an exchange-
able random measure to construct a swap-invariant random measure that is not
exchangeable. In Theorem 3.5 we show how a swap-invariant random measure
on [0, 1] can be expressed through an exchangeable random measure. In Section 3.2
a similar representation of swap-invariant random measures on R+ is proven, which
is based on the ergodic theorem and on the representation result for sequences de-
rived in Section 2.

Proposition 3.3. Let η be a random measure on S = [0, 1] or R+ that is swap-
invariant under a probability measure Q. Further let X be a random variable with
X > 0 Q-almost surely and EQ

[

X−1
]

< ∞, and P another probability measure
defined by

dP

dQ
=

1

X EQ[X−1]
.

Then the random measure ξ defined by ξ = Xη is swap-invariant under P.

Example 3.4. Let η be a Poisson process on [0, 1] or R+ under a probability mea-
sure Q with uniform intensity. Clearly η is exchangeable under Q. We may choose
two disjoint measurable sets K and L with λ(K) = λ(L) = 1/2. Define the random
variable X = 1 + 1{η(K) > 0} and a new probability measure P by

dP

dQ
=

1

cX
, c = EQ

[

X−1
]

=
1

2

(

1 + e−1/2
)

.

By Proposition 3.3 the point process ξ = Xη is swap-invariant under P. We
calculate

P
(

ξ(L) = 0
)

= e−1/2 6=
2

1 + e1/2
= P

(

ξ(K) = 0
)

.

This shows that ξ is not exchangeable under P.

Theorem 3.5. Let S = [0, 1] and ξ a random measure on S that is swap-invariant
under a probability measure P with EPξ(S) ∈ (0,∞). Then there exists a random
measure η that is exchangeable under the probability measure Q defined by

dQ

dP
=

ξ(S)

EPξ(S)

such that ξ = ξ(S) η.

Proof : Let n ≥ 1 and Aj , Bj ∈ S with λ(Aj) = λ(Bj) for 1 ≤ j ≤ n such that
(Aj)1≤j≤n are disjoint and (Bj)1≤j≤n are disjoint. Define A0 = S \

⋃n
j=1 Aj and

B0 = S \
⋃n

j=1 Bj . Clearly, λ(A0) = λ(B0). Now we define random vectors ξA and

ξB in R
n+1
+ by

ξAj = ξ(Aj) 1{ξ(Aj) < ∞} , ξBj = ξ(Bj) 1{ξ(Bj) < ∞}

for 0 ≤ j ≤ n. Here the indicator functions are P-almost surely equal to 1. Note
that ξA and ξB are zonoid equivalent under P. Moreover ‖ξA‖1 = ξ(S) = ‖ξB‖1



Swap-invariant sequences and random measures 563

P-almost surely where ‖x‖1 =
∑n

j=0 |xj | for x ∈ R
n+1. Define

η =







ξ

ξ(S)
on {ξ(S) > 0}

0 on {ξ(S) = 0}

.

Applying Lemma 2.10, it follows that, under Q,

(

η(A1), . . . , η(An)
) d
=
(

η(B1), . . . , η(Bn)
)

Hence η is exchangeable under Q. �

Note that in the special case if ξ is a random probability measure, i.e. ξ([0, 1]) = 1,
which is swap-invariant under P, Theorem 3.5 says that ξ is even exchangeable un-
der P.

Theorem 3.6. Let ξ be a swap-invariant random measure on S = [0, 1] or R+

such that E ξ is σ-finite. Then E ξ = cλ for some c ∈ R+ .

Proof : First assume that S = [0, 1] and E ξ(S) < ∞. Then the claim follows from
Theorem 3.5 and Kallenberg (2005), Theorem 1.25.

Now consider the case that either S = [0, 1] and E ξ(S) = ∞, or S = R+ and
E ξ(S) ≤ ∞. Choose a measurable partition (Sj)j≥1 of S such that λ(Sj) < ∞
and E ξ(Sj) < ∞ for all j ≥ 1. Define J = {j ∈ Z+ ; λ(Sj) > 0}. Clearly ξ(Sj) = 0
almost surely for j ∈ Z+ \ J . By the first part of the proof

E ξ(Sj ∩ A) =
E ξ(Sj)

λ(Sj)
λ(Sj ∩ A)

for each A ∈ S and j ∈ J . If |J | ≥ 2, let i, j ∈ J with i 6= j and consider the
partition

M =
{

Sk ; k ≥ 1, k 6= i, k 6= j
}

∪ {Si ∪ Sj}

of S. Applying the previous result to the new partition M we obtain, in particular,

E ξ(Si) = E ξ
(

(Si∪Sj)∩Si

)

=
E ξ(Si ∪ Sj)

λ(Si ∪ Sj)
λ
(

(Si∪Sj)∩Si

)

=
E ξ(Si ∪ Sj)

λ(Si ∪ Sj)
λ(Si),

and similarly for i and j interchanged. Consequently c = E ξ(Sk)/λ(Sk) for some
c ∈ R+ and all k ∈ J . Therefore

E ξ(A) =
∑

j∈J

E ξ(Sj ∩ A) = c
∑

j∈J

λ(Sj ∩ A) = cλ(A)

for each A ∈ S. �

Example 3.7. In Example 3.4 we have EQη = λ, which implies EPξ = c−1λ.

By a similar proof it is shown in Nagel (2016), Theorem 2.19, that diffuse swap-
invariant random measures can be represented as the randomly scaled Lebesgue
measure.
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3.2. Ergodic representation. To formulate the ergodic theorem for swap-invariant
random measures and the derived representation, we need to introduce some no-
tions.

Definition 3.8. An increasing sequence An ∈ B(R+) with λ(An) < ∞ for n ≥ 1
and λ(An) → ∞ as n → ∞ is called standard sequence. For a standard sequence
(An)n≥1 we write

∆An =

{

A1 if n = 1

An\An−1 if n ≥ 2
.

A standard sequence (An)n≥1 is called standard sequence with constant increments if
λ(∆An) = c for all n ≥ 1 and some c ∈ (0,∞). Moreover, given a random measure ξ
on R+ , a standard sequence (An)n≥1 is called ξ-integrable if E ξ(An) < ∞ for n ≥ 1.

For a fixed standard sequence with constant increments it is straightforward
to derive the following ergodic theorem by applying the result for swap-invariant
sequences Molchanov et al. (2014), Theorem 17.

Proposition 3.9. Let ξ be a swap-invariant random measure on R+, and (An)n≥1

a ξ-integrable standard sequence with constant increments. Then there exists an
integrable random variable X such that ξ(An)/λ(An) → X almost surely as n → ∞.

Example 3.10. In Example 3.4 let S = R+ . Further let (An)n≥1 be a standard
sequence with constant increments. Then η(An)/λ(An) → 1 as n → ∞ Q-almost
surely and in L1(Q). It follows that ξ(An)/λ(An) → X Q-almost surely. Since P

and Q are equivalent, this convergence holds also P-almost surely. It can be shown
by direct computation that the convergence is also in L1(P).

We show in Theorem 3.14 that the ergodic limit also exists if the increments are
not necessarily constant and that the limit is unique under certain assumptions.
This allows us to perform a change of the probability measure and to construct a
random measure that is exchangeable under the new probability measure in order
to obtain our representation (1.1). In the proof of Theorem 3.14 we make use of
the following notion.

Definition 3.11. Let (An)n≥1 be a standard sequence. A sequence (Cn)n≥1 with
constant increments is called compatible sequence with constant increments (CSCI)
of (An) if there exists a standard sequence (Bn)n≥1 such that (An) and (Cn) are
subsequences of (Bn).

Obviously in this definition the sequences (An), (Bn), and (Cn) have the same
limit set. We prove two lemmas on which Theorem 3.14 is based.

Lemma 3.12. Let (An)n≥1 be a standard sequence, ξ a random measure on R+ ,
and X a random variable.

(i) For each c ∈ (0,∞), there exists a CSCI (Cn) of (An) with λ(C1) = c.
(ii) If ξ(Cn)/λ(Cn) → X almost surely as n → ∞ for some CSCI (Cn) of (An),

then also ξ(An)/λ(An) → X almost surely.
(iii) If ξ(Cn)/λ(Cn) → X in L1 as n → ∞ for some CSCI (Cn) of (An), then

also ξ(An)/λ(An) → X in L1.

Proof : (i) is clear because λ is atomless. In order to prove (ii) and (iii) let (Cn)
be a CSCI of (An). Define c = λ(C1) and mk = min {m ≥ 1 ; Ak ⊂ Cm} for k ≥ 1.
It follows that 1 ≤ m1 ≤ m2 ≤ . . ., and mk → ∞ as k → ∞. For large k we
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have mk ≥ 2 and Cm(k)−1 ⊂ Ak ⊂ Cm(k) where the first inclusion is strict and the
second may not. Hence, for large k,

λ(Cm(k)−1) ≤ λ(Ak) ≤ λ(Cm(k)), ξ(Cm(k)−1) ≤ ξ(Ak) ≤ ξ(Cm(k)),

and therefore
(

mk − 1

mk

)

ξ(Cm(k)−1)

λ(Cm(k)−1)
=

ξ(Cm(k)−1)

λ(Cm(k))
≤

ξ(Ak)

λ(Ak)
≤

ξ(Cm(k))

λ(Cm(k)−1)

=

(

mk

mk − 1

)

ξ(Cm(k))

λ(Cm(k))
.

Thus if ξ(Cn)/λ(Cn) → X almost surely, then ξ(An)/λ(An) → X almost surely as
n → ∞. This proves (ii). From the same estimate we obtain, for large k:

E

∣

∣

∣

∣

ξ(Ak)

λ(Ak)
−X

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

ξ(Ak)

λ(Ak)
−

(

mk

mk − 1

)

ξ(Cm(k))

λ(Cm(k))

∣

∣

∣

∣

+ E

∣

∣

∣

∣

(

mk

mk − 1

)

ξ(Cm(k))

λ(Cm(k))
−X

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

(

mk

mk − 1

)

ξ(Cm(k))

λ(Cm(k))
−

(

mk − 1

mk

)

ξ(Cm(k)−1)

λ(Cm(k)−1)

∣

∣

∣

∣

+ E

∣

∣

∣

∣

(

mk

mk − 1

)

ξ(Cm(k))

λ(Cm(k))
−X

∣

∣

∣

∣

≤ 2E

∣

∣

∣

∣

(

mk

mk − 1

)

ξ(Cm(k))

λ(Cm(k))
−X

∣

∣

∣

∣

+ E

∣

∣

∣

∣

X −

(

mk − 1

mk

)

ξ(Cm(k)−1)

λ(Cm(k)−1)

∣

∣

∣

∣

.

The right-hand side converges to zero as k → ∞ if ξ(Cn)/λ(Cn) → X in L1 as
n → ∞. This proves (iii). �

Lemma 3.13. Let ξ be a random measure on R+ that is swap-invariant under
a probability measure P. Further let (An)n≥1 be a ξ-integrable standard sequence
with constant increments and limit A such that ξ(An)/λ(An) → X P-almost surely
and in L1(P) as n → ∞ for some random variable X with EPX > 0. Define the
random measure η by

η =







ξ/X on {X > 0}

0 on {X = 0}
(3.1)

and Q by
dQ

dP
=

X

EPX
.

(i) The sequence (η(∆An))n≥1 is exchangeable under Q.
(ii) ξ(An) = 0 P-almost surely on {X = 0} for n ≥ 1.
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(iii) For each m ≥ 1 and disjoint measurable sets (Bj)1≤j≤m with λ(Bj) =
λ(A1), Bj ∩ A = ∅, and EPξ(Bj) < ∞, we have, under Q,

(

η(B1), . . . , η(Bm)
) d
=
(

η(∆A1), . . . , η(∆Am)
)

.

Proof : Apply Corollary 2.18 to the sequence (ξ(∆An))n≥1 . This proves (i) and (ii).
Now choose a sequence ζ of random variables in R+ such that P-almost surely

ζj = ξ(Bj) for 1 ≤ j ≤ m and ζm+j = ξ(∆Aj) for j ≥ 1. Clearly ζ is swap-invariant
under P. We have n−1

∑n
j=1 ζj → λ(A1)X P-almost surely and in L1(P). Another

application of Corollary 2.18 shows (iii). �

Theorem 3.14. Let ξ be a random measure on R+ that is swap-invariant under a
probability measure P.

(i) For each ξ-integrable standard sequence (An)n≥1 there exists an integrable
random variable X such that ξ(An)/λ(An) → X almost surely as n → ∞.

(ii) Assume that EPξ is σ-finite and that there exists a standard sequence
(An)n≥1 with constant increments and limit A such that λ(R+\ A) = ∞,
ξ(An)/λ(An) → X in L1(P), and EPX > 0. Then ξ(Bn)/λ(Bn) → X
in L1(P) for each standard sequence (Bn)n≥1 .

(iii) Under the same conditions as in (ii), there exists a random measure η that
is exchangeable under the probability measure Q defined by

dQ

dP
=

X

EPX
(3.2)

such that ξ = Xη P-almost surely.

Notice that under the conditions of (ii) and (iii) each standard sequence is ξ-
integrable, cf. Theorem 3.6.

Proof of Theorem 3.14: Note that (i) follows by Proposition 3.9 and Lemma 3.12 (i)
and (ii).

In order to show (ii), assume that (An), A, and X have the stated properties, and
let c = λ(A1). Now let (Bn) be another standard sequence, say with limit B. First
we assume that (Bn) has constant increments with λ(B1) = c, and that A∩B = ∅.
Clearly EPξ(Bn) < ∞ for all n. By swap-invariance

EP

∣

∣

∣

∣

n−1
n
∑

j=1

ξ(∆Bj)−m−1
m
∑

k=1

ξ(∆Ak)

∣

∣

∣

∣

= EP

∣

∣

∣

∣

n−1
n
∑

j=1

ξ(∆Aj)−m−1

( n
∑

k=1

ξ(∆Bk) +

m
∑

k=n+1

ξ(∆Ak)

)
∣

∣

∣

∣

for m > n ≥ 1. Letting m → ∞, it follows that

EP

∣

∣

∣

∣

n−1
n
∑

j=1

ξ(∆Bj)− cX

∣

∣

∣

∣

= EP

∣

∣

∣

∣

n−1
n
∑

j=1

ξ(∆Aj)− cX

∣

∣

∣

∣

.

Letting n → ∞ shows that ξ(Bn)/λ(Bn) → X in L1(P), and (i) implies that
this convergence is also P-almost surely. Now let (Bn) be an arbitrary standard
sequence with limit B, i.e. we may have A ∩ B 6= ∅. We may choose a standard
sequence with constant increments (En) with limit E such that λ(E1) = c and
A ∩ E = ∅. By the first part of the proof it follows that ξ(En)/λ(En) → X
P-almost surely and in L1(P). Now we distinguish the cases λ(A ∩ B) < ∞ and
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λ(A∩B) = ∞. In the first case we choose another standard sequence with constant
increments (Fn) with limit F such that λ(F1) = c and F ⊂ A \ B. Let (Cn)
be a CSCI of (Bn) with λ(C1) = c, which exists by Lemma 3.12 (i). From the
convergence of ξ(En)/λ(En) we consecutively conclude that the same convergence
holds for (Fn) and (Cn). Finally ξ(Bn)/λ(Bn) → X P-almost surely and in L1(P)
by Lemma 3.12 (ii) and (iii). In the second case, λ(A ∩ B) = ∞, we may choose
a CSCI (Cn) of (Bn) with λ(C1) = 2c, and two standard sequences with constant
increments (Ci

n) (i = 1, 2) such that, for n ≥ 1,

Cn = C1
n ∪ C2

n , C1
n ∩C2

n = ∅, λ(∆C1
n) = λ(∆C2

n) = c .

For i ∈ {1, 2} let Ci be the limit set of (Ci
n). Without loss of generality we may

assume that λ(A ∩ C2) = ∞. Then there is a standard sequence with constant
increments (Fn) and limit F such that λ(F1) = c and F ⊂ A ∩ C2. By the first
part of the proof we consecutively conclude that ξ(Fn)/λ(Fn), ξ(C

1
n)/λ(C

1
n), and

ξ(C2
n)/λ(C

2
n) converge to X P-almost surely and in L1(P). It follows that

ξ(Cn)

λ(Cn)
=

1

2

(

ξ(C1
n)

λ(C1
n)

+
ξ(C2

n)

λ(C2
n)

)

→ X P-a.s. and in L1(P) .

Finally we find that ξ(Bn)/λ(Bn) → X P-almost surely and in L1(P) by Lemma
3.12 (ii) and (iii). This shows statement (ii).

In order to prove (iii) first note that for any D ∈ B(R+) with λ(D) < ∞ we
may choose a standard sequence with constant increments (En) such that E1 = D.
Applying Lemma 3.13 (ii) to (En) gives ξ(D) = 0 P-almost surely on {X = 0}.
Now define η as in (3.1). It remains to show that η is exchangeable under Q.
Let d ∈ (0,∞), m ≥ 1, and (Bj)1≤j≤m disjoint measurable sets with λ(Bj) = d.
Define B =

⋃m
j=1 Bj . We may choose a standard sequence (Cn) with constant

increments and limit in R+\B such that λ(C1) = d. Statement (ii) implies that
ξ(Cn)/λ(Cn) → X P-almost surely and in L1(P). Applying Lemma 3.13 to the
sequence (Cn) and sets (Bj)1≤j≤m , we obtain that, under Q,

(

η(B1), . . . , η(Bm)
) d
=
(

η(∆C1), . . . , η(∆Cm)
)

.

Now let π ∈ Perm(m). Deriving the same relation for the permuted sets, we get,
under Q,

(

η(B1), . . . , η(Bm)
) d
=
(

η
(

Bπ(1)

)

, . . . , η
(

Bπ(m)

))

.

By Kallenberg (1983), Lemma 9.0, this shows that η is exchangeable under Q. �

Example 3.15. In Example 3.4 let S = R+ . Since ξ satisfies the conditions of
Theorem 3.14 (ii) (see Examples 3.7 and 3.10), it follows that ξ(Bn)/λ(Bn) → X
P-almost surely and in L1(P) for each standard sequence (Bn)n≥1 .

Note that if X in Theorem 3.14 (ii) is almost surely constant, then ξ is ex-
changeable under P, similarly to Molchanov et al. (2014), Corollary 24, for random
sequences. For easier comparison with existing results we state a variant of Theo-
rem 3.14 for exchangeable random measures.

Theorem 3.16. Let ξ be an exchangeable random measure on R+ .
(i) For each ξ-integrable standard sequence (An)n≥1 there exists a random vari-

able X such that ξ(An)/λ(An) → X almost surely and in L1 as n → ∞.
(ii) Assume that there is C ∈ B(R+) with λ(C) ∈ (0,∞) and E ξ(C) < ∞.

Then the limit in (i) is unique for all standard sequences.
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Proof : Statement (i) is a consequence of de Finetti’s theorem, see e.g. Kallenberg
(2005), Theorem 1.1. Under the conditions of (ii) E ξ is σ-finite and each standard
sequence is ξ-integrable. Clearly there exists a standard sequence (An)n≥1 with
unit increments and limit A such that λ(R+ \ A) = ∞. By (i) there exists a
random variable X such that ξ(An)/λ(An) → X almost surely and in L1. Now let
(Bn)n≥1 be another standard sequence, say with limit B. We may assume that
(Bn) has unit increments and that A∩B = ∅. The general case is then proven as in
Theorem 3.14. Define random sequences ξj = ξ(∆Aj) and ξ∗j = ξ(∆Bj) for j ≥ 1,

and g(x) = lim supn→∞ n−1
∑n

j=1 xj for x ∈ R
∞

+ . By the exchangeability of ξ

(ξ1 , . . . , ξm , ξm+1 , . . .)
d
= (ξ∗1 , . . . , ξ

∗
m , ξm+1 , ξm+2 , . . .) ,

for m ≥ 1, and consequently
(

ξ1 , . . . , ξm , g(ξ)
) d

=
(

ξ∗1 , . . . , ξ
∗
m , g(ξ∗1 , . . . , ξ

∗
m , ξm+1 , ξm+2 , . . .)

)

=
(

ξ∗1 , . . . , ξ
∗
m , g(ξ)

)

a.s.

It follows that (ξ, g(ξ))
d
= (ξ∗, g(ξ)). Now Kallenberg (2002), Corollary 6.11, implies

that g(ξ) = g(ξ∗) almost surely. �

By Theorem 3.16 any exchangeable random measure ξ on R+ with E ξ([0, 1])<∞
satisfies the ergodic theorem with unique limit. A similar result follows from Nguyen
and Zessin (1979). For ξ is clearly stationary, cf. Kallenberg (2002), p. 189. Hence
the ergodic theorem Kallenberg (2002), Corollary 10.19, implies that ξ(An)/λ(An)
→ X almost surely and in L1 as n → ∞ for a certain subclass of standard sequences,
namely all sequences of increasing bounded convex Borel sets (An)n≥1 such that
the inner radius r(An) → ∞.
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