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Abstract. We consider a single-cell network of random transmitters and fixed re-
lays in a bounded domain of Euclidean space. The transmitters arrive over time
and select one relay according to a spatially inhomogeneous preference kernel. Once
a transmitter is connected to a relay, the connection remains and the relay is oc-
cupied. If an occupied relay is selected by another transmitters with later arrival
time, this transmitter becomes frustrated. We derive a large deviation principle for
the space-time evolution of frustrated transmitters in the high-density regime.

1. Introduction and main results

We consider a single-cell communication network of random transmitters and
fixed relays. Every transmitter tries to send data to a central entity via one relay
according to a spatially dependent preference function. Each relay can only serve
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one transmitter and the transmitters are competing for this shared capacity. In
particular, a group of transmitters might not be successful in finding relays to
release their data to and therefore become frustrated. We will assume that the start
of the data transmission is time dependent so that the set of frustrated transmitters
gradually increases over time. We present a large deviation principle (LDP) for the
measure-valued process of frustrated transmitters when their number increases.

The motivation for this work is to derive the LDP for a capacity-constrained
network embedded in the Euclidean space. So far in the literature, there have
been two separate approaches. On the one hand, considerable work has been done
to understand the large deviation behavior of sophisticated capacity-constrained
networks in a mean-field setting, see for example Graham and Méléard (1997b,a).
On the other hand, driven by recent developments in wireless networks, from an
engineering perspective, there has been a surge in research activities to develop a
fundamental understanding of spatial effects in models that are based on stochastic
geometry Bethanabhotla et al. (2016); Sankararaman and Baccelli (2017). In the
present paper, we analyze a simple model of a spatial relay network which is to
be seen as a first step into the realm of space-time LDPs for capacity-constrained
networks.

More specifically, consider fixed relays at locations Y λ = (yj)1≤j≤nλ
in a compact

window W ⊂ R
d with boundaries of vanishing Lebesgue measure. We investigate

the high-intensity regime and thus assume that the empirical distribution

lλ = λ−1
∑

yj∈Y λ

δyj

converges weakly, as λ ↑ ∞, to some probability measure µR on W . Further there
will be transmitters distributed according to a Poisson point process Xλ in W .
Its intensity measure is of the form λµs

T
with λ > 0 and µs

T
a finite measure on

W which is absolutely continuous w.r.t. the Lebesgue measure. Initially, all relays
are idle and the transmitters do not send data. For each transmitter Xi there is
a randomly distributed time Ti ∈ [0, tf ] and in (Ti, tf ] there will be constant data
transmission. The times Ti are assumed to be iid with distribution µt

T
which is

absolutely continuous w.r.t. the Lebesgue measure on [0, tf ].
The transmitters are assumed to have basic knowledge about the transmission

quality to each of the relays. More precisely, each transmitter Xi uses this infor-
mation to assign a spatial preference κ(Xi, yj) ∈ [0, 1] for the connection from Xi

to yj . At time Ti the user Xi tries to send its data to a relay yj chosen according
to the preference kernel

κ(yj |Xi) =
κ(Xi, yj)

∑

yk∈Y κ(Xi, yk)
, (1.1)

so that the selection probability is proportional to the spatial preference function
κ. In our model, data transmission fails if the chosen relay is already occupied by
some other transmitter that has established a connection earlier in time.

Since every transmitterXi keeps the connection until time tf , the time-dependent
status of its target relay Y (i)(t) ∈ {0, 1} is a step function, starting in 0 as being idle
and jumping to 1 at the time where it becomes busy. In particular Γλ = {Γλ

t }0≤t≤tf
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with

Γλ
t =

1

λ

∑

Xi∈X

1{Xi(t) = 1}δXi
(1.2)

denotes the normalized, time-dependent randommeasure of frustrated transmitters.
Here Xi is the (time invariant) position of a relay, but Xi(t) represents the time-
dependent status of frustration of the transmitter Xi. More precisely, Xi(t) equals
0 for t < Ti and jumps to 1 at t = Ti if the chosen relay is already occupied, i.e.
Y (i)(t−) = 1. Figure 1.1 provides a snapshot of the relay network after a finite
time.

Figure 1.1. Collection of transmitters (green and red) commu-
nicating with one central entity (black) via one relay (blue) each.
Red transmitters are frustrated due to low capacity at the asso-
ciated relay. Green transmitters are satisfied as they successfully
send data to a relay.

From the perspective of the network operator, it is critical to understand the
time- and space-dependent process of frustrated transmitters in large networks.
Once this understanding is achieved, it is possible to answer questions like:

What is the overall proportion of transmitters which are frustrated at a given point
in time? Are most of the frustrated transmitters located in a specific area?

Our main result provides a probabilistic description of the process of frustrated
transmitters in an asymptotic regime where the number of devices tends to infin-
ity. In particular, we perform a large deviation analysis for the empirical measure
of frustrated transmitters Γλ, where rates of convergence for unlikely events are
derived.

1.1. Large deviations without preference. Note that Γλ allows us to keep track of
transmitter locations but not on the chosen connections to specific relays. In partic-
ular, for general preference kernels, Γλ is not Markovian since the required spatial
information of occupied relays for a new transmitter request at time t cannot be
extracted from Γλ

t−. However, for κ ≡ 1, the Markovianity of Γλ can be preserved
since transmitters have no spatial preference in their choice of relays. Therefore,
we establish the case κ ≡ 1 first and use it as a basis for the general case.
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For this, we first note that the process of frustrated transmitters Γλ can be
recovered from the process of satisfied transmitters Bλ = {Bλ

t }0≤t≤tf . This process
is easier to describe as it coincides with the number of busy relays. More precisely,
when at time t = Ti a transmitter request from Xi arrives, the chosen relay is
already busy with probability given by the total proportion of idle relays and the
transmitter becomes frustrated. In this case, Bλ stays constant at t. Otherwise,
if the chosen relay is idle, the relay becomes busy and Bλ grows by λ−1δXi

at
t. As the number of satisfied transmitters equals the number of busy relays, this
has probability 1 − Bλ

t−(W )/rλ where rλ = |Y λ|/λ. Note that this random choice
of relays can be encoded by assigning a uniform random variable Ui ∈ [0, 1] to
transmitter Xi. If Ui ∈ [Bλ

t−(W )/rλ, 1] then Xi connects to an idle relay. The
encoding of the spatial relay configuration into a [0, 1]-valued threshold is illustrated
in Figure 1.2.

Figure 1.2. A transmitter (black) chooses a relay at random
(left), where the relay can either be already busy (red) or idle
(green). Without spatial preferences the relay information can be
reduced to a single threshold in [0, 1] (right).

More precisely, the evolution of the process of satisfied transmitters Bλ is given
as the solution of the time integral equation

Bt(dx) =

∫ t

0

∫ 1

Bs−(W )/rλ

Lλ(ds, du, dx) =

∫ t

0

Lλ(ds, [Bs−(W )/rλ, 1], dx), (1.3)

where

Lλ = λ−1
∑

Xi∈Xλ

δ(Ti,Ui,Xi)

is the empirical measure of transmitters. In particular, the Poisson point process
Xλ of transmitters carries marks for data request time and choice variable. Its
intensity measure λµT in V = [0, tf ]× [0, 1]×W is given by

µT = µt

T
⊗ U ⊗ µs

T

and U is the uniform distribution on [0, 1].
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In words, equation (1.3) describes the evolution of the empirical measure of satis-
fied transmitters. This measure gains mass λ−1 at position x if there is an additional
transmitter request from position x at time t and this transmitter picks a relay that
is idle at time t−. From Bλ the random measure of frustrated transmitters can be
recovered via

Γλ
t (dx) = Lλ([0, t], [0, 1], dx)−Bλ

t (dx).

Note that, as the number of devices tends to infinity, in the limit, the point
masses associated to individual devices disappear and the picture becomes continu-
ous. Thus, we need to introduce processes of frustrated transmitters for absolutely
continuous measures. More precisely, let ν be a finite measure in M = M(V )
where ν(dt, du, dx) has the interpretation of the intensity of transmitters at dx
with data-entry time dt and choice variable du. Then, for general measures and
normalized number of relays r, equation (1.3) has the form

βt(dx) =

∫ t

0

∫ 1

βs−(W )/r

ν(ds, du, dx) =

∫ t

0

ν(ds, [βs−(W )/r, 1], dx). (1.4)

For illustration purposes let us present two examples here.

(1) For the empirical measure ν = Lλ of the Poisson point processes Xλ and
r = rλ, the unique solution β for (1.4) is given by Bλ.

(2) For the a priori measure µT as a driver and normalized relay number r = 1,
the unique solution of (1.5) is given by βµs

T
where

βt = µs

T
(W )−1(1− e−µs

T
(W )µt

T
([0,t])).

Note that, instead of (1.4) with r = 1, it suffices to consider the scalar equation

βt =

∫ t

0

ν(ds, [βs−, 1],W ). (1.5)

Using Schauder’s fixed point theorem and monotonicity, we will show in Subsec-
tion 2.2 that existence and uniqueness of solutions of (1.5) for absolutely continuous
measures can be established. With the steps we have just described we arrive at
a solution which we will denote β(ν). Moreover, in the absolutely-continuous case,
the solution will be continuous and increasing in time.

From the solution β(ν) one can compute the normalized process of frustrated
transmitters γ(ν) via the formula

γt(ν)(dx) = ν([0, t], [0, 1], dx)− βt(ν)(dx). (1.6)

In the following theorem we show the LDP for Γλ in the setting where κ ≡ 1.
Recall the definition of the relative entropy

h(ν|µ) =

∫

log
dν

dµ
dν − ν(V ) + µ(V )

if ν ≪ µ with h(ν|µ) = ∞ otherwise. We consider Γλ as a measure-valued process
and work in the Skorohod space. That is, we consider

D = {f ∈ M(W )[0,tf ] : f is càdlàg w.r.t. the weak topology on M(W )}

equipped with the Skorohod topology, for details see for example Feng and Kurtz
(2006).
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Theorem 1.1. The family of measure-valued processes Γλ satisfies the LDP in D

with good rate function given by I(γ) = infν∈M: γ(ν)=γ h(ν|µT).

Note that a scalar variant of Theorem 1.1 appears in Boucheron et al. (2002,
Theorem 2.7) when transmitters are interpreted as bins and relays as balls. This
provides an application of this classical model from random discrete structures to
communication networks. However, the results in Boucheron et al. (2002) cannot be
used to prove Theorem 1.1, since the balls arrive at deterministic times, whereas in
our setting also the arrival times of the transmitters are random and not necessarily
homogeneous.

Moreover, in the scalar setting, it is possible to explicitly perform the minimiza-
tion only over the choice component. Then, the rate function of Theorem 1.1 can
be expressed as

I(γ) = inf
β

∫ tf

0

[

h(β̇t|1− βt) + h(γ̇t|βt)
]

dt.

Here, we assumed µt

T
(dt) = 1[0,tf ](t)dt for simplicity and the infimum is taken over

increasing and absolutely continuous paths. This form of the rate function coincides
with the one derived in Shwartz and Weiss (1995) in the setting of chemical-reaction
networks. The interpretation of our communication-network evolution is then that
the species of frustrated and satisfied transmitters are generated at rates βt respec-
tively 1−βt. Theorem 1.1 is not covered by the standard results in Léonard (1995);
Shwartz and Weiss (1995), since in our setting, these rates are not bounded away
from zero.

In the literature attempts have been made to relax the assumption of strictly
positive rates (Shwartz and Weiss, 2005). However, our model is also not covered
by the results in Shwartz and Weiss (2005), as the crucial interior cone property
is violated: Once all relays are occupied it is not possible to move back to a state
where satisfied users are generated at positive rate.

Finally, it is difficult to extend the interpretation of our network as a chemical
reaction if we take spatial resolution into account. Then, the space of species would
become uncountable since spatial locations have to be tracked. This is another
reason for our decision to rely on marked Poisson point processes and measure-
valued differential equations in Theorem 1.1.

1.2. Large deviations with preference. In this section, we deal with spatial pref-
erences of transmitters. As a consequence, the probability to send to a certain
location depends on the spatial location of transmitters and relays and not just
on the number of relays in the entire domain. In particular, the encoding into a
single [0, 1]-valued threshold falls short of capturing the information required for de-
scribing the evolution of frustrated transmitters. However, for a sufficiently smooth
preference kernel, for a given transmitter, the relay choice is approximately uniform
in a neighborhood around any given relay location. Therefore, as an approximation
we partition W into a finite number of patches. Then to each of these patches we
associate a separate [0, 1]-valued threshold describing the approximate proportion
of busy relays in that patch. This encoding is illustrated in Figure 1.3.

Here, we assume µR to be absolutely continuous w.r.t. the Lebesgue measure.
The spatial preference function may be discontinuous and non-positive, but for
sufficiently high densities from any transmitter location it should be possible to
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Figure 1.3. A transmitter (black) chooses a relay location at a
coarse scale according to a spatial preference function (left). At
a fine scale the configuration of busy relays can be encoded in a
[0, 1]-valued threshold as in the setting of flat preference kernels
(right).

connect to some relay location. More precisely, we assume that κ is jointly con-
tinuous µs

T
⊗ µR-almost everywhere and for all x ∈ W there exists y ∈ W such

that κ(x, y) > 0, y ∈ supp(µR) and (x, y) is a continuity point of κ. Recall that a
transmitter at location x ∈ W chooses a relay at location dy with probability

κlλ(dy|x) =
κ(x, y)

∫

κ(x, z)lλ(dz)
lλ(dy) (1.7)

where, by our assumption, for sufficiently large λ the denominator is bounded away
from 0 uniformly in x.

Next we consider the interplay between the spatial location of the relays and how
the spatial preferences of the transmitters evolve in time. Note that the process
of transmitter requests to a relay at location dy is a Poisson point process Zλ on
V ′ = V ×W with intensity measure

µ(lλ)(dt, du, dx, dy) = κlλ(dy|x)µT(dt, du, dx).

As in Theorem 1.1 the LDP will be obtained by making use of the observation
that the measure of frustrated transmitters Γλ can be interpreted as a functional
of the empirical measure Lλ ∈ M′ = M(V ′) associated to Zλ. In particular,
in the large deviations it is possible for the process to distort the new a priori
measure µ(µR) into an absolutely-continuous transmitter-request distribution n.
More precisely, we generalize (1.5) into the measure-valued time integral equation

bt(dx, dy) =

∫ t

0

∫ 1

dbs−(W,·)
dνR

(y)

n(ds, du, dx, dy) =

∫ t

0

n(ds, [dbs−(W,·)
dνR

(y), 1], dx, dy)

(1.8)

where we allow the relay measure νR also to be general in order to cover both,
empirical measures as well as absolutely-continuous measures. For example,
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(1) if the driving measure is given by (Lλ, lλ), then (1.8) has a unique solution
b(dx, dy) and, for κ ≡ 1, Bλ(dx) = b(dx,W ) in distribution.

(2) if n = µ(µR), then a solution is given by

bt(dx, dy) = (1− e−µt

T
([0,t])

∫
κ(y|z)µs

T
(dz))

κ(y|x)µs

T
(dx)

∫

κ(y|z)µs

T
(dz)

µR(dy).

Note that, for general driving measures (n, νR), existence of solutions for equa-
tion (1.8) is unclear. However, existence of solutions can be established if we assume
n to be of the form

n(dt, du, dx, dy) = ny(dt, du, dx)νR(dy)

where (ny)y∈W is a transition kernel W → M such that every ny(dt, du, dx) is
absolutely continuous w.r.t. µT. Indeed, then a solution of (1.8) is given by

b(dx, dy) = β(ny)(dx)νR(dy) (1.9)

and will be denoted by b(n, νR).

If b(n, νR) is well-defined, we can compute the process of frustrated transmitters
γ(n, νR) via the formula

γt(n, νR)(dx) = n([0, t], [0, 1], dx,W )− bt(n, νR)(dx,W )

and in particular Γλ = γ(Lλ, lλ) equals (1.2) in distribution. Now, we present the
main result of this paper.

Theorem 1.2. The family of measure-valued processes Γλ satisfies the LDP in D

with good rate function given by I(γ) = inf
n∈M′: γ(n,µR)=γ h(n|µ(µR)).

Note that at first sight, Γλ is an object that requires knowledge on how many
transmitters choose a relay and not just the number of transmitters in a given area
that choose relays in another given area. Therefore, it may come as a surprise that
we can state Theorem 1.2 as a measure-valued LDP and not as a LDP on the level of
spatial configurations. To reconcile Theorem 1.2 with the reader’s intuition, we note
that after approximation by flat preference functions, we deal with an independent
collection of processes of the type considered in Theorem 1.1. This allows us to
aggregate the information about an entire local configuration of occupied relays
into a single number.

The rest of the manuscript is organized as follows. Sections 2 and 4 provide
high-level overviews for the proofs of Theorems 1.1 and 1.2, respectively. Detailed
proofs for all supporting results can be found in Sections 3 and 5.

2. Proof of Theorem 1.1

The idea for the proof of Theorem 1.1 is to use a Sanov-type result for the
transmitter distribution ν and apply the contraction principle for solutions of the
associated differential equation (1.5). The main ingredient in this approach is then
the continuity of solutions at user distributions with finite entropy. The theory
of ODE provides us with conditions under which continuity of solutions w.r.t. pa-
rameters can be inferred. Unfortunately, these results mostly work under Lipschitz
assumptions which are stronger than the finite entropy bounds provided in our set-
ting. However, we construct a two-step Picard approximation that is tailor-made to
provide the right balance between two opposing constraints: It is simple enough to
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be continuous with respect to the driving measure and at the same sufficiently close
to the true solution to satisfy uniform approximation properties. This allows us to
employ the LDP tool of exponential approximations Dembo and Zeitouni (1998,
Definition 4.2.14) to complete the proof of Theorem 1.1.

2.1. Markovian structure of Γλ. In this subsection we show that the solutions to
equation (1.3), modeled using the random variable Uj , is equal in distribution to

the process of frustrated users as defined in (1.2). To make this precise, let Γ̃λ

denote the unique solution of (1.3) for the initial condition Γ̃λ
0 = 0.

Proposition 2.1. The processes Γλ and Γ̃λ have the same distribution.

Proof : Let us fix a realization of Nλ = |Xλ| many transmitter locations (xi)1≤i≤Nλ

together with their data transmission times (ti)1≤i≤Nλ . After that, the measure-

valued process Γλ = (Γλ(xi))1≤i≤Nλ is discrete-time and vector-valued. Note that,
this process only depends on the random selection of a relay for each transmitter
which is done with probability 1/|Y λ|. For the process Γ̃λ the randomness comes
from the uniform distribution of selection variables U = (Ui)1≤i≤Nλ .

For simplicity we assume the data transmission times to be ordered. Then, both
Γλ = {Γλ

ti} and Γ̃λ = {Γ̃λ
ti} are time-discrete Markov chains in the finite state

space {0, λ−1}N
λ

. Moreover, at a given time ti both, Γ
λ and Γ̃λ can only change

in coordinate xi. For the transition probability of Γλ we note that if at time ti−,
k relays are busy, then at time ti, xi becomes frustrated with probability k/|Y λ|.
Accordingly, with probability 1 − k/|Y λ| at time ti, xi becomes satisfied and the

process stays unchanged. As for Γ̃λ if at time ti−, k relays are busy, then xi becomes
frustrated if Ui ∈ [0, k/|Y λ|]. Hence the transition probabilities coincide. �

2.2. Existence and uniqueness of solutions. For absolutely continuous measures
Mac = {ν ∈ M : ν ≪ µT} the existence of solutions to (1.5) is non-trivial
and will be dealt with in this section. More precisely, let L = {f ∈ [0, 1][0,tf ] :
f increasing and f(0) = 0}, then for ν ∈ Mac we define the integral operator
Tν : L → L where

Tν : β 7→
(

∫ t

0

ν(ds, [βs, 1],W )
)

t∈[0,tf ]
. (2.1)

As will be shown below, Tν is continuous so that existence of solutions can be
established via the Schauder-Tychonoff fixed point theorem. The uniqueness is a
consequence of a monotonicity property of Tν .

Proposition 2.2. For all ν ∈ Mac, there exists exactly one β ∈ L such that
Tν(β) = β.

Note that for the driving measure ν = Lλ, existence and uniqueness of solutions
for (1.5) is trivial. In both cases, where ν = Lλ or ν ∈ Mac, using (1.4), we obtain a
measure-valued solution which we denote by β(ν). This solution is a step-function
with step-height λ−1 if ν = Lλ and continuous if ν ∈ Mac.

2.3. Approximation scheme for the solution. In this subsection, we consider time-
discretized two-step Picard approximations which will turn out to be convergent in
the supremum norm. Additionally, the resulting trajectories exhibit good continuity
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properties w.r.t. driving measures. Let us start by providing precise definitions of
the approximations.

Let δ > 0, ν ∈ M and consider the discretization of [0, tf ] into tf/δ disjoint
segments of length δ, where we assume tf/δ to be an integer. To define the ap-
proximation, we proceed recursively and start by putting βδ

0(ν)(dx) = 0. Once
βδ
(n−1)δ(ν)(dx) is available, we define the locally constant function

β↑,δ
t (ν) = βδ

(n−1)δ(ν)(W ) + ν
(

((n− 1)δ, nδ]× [0, 1]×W
)

for t ∈ ((n− 1)δ, nδ]. Then, for t ∈ ((n− 1)δ, nδ] we put

βδ
t (ν)(dx) = βδ

(n−1)δ(ν)(dx) + ν
(

((n− 1)δ, t], [β↑,δ
nδ (ν), 1], dx

)

.

We can think of β↑,δ(ν) as a one-step Picard iteration of the zero function. Similarly,
βδ(ν) corresponds to the two-step Picard iteration. The approximating process of
frustrated transmitters is now defined as

γδ
t (ν)(dx) = ν([0, t], [0, 1], dx)− βδ

t (ν)(dx).

Next we show that γδ(ν) approximates γ(ν) sufficiently well to transfer the LDP
from γδ(ν) to γ(ν). More precisely, we want to apply the exponential approximation
technique of Eichelsbacher and Schmock (1998, Theorem 1.13) and therefore have
to show three conditions. First, we show an exponential approximation property
on the Banach space of trajectories of finite signed measures equipped with the
supremum norm ‖ · ‖ where the supremum is taken over all times and measurable
sets. The statement of this auxiliary result makes use of the empirical measures Lλ

introduced below (1.3).

Proposition 2.3. γδ(Lλ) is an ‖ · ‖-exponentially good approximation of γ(Lλ).

Second, we show the uniform approximation property on measures with bounded
entropy.

Proposition 2.4. For all α ≥ 0, lim supδ↓0 supν:h(ν|µT)≤α ‖γδ(ν)− γ(ν)‖ = 0.

Third, we show continuity of the approximation w.r.t. the driving measure in
the τ -topology, i.e., the topology generated by evaluations on bounded measurable
functions.

Proposition 2.5. Let t ∈ [0, tf ], δ > 0 and A ⊂ W measurable, then at any
ν ∈ Mac, the evaluations M → [0,∞) given by ν 7→ γδ

t (ν)(A) are continuous
w.r.t. the τ-topology.

In particular, Propositions 2.4 and 2.5 imply that for all α > 0, on ν : h(ν|µT) ≤
α, the map ν 7→ γ(ν) is continuous in the τ -topology.

Feeding the exponential approximation machinery with the Sanov-type LDP, we
obtain the following multivariate LDP.

Proposition 2.6. Let 0 ≤ t1 ≤ · · · ≤ tk ≤ tf , then the family of random measures
{Γλ

ti(dx)}i satisfies the LDP in the τ-topology with good rate function I((γti)i) =
infν∈M: (γti

(ν))i=(γti
)i h(ν|µT).
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2.4. Topological lifting and proof of Theorem 1.1. In this section we first arrive
at the continuous-path LDP using the Dawson-Gärtner Theorem (Dembo and
Zeitouni, 1998, Theorem 4.6.1). We work in the product topology in M(W )[0,tf ],
i.e., the coarsest topology such that the evaluations γ 7→ γt are continuous in the
τ -topology. The topological lifting is then done using exponential tightness.

Proposition 2.7. The family of measure-valued processes Γλ satisfies the LDP in
the product topology. The good rate function is given by I(γ) = inf

ν∈M: γ(ν)=γ
h(ν|µT).

Proof of Theorem 1.1: First note that Proposition 2.7, by contraction, implies the
same LDP where the τ -topology is replaced by the weak topology. Then, we may
apply Dembo and Zeitouni (1998, Corollary 4.2.6) to reduce the proof of Theo-
rem 1.1 to the exponential tightness of Γλ in the Skorohod topology. For this we
use a criterion from Feng and Kurtz (2006, Theorem 4.1) and verify its conditions:

(1) Γλ
t is exponentially tight in M(W ) for all t ∈ [0, tf ] and

(2) lim supδ↓0 lim supλ↑∞ λ−1 logP(w′
δ(Γ

λ) > ε) = −∞.

Here the modulus of continuity w′ is defined as

w′
δ(Γ

λ) = inf
0=t0<···<tk=tf : min1≤i≤k |ti−1−ti|>δ

max
1≤i≤k

sup
s,t∈[ti−1,ti)

dw(Γ
λ
s ,Γ

λ
t )

and with F ε denoting the ε-halo of a closed set F ⊂ W ,

dw(ν, ν
′) = inf{ε > 0 : ν(F ) ≤ ν′(F ε)+ε, ν′(F ) ≤ ν(F ε)+ε for all closed F ⊂ W}

is the Prokhorov metric on M(W ) which makes (M(W ), dw) a Polish space, see
Daley and Vere-Jones (1988, Proposition A2.5.III.).

As for (1) note that Kα = {ν ∈ M(W ) : ν(W ) ≤ α} is compact in the weak
topology for any α > 0. Using the Poisson concentration inequality (Boucheron
et al., 2013, Chapter 2.2),

P(Γλ
t ∈ Kc

α) = P(Γλ
t (W ) > α) ≤ P(Lλ(V ) > α) ≤ exp(−λh(α|µT(V )),

where h(x|y) = x log(x/y)−x+ y. This shows the exponential tightness at every t.

For the exponential bound on the modulus of continuity (2) first note that
dw(Γ

λ
s ,Γ

λ
t ) ≤ sup1≤i≤tf/δ Lλ([(i − 1)δ, iδ] × [0, 1] ×W ) = ρ. Indeed, for all closed

F ⊂ W and iδ ≤ s ≤ t ≤ (i+ 1)δ, it suffices to show that

Γλ
t (F ) ≤ Γλ

s (F
ρ) + ρ (2.2)

since the other inequality Γλ
s (F ) ≤ Γλ

t (F
ρ) + ρ is trivially satisfied for all ρ > 0.

We can rewrite (2.2) equivalently as,

Lλ([s, t]× [0, 1]× F )

≤ [Bλ
t (F )−Bλ

s (F )] + [Lλ([0, s]× [0, 1]× F ρ \ F )−Bλ
s (F

ρ \ F )] + ρ

where the first two summands on the r.h.s. are nonnegative. By our definition of
ρ, we arrive at the desired bound. Consequently, using the Poisson concentration
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inequality again,

lim sup
λ↑∞

λ−1 logP(w′
δ(Γ

λ) > ε)

≤ lim sup
λ↑∞

λ−1 logP( sup
1≤i≤tf/δ

Lλ([(i − 1)δ, iδ]× [0, 1]×W ) > ε)

≤ lim sup
λ↑∞

λ−1 log
∑

1≤i≤tf/δ

P(Lλ([(i − 1)δ, iδ]× [0, 1]×W ) > ε)

≤ max
1≤i≤tf/δ

−h(ε|µs

T(W )µt

T([(i − 1)δ, iδ]))

= −h(ε|µs

T(W ) max
1≤i≤tf/δ

µt

T([(i − 1)δ, iδ])).

Since µt

T
is assumed to be absolutely-continuous w.r.t. the Lebesgue measure, this

tends to minus infinity as δ tends to zero, as required. �

3. Proofs of supporting results for Theorem 1.1

In this section, we provide proofs for the Propositions 2.2-2.7. To ease notation
we will write in the following ∆δ(i) = ((i − 1)δ, iδ]. Let us start by stating three
results that we will use multiple times in the sequel.

Lemma 3.1. Let B(W ) = {A ⊂ W : A is Borel measurable} then the following
holds.

(1) Let ν ∈ Mac, then

lim
ε↓0

sup
A⊂B(W ): µT(A)<ε

ν(A) = 0.

(2) Let α > 0, then

lim
ε↓0

sup
A⊂B(W ): µT(A)<ε
ν∈M:h(ν|µT)<α

ν(A) = 0.

(3) Let δ > 0 then, for a random variable Nελ which is Poisson distributed
with parameter ελ

lim
ε↓0

lim sup
λ↑∞

λ−1 log P(Nελ > λδ) = −∞.

Proof : Part 1 rephrases the definition of absolute continuity. Part 2 can be shown
using Jensen’s inequality. Part 3 is a consequence of the Poisson concentration
inequality Boucheron et al. (2013, Chapter 2.2). �

3.1. Existence and uniqueness of solutions. Let us start by establishing continuity
of the integral operator.

Lemma 3.2. Let ν ∈ Mac, then the map Tν : L → L is continuous in the product
topology.

Proof : We need to show that the map β 7→ Tν(β)t is continuous for every t ∈ [0, tf ].
Observe that for any β′ ∈ L and δ > 0,

|Tν(β
′)t − Tν(β)t| ≤

t/δ
∑

i=1

ν
(

∆δ(i)× [β
′

(i−1)δ ∧ β(i−1)δ, β
′

iδ ∨ βiδ]×W
)

.
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For ν = µT the r.h.s. is bounded from above by

µs

T
(W ) sup

1≤i≤n
µt

T
(∆δ(i))

n
∑

i=1

(β
′

iδ ∨ βiδ − β
′

(i−1)δ ∧ β(i−1)δ) (3.1)

and
t/δ
∑

i=1

(β
′

iδ ∨ βiδ − β
′

(i−1)δ ∧ β(i−1)δ) ≤ 1 + 2

t/δ
∑

i=1

|β
′

iδ − βiδ|.

Now, using Lemma 3.1 part 1, since µt

T
is absolutely continuous w.r.t. the Lebesgue

measure on [0, tf ], for any ε > 0, there exists δ > 0 such that sup1≤i≤t/δ µ
t

T
(∆δ(i)) <

ε. Secondly, for any fixed δ, by product-convergence, there exists a neighborhood

of β such that if β′ is in that neighborhood,
∑t/δ

i=1 |β
′

iδ − βiδ| ≤ 1/2. In particular,
(3.1) is bounded from above by 2εµs

T
(W ) and can be made arbitrarily small. Since

ν ≪ µT by assumption, using again Lemma 3.1 part 1, this transfers to ν and the
proof is finished. �

Using the above continuity, now existence and uniqueness follow from the
Schauder-Tychonoff fixed-point theorem and monotonicity.

Proof of Proposition 2.2: Let us start by showing existence. Note that the
Schauder-Tychonoff fixed-point theorem, see Granas and Dugundji (2003, Theorem
II.7.1.10), implies existence if Tν : L → L is continuous and L is a compact, convex
subset of a locally convex linear topological space. For this first note that R

[0,tf ]

equipped with the product topology is a locally convex topological vector space.
Further, note that L is closed inside the compact subset [0, 1][0,tf ] and thereby com-
pact. Since a convex combination of increasing functions is also increasing, L is
also convex. By Lemma 3.2, the mapping β 7→ Tν(β) is continuous, which implies
existence.

As for the uniqueness, we proceed by contradiction, assuming that there exist
two solutions β, β′ ∈ L of (1.5) and a point in time t1 ∈ [0, tf ] satisfying βt1 > β′

t1 .
Then, we let t0 ∈ [0, t1) denote the last point before t1, where βt0 = β′

t0 . In
particular,

βt1 = βt0 +

∫

(t0,t1]

ν(ds, [βs, 1]) ≤ β′
t0 +

∫

(t0,t1]

ν(ds, [β′
s, 1]) = β′

t1 ,

which gives the desired contradiction. �

3.2. Exponential approximation property of the approximation scheme. Let us first
derive some results on dominance and closeness of the approximating trajectories
w.r.t. the original process. We write ∆ for the symmetric difference between sets.

Lemma 3.3. Let δ > 0 and ν ∈ Mac or ν = Lλ. Then, βδ(ν)(W ) ≤ β(ν)(W ).

Proof : We will abbreviate β(ν)(W ) = β(ν) and analogously for βδ. It suffices to
show that βδ

t (ν) ≤ βt(ν) holds for all t ∈ ∆δ(k) and k ∈ {0, . . . , tf/δ}. We proceed
by induction over k, the case k = 0 being trivial. Suppose that βδ

kδ(ν) ≤ βkδ(ν). In
order to derive a contradiction, we assume that βt(ν) < βδ

t (ν) for some t ∈ ∆δ(k+1).
If ν ∈ Mac, there exists a largest time t1 ∈ [kδ, t) such that βt1(ν) = βδ

t1(ν). In
particular, for every s ∈ (t1, t)

β↑,δ
s (ν) ≥ βδ

s (ν) ≥ βs(ν)
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and as required

βδ
t (ν) = βδ

t1(ν) +

∫

(t1,t]

ν(ds, [β↑,δ
s (ν), 1],W ) ≤ βt1(ν) +

∫

(t1,t]

ν(ds, [βs(ν), 1],W )

= βt(ν).

If ν = Lλ, there exists a largest time t1 ∈ [kδ, t) such that βδ
t1(ν) = βt1(ν) and

βδ
t2(ν) > βt2(ν), where t2 is the next transmission time after t1 in Lλ. In particular,

βδ
t2(ν) = βδ

t1(ν) + ν({t2}, [β
↑,δ
t2 (ν), 1],W )

≤ βt1(ν) + ν({t2}, [βt2(ν), 1],W ) ≤ βt2(ν),

as required. �

The next lemma asserts an approximation property for scalar trajectories, uni-
form in time.

Lemma 3.4. Assume ν ∈ Mac or ν = Lλ, then, for all δ > 0,

‖βδ(ν)(W ) − β(ν)(W )‖ ≤ 2 sup
1≤i≤tf/δ

ν(∆δ(i)× [0, 1]×W ).

Proof : Again, we abbreviate β(ν)(W ) = β(ν) and analogously for βδ. Let ε =
sup1≤i≤tf/δ ν(∆δ(i)× [0, 1]×W ), then by Lemma 3.3 it suffices to show that

βt(ν) ≤ βδ
t (ν) + 2ε

holds for all t ∈ [0, tf ]. As before, we proceed by induction on the interval ∆δ(k)
containing t. If βδ

(k−1)δ(ν) + ε ≥ β(k−1)δ(ν), then

βt(ν) ≤ β(k−1)δ(ν)+ ν(((k− 1)δ, t]× [0, 1]×W )≤ (βδ
(k−1)δ(ν)+ ε)+ ε ≤ βδ

t (ν)+2ε.

Otherwise, if βδ
(k−1)δ(ν) + ε ≤ β(k−1)δ(ν), then

β↑,δ
kδ (ν) = βδ

(k−1)δ(ν) + ν(∆δ(k)× [0, 1]×W ) ≤ β(k−1)δ(ν).

Hence,

βt(ν) = β(k−1)δ(ν) +

∫ t

(k−1)δ

ν(ds, [βs−(ν), 1],W )

≤ β(k−1)δ(ν) + ν(((k − 1)δ, t]× [β↑,δ
kδ (ν), 1],W ) = β(k−1)δ(ν) + βδ

t (ν)− βδ
(k−1)δ(ν),

so that the assertion follows from the induction hypothesis. �

We denote in the sequel Iδt (ν) = [βt(ν)(W ) ∧ β↑,δ
t (ν), βt(ν)(W ) ∨ β↑,δ

t (ν)] and
note the following approximation property for measure-valued trajectories, uniform
in time and over measurable sets. For ν ∈ Mac or ν = Lλ and for all δ > 0,

‖βδ(ν)− β(ν)‖ ≤

∫ t

0

ν(ds, [βs−(ν), 1]∆[β↑,δ
s− (ν), 1],W ) ≤

∫ tf

0

ν(dt, Iδt−(ν),W ).

(3.2)

We show that in the setting of empirical measures, the inequality (3.2) gives rise
to a strong probabilistic bound on the ‖ · ‖-distance. First, we need an auxiliary
result on stochastic domination.
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Lemma 3.5. Let ε > 0 be arbitrary. Then, the random variable
∫ tf
0
Xλ(dt,

[Bλ
t−(W ) − ε,Bλ

t−(W ) + ε],W ) is stochastically dominated by a Poisson random
variable with parameter 2εµs

T
(W ).

Proof : The proof is based on the previsiblity of the time integral. More precisely,
let ρ ≥ 0 and recall that conditioned on |Xλ| = n the marks (Ui)1≤i≤n are iid.
Ordering Xλ by the time-index yields

P

(

∫ tf

0

Xλ(dt, [Bλ
t−(W )− ε,Bλ

t−(W ) + ε],W ) > ρ
∣

∣|Xλ| = n
)

= E

[

P(1{|Btn−1
(W )−Un|≤ε} +

n−1
∑

i=1

1{|Bti−1
(W )−Ui|≤ε} > ρ

∣

∣

∣
(Xλ

i )1≤i≤n−1

)
∣

∣

∣
|Xλ| = n

]

≤ P

(

1[0,2ε](Un) +

n−1
∑

i=1

1{|Bti−1
(W )− Ui| ≤ ε} > ρ

∣

∣

∣
|Xλ| = n

)

≤ P

(

n
∑

i=1

1[0,2ε](Ui) > ρ
∣

∣

∣
|Xλ| = n

)

.

In particular,

P

(

∫ tf

0

Xλ(dt, [Bλ
t−(W )− ε,Bλ

t−(W ) + ε],W ) > ρ
)

≤ P

(

|Xλ|
∑

i=1

1[0,2ε](Ui) > ρ
)

and by independent thinning,
∑|Xλ|

i=1 1[0,2ε](Ui) is a Poisson random variable with
the desired parameter. �

Note that, by the definition of γ and γδ, we have

γδ(ν)− γ(ν) = βδ(ν)− β(ν).

Therefore in the proofs of Proposition 2.3, 2.4 and 2.5, γ and γδ can be replaced
by β and βδ.

Proof of Proposition 2.3: Let ε > 0 be arbitrary. By the definition of exponential
good approximations (Eichelsbacher and Schmock, 1998, Definition 1.2), we need
to check that

lim sup
δ↓0

lim sup
λ↑0

λ−1 logP(‖Bλ − βδ(Lλ)‖ > ε) = −∞.

Using the bound (3.2), we have for all ε′ > 0 the uniform estimate

P(‖Bλ − βδ(Lλ)‖ > ε) ≤ P

(

∫ tf

0

Lλ(dt, I
δ
t−(Lλ),W ) > ε

)

≤ P

(

∫ tf

0

Lλ(dt, [B
λ
t−(W )− ε′, Bλ

t−(W ) + ε′],W ) > ε
)

+ P( sup
t∈[0,tf ]

|Iδt (Lλ)| > ε′).

(3.3)

For the first summand on the r.h.s. of (3.3) we can use Lemmas 3.5 and 3.1 part
3. For the second summand on the r.h.s. of (3.3), note that

P( sup
t∈[0,tf ]

|Iδt (Lλ)| > ε′)

≤ P(‖βδ(Lλ)(W )− β↑,δ(Lλ)‖ > ε′/2) + P(‖Bλ(W )− βδ(Lλ)(W )‖ > ε′/2).
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By definition, respectively by Lemma 3.4, we have

P(‖βδ(Lλ)(W )− β↑,δ(Lλ)‖ > ε′/2) ≤ P( sup
1≤i≤tf/δ

Lλ(∆δ(i)× [0, 1]×W ) > ε′/2)

P(‖Bλ(W )− βδ(Lλ)(W )‖ > ε′/2) ≤ P( sup
1≤i≤tf/δ

Lλ(∆δ(i)× [0, 1]×W ) > ε′/4).

Using again Lemma 3.1 part 3, the proof is finished. �

Proof of Proposition 2.4: By the bound (3.2) we have the estimate

‖β(ν)− βδ(ν)‖ ≤

∫ tf

0

ν(dt, Iδt (ν),W ).

Moreover, by Lemma 3.4 and the definition of β↑,δ,

sup
t∈[0,tf ]

|Iδt (ν)| ≤ 2 sup
1≤i≤tf/δ

ν(∆δ(i)× [0, 1]×W ).

It follows by Lemma 3.1 parts 1 and 2 that

lim sup
δ↓0

sup
t∈[0,tf ]

ν:h(ν|µT)≤α

|Iδt (ν)| = 0.

Consequently, for all ε > 0 and sufficiently small δ > 0,

lim sup
δ↓0

sup
ν:h(ν|µT)≤α

∫ tf

0

ν(dt, Iδt (ν),W )

≤ lim sup
ε↓0

sup
ν:h(ν|µT)≤α

∫ tf

0

ν(dt, [βt(ν)(W ) − ε, βt(ν)(W ) + ε],W ).

Another application of Lemma 3.1 parts 1 and 2 gives the result. �

Proof of Proposition 2.5: Assume ν′ ∈ M, ν ∈ Mac and consider |βδ
t (ν

′)(A) −
βδ
t (ν)(A)| for some t ∈ [0, tf ] and measurable A ⊂ W . Then for n ∈ {1, . . . , tf/δ}

such that t ∈ ∆δ(n) we have the upper bound

|βδ
t (ν

′)(A)− βδ
t (ν)(A)| ≤ |βδ

(n−1)δ(ν
′)(A)− βδ

(n−1)δ(ν)(A)|

+ |ν′(((n− 1)δ, t]× [β↑,δ
nδ (ν

′), 1]×A)− ν(((n− 1)δ, t]× [β↑,δ
nδ (ν), 1]×A)|.

Using the estimate

|βδ
iδ(ν

′)(A) − βδ
iδ(ν)(A)| ≤ |βδ

(i−1)δ(ν
′)(A)− βδ

(i−1)δ(ν)(A)|

+ |ν′(∆δ(i)× [β↑,δ
iδ (ν′), 1]×A)− ν(∆δ(i)× [β↑,δ

iδ (ν), 1]×A)|,

we can further bound |βδ
(n−1)δ(ν

′)(A)− βδ
(n−1)δ(ν)(A)| from above by

tf/δ
∑

i=1

|ν′(∆δ(i)× [β↑,δ
iδ (ν′), 1]×A)− ν(∆δ(i)× [β↑,δ

iδ (ν), 1]×A)|.

We will suppress the spatial component A in our notation for the rest of the proof.
Since the sum is finite, it suffices to consider any 1 ≤ i ≤ tf/δ and note that the case
where ((i − 1)δ, iδ] is replaced by ((n − 1)δ, t] works equivalently. We can further
estimate,

|ν′(∆δ(i)× [β↑,δ
iδ (ν′), 1])− ν(∆δ(i)× [β↑,δ

iδ (ν), 1])|

≤ ν′(∆δ(i)× [β↑,δ
iδ (ν′), 1]∆[β↑,δ

iδ (ν), 1]) + |(ν′ − ν)(∆δ(i)× [β↑,δ
iδ (ν), 1])|.
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Now, for ν′ sufficiently close to ν in the τ -topology, the second summand can be
made arbitrarily small. Let ε > 0, then it suffices to show that for all ν′ in a
neighborhood of ν we have

ν′(∆δ(i)× [β↑,δ
iδ (ν′), 1]∆[β↑,δ

iδ (ν), 1]) < ε.

For this, note that for all ε′, there exists a neighborhood of ν such that for all ν′

in that neighborhood

|β↑,δ
iδ (ν′)− β↑,δ

iδ (ν)| ≤

tf/δ
∑

j=1

|(ν′ − ν)(∆δ(j)× [0, 1])| < ε′.

For such ν′, we thus have

ν′(∆δ(i)× [β↑,δ
iδ (ν′), 1]∆[β↑,δ

iδ (ν), 1]) ≤ ν′(∆δ(i)× [β↑,δ
iδ (ν) − ε′, β↑,δ

iδ (ν) + ε′]).

(3.4)

Applying the definition of τ -convergence for the third time, for ν′ sufficiently close
to ν, the r.h.s. of (3.4) is close to

ν(∆δ(i)× [β↑,δ
iδ (ν) − ε′, β↑,δ

iδ (ν) + ε′])

up to an arbitrarily small error. Finally, applying Lemma 3.1 part 1, the proof is
finished. �

3.3. Sanov’s theorem and proof of Proposition 2.6. For a sequence of iid random
variables, Sanov’s theorem in the τ -topology is one of the cornerstones of large
deviations theory. Clearly, this result should remain valid when passing from the
iid to the Poisson setting. However, as it is not easy to find a reference, we provide a
detailed proof along the Gärtner-Ellis type argumentation presented in Dembo and
Zeitouni (1998, Section 6.2). In our presentation, we focus on the steps where there
is a substantial difference between the Poisson and the iid case. For the convenience
of the reader, we adapt the notation from Dembo and Zeitouni (1998, Section 6.2)
where possible.

Proposition 3.6. The random measures Lλ satisfy the LDP in the τ-topology with
good rate function given by

I(ν) = h(ν|µT).

Moreover, the levelsets of I are sequentially compact in the τ-topology.

Proof : The empirical measure Lλ is a random variable with values in the space
X = B(V )′, the algebraic dual of the space of all bounded linear functions on
V . We consider X as a vector space endowed with the topology generated by the
evaluations ν 7→ ν(ϕ), ϕ ∈ B(V ). With this topology, the topological dual X ∗ of X
is isomorphic to B(V ). Since the Laplace functional of a Poisson point process is
known in closed form, the limiting logarithmic moment generating function of Lλ

can be computed explicitly and is given by

Λ(ϕ) =

∫

[exp(ϕ(v)) − 1]µT(dv), ϕ ∈ B(V ).

Since for every ϕ1, . . . , ϕn ∈ B(V ) the function (t1, . . . , tn) 7→ Λ(
∑

i tiϕi) is every-
where differentiable, Dembo and Zeitouni (1998, Corollary 4.6.11) implies that Lλ

satisfies the LDP with good rate function given by the Legendre dual Λ∗ of Λ.
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It remains to show that Λ∗ = h(·|µT). By duality theory (Dembo and Zeitouni,
1998, Lemmas 4.5.8 and 6.2.16), it suffices to show that

Λ(ϕ) = sup
ν∈X

{ν(ϕ)− h(ν|µT)}. (3.5)

In order to show that Λ(ϕ) ≤ supν∈X {ν(ϕ) − h(ν|µT)} let νϕ be the measure
with density eϕ w.r.t. µT. Then, a quick computation shows that Λ(ϕ) = νϕ(ϕ) −
h(νϕ|µT). Conversely, the r.h.s. of (3.5) is equal to supν∈X ∗{Λ(ϕ)−h(ν|νϕ)} and the
non-negativity of the entropy concludes the identification. Sequential compactness
of h(·|µT) follows from Dembo and Zeitouni (1998, Lemma 6.2.16). �

Recall that Γλ is constructed from the solution of (1.4) with r = rλ. We will
sometimes make this dependence explicit by writing

γ(Lλ, rλ) = Γλ.

The results collected so far would allow us to derive the LDP similar to the one in
Proposition 2.6 where Γλ is replaced by γ(Lλ, 1). In order to conclude we thus need
a final result on the asymptotic contribution of rλ. Let us start with the following
dominance result, where we write

Bλ,r(dx) = Lλ([0, t], [0, 1], dx)− γ(Lλ, r)(dx).

Lemma 3.7. If s ≤ r, then

s
r (B

λ,r(W )− λ−1) ≤ Bλ,s(W ) ≤ Bλ,r(W ).

Proof : We prove both claims by induction on the arrival time. Hence, we assume
that the desired inequalities are valid up to time ti−1. Now, suppose that at time
ti we had

Bλ,s
ti (W ) > Bλ,r

ti (W ).

This is only possible if Bλ,s
ti−1

(W ) = Bλ,r
ti−1

(W ) and for the i’th choice variable Ui,

drawn at time ti, we have Ui ∈ [s−1Bλ,s
ti−1

(W ), r−1Bλ,r
ti−1

(W )]. But since r ≤ s, this
is impossible.

Similarly, assume that at time ti we had

s
r (B

λ,r
ti (W )− λ−1) > Bλ,s

ti (W ).

This is only possible if for the i’th choice variable Ui ∈ [r−1Bλ,r
ti−1

(W ), s−1Bλ,s
ti−1

(W )],

so that s
rB

λ,r
ti−1

(W ) ≤ Bλ,s
ti−1

(W ). But this implies that

s
r (B

λ,r
ti (W )− λ−1) = s

rB
λ,r
ti−1

(W ) ≤ Bλ,s
ti−1

(W ) = Bλ,s
ti (W ),

yielding the desired contradiction. �

Proposition 3.8. The families of measure-valued processes Γλ and γ(Lλ, 1) are
‖ · ‖-exponentially equivalent.

Proof : Let ε > 0 be arbitrary. By the definition of exponential equivalence (Dembo
and Zeitouni, 1998, Definition 4.2.14) and the identity ‖γ(Lλ, rλ) − γ(Lλ, 1)‖ =
‖Bλ,rλ −Bλ,1‖, we need to check that

lim sup
λ↑∞

λ−1 logP(‖Bλ,rλ −Bλ,1‖ > ε) = −∞.
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Arguing similarly as in the proof of Proposition 2.3, for any ρ > 0, the following
estimate holds,

P(‖Bλ,rλ−Bλ,1‖ > ε) ≤ P

(

∫ tf

0

Lλ(dt, [
B

λ,rλ
t− (W )

rλ
, 1]∆[Bλ,1

t− (W ), 1],W ) > ε
)

≤ P

(

∫ tf

0

Lλ(dt, [B
λ,1
t− (W )− ρ,Bλ,1

t− (W ) + ρ],W ) > ε
)

+ P(‖Bλ,1(W )− Bλ,rλ (W )
rλ

‖ > ρ).

(3.6)

For the first summand on the r.h.s. of (3.6) we can use Lemmas 3.5 and 3.1 part
3. For the second summand on the r.h.s. of (3.6) we can further estimate

P(‖Bλ,1(W )− Bλ,rλ (W )
rλ

‖ > ρ) ≤ P(‖Bλ,1(W )−Bλ,rλ(W )‖ > ρ/2)

+ P(Bλ,rλ
tf (W ) > ρrλ

2|1−rλ|
).

As for the second summand using Lemma 3.1 part 3 we arrive at the desired limit.
For the first summand, Lemma 3.7, implies that

P(‖Bλ,rλ(W )−Bλ,1(W )‖ > ρ/2) ≤ P(Bλ,1∨rλ
tf

(W ) > ρ/2−λ−1

|1−rλ|
),

so that the desired limit follows from Lemma 3.1 part 3. �

Proof of Proposition 2.6: We first use Proposition 3.8 to remove the λ-dependence
in the relays. To conclude the proof, we then apply the τ -topology version of the
exponential approximation machinery (Eichelsbacher and Schmock, 1998, Theorem
1.13). The conditions are satisfied according to the Propositions 2.3, 2.4, 2.5 and
3.6. �

3.4. Dawson-Gärtner for the temporal component. In order to derive the LDP for
the product topology in the time dimension, we use Proposition 2.6 and apply the
Dawson-Gärtner Theorem (Dembo and Zeitouni, 1998, Theorem 4.6.1).

Proof of Proposition 2.7: Consider the time-discretizations t = {(t0, . . . , tn) : 0 =
t0 < t1 < · · · < tn = tf} and the associated projections pt(γ) = (γti)ti∈t. The
family of all such projections J has a partial ordering induced by inclusion in
the family of discretizations t. Using Proposition 2.6 and Dembo and Zeitouni
(1998, Theorem 4.6.1), Γλ satisfies the LDP in the product topology with good
rate function given by

Ĩ(γ) = sup
t∈J

It(pt(γ)) where It((γti)ti∈t) = inf
ν∈M: (γti

(ν))ti∈t=(γti
)ti∈t

h(ν|µT).

The proof is finished once we show Ĩ(γ) = I(γ) with I(γ) = infν∈M: γ(ν)=γ h(ν|µT).

We first prove I ≥ Ĩ. Let ν′ ∈ M be such that γ(ν′) = γ. Then, in particular
(γti(ν

′))ti∈t = (γti)ti∈t for any time-discretization t and

inf
ν∈M: (γti

(ν))ti∈t=(γti
)ti∈t

h(ν|µT) ≤ h(ν′|µT),

so that Ĩ ≤ I.

For the other direction, I ≤ Ĩ, first assume that γ is discontinuous in the sense
that there exists a measurable set A ⊂ W and some td ∈ [0, tf ] such that there
exists a sequence tn → td with limn→∞ γtn(A) 6= γtd(A). Then, we show that
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Ĩ(γ) = ∞ which trivially implies the inequality. Indeed, consider the sequence of
time-partitions tn = {0 < tn < td < ttf}. Then, there exists a sequence νn ∈ M
such that

Ĩ(γ) ≥ lim sup
n↑∞

inf
ν∈M: (γti

(ν))ti∈tn=(γti
)ti∈tn

h(ν|µT)

≥ lim sup
n↑∞

inf
ν∈M: (γti

(ν)(A))ti∈tn=(γti
(A))ti∈tn

h(ν|µT) ≥ lim sup
n↑∞

h(νn|µT)− ε

and γt(νn)(A) = γt(A) for all t ∈ tn. Moreover, setting An = (tn, td]×[0, 1]×A then
limn↑∞ µT(An) = 0 since µt

T
is absolutely-continuous w.r.t. the Lebesgue measure.

On the other hand, by assumption, there exists an ε > 0 such that

ε < |γtn(A) − γtd(A)| = |γtn(νn)(A)− γtd(νn)(A)|

for sufficiently large n. Hence νn(An) > ε/2, so that Lemma 3.1 part 2 yields

Ĩ(γ) = ∞.

It remains to consider the setting, where γ is continuous and Ĩ(γ) < ∞. Let tδ
denote a finite partition of [0, tf ] with mesh size smaller than δ > 0. Then again,
there exists a sequence νδ ∈ M such that

Ĩ(γ) ≥ lim sup
δ↓0

inf
ν∈M: (γti

(ν))ti∈tδ
=(γti

)ti∈tδ

h(ν|µT) ≥ lim sup
δ↓0

h(νδ|µT)− ε

and γt(νδ) = γt for all t ∈ tδ. Since the levelsets of h(·|µT) are sequentially compact
in the τ -topology, there exists a τ -accumulation point ν∗ for (νδ)δ and by the time-
continuity of γ and the continuity of ν 7→ γ(ν) along sequences of measures with
uniformly bounded entropy, we have γt(ν∗) = γt for all t ∈ [0, tf ]. Moreover, by
the lower semicontinuity of h(·|µT) we have lim supδ↓0 h(νδ|µT) ≥ h(ν∗|µT) ≥ I(γ).
This finishes the proof. �

4. Proof of Theorem 1.2

For the proof of Theorem 1.2 we construct spatially approximating processes by
replacing κ with a carefully chosen step function. As for the time approximation
considered in the proof of Theorem 1.1, the strongly regularizing property of the
differential equation allows us to verify that again the approximation is uniformly
close and exponentially approximates the original process. This reveals a striking
methodological similarity between the space approximations appearing in the proof
of Theorem 1.2 and the time approximations considered in Section 2. To imple-
ment this program, we first need to overcome the technical obstacle that the step
functions still depend on the empirical relay process. In particular, Theorem 1.1
cannot yet be applied. A preliminary step is therefore to replace the relay process
by its limiting measure and show that the error made is exponentially small.

4.1. Exponential equivalence w.r.t. the relay process. Let W δ = {W1, . . . ,Wk} be a
partition of W into cubes of side length δ. If W is not a cube itself, then the Wi are
defined as the intersection of the smaller cubes with W . The idea is to partition
the transmitter process into independent processes, each process confined to choose
relays in a given spatial discretization. More precisely, recalling (1.7), let Zλ,i(νR)
denote the Poisson point process with intensity measure

µi(νR)(ds, du, dx) = κνR(Wi|x)µT(ds, du, dx)
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and let Li
λ(νR) be the associated empirical measure. In other words, Zλ,i(νR) is

the Poisson point process of transmitters choosing a relay in Wi. Now, consider an
associated augmented empirical measure given by

L
δ
λ(νR) =

k
∑

i=1

L
i
λ(νR)

where
L
i
λ(νR) = Li

λ(νR)⊗ 1Wi

νR
νR(Wi)

.

Note that L
δ
λ(νR)(dt, du, dx,Wi) = Li

λ(νR)(dt, du, dx), so that the total mass of
transmitters pointing into Wi is preserved. However, within Wi this mass is now
distributed according to νR conditioned on Wi. In particular, the kernel y 7→
L
δ
λ(νR)y appearing in (1.9) is constant on Wi, where it is given by νR(Wi)

−1Li
λ(νR).

Thus,
∫

Wi

γ(Lδ
λ(νR)y)νR(dy) =

∫

Wi

γ(νR(Wi)
−1Li

λ(νR))νR(dy) = γ(Li
λ(νR), νR(Wi)),

(4.1)

where we recall the more detailed notation γ(·, ·) from the paragraph preceding
Lemma 3.7. In the proof of Theorem 1.2 this identification is an essential ingredient
to establish a connection to the setting of Theorem 1.1.

As a first step, we show that it is possible to switch between νR = lλ and
νR = µR without changing substantially the approximating process of frustrated
transmitters.

Proposition 4.1. The family of measure-valued processes γ(Lδ
λ(lλ), lλ) is ‖ · ‖-

exponentially equivalent to γ(Lδ
λ(µR), µR).

Next we show that γ(Lδ
λ(lλ), lλ) is an exponentially good approximation to Γλ.

Proposition 4.2. The family of measure-valued processes γ(Lδ
λ(lλ), lλ) is an ‖ · ‖-

exponentially good approximations of Γλ.

Combining this with a uniform bound on the spatial discretization, we arrive at
the following multivariate LDP.

Proposition 4.3. Let 0 ≤ t1 ≤ · · · ≤ tk ≤ tf , then the family of random measures
{Γλ

ti(dx)}i satisfies the LDP in the τ-topology with good rate function

I((γti)i) = inf
n∈M′: (γti

(n,µR))i=(γti
)i
h(n|µ(µR)).

Proof of Theorem 1.2: Using a slight modification of the proof of Proposition 2.7,
Proposition 4.2 can be lifted to the same LDP w.r.t. continuous times in the product
topology. In order to finally establish the LDP in the Skorohod topology, the
exponential tightness arguments presented in the proof of Theorem 1.1 should be
applied verbatim. �

5. Proof of supporting results for Theorem 1.2

In the previous section, we announced our plan to prove Theorem 1.2 using the
machinery of exponential approximations. This technique requires us to couple the
original process and the approximations in a way such that the probability of a
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non-negligible deviation decays at super-exponential speed. In the present section,
we provide details on the coupling construction and show how it can be used to
derive Propositions 4.1, 4.2 and 4.3.

5.1. Total variation bounds for frustrated users. Since the technique of exponential
approximation hinges upon total-variation bounds, it is essential to understand the
regularity of frustrated users as a function of the input process. The following result
shows that the self-regulating feature of the defining ODE gives rise to excellent
continuity properties of the solutions.

We observe that the construction of the process Γλ from the Poisson point process
Zλ does not make use of the choice components associated with the Poisson points.
Indeed, given the knowledge about the precise locations of the chosen relays, there is
no longer any uncertainty on the evolution of frustrated transmitters. Hence, more
generally, to any finite counting measure ν on [0, tf ]×W × Y λ we can associate a
process of frustrated users γ(ν).

For instance, let Zλ,δ(νR) denote the Poisson point process [0, tf ]×W ×Y λ with
intensity measure λµδ(νR) whose density w.r.t. µt

T
⊗ µs

T
⊗ lλ is given by

κδ
νR(y|x) =

k
∑

i=1

1{y ∈ Wi}
κνR(Wi|x)

lλ(Wi)
.

Then, γ(λ−1Zλ,δ(νR)) coincides in distribution with γ(Lδ
λ(νR), lλ). Indeed, having

the identity (4.1) at our disposal, we can decompose into the spatial subdomains
Wi and then apply Proposition 2.1 in each of these domains separately.

In the following result, we show that γ is 2-Lipschitz on counting measures.

Lemma 5.1. Let ν, ν′ be finite simple counting measures on [0, tf ] × W × Y λ.
Then,

‖γ(ν)− γ(ν′)‖ ≤ 2‖ν − ν′‖.

Proof : In the proof, we identify ν and ν′ with their support and write ν∪ and ν∩

for their union and intersection, respectively. Then, by monotonicity,

γ(ν∩) ≤ min{γ(ν), γ(ν′)} ≤ max{γ(ν), γ(ν′)} ≤ γ(ν∪).

Hence, it suffices to show ‖γ(ν∪) − γ(ν∩)‖ ≤ ‖ν∪ − ν∩‖. We show this if ν∪ \ ν∩

consists of a singleton z0 = {(t0, x0, y0)}. The general statement is obtained via
induction. In fact, we can describe precisely how the space-time counting measures
γ(ν∪) and γ(ν∩) differ from each other. If y0 has already been occupied at time
t0, then γ(ν∪) and γ(ν∩) agree apart from an additional atom at z0. On the other
hand, if y0 has not already been occupied at time t0, then let z1 = (t1, x1, y1) denote
the first particle after time t0 that points to y0. If such a particle does not exist,
we leave z1 undefined. Again, γ(ν∪) and γ(ν∩) agree apart from at most one atom,
namely z1 if defined. �

5.2. Mixed exponential equivalence. Next, we consider intermediate approximations
which partially replace the limiting relay measure by the empirical measure. For
this, we introduce the mixed augmented empirical measures

L
δ
λ(µR, lλ) =

k
∑

i=1

Li
λ(µR)⊗ 1Wi

lλ
lλ(Wi)

.



Large deviations in capacity-constrained relay networks 609

Proposition 5.2. The families of measure-valued processes γ(Lδ
λ(µR, lλ), lλ) and

γ(Lδ
λ(µR), µR) are ‖ · ‖-exponentially equivalent.

Proof : We use the identification (4.1) to decompose γ(Lδ
λ(µR, lλ), lλ) and

γ(Lδ
λ(µR), µR) as

k
∑

i=1

γ
(

L
δ
λ(µR, lλ)(dt, du, dx,Wi), lλ(Wi)

)

and

k
∑

i=1

γ
(

L
δ
λ(µR)(dt, du, dx,Wi), µR(Wi)

)

,

respectively. Thus, it suffices to show the exponential equivalence for fixed i.
By definition, L

δ
λ(µR, lλ)(dt, du, dx,Wi) and L

δ
λ(µR)(dt, du, dx,Wi) are both em-

pirical measures associated with a Poisson point processes with intensity mea-
sure λκµR

(Wi|x)µT(ds, du, dx), so that an application of Lemma 3.8 concludes the
proof. �

5.3. Coupling construction. The coupling construction announced in the beginning
of this section is based on an expansion of the state space [0, tf ] × W × Y λ to
V ∗,λ = [0, tf ] × W × Y λ × R≥0. This allows Poisson point processes of various
inhomogeneous intensities to be coupled by considering points whose last coordinate
lies below a threshold function. More precisely, let Zλ,∗ denote a Poisson point
process on

V ∗,λ = [0, tf ]×W × Y λ × R≥0.

with intensity measure λµt

T
⊗ µλ ⊗ | · |, where | · | is the Lebesgue measure and

µλ = µs

T
⊗ lλ.

For any family of measurable functions fλ : W × Y λ → [0,∞) let

M(f) = {(x, y, v) : v ≤ f(x, y)}

denote the sub-level set of f . Then, projecting the intersection of Zλ,∗ with M(f)
onto [0, tf ]×W ×Y λ yields a Poisson point process Zλ(f) on [0, tf ]×W ×Y λ whose

intensity measure λµf
λ is characterized by

dµf
λ

d(µt

T
⊗ µλ)

= f.

For instance, the processes Zλ and Zλ,δ(νR) can be recovered by choosing the
threshold function to be κlλ(y|x) and κδ

νR(y|x), respectively.

For bounded measurable f, g : W×Y λ → [0,∞) we note that the signed counting
measure Zλ(f)− Zλ(g) can be decomposed as Zλ,+(f, g)− Zλ,−(f, g), where

Zλ,+(f, g) = {(Ti, Xi, Yi, Vi) ∈ Zλ,∗ : g(Xi, Yi) ≤ Vi ≤ f(Xi, Yi)}

and

Zλ,−(f, g) = {(Ti, Xi, Yi, Vi) ∈ Zλ,∗ : f(Xi, Yi) ≤ Vi ≤ g(Xi, Yi)}.

In particular, the ‖ · ‖ distance between Zλ(f) and Zλ(g) can be represented as

‖Zλ(f)− Zλ(g)‖ = max{Zλ,+(f, g)(V ∗,λ), Zλ,−(f, g)(V ∗,λ)}. (5.1)
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Thus, for arbitrary fλ, gλ : W × Y λ → [0,∞) the distance ‖Zλ(f) − Zλ(g)‖ is
stochastically bounded by a Poisson random variable with intensity

λ|fλ − gλ|µλ
= λ

∫

|fλ(x, y)− gλ(x, y)|µλ(dx, dy).

5.4. Proof of Propositions 4.1 and 4.2. We note that Lemma 5.1 and identity (5.1)
allow us to reduce the proof of Propositions 4.1 and 4.2 to an intensity bound.

Corollary 5.3. Let {fλ}λ>0 and {f δ
λ}δ,λ>0 denote families of non-negative L1(µλ)

functions satisfying

lim sup
δ↓0

lim sup
λ↑∞

|fλ − f δ
λ|µλ

= 0.

Then γ(Zλ(f δ
λ)) are ‖ · ‖-exponentially good approximations of γ(Zλ(fλ)).

Proof : Let ε > 0 be arbitrary. First, by Lemma 5.1, it suffices to provide suitable
bounds on P(‖Zλ(fλ)−Zλ(f δ

λ)‖ > ε). Now, the identification (5.1) transforms the
distance between Zλ(fλ) and Zλ(f δ

λ) into the mass of the coupling Poisson process
in domains of vanishing µλ-measure. Hence, an application of part 3 of Lemma 3.1
concludes the proof. �

Next, we provide an example of an intensity bound that will also be relevant for
the identification of the rate function in the following section. For this purpose, we
introduce the mixed preference functions

κδ
νR,ν′

R

(y|x) =

k
∑

i=1

1{y ∈ Wi}
κνR(Wi|x)

ν′
R
(Wi)

and the associated intensity measure µδ(νR, ν
′
R
) determined by

dµδ(νR, ν
′
R
)

d(µt

T
⊗ µs

T
⊗ ν′

R
)
(t, x, y) = κδ

νR,ν′
R

(y|x).

Lemma 5.4. It holds that limδ↓0 |κµR
− κδ

µR,µR
|µs

T
⊗µR

= 0.

Proof : Expanding the definitions, we see that the claim is equivalent to proving
that

lim
δ↓0

∫

W 2

k
∑

i=1

1{y ∈ Wi}
∣

∣

∣
κµR

(y|x)−

∫

Wi
κµR

(y′|x)µR(dy
′)

µR(Wi)

∣

∣

∣
(µs

T
⊗ µR)(dx, dy) = 0.

By dominated convergence it suffices to show that the integrand tends to zero for
µs

T
⊗ µR-almost every (x, y). But this is a consequence of the Lebesgue Density

Theorem (Rudin, 1987). �

Now, we can prove Propositions 4.1 and 4.2.

Proof of Propositions 4.1 and 4.2: By Proposition 5.2, Corollary 5.3 and Lemma 5.4
it suffices to show that

lim
λ↑∞

|κδ
µR,lλ − κδ

lλ,lλ |µλ
= 0 (5.2)

for every δ > 0, and

lim
λ↑∞

|κlλ − κδ
lλ,lλ |µλ

= |κµR
− κδ

µR,µR
|µs

T
⊗µR

. (5.3)
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We begin by considering (5.2). First, |κδ
µR,lλ

− κδ
lλ,lλ

|µλ
is given by

k
∑

i=1

∫

W

|κµR
(Wi|x)− κlλ(Wi|x)|µ

s

T(dx).

In particular, by dominated convergence, it suffices to show that the integrand
converges to zero for µt

T
-almost every x ∈ W . Hence, let 1 ≤ i ≤ k and x ∈ W be

arbitrary. Then, κµR
(Wi|x)− κlλ(Wi|x) is given by
∫

Wi
κ(x, y)µR(dy)

∫

W κ(x, y)µR(dy)
−

∫

Wi
κ(x, y)lλ(dy)

∫

W κ(x, y)lλ(dy)
.

Disregarding a µt

T
-nullset, we may assume that κ(x, ·) is µR-almost everywhere

continuous, so that the weak convergence lλ → µR implies (5.2).
For the proof of (5.3) note that, by dominated convergence, it suffices to show

that for µs

T
-almost every x,

lim
λ↑∞

|κlλ(·|x) − κδ
lλ,lλ

(·|x)|lλ = |κµR
(·|x)− κδ

µR,µR
(·|x)|µR

.

First, as µR is the weak limit of lλ, both |κlλ(·|x) − κµR
(·|x)|lλ and |κδ

lλ,lλ
(·|x) −

κδ
µR,µR

(·|x)|lλ tend to zero as λ tends to infinity. Therefore, it remains to show that

lim
λ↑∞

|κµR
(·|x)− κδ

µR,µR
(·|x)|lλ = |κµR

(·|x)− κδ
µR
(·|x)|µR

,

which again is a consequence of the weak convergence of the relay measure. �

5.5. Coupling construction for absolutely continuous measures. It should not come
as a surprise that similar to what we have seen in the empirical setting in Section 5.3,
couplings play a vital rôle in the identification of the rate function. The procedure
in the absolutely continuous setting is very similar, but some care has to be taken
since the empirical measures lλ need to be replaced by the limiting measure µR and
the unit interval is added to the state space. More precisely, we consider measures
on the space

V ∗ = [0, tf ]× [0, 1]×W 2 × [0, κ∞],

where κ∞ = supx,y∈W κµR
(y|x). To simplify notation, we write κ and γ(·) instead

of the more verbose κµR
and γ(·, µR). If f : W 2 → [0, κ∞] is a measurable function

and n
∗ ∈ M∗ = M(V ∗), then we let n

∗(f) denote the measure on V ∗ that is
defined by restriction to the sublevel set M(f) and forgetting the last coordinate.
For instance, we can recover previously introduced intensity measures as

µ(µR) = µ∗(κ) and µδ(µR, µR) = µ∗(κδ),

where

µ∗ = µt

T ⊗ U ⊗ µs

T ⊗ µR ⊗ | · |.

The decisive advantage offered by the couplings is that they allow for an elegant
way of expressing total-variation distances. More precisely, for bounded measur-
able f, g : W 2 → [0, κ∞] we note that the signed measure n

∗(f) − n
∗(g) can be

decomposed as n∗,+(f, g)− n
∗,−(f, g), where

dn∗,+(f, g)

dn∗
(t, u, x, y, v) = 1{g(x, y) ≤ v ≤ f(x, y)}
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and
dn∗,−(f, g)

dn∗
(t, u, x, y, v) = 1{f(x, y) ≤ v ≤ g(x, y)}.

In particular,

‖n∗(f)− n
∗(g)‖ = max{n∗,+(f, g)(V ∗), n∗,−(f, g)(V ∗)}. (5.4)

5.6. Uniform spatial approximation property. The coupling introduced in the previ-
ous section brings us into the setting of Dembo and Zeitouni (1998, Theorem 4.2.23)
where both the desired rate functions and the rate functions of the approximations
are of contraction type. For the rate-function approximation to be useful in the
exponential-approximation argument, we need to verify that the approximations
are uniform on measures with bounded entropy, i.e., on

Iα = {n∗ ∈ M∗ : h(n∗|µ∗) ≤ α}.

Lemma 5.5. Let α > 0 be arbitrary. Then, limδ↓0 supn∗∈Iα
‖γ(n∗(κ))−γ(n∗(κδ))‖

= 0.

Before we prove Lemma 5.5, we explain how it can be used to derive Proposi-
tion 4.3.

Proof of Proposition 4.3: Although Lemma 5.5 is the main ingredient for the ex-
ponential approximation (Dembo and Zeitouni, 1998, Theorem 4.2.23), there are
still two further steps that remain to be verified. First, we need to check that the
contraction-type rate functions

inf
n
∗∈M∗: (γti

(n∗(κ)))i=(γti
)i
h(n∗|µ∗) and inf

n∈M′: (γti
(n))i=(γti

)i
h(n|µ(µR))

are identical. Second, the continuity of the map Iα → M(W )[0,tf ], n∗ 7→ γ(n∗(κδ))
needs to be justified. In order to verify the identity of the rate functions, we prove
that

inf
n
∗∈M∗: n∗(κ)=n

h(n∗|µ∗) = h(n|µ(µR)). (5.5)

Showing that the l.h.s. is at most as large as the r.h.s. is achieved by setting

n
∗
0(dt, du, dx, dy, dv) = κ(y|x)−1

1{M(κ)}n(dt, du, dx, dy)dv

+ 1{M(κ)c}µ∗(dt, du, dx, dy, dv).

For the reverse inequality it can be checked by direct computation that

h(n∗|µ∗) = h(n∗|n∗0) + h(n|µ(µR)),

so that the non-negativity gives (5.5).
Second, we show that for fixed δ > 0 the map n

∗ 7→ γ(n∗(κδ)) is continuous. For
this note that γ(n∗(κδ)) decomposes as

γ(n∗(κδ)) =

k
∑

i=1

γ(n∗i (κ
δ)),

where

n
∗
i (κ

δ)(dt, du, dx) = n
∗(κδ)(dt, du, dx,Wi)

is the restriction of n∗(κδ) to the points whose y-coordinate is in Wi. Similarly, put

µi(µR)(dt, du, dx) = µδ(µR, µR)(dt, du, dx,Wi).
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Since h(n∗i (κ
δ)|µi(µR)) ≤ α, we deduce from Proposition 2.4 that γ is continuous

at n∗i (κ
δ). Combining this observation with the continuity of the partial evaluation

maps n∗ 7→ n
∗
i (κ

δ) concludes the proof. �

Hence, it remains to prove Lemma 5.5. We recall from equation (1.9) that
the process β(n) is obtained as a spatial mixture of the corresponding localized
processes β(ny) at receiver locations y ∈ W . Therefore, understanding how sensitive
the localized processes are w.r.t. their input measures lays the groundwork for the
global setting.

Lemma 5.6. Let ν, ν′ ∈ Mac, then ‖β(ν)(W ) − β(ν′)(W )‖ ≤ ‖ν − ν′‖.

Proof : Let t ∈ [0, tf ] be arbitrary. By symmetry, it suffices to derive an upper
bound for βt(ν)− βt(ν

′), where for ease of notation we omit the evaluation on W .
Now, let t0 ∈ [0, tf ] be the last point before t such that

βt0(ν) ≤ βt0(ν
′),

then,

βt(ν) − βt(ν
′) =

∫ t

t0

ν(ds, [βs(ν), 1],W )−

∫ t

t0

ν′(ds, [βs(ν
′), 1],W ).

This difference can be split up into
∫ t

t0

ν(ds, [βs(ν), 1],W )−

∫ t

t0

ν(ds, [βs(ν
′), 1],W )

and
∫ t

t0

ν(ds, [βs(ν
′), 1],W )−

∫ t

t0

ν′(ds, [βs(ν
′), 1],W ),

where we know that the first expression is negative and therefore can be omitted.
Observing that the second expression is at most ‖ν − ν′‖ concludes the proof. �

Now we use Lemma 5.6 to complete the derivation of Lemma 5.5.

Proof of Lemma 5.5: First,

‖n∗(κ)([0, t], [0, 1], dx)− n
∗(κδ)([0, t], [0, 1], dx)‖ ≤ ‖n∗(κ)− n

∗(κδ)‖

so that by Lemma 3.1 part 2, Lemma 5.4 and identity (5.4) it remains to prove
the statement with γ replaced by β. By absolute continuity, we can perform dis-
integration of the measures n∗(κ) and n

∗(κδ) with respect to the relay coordinate.
That is,

n
∗(κ)(dt, du, dx, dy) = n

∗
y(κ)(dt, du, dx)µR(dy)

and

n
∗(κδ)(dt, du, dx, dy) = n

∗
y(κ

δ)(dt, du, dx)µR(dy).

Let t ∈ [0, tf ] and A ⊂ W measurable. Then, inserting the definition of β we see
that we need to compare

∫

[0,t]×W

n
∗
y(κ)(ds, [βs(n

∗
y(κ))(W ), 1]×A)µR(dy)

with
∫

[0,t]×W

n
∗
y(κ

δ)(ds, [βs(n
∗
y(κ

δ))(W ), 1]×A)µR(dy).
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We decompose this task into providing bounds separately for
∣

∣

∣

∫

[0,t]×W

(n∗y(κ)− n
∗
y(κ

δ))(ds, [βs(n
∗
y(κ

δ))(W ), 1]×A)µR(dy)
∣

∣

∣

and
∫

[0,tf ]×W

n
∗
y(κ)(ds, I(βs(n

∗
y(κ))(W ), βs(n

∗
y(κ

δ))(W )) ×W )µR(dy),

where I(a, b) = [a ∧ b, a ∨ b]. The first expression is at most ‖n∗(κ) − n
∗(κδ)‖, so

that again Lemma 3.1 part 2, Lemma 5.4 and identity (5.4) yield that

lim
δ↓0

sup
n
∗∈Iα

‖n∗(κ)− n
∗(κδ)‖ = 0.

By Lemma 5.6, the second expression is bounded above by n
∗(κ)(Cn

∗,δ) where

Cn
∗,δ = {(t, u, x, y) : |u− βt(n

∗
y(κ))(W )| ≤ ‖n∗y(κ)− n

∗
y(κ

δ)‖}.

In particular, by Lemma 3.1 part 2 it remains to show that
limδ↓0 supn∗∈Iα µ(µR)(Cn

∗,δ) = 0. For this, we note that reversing the disintegration
of the relay measure gives that

µ(µR)(Cn
∗,δ) ≤ 2

∫

W 2

‖n∗y(κ)− n
∗
y(κ

δ)‖κ(y|x)(µs

T ⊗ µR)(dx, dy)

≤ 2µs

T(W )κ∞

∫

W

max{n∗,+y (κ, κδ), n∗,−y (κ, κδ)}µR(dy)

≤ 2µs

T
(W )κ∞(n∗,+(κ, κδ) + n

∗,−(κ, κδ)),

so that another invocation of Lemma 3.1 part 2 and Lemma 5.4 concludes the
proof. �
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