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Abstract. Consider a growing system of random walks on the 3,2-alternating tree,
where generations of nodes alternate between having two and three children. Any
time a particle lands on a node which has not been visited previously, a new particle
is activated at that node, and begins its own random walk. The model described
belongs to a class of problems that are collectively referred to as the frog model.
Building on a recent proof of recurrence (meaning infinitely many frogs hit the root
with probability one) on the regular binary tree, this paper establishes recurrence
for the 3,2-alternating case.

1. Introduction

The frog model is a system involving a collection of branching random walks
on a rooted graph. One active frog is initially positioned at the root along with
some distribution of sleeping frogs on the set of non-root vertices. The active
frog performs a discrete time nearest-neighbor random walk on the graph which
activates whatever sleeping frogs reside on the vertices on which it lands. Upon
being activated, frogs perform their own independent discrete time nearest-neighbor
random walks which also activate sleeping frogs in the same fashion.

Perhaps the most fundamental question that can be asked about any version
of the frog model is: Is it recurrent? By this we mean: Do infinitely many frogs
return to the root with probability one? This question has been explored for a
variety of different scenarios recently, by among others, Hoffman, Johnson, and
Junge in Hoffman et al. (2017), Hoffman et al. (2016), and Johnson and Junge
(2018). In both Hoffman et al. (2017) and Hoffman et al. (2016) the issue addressed
is that of recurrence for the frog model on the n-ary tree, with one sleeping frog per
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non-root vertex in the former case, and i.i.d. Poisson many sleeping frogs in the
latter. In the case of the one frog per site model, which is of particular relevance
to the present work, the authors established that the model is transient (i.e. the
probability infinitely many frogs return to the root is zero) on the n-ary tree for
n ≥ 5, and recurrent on the binary tree. The cases of the 3-ary and 4-ary trees,
which remain open, were conjectured in their paper to be recurrent and transient
respectively.

Among the results achieved in Hoffman et al. (2017), arguably the most sig-
nificant was the proof of recurrence for the binary tree. The proof involved first
presenting an altered form of the frog model in which the frogs perform (sometimes)
terminating, non-backtracking random walks. This variant on the original model,
which is shown to have nice self-similarity properties, is appropriately named the
self-similar frog model. After the introduction of the self-similar model it is shown
how it can be coupled with the original model so that the number of returns to the
root in the original case always dominates that of the self-similar, thus reducing
the problem to establishing recurrence in the self-similar case. From here, the self
similarity of the altered model is exploited to show that the probability generating
function for the number of returns to the root is a fixed point of an easily expressed
operator. The authors then use a technique which they call Poisson thinning to
show that the only fixed point of this operator (among a broad class of functions
defined on [0, 1]) is 0, thus demonstrating recurrence for both the self-similar and
(see above) original models.

The difficulty in extending the above result to the 3-ary tree seems to derive
from the 3-ary case (it appears) being very close to criticality. Specifically, efforts
to construct an alternate model that is dominated by the original and possesses a
high degree of self similarity appear to produce cases that cease to be recurrent.
While we believe that such an approach can in theory still work for the 3-ary tree,
the competing necessities of achieving some sort of self-similarity and preserving
recurrence appear to make the application of an approach at all similar to the
one employed for the binary tree computationally intractable. In this paper we
therefore address an intermediate case; that of the 3,2-alternating tree where each
node belonging to an even numbered generation has three children (with the root
defined as generation 0) and each node belonging to an odd numbered generation
has two. Though some of the same difficulties that arise in attempting to extend the
result for T2 to T3 (the 2-ary and 3-ary trees respectively) still present themselves
in the case of T3,2 (the 3,2-alternating tree), we are nevertheless able to adapt the
approach used to establish recurrence on T2 to the demands of this somewhat more
unwieldy variation.

Statement and discussion of main result. In its examination of the frog model
on T3,2, where we start with one sleeping frog per non-root vertex and where
activated frogs perform unbiased random walks on the tree, this paper centers
around establishing the following theorem.

Theorem 1.1. The frog model on T3,2 is recurrent.

This result is achieved by first introducing the non-backtracking frog model on
T3,2 in which individual frogs perform uniformly random non-backtracking walks
(i.e. at each step a frog chooses randomly from the set of all adjacent vertices
except the one from which it just came) that are stopped at the root. Letting Y
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and V ′ represent the number of times the root is landed on in the original and
non-backtracking models respectively, we then show how the two models can be
coupled in such a way that the path of each individual frog in the non-backtracking
model is a subset of the path taken by the corresponding frog (meaning the frog
that originated in the same location) in the original model. From this it then follows
that Y stochastically dominates V ′. From here a variant of the non-backtracking
model is introduced in which certain carefully chosen restrictions are placed on the
number of frogs which can move down an edge (i.e. away from the root) without
being stopped. This new model, to be referred to as the self-similar model on
account of its possessing certain self-similarity properties which we later establish,
is then coupled with the original model via a natural embedding inside the non-
backtracking model, thus establishing that V (the number of times the root is hit
in the self-similar case) is dominated by V ′, and therefore by Y .

Having reduced the task of proving Theorem 1.1 to establishing recurrence for
the self similar model, the model’s self similarity properties are then exploited in
order to show that f (the probability generating function for V ) is a fixed point
for a rather complicated operator A. After showing that A possesses an important
monotonicity property when applied to a large class of functions S, we then show
that An1 → 0 on [0, 1) as n → ∞. This last task involves a substantial amount of
computation as A is iteratively applied to the probability generating functions for
a series of Poisson distributions with gradually increasing means. Thus, computer
assistance is required at a certain juncture. However, once this is accomplished it
follows from the monotonicity property of A that Anf → 0 on [0, 1) which, because
Af = f , implies that f(x) = 0 on [0, 1). From this the recurrence of the self-similar
model immediately follows, thus completing the proof of Theorem 1.1.

2. Recurrence for T3,2

2.1. The non-backtracking frog model. In constructing the non-backtracking frog
model and establishing a coupling with the ordinary model, we first define the
Markov process Υ : N → T3,2 as follows: If Υ(0) = ∅ (where ∅ represents the
root) then Υ simply proceeds as an unbiased random walk on T3,2. If Υ(0) 6= ∅

then Υ proceeds as an unbiased random walk except that if Υ(n) = ∅ (for some n)
and Υ(n+1) is one of the two nodes that do not belong to the sub-tree containing
Υ(0) (meaning Υ enters a subtree different from that containing Υ(0)), then with
probability 5

8 the process freezes at Υ(n + 1) (i.e. Υ(j) = Υ(n + 1) ∀ j ≥ n + 1).
Next Υ is used to define the sequence {tn} in the following way: Let t0 = 0 and, for
k ≥ 0, let sk = sup{s ≥ tk : Υ(s) = Υ(tk)}. If sk < ∞ let tk+1 = sk+1. Otherwise,
let tk+1 = tk (note that, modulo a set of measure 0, sk only equals infinity in the
case where Υ is stopped at one of the children of the root as described above).

We now use Υ and {tk} to define the new process Φ : N → T3,2 as follows: First
let T = min {k ≥ 1 : Υ(tk) = ∅}. We then set

Φ(k) =

{

Υ(tk) if k < T,
∅ otherwise.

Next an important result regarding the process Φ will be established.
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Figure 2.1. The first four levels of T3,2 with relevant nodes labeled.

Proposition 2.1. The process Φ is identical (in terms of its transition probabilities)
to an unbiased non-backtracking random walk on T3,2 that terminates upon hitting
the root.

Proof : In the case where Φ(0) = ∅ the process Φ moves one step away from the
root each time, so the conclusion follows by symmetry. When Φ(0) 6= ∅ a more
complicated argument will be required. We start by making some preliminary
computations. Let p1 represent the probability that an unbiased random walk on
T3,2 that starts at a (see Figure 2.1 above) ever hits the root. Likewise, let p2
represent the probability that an unbiased random walk on T3,2 starting at b ever
hits a. More generally we see by symmetry that the probability an unbiased random
walk on T3,2 starting at a node on an odd numbered level (even resp.) ever hits the
parent of this node is p1 (p2 resp.). Calculating these values we get the expressions

p1 =
1

3
+

2

3
p2p1, p2 =

1

4
+

3

4
p1p2 =⇒ p1 =

1

3− 2p2
, p2 =

1

4− 3p1
.

Solving for p1 then gives

p1 =
1

3− 2
4−3p1

=
4− 3p1
10− 9p1

=⇒ 9p21 − 13p1 + 4 = 0 =⇒ p1 =
4

9
or 1.

Since the value 1 can clearly be disregarded this then gives p1 = 4
9 . Plugging this

into the formula for p2 above we get p2 = 3
8 .

Returning now to the task of establishing that the transition probabilities of Φ
match those of the non-backtracking random walk, we begin by addressing the task
of showing that P(Φ(1) = ∅|Φ(0) = a) = 1

3 . Denoting P(Φ(1) = ∅|Φ(0) = a) as
p and P(Υ(n + j) = a for some j > 0|Υ(n) = ∅) as q (where we’re assuming here
that Υ originates in the sub-tree rooted at a), we find (based on the definition of
Φ) that

p =
2

3
p2p+

1

3
(1− q) +

1

3
qp =

1

4
p+

1

3
(1− q) +

1

3
qp =⇒ p =

4− 4q

9− 4q
.

Noting that

q =
1

3
+

2

3
·
3

8
p1q =

1

3
+

1

9
q =⇒ q =

3

8
,



Recurrence of the frog model on the 3,2-alternating tree 815

it then follows from the above formula for p in terms of q, that indeed p = 1
3 .

Using this, symmetry implies that P(Φ(1) = b|Φ(0) = a) = P(Φ(1) = b′|Φ(0) =
a) = 1

3 . Hence, we find that in the case where t = 0 and Φ(0) = a, the transition
probabilities of Φ do agree with those of the non-backtracking random walk that is
stopped at the root.

Moving on, we now want to show that P(Φ(1) = a|Φ(0) = b) = 1
4 . Denoting

this last probability as p and the value P(Υ(n + j) = b for some j > 0|Υ(n) = a)
as q (again assuming Υ originates in the sub-tree rooted at a), it follows from the
definition of Φ that

p =
1

4
(1 − q) +

1

4
qp+

3

4
p1p =

1

4
(1− q) +

1

4
qp+

1

3
p =⇒ p =

3− 3q

8− 3q
.

Using the fact that

q =
1

3
+

1

3
p2q +

1

8
q =

1

3
+

1

4
q =⇒ q =

4

9
,

our formula for p in terms of q then tells us that p = 1
4 . Again using symmetry,

we find that if Φ starts at b at time t = 0, it then goes to each of the four adjacent
nodes with equal probability. Generalizing these results, if we now let p′n represent
the probability that the first step made by Φ is towards the root (given that Φ(0)
resides at level n) and let q′n represent the probability that Υ (starting at level n−1)
ever hits a particular child node of its starting node (e.g. the rightmost node), we
find that it follows from induction, along with the computations for the base cases
p′1, p

′
2, q

′
1, and q′2 given above, that

p′n =

{ 1
3 for n odd,
1
4 for n even.

Once again exploiting symmetry, we find that the above result implies that when
beginning at a non-root vertex, Φ moves to each of the adjacent vertices with equal
probability.

Now note that by the same symmetry considerations which ensure that the
transition probabilities for Φ, when begun at the root, match those in the non-
backtracking case, it also follows that, following a down step, Φ’s transition prob-
abilities again match those of the non-backtracking random walk (stopped at ∅).
Combining this with the results from the previous paragraph, the only remaining
task involved in establishing the proposition is addressing the case of Φ’s transition
probabilities after it has just taken a step towards the root. Since Φ always stops
upon hitting the root, the case where its previous step brought it to ∅ is immediate.
Now if we let rn (for n ≥ 1) represent the probability of Φ taking a step towards
the root, conditioned on its previous step having brought it from level n+1 of T3,2

to level n, we find that

rn =







p2p
′

n

p′

n+1

if n is odd,

p1p
′

n

p′

n+1

if n is even.

Plugging in the values for p1, p2, and p′n, then gives rn = 1
2 for n odd and rn = 1

3
for n even. From this it then follows that, conditioned on having just moved from
a node to its parent (not the root), Φ then moves to each of the available adjacent
nodes (other than the one it just came from) with equal probability. Hence, we’ve
completed the task of showing that the transition probabilities of Φ match those
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of the non-backtracking random walk that is stopped at the root, and thus, have
completed the proof of the proposition. �

Having obtained the above result, the proceeding corollary regarding the non-
backtracking frog model on T3,2 (see description in introduction) follows as an
almost immediate consequence.

Corollary 2.2. There exists a coupling between the non-backtracking and original
frog models on T3,2 where the path of each non-backtracking frog is a subset of the
path of the corresponding frog in the original model.

Proof : First recalling how the process Φ was constructed using Υ, we can see that
the collection of vertices landed on for an instance of Φ is a subset of the collection of
vertices landed on for the corresponding instance of Υ. Likewise, since the process
Υ is just a (potentially) truncated version of an unbiased random walk on T3,2,
it follows from Proposition 2.1 that the non-backtracking random walk on T3,2

that terminates upon hitting the root can be coupled with the unbiased random
walk on T3,2 so that the path traversed in the non-backtracking case is a subset
of the path traversed in the unbiased case. From here the entire non-backtracking
frog model on T3,2 can be coupled with the original model by starting with the
original, and defining a corresponding non-backtracking model for which the path
of each activated frog is determined by the instance of Φ corresponding to the path
traversed by the same frog in the original model. Using this coupling, we find
that the path of each frog in the non-backtracking model is a subset of that of its
counterpart in the original model. �

2.2. Coupling the original and self-similar models. The self-similar frog model on
T3,2 is obtained by refining the non-backtracking frog model through the addition
of the following constraints: (i) Any frog that goes down an edge (i.e. travels away
from the root) from an even to an odd level, where that edge has already been
traveled along by another frog, is immediately stopped. If multiple frogs go down
a previously untraveled edge simultaneously (still assuming the edge connects an
even to an odd level) then all but one are stopped. (ii) The same rule applies for
frogs traveling down an edge from an odd to an even level except that a previously
unvisited node on an even level can have up to two frogs land on it from above
simultaneously without being stopped if they are the frog originating at its parent
node along with whichever frog activated the frog at its parent node (see Figure 2.2).

Since the frogs in the self-similar model defined above conduct truncated non-
backtracking random walks stopped at the root, this yields a natural coupling
between the self-similar and non-backtracking frog models in which the frogs in
the self-similar model follow paths which are subsets of the paths followed by the
corresponding non-backtracking frogs. Composing this coupling with the coupling
described in the proof of Corollary 2.2 then gives a coupling between the self-
similar and original frog models that also possesses this property. Using V and
Y , as referenced in the introduction, to represent the number of frogs that hit the
root in the self-similar and original models respectively, we obtain the following
proposition.

Proposition 2.3. There exists a coupling between the self-similar and original frog
models on T3,2 in which V is dominated by Y .
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∅

b

a

Figure 2.2. A depiction of a scenario in which a node on an even
level (node b) has two frogs land on it from above simultaneously
without being stopped. Note that in order for such an event to
accord with the specifications of the self-similar model, the two
frogs landing on b must be the frog originating at the parent node
of b (labeled a in the figure) and the frog that activated the frog
at the parent of b.

Armed with this result, we now find that to prove Theorem 1.1 it suffices to prove
recurrence of the self-similar frog model (i.e. that P(V = ∞) = 1).

2.3. Constructing the operator A. Let f(x) := E[xV ] be the generating function for
V . Establishing that P(V = ∞) = 1 will involve showing that f(x) is a fixed point
for an operator A. This will be done by introducing operators L and H. We can
initially think of all three operators as acting on C0([0, 1]) (though we’ll restrict
our focus to a much smaller class of functions later on).

To start, define the conditioned random variable Vc to be the number of frogs
(in the self-similar model) originating from the sub-tree rooted at c (see Figure 2.1)
which hit b, conditioned on the event that the frog at c is activated. Letting T(c)
represent the sub-tree rooted at c, we find that if we ignore frogs originating from
outside {b}∪T(c) which are stopped at b or c after the frog at c has been activated
(this can be done since these frogs do not activate any other frogs in {b} ∪ T(c)),
then the self-similar frog model restricted to {b} ∪ T(c) (following the activation
of the frog at c) looks exactly like the self-similar frog model on T3,2 following the
initial step taken by the frog originating at the root. From this it then follows
that V and Vc have the same distribution, and therefore that Vc also has f as its
probability generating function.

Next define the conditioned random variable Vb to be the number of frogs origi-
nating from the sub-tree rooted at b (see Figure 2.1 again) which hit a, conditioned
on the event that the frog at b is activated by exactly one frog from the pair con-
sisting of the frog starting at the root and the frog starting at a. Now letting l(x)
represent the probability generating function of Vb, we present the lemma below
relating the functions l(x) and f(x) via the following operator.

Definition 2.4. (Lg)(x) := x+3
4 g

(

x+2
3

)3
+ 2 · x+2

4

(

g
(

x+1
3

)2
− g

(

x+2
3

)

g
(

x+1
3

)2
)

+

x+1
4

(

g
(

x
3

)

− 2g
(

x+1
3

)

g
(

x
3

)

− g
(

x+2
3

)2
g
(

x
3

)

+ 2g
(

x+2
3

)

g
(

x+1
3

)

g
(

x
3

)

)

.

Lemma 2.5. l(x) = (Lf)(x).
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Now the operator H will be introduced, along with another important lemma. In
the lemma, h(x) will refer to E[xV ′

b ], where V ′
b is the conditioned random variable

representing the number of frogs originating from the sub-tree rooted at b which
hit a (see Figures 2.1 and 2.3), conditioned on the event of vertex b being hit by
both the frog that started at the root and the frog that started at a.

Definition 2.6. (Hg)(x) := 1
3 (Lg)(x) + x+2

6

(

g
(

x+1
3

)2
− g

(

x+2
3

)

g
(

x+1
3

)2
)

+

x+3
6 g

(

x+2
3

)3
.

Lemma 2.7. h(x) = (Hf)(x).

Next we define A and state the main result of this section, following which are the
proofs of our two lemmas.

Definition 2.8. (Ag)(x) := x
3

(

Lg
)(

x
2

)

+ x+1
3

(

Lg
)(

x+1
2

)2
− x

3

(

Lg
)(

x+1
2

)

·
(

Lg
)(

x
2

)

+
1
3

(

Hg
)(

x
2

)

+ 1
3

(

Lg
)(

x+1
2

)

·
(

Hg
)(

x+1
2

)

− 1
3

(

Lg
)(

x+1
2

)

·
(

Hg
)(

x
2

)

.

Theorem 2.9. Af = f .

Proof of Lemma 2.5: Observe the diagram depicting the relevant portion of T3,2

below.

a

b

c′′ c′ c

Figure 2.3.

Since we are conditioning on the frog at b being activated by either the frog from
a or the frog from the root (but not both), it follows from property (ii) of the self-
similar model that no additional frogs can enter the sub-tree rooted at b (meaning
any such frogs are stopped at b). Hence, once the frog beginning at b is activated,
we are starting with two active frogs there where one of them (we’ll call it #1) can
go in any of the four available directions and the other (call it #2) must travel away
from vertex a. Letting A represent the event that #1 goes to a, l(x) can then be
expressed as l(x) = E[xVb ] = E[xVb ;A] + E[xVb ;Ac].
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a

b

c′′ c′ c

a

b

c′′ c′ c

a

b

c′′ c′ c

a

b

c′′ c′ c
Figure 2.4. Illustrations representing the four events (from left
to right) A1, A2, A3, and A4.

Now A is split up into the four separate events A1, A2, A3, and A4 (see Figure 4
above) as follows: A1 represents having the sub-tree activated by #2 fail to activate
either of its two sibling sub-trees (represented by c′ and c′′ in leftmost figure); A2

represents the sub-tree activated by #2 activating exactly one of its sibling sub-
trees, which itself fails to activate the other sibling; A3 represents the sub-tree
activated by #2 activating exactly one of its sibling sub-trees, which itself activates
the other sibling; and A4 represents the sub-tree activated by #2 activating both
of its sibling sub-trees.

The next step is to evaluate E[xVb ;Ai] for each i. Note that in the expressions
below, c always denotes the vertex hit by the #2 frog and, in the event that T(c)
activates exactly one of its two sibling subtrees, c′ will denote the root of this sibling
subtree. Expressions of the form {#i → j} indicate frog #i hits vertex j.

E[xVb ;A1] = x · P[#1 → a]

∞
∑

k=0

P
[

k frogs from T(c) hit b, they all hit a
∣

∣#2 → c
]

xk

=
x

4

∞
∑

k=0

P(Vc = k)
(1

3

)k

xk =
x

4
f
(x

3

)

, (2.1)

E[xVb ;A2] =
x

4

∞
∑

k=1

P
[

k from T(c) hit b
∣

∣#2 → c
]

×

k−1
∑

j=0

P
[

j of these hit a, rest hit same c sibling
]

xj

×
∞
∑

i=0

i
∑

l=0

P
[

i from T(c′) hit b, l hit a, rest hit c
∣

∣c′ is hit
]

xl

=
x

4

∞
∑

k=1

P(Vc = k)

k−1
∑

j=0

(1

3

)j(2

3

)k−j
(

k

j

)

xj · 2 ·
(1

2

)k−j

×

∞
∑

i=0

P(Vc = i)
(1

3

)i
i

∑

l=0

(

i

l

)

xl
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=
x

2

∞
∑

k=1

P(Vc = k)
k−1
∑

j=0

(x

3

)j(1

3

)k−j
(

k

j

) ∞
∑

i=0

P(Vc = i)
(x+ 1

3

)i

=
x

2
f
(x+ 1

3

)

∞
∑

k=1

P(Vc = k)

k−1
∑

j=0

(x

3

)j(1

3

)k−j
(

k

j

)

=
x

2
f
(x+ 1

3

)

∞
∑

k=1

P(Vc = k)
((x+ 1

3

)k

−
(x

3

)k)

=
x

2
f
(x+ 1

3

)(

f
(x+ 1

3

)

− f
(x

3

))

, (2.2)

E[xVb ;A3] =
x

4

∞
∑

k=1

P
[

k from T(c) hit b
∣

∣#2 → c
]

×

k−1
∑

j=0

P
[

j of these hit a, rest hit same c sibling
]

xj

×

∞
∑

i=1

i−1
∑

l=0

P
[

i fromT(c′) hit b, l hit a, one or more hit c′′
∣

∣c′ is hit
]

xl

×
∞
∑

m=0

m
∑

n=0

P
[

m from T(c′′) hit b, n of these hit a
∣

∣c′′ is hit
]

xn

=
x

4

∞
∑

k=1

P(Vc = k)

k−1
∑

j=0

(1

3

)j(2

3

)k−j
(

k

j

)

xj · 2 ·
(1

2

)k−j
∞
∑

i=1

P(Vc = i)

×

i−1
∑

l=0

(1

3

)l(2

3

)i−l
(

i

l

)

xl
(

1−
(1

2

)i−l)
∞
∑

m=0

P(Vc = m)

×

m
∑

n=0

(1

3

)n(2

3

)m−n
(

m

n

)

xn

=
x

2

∞
∑

k=1

P(Vc = k)

k−1
∑

j=0

(x

3

)j(1

3

)k−j
(

k

j

) ∞
∑

i=1

P(Vc = i)

×

i−1
∑

l=0

(x

3

)l(2

3

)i−l
(

i

l

)

(

1−
(1

2

)i−l)

f
(x+ 2

3

)

=
x

2
f
(x+ 2

3

)

∞
∑

k=1

P(Vc = k)
((x+ 1

3

)k

−
(x

3

)k)

×

∞
∑

i=1

P(Vc = i)
((x+ 2

3

)i

−
(x+ 1

3

)i)

=
x

2
f
(x+ 2

3

)(

f
(x+ 1

3

)

− f
(x

3

))(

f
(x+ 2

3

)

− f
(x+ 1

3

))

, (2.3)

E[xVb ;A4] =
x

4

∞
∑

k=2

P
[

k from T(c) hit b
∣

∣#2 → c
]
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×
k−2
∑

j=0

P
[

j of these hit a, rest activate c′ and c′′
]

xj

×

∞
∑

i=0

i
∑

l=0

P
[

i from T(c′) hit b, l of these hit a
∣

∣c′ is hit
]

xl

×

∞
∑

m=0

m
∑

n=0

P
[

m from T(c′′) hit b, n of these hit a
∣

∣c′′ is hit
]

xn

=
x

4

∞
∑

k=2

P(Vc = k)

k−2
∑

j=0

(1

3

)j(2

3

)k−j
(

k

j

)

xj
(

1− 2
(1

2

)k−j)

×
(

∞
∑

i=0

P(Vc = i)
i

∑

l=0

(1

3

)l(2

3

)i−l
(

i

l

)

xl
)2

=
x

4

∞
∑

k=2

P(Vc = k)
((x+ 2

3

)k

− 2
(x+ 1

3

)k

+
(x

3

)k)

×
(

∞
∑

i=0

P(Vc = i)
(x+ 2

3

)i)2

=
x

4
f
(x+ 2

3

)2(

f
(x+ 2

3

)

− 2f
(x+ 1

3

)

+ f
(x

3

))

. (2.4)

a

b

c′′ c′ c

a

b

c′′ c′ c

a

b

c′′ c′ c

Figure 2.5. Illustrations representing the three events (from left
to right) B1, B2, and B3.

Having obtained expressions for the Ai’s, we now split up Ac into the three
separate events B1, B2, and B3 (see Figure 2.5 above) in the following way: B1

represents having #1 and #2 activate the same sub-tree; B2 represents #1 and
#2 activating different sub-trees (represented by c and c′ in middle figure above),
neither of which activates the third sub-tree; and B3 represents #1 and #2 activat-
ing different sub-trees, which then activate the third sub-tree. Next the expression
E[xVb ;Bi] is evaluated for each i as follows:

E[xVb ;B1] =
1

x
E[xVb ;A], (2.5)

E[xVb ;B2] = P
[

1 & 2 hit siblings
]
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×
∞
∑

k=0

k
∑

j=0

P
[

k from T(c) hit b, j hit a, rest hit c′
∣

∣#2 → c
]

xj

×

∞
∑

i=0

i
∑

l=0

P
[

i from T(c′) hit b, l hit a, rest hit c
∣

∣#1 → c′
]

xl

=
1

2

(

∞
∑

k=0

P(Vc = k)

k
∑

j=0

(1

3

)k
(

k

j

)

xj
)2

=
1

2

(

∞
∑

k=0

P(Vc = k)
(x+ 1

3

)k)2

=
1

2
f
(x+ 1

3

)2

, (2.6)

E[xVb ;B3] =
1

2

∑

k1+k2≥1

P
[

k1 from T(c) hit b, k2 from T(c′) hit b
∣

∣#2 → c,#1 → c′
]

×

k1+k2−1
∑

j=0

P
[

j of these hit a, at least 1 hits c′′
]

xj

×

∞
∑

i=0

i
∑

l=0

P
[

i from T(c′′) hit b, l of these hit a
∣

∣c′′ is hit
]

xl

=
1

2

∑

k1+k2≥1

P(Vc = k1)P(Vc = k2)

×

k1+k2−1
∑

j=0

(1

3

)j(2

3

)k1+k2−j

xj

(

k1 + k2
j

)

(

1−
(1

2

)k1+k2−j)

×

∞
∑

i=0

P(Vc = i)

i
∑

l=0

(1

3

)l(2

3

)i−l
(

i

l

)

xl

=
1

2

∑

k1+k2≥1

P(Vc = k1)P(Vc = k2)
((x+ 2

3

)k1+k2

−
(x+ 1

3

)k1+k2
)

×

∞
∑

i=0

P(Vc = i)
(x+ 2

3

)i

=
1

2
f
(x+ 2

3

)(

f
(x+ 2

3

)2

− f
(x+ 1

3

)2)

. (2.7)

Using the calculations from (2.1)-(2.7) we now find that

l(x) = E[xVb ] =

4
∑

i=1

E[xVb ;Ai] +

3
∑

i=1

E[xVb ;Bi] (2.8)

=
(

1 +
1

x

)( x

4
f
(x

3

)

+
x

2
f
(x+ 1

3

)2

−
x

2
f
(x+ 1

3

)

f
(x

3

)

+
x

2
f
(x+ 2

3

)2

f
(x+ 1

3

)

−
x

2
f
(x+ 2

3

)2

f
(x

3

)

−
x

2
f
(x+ 2

3

)

f
(x+ 1

3

)2

+
x

2
f
(x+ 2

3

)

f
(x+ 1

3

)

f
(x

3

)

+
x

4
f
(x+ 2

3

)3

−
x

2
f
(x+ 2

3

)2

f
(x+ 1

3

)

+
x

4
f
(x+ 2

3

)2

f
(x

3

) )
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+
1

2
f
(x+ 1

3

)2

+
1

2
f
(x+ 2

3

)3

−
1

2
f
(x+ 2

3

)

f
(x+ 1

3

)2

=
x+ 3

4
f
(x+ 2

3

)3

+ 2 ·
x+ 2

4

(

f
(x+ 1

3

)2

− f
(x+ 2

3

)

f
(x+ 1

3

)2)

+
x+ 1

4

(

f
(x

3

)

− 2f
(x+ 1

3

)

f
(x

3

)

− f
(x+ 2

3

)2

f
(x

3

)

+ 2f
(x+ 2

3

)

f
(x+ 1

3

)

f
(x

3

))

= (Lf)(x).

Hence, the proof of Lemma 2.5 is complete. �

Proof of Lemma 2.7: The scenario under consideration (see Figure 2.3 again) be-
gins with three active frogs at vertex b, where one (call it #1) is free to go in any of
the four available directions, and the other two (call them the #2 frogs) can go in
any of the three directions away from the root. Letting A0 represent the event that
the two #2 frogs travel to the same node from b (call it c), h(x) can be expressed

as E[xV ′

b ] = E[xV ′

b ;A0] + E[xV ′

b ;Ac
0]. In the event A0, since one of the two #2

frogs is stopped at c, it follows that V ′
b |A0 has the same distribution as Vb. Hence,

E[xV ′

b ;A0] = P(A0)E[x
V ′

b |A0] = P(A0)E[x
Vb ] = 1

3 (Lf)(x).

a

b

c′′ c′ c

a

b

c′′ c′ c

a

b

c′′ c′ c

Figure 2.6. Illustrations representing the three events (from left
to right) C1, C2, and C3.

Turning next to the event Ac
0, it will be split up into the events C1, C2, and C3

(see Figure 2.6 above) as follows: C1 represents having the #2 frogs go to different
nodes and the #1 frog go to a; C2 represents the #2 frogs going to different nodes
and the #1 frog going to the same node as one of the #2 frogs; and C3 represents
the #2 frogs going to different nodes and the #1 frog going to the third sibling
node. We now evaluate E[xV ′

b ;Ci] for each i. Note that because the formulas for
these expressions are comparatively simple relative to (2.1)-(2.7), and because we
are able to use some of the results from (2.5)-(2.7) to generate these formulas, verbal
explanations for them are omitted.

E[xV ′

b ;C1] =
x

4
·
2

3
· E[xVb |B2 ∪B3]

=
x

6
·

(

1
2f

(

x+1
3

)2

+ 1
2f

(

x+2
3

)3

− 1
2f

(

x+2
3

)

f
(

x+1
3

)2)

1/2

=
x

6

(

f
(x+ 1

3

)2

+ f
(x+ 2

3

)3

− f
(x+ 2

3

)

f
(x+ 1

3

)2)

, (2.9)
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E[xV ′

b ;C2] =
1

3
E[xVb |B2 ∪B3]

=
1

3

(

f
(x+ 1

3

)2

+ f
(x+ 2

3

)3

− f
(x+ 2

3

)

f
(x+ 1

3

)2)

, (2.10)

E[xV ′

b ;C3] =
1

6

(

∞
∑

k=0

P(Vc = k)

k
∑

j=0

(1

3

)j(2

3

)k−j
(

k

j

)

xj
)3

=
1

6
f
(x+ 2

3

)3

. (2.11)

Adding the expressions (2.9)-(2.11) to our expression for E[xV ′

b ;A0] then gives

h(x) = E[xV ′

b ] =
1

3
(Lf)(x) +

x+ 3

6
f
(x+ 2

3

)3

+
x+ 2

6

(

f
(x+ 1

3

)2

− f
(x+ 2

3

)

f
(x+ 1

3

)2)

= (Hf)(x).

Hence, the proof is complete. �

With Lemmas 2.5 and 2.7 established, the proof of Theorem 2.9 can now be
presented.

Proof of Theorem 2.9: Begin by separating the collection of possible outcomes into
the three events D1, D2, and D3 (see Figures 2.7, 2.8, and 2.9 below).

∅

a

bb′

Figure 2.7. A representation of D1, defined as the event in which
the frog coming from the root and the frog at the first vertex it
hits (labelled a in the figure above) go to different children of a.

∅

a

bb′

Figure 2.8. A representation of D2, defined as the event in which
the frog at the first vertex hit, upon being activated, returns to
the root.
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∅

a

bb′

Figure 2.9. A representation of D3, defined as the event in which
the frog coming from the root and the frog coming from a (where
a once again represents the first vertex landed on) go to the same
child of a.

Next we compute E[xV ;Di] for each i beginning with i = 1.

E[xV ;D1] =
1

3

(

∞
∑

k=0

P(Vb = k)

k
∑

j=0

(1

2

)k

xj

(

k

j

)

)2

=
1

3

(

Lf
)(x+ 1

2

)2

(2.12)

(where above we use the fact, shown in (2.8), that E[xVb ] = (Lf)(x)). D2 can be

separated into the two events D
(1)
2 and D

(2)
2 as follows: D

(1)
2 represents having all

frogs that go to a from the sub-tree rooted at b then travel to the root; and D
(2)
2

represents having at least one frog that travels to a from the sub-tree rooted at b

then go to b′ (i.e. D2/D
(1)
2 ). Computing E[xV ;D

(i)
2 ] for i = 1, 2 now gives

E[xV ;D
(1)
2 ] =

x

3

∞
∑

k=0

P(Vb = k)
(1

2

)k

xk =
x

3

(

Lf
)(x

2

)

, (2.13)

E[xV ;D
(2)
2 ] =

x

3

∞
∑

k=1

P(Vb = k)

k−1
∑

j=0

(1

2

)k
(

k

j

)

xj
(

Lf
)(x+ 1

2

)

=
x

3

(

Lf
)(x+ 1

2

)

∞
∑

k=1

P(Vb = k)
((x+ 1

2

)k

−
(x

2

)k)

=
x

3

(

Lf
)(x+ 1

2

)

·

(

(

Lf
)(x+ 1

2

)

−
(

Lf
)(x

2

)

)

. (2.14)

Moving on to D3, it can also be broken up into two separate events in the following

way: D
(1)
3 represents having all frogs that go to a from the sub-tree rooted at b

then travel to the root; and D
(2)
3 represents having at least one frog that travels to

a from the sub-tree rooted at b then go to b′ (note the only difference between these

two events and the events D
(1)
2 and D

(2)
2 respectively is the behavior of the frog

starting at a; as seen in Figures 2.8 and 2.9). Computing E[xV ;D
(i)
3 ] for i = 1, 2

gives

E[xV ;D
(1)
3 ] =

1

3

∞
∑

k=0

P(V ′
b = k)

(1

2

)k

xk =
1

3

(

Hf
)(x

2

)

, (2.15)
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E[xV ;D
(2)
3 ] =

1

3

∞
∑

k=1

P(V ′
b = k)

k−1
∑

j=0

(1

2

)k
(

k

j

)

xj
(

Lf
)(x+ 1

2

)

=
1

3

(

Lf
)(x+ 1

2

)

∞
∑

k=1

P(V ′
b = k)

((x+ 1

2

)k

−
(x

2

)k)

=
1

3

(

Lf
)(x+ 1

2

)

·

(

(

Hf
)(x+ 1

2

)

−
(

Hf
)(x

2

)

)

. (2.16)

Now adding together the expressions (2.12)-(2.16) gives

f(x) = E[xV ] =
3

∑

i=1

E[xV ;Di]

=
1

3

(

Lf
)(x+ 1

2

)2

+
x

3

(

Lf
)(x

2

)

+
x

3

(

Lf
)(x+ 1

2

)

×

(

(

Lf
)(x+ 1

2

)

−
(

Lf
)(x

2

)

)

+
1

3

(

Hf
)(x

2

)

+
1

3

(

Lf
)(x+ 1

2

)

×

(

(

Hf
)(x+ 1

2

)

−
(

Hf
)(x

2

)

)

=
x

3

(

Lf
)(x

2

)

+
x+ 1

3

(

Lf
)(x+ 1

2

)2

−
x

3

(

Lf
)(x+ 1

2

)

·
(

Lf
)(x

2

)

+
1

3

(

Hf
)(x

2

)

+
1

3

(

Lf
)(x+ 1

2

)

·
(

Hf
)(x+ 1

2

)

−
1

3

(

Lf
)(x+ 1

2

)

×
(

Hf
)(x

2

)

= (Af)(x).

Hence, the proof of Theorem 2.9 is complete. �

2.4. Monotonicity of A. In order to prove Theorem 1.1 (i.e. show that P(V = ∞) =
1) it suffices to show that f(x) = 0 on [0, 1). With the proof of Theorem 2.9 now
complete, this task is reduced to showing that (Anf)(x) → 0 as n → ∞ ∀ x ∈ [0, 1).
The first major step involved in accomplishing this will be to prove the following
proposition.

Proposition 2.10. Define S to be the space of all probability generating functions
(on [0, 1]) associated with probability distributions on {0, 1, . . .}∪{∞}. Let g1, g2 ∈
S with g1 ≥ g2 on [0, 1]. Then Ag1 ≥ Ag2 on [0, 1].

The proof of Proposition 2.10 will require the lemma below.

Lemma 2.11. LS ⊆ S, HS ⊆ S, and AS ⊆ S.

Proof : Begin by defining the following model: Start with a single active frog at
the root and sleeping frogs at the other three nodes (see Figure 2.10 below). The
frog at the root performs a non-backtracking random walk that is stopped upon
hitting any one of the six boxes, and any time an active frog hits a vertex with a
sleeping frog, that frog is activated and begins performing its own non-backtracking
random walk that is stopped upon hitting either the root or one of the boxes. In
addition, the first time a box is hit by a frog, it releases frogs which also perform
non-backtracking random walks that are stopped upon hitting either the root or
another box.
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∅

bb′

U U U U U U

Figure 2.10.

The number of frogs released by the different boxes, conditioned on being hit, are
i.i.d. random variables with distribution U . Finally, the model obeys property
(ii) with respect to the nodes b and b′ (see beginning of Section 2.2). Now let
A∗U represent the distribution of the number of frogs that hit the root in this
model. It then follows that A∗Ṽc = Ṽ (where Ṽ and Ṽc represent the distributions
of V and Vc). Now recall that the proof of Theorem 2.9 involved calculating the
generating function of V (denoted as f(x)) in terms of the generating function of
Vc (also denoted as f(x) on account of our recognition that V and Vc share the
same distribution) and showing that V has generating function Af (i.e. Af is the

generating function associated with the distribution A∗Ṽc). Since the derivation
of this formula was carried out purely symbolically (meaning without taking into
account the particular properties of Vc or its generating function f), this means
that for any probability distribution U (concentrated on {1, 2, . . . } ∪ {∞}) with
generating function η, the generating function of the distribution A∗U isAη. Hence,
it follows that AS ⊆ S.

The proofs of LS ⊆ S and HS ⊆ S are very similar to the proof of AS ⊆ S,
so some of the details will therefore be omitted. In both cases we define a model
using the diagram below (see Figure 2.11). For L, begin with two active frogs
at vertex b, one of which must go in one of the three downward directions, while
the other is free to go in any of the four available directions. Active frogs are to
perform non-backtracking random walks which stop upon hitting either a or any
of the boxes. The first time a box is hit by an active frog, it releases active frogs
according to the distribution U . The numbers of frogs released by the different boxes
(conditioned on being hit) are independent. Letting L∗U represent the distribution
of the number of frogs that hit a, we find (by a similar argument to the one used
for A∗) that the generating function of L∗U is Lη (where η once again represents
the generating function associated with the distribution U). From this it follows
that LS ⊆ S. Furthermore, using a model which differs from this one only in that
a single additional active frog that can go in any of the three downward directions
is positioned at b, we also find that H∗U has generating function Hη, from which
it follows that HS ⊆ S. Hence, the proof is complete. �

Proof of Proposition 2.10: The first step will be to show that Lg1 ≥ Lg2 on [0, 1].

Letting Ft(x) = tg1(x) + (1 − t)g2(x), it will suffice to show that ∂(LFt)(x)
∂t

≥
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a

b

U U U

Figure 2.11.

0 ∀ x, t ∈ [0, 1]. Using the formula for L (see Definition 2.4) along with the fact

that ∂Ft(x)
∂t

= g1(x) − g2(x), then gives the following expression:

∂(LFt)(x)

∂t
= 3 ·

x+ 3

4
Ft

(x+ 2

3

)2(

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

+ 4 ·
x+ 2

4
Ft

(x+ 1

3

)

(

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

− 2 ·
x+ 2

4
Ft

(x+ 1

3

)2(

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

− 4 ·
x+ 2

4
Ft

(x+ 2

3

)

Ft

(x+ 1

3

)(

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

− 2 ·
x+ 1

4
Ft

(x+ 2

3

)

Ft

(x

3

)(

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

−
x+ 1

4
Ft

(x+ 2

3

)2(

g1

(x

3

)

− g2

(x

3

))

− 2 ·
x+ 1

4
Ft

(x+ 1

3

)(

g1

(x

3

)

− g2

(x

3

))

− 2 ·
x+ 1

4
Ft

(x

3

)

(

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

+ 2 ·
x+ 1

4
Ft

(x+ 2

3

)

Ft

(x+ 1

3

)(

g1

(x

3

)

− g2

(x

3

))

+ 2 ·
x+ 1

4
Ft

(x+ 2

3

)

Ft

(x

3

)(

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

+ 2 ·
x+ 1

4
Ft

(x+ 1

3

)

Ft

(x

3

)(

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

+
x+ 1

4

(

g1

(x

3

)

− g2

(x

3

))

=
[(

2 ·
x+ 3

4
Ft

(x+ 2

3

)2

− 2 ·
x+ 2

4
Ft

(x+ 1

3

)2)

+
(x+ 3

4
Ft

(x+ 2

3

)2

−
x+ 1

2

Ft

(x+ 2

3

)

Ft

(x

3

))

+
(x+ 1

2
Ft

(x+ 1

3

)

Ft

(x

3

))](

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

+

[(

1− Ft

(x+ 2

3

))(

(x+ 2)Ft

(x+ 1

3

)

−
x+ 1

2
Ft

(x

3

))](

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

+
[x+ 1

4

(

1 + Ft

(x+ 2

3

)

− 2Ft

(x+ 1

3

))(

1− Ft

(x+ 2

3

))](

g1

(x

3

)

− g2

(x

3

))

.

Since Ft is a convex combination of the probability generating functions g1 and
g2, this means Ft ∈ S (for any t ∈ [0, 1]). It follows that 0 ≤ Ft ≤ 1 on [0, 1]
and that Ft is increasing on [0, 1] (w.r.t. x). This then implies that each of the
three terms inside the first set of brackets above is non-negative. Likewise, it also
follows that the expressions inside the second and third sets of brackets are non-
negative. Coupling this with the fact that g1 ≥ g2, it can then be concluded that
∂(LFt)(x)

∂t
≥ 0 ∀ x, t ∈ [0, 1], from which it follows that Lg1 ≥ Lg2 on [0, 1].
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It is also necessary to establish that Hg1 ≥ Hg2 on [0, 1]. Recalling the formula
for H (see Definition 2.6) and using the fact, established above, that Lg1 ≥ Lg2,
this task amounts to showing that Gg1 ≥ Gg2 (where (Gg)(x) = x+3

6 g(x+2
3 )3 +

x+2
6 (g(x+1

3 )2 − g(x+2
3 )g(x+1

3 )2)). Once again letting Ft(x) = tg1(x) + (1− t)g2(x),
we find that

∂(GFt)(x)

∂t
=

x+ 3

6
· 3Ft

(x+ 2

3

)2(

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

+
x+ 2

6
· 2Ft

(x+ 1

3

)

(

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

−
x+ 2

6
Ft

(x+ 1

3

)2(

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

−
x+ 2

6
· 2Ft

(x+ 2

3

)

Ft

(x+ 1

3

)(

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

=
[

3 ·
x+ 3

6
Ft

(x+ 2

3

)2

−
x+ 2

6
Ft

(x+ 1

3

)2](

g1

(x+ 2

3

)

− g2

(x+ 2

3

))

+

[

2 ·
x+ 2

6
Ft

(x+ 1

3

)

− 2 ·
x+ 2

6
Ft

(x+ 1

3

)

Ft

(x+ 2

3

)](

g1

(x+ 1

3

)

− g2

(x+ 1

3

))

.

It then follows from the three facts –(i) 0 ≤ Ft ≤ 1, (ii) Ft is increasing with respect
to x, and (iii) g1 ≥ g2 – that both terms in the above sum are non-negative, which
means

∂(GFt)(x)

∂t
≥ 0 ∀ x, t ∈ [0, 1] =⇒ Gg1 ≥ Gg2 =⇒ Hg1 ≥ Hg2

as desired.
Having established the monotonicity of L and H on S, we are now ready to prove

the proposition. To start, define Ã to be an operator on S × S where

Ã[f1, f2](x) =
1

3
f1

(x+ 1

2

)2

+
x

3
f1

(x

2

)

+
x

3
f1

(x+ 1

2

)(

f1

(x+ 1

2

)

− f1

(x

2

))

+
1

3
f2

(x

2

)

+
1

3
f1

(x+ 1

2

)(

f2

(x+ 1

2

)

− f2

(x

2

))

.

Noting that (Ag)(x) = Ã[Lg,Hg](x) and that LS ⊆ S, HS ⊆ S, Lg1 ≥ Lg2,
and Hg1 ≥ Hg2, it suffices to show that if H1, H2, G1, G2 ∈ S with H1 ≥ G1 and
H2 ≥ G2, then the following inequality holds:

Ã[H1, H2](x) ≥ Ã[G1, G2](x). (2.17)

Defining F
(i)
t = tHi + (1− t)Gi (for i = 1, 2), if it can be established that

∂Ã[F
(1)
t , F

(2)
t ](x)

∂t
≥ 0 (2.18)

∀ t, x ∈ [0, 1], then (2.17) will follow. Writing out the formula for the left side of
(2.18) gives the following expression:

2

3
F

(1)
t

(x+ 1

2

)(

H1

(x+ 1

2

)

−G1

(x+ 1

2

))

+
x

3

(

H1

(x

2

)

−G1

(x

2

))

+
2x

3
F

(1)
t

(x+ 1

2

)(

H1

(x+ 1

2

)

−G1

(x+ 1

2

))

−
x

3
F

(1)
t

(x+ 1

2

)

(

H1

(x

2

)

−G1

(x

2

))

−
x

3
F

(1)
t

(x

2

)(

H1

(x+ 1

2

)

−G1

(x+ 1

2

))

+
1

3

(

H2

(x

2

)

−G2

(x

2

))

+
1

3
F

(1)
t

(x+ 1

2

)(

H2

(x+ 1

2

)

−G2

(x+ 1

2

))
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+
1

3
F

(2)
t

(x+ 1

2

)(

H1

(x+ 1

2

)

−G1

(x+ 1

2

))

−
1

3
F

(1)
t

(x+ 1

2

)

(

H2

(x

2

)

−G2

(x

2

))

−
1

3
F

(2)
t

(x

2

)(

H1

(x+ 1

2

)

−G1

(x+ 1

2

))

=
[(

2 ·
x+ 1

3
F

(1)
t

(x+ 1

2

)

−
x

3
F

(1)
t

(x

2

))

+
(1

3
F

(2)
t

(x+ 1

2

)

−
1

3
F

(2)
t

(x

2

))]

(

H1

(x+ 1

2

)

−G1

(x+ 1

2

))

+
[x

3
−

x

3
F

(1)
t

(x+ 1

2

)](

H1

(x

2

)

−G1

(x

2

))

+
[1

3
F

(1)
t

(x+ 1

2

)](

H2

(x+ 1

2

)

−G2

(x+ 1

2

))

+
[1

3
−

1

3
F

(1)
t

(x+ 1

2

)](

H2

(x

2

)

−G2

(x

2

))

.

Now noting that F
(1)
t , F

(2)
t ∈ S (implying they are increasing and between 0 and

1), and recalling that Hi ≥ Gi for i = 1, 2, we see that (2.18) follows. This then
implies (2.17), which implies Ag1 ≥ Ag2. Hence, the proof of the proposition is
complete. �

2.5. Completing the proof of Theorem 1.1. Having established that A is monotone,
it follows that Anf ≤ An1 ∀ n ≥ 1. Hence, to show that the expression on the
left goes to 0, it suffices to show that An1 → 0 on [0, 1). This will be achieved
by employing a method referred to in Hoffman et al. (2017) as Poisson thinning.
Defining ga(x) = ea(x−1) (the probability generating function for Poiss(a)), Poisson
thinning involves establishing the existence of a sequence 0 = a0 < a1 < a2 < . . .
(diverging to infinity) such that An1 ≤ gan

(x) for all n ≥ 0. The existence of this
sequence is established in two parts. First, in Proposition 2.12 it is shown that
∀ a ≥ 15, (Aga)(x) ≤ ga+ǫ(x) on [0, 1] (where ǫ = 1

20 ). It then follows from a
simple induction argument which relies on the monotonicity of A established in
Proposition 2.10, that (Anga)(x) ≤ ga+nǫ(x) ∀ n ≥ 1 (provided a ≥ 15). From this
point, establishing the existence of the sequence {an} reduces to establishing the
existence of a finite sequence 0 = a0 < a1 < · · · < aN (where aN ≥ 15) such that
An1 ≤ gan

(x) on [0, 1] ∀ n with 0 ≤ n ≤ N . This is accomplished (with the help of
a Python program) in Proposition 2.14, where we inductively construct a sequence
0 = a0 < a1 < · · · < aN satisfying the above constraints. Along with Proposition
2.12, this will then establish the existence of {an}. The result An1 → 0 on [0, 1)
follows immediately, which then implies Anf → 0 on [0, 1). As explained at the
beginning of the previous section, this is then sufficient for establishing Theorem 1.1.

Proposition 2.12. Let ga(x) = ea(x−1). If a ≥ 15 then (Aga)(x) ≤ ga+ 1
20
(x) on

[0, 1].

Proof : The first step will be to define a simple expression Ψ(x, a) to serve as an
upper bound on (Aga)(x) (for a ≥ 15). To start, note that

(Ag)(x) =
x

3

(

Lg
)(x

2

)

+
x+ 1

3

(

Lg
)(x+ 1

2

)2

−
x

3

(

Lg
)(x+ 1

2

)

·
(

Lg
)(x

2

)

+
1

3

(

Hg
)(x

2

)

+
1

3

(

Lg
)(x+ 1

2

)

·
(

Hg
)(x+ 1

2

)

−
1

3

(

Lg
)(x+ 1

2

)

·
(

Hg
)(x

2

)
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≤
x

3

(

Lg
)(x

2

)

+
x+ 1

3

(

Lg
)(x+ 1

2

)2

+
1

3

(

Hg
)(x

2

)

(2.19)

+
1

3

(

Lg
)(x+ 1

2

)

·
(

Hg
)(x+ 1

2

)

∀ g ∈ S. To bound (2.19) above (for g(x) = ga(x)) we’ll first obtain upper bounds
for (Lga)(x) and (Hga)(x) as follows:

(Lga)(x) =
x+ 3

4
ea(x−1) + 2 ·

x+ 2

4

(

e
2a
3
(x−2) − ea(x−

5
3
)
)

+
x+ 1

4

(

e
a
3
(x−3) − 2e

2a
3
(x− 5

2
) − ea(x−

5
3
) + 2ea(x−2)

)

.

Observing that for all x ∈ [0, 1], 2 · x+2
4 ea(x−

5
3
) ≥ e−

a
3 e

2a
3
(x−2), 2 · x+1

4 e
2a
3
(x− 5

2
) ≥

1
2e

−a
3 e

2a
3
(x−2), and x+1

4 ea(x−
5
3
) ≥ 1

4e
− a

3 e
2a
3
(x−2), along with the two inequalities

2 · x+2
4 e

2a
3
(x−2) ≤ 3

2e
2a
3
(x−1) and 2 · x+1

4 ea(x−2) ≤ e−
a
3 e

2a
3
(x−2), we find that if we

make the given substitutions in the expression for (Lga)(x) above, it gives

(Lga)(x) ≤
x+ 3

4
ea(x−1) +

x+ 1

4
e

a
3
(x−3) + ce

2a
3
(x−2)

(where c = 3
2 − 3

4e
− a

3 ). The above upper bound on (Lga)(x) will be denoted as
la(x). Now noting that

(Hga)(x) =
x+ 3

4
ea(x−1) + 2 ·

x+ 2

6

(

e
2a
3
(x−2) − ea(x−

5
3
)
)

+
x+ 1

12

(

e
a
3
(x−3) − 2e

2a
3
(x− 5

2
) − ea(x−

5
3
) + 2ea(x−2)

)

,

applying a similar set of inequalities then gives the bound

(Hga)(x) ≤
x+ 3

4
ea(x−1) +

x+ 1

12
e

a
3
(x−3) + de

2a
3
(x−2)

(where d = 1− 7
12e

−a
3 ). This upper bound on (Hga)(x) will be denoted as ha(x).

Combining the above bounds with (2.19) we obtain the inequality

(Aga)(x) ≤
x

3
la

(x

2

)

+
x+ 1

3
la

(x+ 1

2

)2

+
1

3
ha

(x

2

)

+
1

3
la

(x+ 1

2

)

ha

(x+ 1

2

)

.

Writing out this full expression gives the following:

(Aga)(x) ≤
x

3

(x+ 6

8
e

a
2
(x−2) +

x+ 2

8
e

a
6
(x−6) + ce

a
3
(x−4)

)

+
x+ 1

3

((x+ 7

8

)2

ea(x−1) +
(x+ 3

8

)2

e
a
3
(x−5) + c2e

2a
3
(x−3)

+ 2 ·
x+ 7

8
·
x+ 3

8
e

2a
3
(x−2) + 2 ·

x+ 7

8
· ce

5a
6
(x− 9

5
) + 2 ·

x+ 3

8
· ce

a
2
(x− 11

3
)
)

+
1

3

(x+ 6

8
e

a
2
(x−2) +

x+ 2

24
e

a
6
(x−6) + de

a
3
(x−4)

)

+
1

3

((x+ 7

8

)2

ea(x−1)

+
x+ 3

8
·
x+ 3

24
e

a
3
(x−5) + cde

2a
3
(x−3) +

4

3
·
x+ 7

8
·
x+ 3

8
e

2a
3
(x−2)

+ (c+ d)
x+ 7

8
e

5a
6
(x− 9

5
) + (

c

3
+ d)

x+ 3

8
e

a
2
(x− 11

3
)
)

=
x+ 2

3

(x+ 7

8

)2

ea(x−1) +
x+ 1

3
·
x+ 6

8
e

a
2
(x−2) +

x+ 1
3

3
·
x+ 2

8
e

a
6
(x−6) (2.20)
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+ e
2a
3
(x−2)

(x

3
· ce−

a
3
x +

x+ 1

3
·
(x+ 3

8

)2

e−
a
3
(x+1) +

x+ 1

3
· c2e−

2a
3

+ 2 ·
x+ 1

3
·
x+ 7

8
·
x+ 3

8
+ 2 ·

x+ 1

3
·
x+ 7

8
· ce

a
6
(x−1)

+ 2 ·
x+ 1

3
·
x+ 3

8
· ce−

a
6
(x+3) +

d

3
e−

a
3
x +

(x+ 3

24

)2

e−
a
3
(x+1) +

c

3
de−

2a
3

+
4

9
·
x+ 7

8
·
x+ 3

8
+ (c+ d)

x+ 7

24
e

a
6
(x−1) +

1

3

( c

3
+ d

)x+ 3

8
e−

a
6
(x+3)

)

.

An upper bound for the long expression in parentheses beginning on the second
line of (2.20) can be obtained by replacing x with 1 wherever it is part of an
increasing expression (such as x

3 or eax) and replacing it with 0 wherever it is part
of a decreasing expression. After simplifying, this gives the following inequality:

(Aga)(x) ≤
x+ 2

3

(x+ 7

8

)2

ea(x−1) +
x+ 1

3
·
x+ 6

8
e

a
2
(x−2) +

x+ 1
3

3
·
x+ 2

8
e

a
6
(x−6)

+
(41

9
−

61

36
e−

a
3 +

5

4
e−

a
2 + 2e−

2a
3 −

23

36
e−

5a
6 −

49

24
e−a +

25

48
e−

4a
3

)

e
2a
3
(x−2).

Note that for a ≥ 3 the following string of inequalities holds

41

9
−

61

36
e−

a
3 +

5

4
e−

a
2 + 2e−

2a
3 −

23

36
e−

5a
6 −

49

24
e−a +

25

48
e−

4a
3

≤
41

9
−

61

36
e−

a
3 + e−

a
3

(5

4
e−

a
6 + 2e−

a
3

)

≤
41

9
.

Hence, we now finally define Ψ(x, a) to be

Ψ(x, a) =
x+ 2

3

(x+ 7

8

)2

ea(x−1) +
x+ 1

3
·
x+ 6

8
e

a
2
(x−2)

+
x+ 1

3

3
·
x+ 2

8
e

a
6
(x−6) +

41

9
e

2a
3
(x−2).

From the above computations, it follows that (Aga)(x) ≤ Ψ(x, a) on [0, 1] for a ≥ 15
as desired (though as we saw above, having a ≥ 3 is sufficient for this inequality to
hold).

Now that Ψ(x, a) has been defined, we’ll proceed to prove the proposition by
splitting up the interval [0, 1] into four parts, and showing that the inequality
stated in the proposition holds for all x in each one of them.

(i) x ∈ [1− c(a), 1] (where c(a) = a−
9
4 ).

Since (Aga)(x) is a convex function of x (this follows from it being a probabil-
ity generating function), this means that for any c ∈ [0, 1] we have (Aga)(x) ≤

(Aga)(c)+
(

1−(Aga)(c)
)(

x−c
1−c

)

∀ x ∈ [c, 1]. Using the fact that (Aga)(x) ≤ Ψ(x, a)

(for a ≥ 15), it follows that (Aga)(x) ≤ Ψ(c, a)+
(

1−Ψ(c, a)
)(

x−c
1−c

)

on [c, 1]. Not-

ing that ga+ 1
2
(x) is itself a convex function of x that has derivative a+ 1

20 at x = 1,

it follows that ga+ 1
20
(x) ≥ 1 − (a + 1

20 )(1 − x) on [0, 1]. Putting these last two

observations together, we find that if we can establish that

Ψ(1− c(a), a) ≤ 1− (a+
1

20
)(1 − (1− c(a))), (2.21)

then it will follow that

(Aga)(x) ≤ 1−
(

a+
1

20

)(

1−(1−c(a))
)

+
(

a+
1

20

)(

1−(1−c(a))
)(x− (1− c(a))

1− (1− c(a))

)
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= 1−
(

a+
1

20

)(

1− x
)

≤ ga+ 1
20
(x)

for all x ∈ [1− c(a), 1].
Now using the formula for Ψ, we get the string of inequalities

Ψ(1− c(a), a) ≤
(

1−
c(a)

3

)(

1−
c(a)

8

)2

e−ac(a) +
7

12
e−

a
2 +

1

6
e−

5a
6 +

41

9
e−

2a
3

≤ e−(a+ 7
12

)c(a)+
7

12
e−

a
2 +

85

18
e−

2a
3 ≤ 1−

(

a+
7

12

)

c(a)+
13

24
a2c(a)2+

7

12
e−

a
2 +

85

18
e−

2a
3

(where the last inequality follows from the fact that e−x ≤ 1− x+ x2

2 for x ∈ [0, 1],

and the fact that
(

a + 7
12

)2

≤ 13
12a

2 for a ≥ 15). Plugging c(a) = a−
9
4 into the

above expression then gives

Ψ(1− c(a), a) ≤ 1−
(

a+
7

12

)

c(a) +
(13

24
a−

1
4 +

7

12
a

9
4 e−

a
2 +

85

18
a

9
4 e−

2a
3

)

c(a).

Now to establish (2.21) it just needs to be shown that

13

24
a−

1
4 +

7

12
a

9
4 e−

a
2 +

85

18
a

9
4 e−

2a
3 ≤

7

12
−

1

20
(2.22)

for a ≥ 15. So observe the string of inequalities below (which holds for a ≥ 9
2 ),

where the left side is equal to the derivative of the left side of (2.22).

−
13

96
a−

5
4 +

9

4
a

5
4

( 7

12
e−

a
2 +

85

18
e−

2a
3

)

− a
9
4

(1

2
·
7

12
e−

a
2 +

2

3
·
85

18
e−

2a
3

)

<
(9

4
a

5
4 −

1

2
a

9
4

)( 7

12
e−

a
2 +

85

18
e−

2a
3

)

< 0.

Combining this with the fact that the left side of (2.22) is approximately .513 <
7
12 − 1

20 at a = 15, we find that (2.22) does indeed hold for a ≥ 15 which, as was
shown, implies that ga(x) ≤ ga+ 1

20
(x) on [1− c(a), 1].

(ii) x ∈ [ 12 , 1− c(a)).

Denoting e−a(x−1)Ψ(x, a) as Q(x, a) (for a ≥ 15), it suffices to show that Q(x, a) ≤

e
1
20

(x−1) on [ 12 , 1−c(a)). Since we saw in (i) that Ψ(1−c(a), a) ≤ 1−
(

a+ 1
20

)

c(a) ≤

e(a+
1
20

)((1−c(a))−1), it follows thatQ(1−c(a), a) ≤ e
1
20

((1−c(a))−1), which implies that

to prove Q(x, a) ≤ e
1
20

(x−1), it suffices to prove that the right side of

∂
(

e
1
20

(x−1)
)

∂x
≤

1

20
≤

∂Q(x, a)

∂x

holds on [ 12 , 1 − c(a)). Computing the formula for the expression on the right, we
get

∂Q(x, a)

∂x
=

1

3

(x+ 7

8

)2

+
1

4
·
x+ 2

3
·
x+ 7

8
+

1

3
·
x+ 6

8
e−

a
2
x +

1

8
·
x+ 1

3
e−

a
2
x

−
a

2
·
x+ 1

3
·
x+ 6

8
e−

a
2
x +

1

3
·
x+ 2

8
e−

5a
6
x +

1

8
·
x+ 1

3

3
e−

5a
6
x

−
5a

6
·
x+ 1

3

3
·
x+ 2

8
e−

5a
6
x −

a

3
·
41

9
e−

a
3
(x+1)

≥
1

3

(x+ 7

8

)2

+
1

4
·
x+ 2

3
·
x+ 7

8
−

a

2
·
x+ 1

3
·
x+ 6

8
e−

a
2
x
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−
5a

6
·
x+ 1

3

3
·
x+ 2

8
e−

5a
6
x −

a

3
·
41

9
e−

a
3
(x+1).

Plugging in x = 1
2 for the exponential functions and the polynomial expressions

that follow a ′+′, and x = 1 for the polynomial expressions that follow a ′−′, we
find that the expression on the right side of the inequality is greater than or equal
to

1

3

(15

16

)2

+
1

4
·
5

6
·
15

16
−

a

2
·
2

3
·
7

8
e−

a
4 −

5a

6
·
4

9
·
3

8
e−

5a
12 −

a

3
·
41

9
e−

a
2

on [ 12 , 1− c(a)). Simplifying, and using the string of inequalities above, gives

∂Q(x, a)

∂x
≥

125

256
−

7a

24
e−

a
4 −

5a

36
e−

5a
12 −

41a

27
e−

a
2 (2.23)

on this interval. If we differentiate this expression with respect to a we get
(a

4
− 1

)

·
7

24
e−

a
4 +

(5a

12
− 1

)

·
5

36
e−

5a
12 +

(a

2
− 1

)

·
41

27
e−

a
2 ≥ 0

(recall we’re assuming a ≥ 15). Coupling this with the fact that the expression on
the right side of (2.23), when evaluated at a = 15 and rounded to three decimal

digits, is equal to .369 > 1
20 , we indeed find that ∂Q(x,a)

∂x
≥ 1

20 on [ 12 , 1 − c(a))

for a ≥ 15. As was shown, this implies that Q(x, a) ≤ e
1
20

(x−1), which implies
(Aga)(x) ≤ ga+ 1

20
(x) on [ 12 , 1− c(a)) for a ≥ 15 as desired.

(iii) x ∈ [ 18 ,
1
2 ).

Once again it suffices to show that Q(x, a) ≤ e
1
20

(x−1) (this time on [ 18 ,
1
2 )). Taking

the formula for Q(x, a) = e−a(x−1)Ψ(x, a) and substituting 1
2 for x when it is part

of a polynomial function, and 1
8 when it is part of an exponential expression (with

negative exponent), we find that

Q(x, a) ≤
375

512
+

13

32
e−

a
16 +

25

288
e−

5a
48 +

41

9
e−

3a
8

for x ∈ [ 18 ,
1
2 ). Since the expression on the right is a decreasing function of a,

plugging in a = 15 shows that

Q(x, a) ≤
375

512
+

13

32
e−

15
16 +

25

288
e−

25
16 +

41

9
e−

45
8 ≈ .926 < e

1
20

( 1
8
−1) ≤ e

1
20

(x−1)

on [ 18 ,
1
2 ) for a ≥ 15, thus giving the desired inequality.

(iv) x ∈ [0, 18 ).

Using the exact same method that was used in (iii), but plugging in 0 and 1
8 in

place of 1
8 and 1

2 respectively, we find that

Q(x, a) ≤
17

24

(57

64

)2

+
3

8
·
49

64
+

11

72
·
17

64
+

41

9
e−5 ≈ .9203 < e−

1
20 ≤ e

1
20

(x−1)

on [0, 18 ) for a ≥ 15, once again yielding the desired inequality.

Combining parts (i)-(iv) we find that (Aga)(x) ≤ ga+ 1
20
(x) does hold on [0, 1] for

a ≥ 15, thus completing the proof of the proposition. �

Corollary 2.13. If a ≥ 15 and n ≥ 1 then (Anga)(x) ≤ ga+nǫ(x) (where ǫ = 1
20).
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Proof : We know from the previous result that the statement holds for n = 1. Now
assume it holds for some n ≥ 1. Then by the monotonicity of A on S (established
in Proposition 2.10), along with Proposition 2.12, it follows that

(An+1ga)(x) =
(

A(Anga)
)

(x) ≤ (Aga+nǫ)(x) ≤ ga+(n+1)ǫ(x)

on [0, 1]. By induction we then find that (Anga)(x) ≤ ga+nǫ(x) on [0, 1] for all
n ≥ 1. �

Having proven Proposition 2.12 and it’s corollary, our last significant task is to
establish the following result.

Proposition 2.14. There exists a finite sequence 0 = a0 < a1 < · · · < aN (with
aN ≥ 15) such that An1 ≤ gan

(x) on [0, 1] for all n with 0 ≤ n ≤ N .

The proof of Proposition 2.14 will make use of the following lemma.

Lemma 2.15. Let f1 and f2 be convex increasing functions on [0, 1] where f1 is
differentiable and f1(1) = f2(1). Suppose there is a finite sequence 1 = c0 > c1 >
· · · > cn = 0 that satisfies

f2(cj+1) ≤ f1(cj)− (cj − cj+1)f
′
1(cj) (2.24)

for all j with 0 ≤ j < n. Then f1(x) ≥ f2(x) ∀ x ∈ [0, 1].

Proof : Assume f1(cj) ≥ f2(cj) for some j < n. We know by the convexity (and
differentiability) of f1 that f1(t) ≥ f1(cj)− f ′

1(cj)(cj − t) for t ∈ [cj+1, cj]. By the
convexity of f2 it follows that

f2(t) ≤ f2(cj)−
f2(cj)− f2(cj+1)

cj − cj+1
(cj − t) ≤ f1(cj)− f ′

1(cj)(cj − t) ≤ f1(t)

for t ∈ [cj+1, cj ] (where the middle inequality follows from f1(cj) ≥ f2(cj), (2.24),
and the fact that both expressions are linear in t). Since f1(1) ≥ f2(1), it follows
by induction that f1(t) ≥ f2(t) ∀ t ∈ [0, 1]. �

Proof of Proposition 2.14: Let u ≥ 0, a > 0, and ci = 256−i
256 for 0 ≤ i ≤ 256.

Recalling that gu(x) is the probability generating function for Poiss(u) (implying
it is increasing and convex on [0, 1]) and noting that gu+a(x) is increasing, convex,
and differentiable on [0, 1], along with the fact that the two functions both equal
1 at x = 1, we find that if (2.24) holds for each i with 0 ≤ i < 256 (where
f1(x) = gu+a(x) and f2(x) = (Agu)(x)), then it will follow from Lemma 2.15 that
(Agu)(x) ≤ gu+a(x) on [0, 1]. Now observe the attached Python program (or see
https://arxiv.org/abs/1701.02813). For each pass through the while loop (see line
45) it checks to see if (2.24) holds (at each ci) for a = 1

16 , f1(x) = gu+a(x), and

f2(x) = (Agu)(x). If (2.24) does hold at each ci then u is increased by 1
16 and we

repeat the process with the new values of u, f1, and f2. If not, a is set to 1
32 and

it tests to see if (2.24) holds for each i for this value of a. If so, u is increased
by 1

32 and the process is repeated for the new u, f1, and f2 (again starting with

a = 1
16 ). If not, it tests again with a = 3

256 . If (2.24) holds at each ci then the
process repeats with u, f1, and f2 adjusted accordingly. If not, then the while loop
terminates. The loop keeps running until either it terminates (as described above)
because (2.24) fails to hold at some ci for a equal to each of the three specified
values ( 1

16 ,
1
32 , and

3
256 ), or because m = 341 (i.e. we’ve passed through the loop

340 times). In order to ensure that the program does not return a false negative (as
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a result of rounding) when evaluating the inequality on line 50, interval arithmetic
is employed (see https://en.wikipedia.org/wiki/Interval arithmetic for a definition)
so that, for each a, u, i combination that is considered, the loop only fails to break if
A (an interval containing the precise value of f1(cj)− (cj −cj+1)f

′
1(cj)) lies entirely

to the right of B (an interval containing the precise value of f2(cj+1)). At the end,
the program prints the final values of m and u. Upon running the program you
will find that these values are 341 and 15.203125 respectively (the program prints
the current value of m as it runs, and should take about eight minutes to finish).

Now for 0 ≤ n ≤ 340 we let an represent the value taken by u following the nth
pass through the loop. Hence, 0 = a0 < a1 < · · · < a340 = 15.203125 and aj+1 −
aj ∈

{

1
16 ,

1
32 ,

3
256

}

for each 0 ≤ j < 340. Furthermore, since the program output
indicates that 340 passes through the loop were completed, this implies that (2.24)
holds (at each ci for 0 ≤ i < 256) for each 0 ≤ j ≤ 340 (where f1(x) = gaj+1

(x) and
f2(x) = (Agaj

)(x)). By Lemma 2.15, this implies that (Agaj
)(x) ≤ gaj+1

(x) on
[0, 1] for every 0 ≤ j < 340. It then follows from the same induction argument that
was used to prove Corollary 2.13 that An1 ≤ gan

(x) for every n with 0 ≤ n ≤ 340.
Hence, we find that the an terms satisfy the conditions given in the statement of
the proposition. Hence, the proof is complete. �

With Proposition 2.14 established, the proof of Theorem 1.1 can now be com-
pleted.

Proof of Theorem 1.1: Recalling that ga(x) = ea(x−1), we see that Proposition 2.14
and Corollary 2.13 together indicate that An1 → 0 on [0, 1) as n → ∞. Since the
monotonicity of A implies that Anf ≤ An1 ∀ n ≥ 0, it follows that Anf → 0
on [0, 1) as n → ∞. Since f is known to be a fixed point of A, this then means
that f(x) = 0. As explained in the introduction, this implies that P(V = ∞) = 1.
Recalling from the end of Section 2.2 that V (the number of times the root is hit
in the self-similar model on T3,2) is dominated by Y (the number of times it is hit
in the original model on T3,2), it follows that P(Y = ∞) = 1. Thus we find that
the frog model on T3,2 is indeed recurrent. Hence, the proof of Theorem 1.1 is
complete. �
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