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1. Introduction

Mammen et al. (2015) and Lee et al. (2015) defined the term “in-sample fore-
casting” to mean forecasting a structured function in regions where the function is
not observed but where it is determined by its values in the observed region. There
have been many modeling approaches that connect the underlying distributions in
the observed and un-observed areas via some common structure. One of the best
known models of this class are perhaps age-cohort models often applied in epidemi-
ology, biometrical and industrial forecasting. Here functions of interest depend
on age effects and cohort effects that can be estimated using past observations.
Outcomes for the future values of the function can be achieved by plugging in the
fitted effects. Thus the age-cohort model is an in-sample forecaster because future
age-cohort driven mean values are determined by age effects and cohort effects that
can be estimated using available data.

There are several specifications of age-cohort models. In longevity studies, mor-
tality rates have been modeled as products of age-effects and age-specific period
trends, see e.g. Lee and Carter (1992) and Lee and Miller (2001), and see Renshaw
and Haberman (2006) for an extension that also includes age-specific cohort effects.
In medicine the cohort-effect can be onset of disease and the age-effect can be du-
ration. In insurance the former can be the time of registering an insurance claim
and the latter can be the duration until the claim is fully paid, see Kuang et al.
(2009) among many others. It turns out that continuous age-cohort models can be
formulated via something as simple as a combination of two independent stochastic
variables. Let us for example assume that we have one variable X representing the
start of something. It could be onset of some infection, underwriting of an insurance
contract, reporting of an insurance claim, birth of a new member of a cohort or an
employee losing his job in the labour market. Let then Y be a stochastic variable
independent of X representing the development or delay to some event from this
starting point. It could be incubation period of some disease, development of an
insurance claim, age of a cohort member or time spent looking for a new job. Then,
X+Y is the calendar time of the relevant event. This event is observed if and only
if it has already happened until a calendar time, say t0. The forecasting exercise is
about predicting the density of future events in calendar times after t0.

In the continuous age-cohort model the forecasting density is specified in terms
of the densities of X and Y . The most typical example of a structured density age-
cohort model has a simple multiplicative form and has been studied by Mart́ınez-
Miranda et al. (2013) and Mammen et al. (2015). The first group of authors called
it “continuous chain-ladder”, because of its relation to the chain-ladder method
that is omnipresent in applied non-life insurance. The chain-ladder method is an
actuarial loss reserving technique that is based on the estimation of age-to-age fac-
tors using past data to predict future loss development patterns. In a continuous
chain-ladder model it is assumed that X and Y have smooth densities f1 and f2 and
are independent, leading to a multiplicative density model. When f1 and f2 are es-
timated by histograms, our in-sample forecasting approach could be formulated via
a parametric model. This version of in-sample density forecasting is omnipresent
in academic studies as well as in business forecasting, see Mart́ınez-Miranda et al.
(2013) for more details and references in insurance and in statistics. Extensions of
such parametric histogram type of models can often be understood as structured
density models modeled via histograms. However, in-sample forecasting is more
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general in scope than methods based on the simple multiplicative model. Any
generalised structured density or regression function that can be estimated from
the past and that covers outcomes of the function in the future can be used. A
generalised structured function is defined as a known function of lower-dimensional
unknown underlying functions, see Mammen and Nielsen (2003) for a formal defi-
nition of generalised structured models.

Under the assumption that the model is true, our forecasts make use of the esti-
mated lower-dimensional functions. The forecast is achieved by plugging the fits of
these functions into the structured equation that is valid for the considered future
date. The forecasting technique does not make use of an approximative extrapola-
tion method that is based on Taylor expansions, for example, to get approximations
for near future outcomes. And it does not use methods from time series analysis
to model the further development of some random parameters. This is why the
methodology is called “in-sample forecasting”: a structured nonparametric estima-
tor forecasting the future without using approximate extrapolations or time series
forecasts. For letting the method work the structural assumptions are essential.
The validity of these assumptions for the past can be checked by goodness-of-fit
tests. For the above mentioned multiplicative density model, for example, tests can
be constructed that question the multiplicative form. This can be done by omnibus
tests or by tests that compare the fit with estimates in extended models. We will
mention some model extensions for this model below. A more rigorous work on
testing for in-sample forecasting models is still missing.

More formal description of in-sample forecasting can be found in Mammen et al.
(2015) and Lee et al. (2015). We call the problem of estimating a nonparametric
function f “in-sample forecasting” if it is to estimate the values of the function f(z)

for z ∈ Ĩ only with noisy observations of f(z) for z in a set I that is disjoint to Ĩ.
This makes sense under structural assumptions that identify the values of f(z) for

z ∈ Ĩ by the values of f(z) for z ∈ I. This is the case with the continuous chain-
ladder model, f(x, y) = f1(x)f2(y) with I being equal to the triangle {(x, y) : x, y ∈
[0, t0], x+y ≤ t0} and Ĩ = [0, t0]2\I. The name “chain-ladder” probably came from
the shape of the run-off triangle I in the discrete case. The component functions
f1 and f2 can be estimated by observing truncated observations (Xi, Yi) ∈ I.

This identifies f(x, y) for (x, y) ∈ Ĩ. We come back to this model in Section 4
with a general support set I. There are some extensions of this model. In Lee
et al. (2015) a seasonal effect is added to the model. The seasonal effect can
be estimated from the past because of its recurring character. Here the density
has the form f(x, y) = f1(x)f2(x)f3(φ(x + y)), where φ represents the unknown
recurrent seasonal effect. On the other hand, Lee et al. (2017) assume f(x, y) =
f1(x)f2(yφ(x)), where φ represents an unknown effect called “operational time”.
This accounts for data where the speed of aging measured by Y develops in time.
Other examples of structured models for in-sample forecasting include additive
regression models Y = m1(X1) + · · · + md(Xd) + ε, where observations for the
function m(x) = m1(x1) + · · · + md(xd) are available for x in the support of X =
(X1, . . . , Xd)

> but the function m is identified in the larger set S1 × · · · × Sd with
Sj equal to the support of Xj . For further examples related to additive models,
see also Mammen and Nielsen (2003) and Mammen et al. (2014). It is of course
not necessary that all entering functions are nonparametric. Lee (2016) pointed
out that parametrising one component could stabilise estimation and forecast at
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the cost of introducing a model bias in case the semiparametric model assumption
is violated.

Several algorithms have been used for the calculation of in-sample forecasters. In
a number of papers the calculation has been done by solving empirical integral equa-
tions. For additive models an alternative is to use backfitting algorithms. Recently,
for the continuous chain-ladder model it has been proposed to consider the problem
as survival density estimation, see Hiabu et al. (2016a). They use a reversing time
argument to reduce the original two-dimensional projection problem to that of esti-
mating two one-dimensional survival densities. The present paper introduces a new
algorithm for the multiplicative density in-sample forecaster, which also reduces the
complexity of the problem. The new so-called super-simulation-algorithm of this
paper works with any density estimator based on independent and identically dis-
tributed data. The algorithm enables a wider range of density estimation options
for applied statisticians, actuaries and econometricians who use the methodology.
The super-simulation-algorithm first ignores that data are not available on the en-
tire support of the population model. Data are only available in the past, not in
the future. In the first step, each component function in a structured model is esti-
mated as if full information was available. In the second step, the super-simulation-
algorithm simulates data in the no-data-region using the estimated components. In
the third step, the component functions are re-estimated using both the original
and simulated data, and this iteration continues until convergence. A theorem is
supplied proving that this computationally tractable super-algorithm does work as
intended.

There are similarities and differences between the approach based on operational
time and the one that adds the period effect to the age-cohort model. Both ap-
proaches allow for some calendar time dependency. However, the operational time
model is clearly an in-sample forecaster, while the period effect might be something
different. For a review of age-period-cohort models in the discrete universe, see
O’Brien (2014) and the many reference therein. There is an identifiability issue
in age-period-cohort models, see Antonczyk et al. (2017) among many others, and
one is often left with second order differences in the discrete case and second order
derivatives in our continuous case when working with canonical and well-defined
parametrisation, see Riebler et al. (2012), Smith and Wakefield (2016) and Beutner
et al. (2017) for some further understanding on this. There is therefore a practical
reason to consider operational time in-sample forecasting as an alternative to age-
period-cohort models: the estimation, the identification and the forecasting with
operational time are all simpler than with age-period-cohort models.

This paper is structured as follows. Section 2 is a brief overview of some of
the historical reasons leading to the development of in-sample forecasting. We also
discuss some of the mathematical statistics literature on complicated censoring and
truncation patterns and on redistributing mass to truncated or censored areas.
Section 3 discusses a data set example where the model with operational time is
compared with the simple multiplicative model and it points out the double trun-
cated nature of this data set as well as the lack of exposure data. Section 4 presents
the new super-simulation-algorithm for in-sample forecasting. This is worked out
for a general type of support sets including the continuous chain-ladder model. We
argue that this simulation algorithm is approximately equivalent to an iterative
deterministic algorithm. Section 5 contains the theoretical properties of the new
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approach. Section 6 is devoted to concluding remarks, and all technical proofs are
deferred to the Appendix.

2. Redistribution of un-observed mass

This review paper introduces a new interpretation of in-sample forecasting algo-
rithms as a method of redistributing un-observed mass, which we detail in Section 4.
Redistributing mass to the right is not a new idea. Efron (1967) and Dinse (1985)
pointed out that an alternative interpretation of the estimator of Kaplan and Meier
(1958) was to consider it as an iterative procedure redistributing mass to the right
at each step. The Kaplan-Meier estimator is able to adjust for right censoring when
estimating a cumulative distribution function. When adjusting for right censoring,
the Efron’s algorithm starts with estimating a distribution function, ignoring the
censoring. It distributes the mass at the first censored time to the right of the
censored point, moves to the next censored time to distribute again to the right the
accumulated mass at the censored time, and continues the redistribution procedure
until the last censored time. Efron proved that the final estimator of this procudure
is self-consistent meaning that this estimator does not change anymore from further
iterations. This type of iterative procedures have later been generalised to more
complicated truncation and censoring patterns. It has been shown that redistribu-
tion procedures (now not only to the right) are closely related to the EM-algorithm
and imputation methodologies, see for example Turnbull (1976). A brief review of
some of the original ideas in the invention of in-sample forecasting may illustrate
better why this paper analyzes the redistribution-of-mass algorithm in detail.

The early development of the in-sample forecasting idea was an example of what
one today would call robotification, automatisation, machine learning or something
else indicating that expensive manual procedures are being overtaken by computer
intensive methodology. A particular case considered was the estimation of out-
standing liabilities in non-life insurance, which is considered the most labour inten-
sive actuarial methodology. Various statistical problems in estimating reserves in
non-life insurance have been dealt in the actuarial science literature. Some notable
examples include Kuang et al. (2009), Verrall et al. (2010), Mart́ınez-Miranda et al.
(2011, 2012, 2013). The first of these works established the maximum-likelihood
version of the forecasting problem that turned out to be the estimation of canonical
parameters in a nice smooth exponential family. Verrall et al. (2010) considered a
model that takes into account the delay from when an insurance claim is incurred
to when it is reported, as well as the delay from when a claim is reported to when
it is fully paid. Mart́ınez-Miranda et al. (2011) discussed the distributional prop-
erties of the method proposed in Verrall et al. (2010), and Mart́ınez-Miranda et al.
(2012) presented an extension to the model formulated by Verrall et al. (2010)
and developed a new method of estimating outstanding claims. Finally, Mart́ınez-
Miranda et al. (2013) introduced how prior knowledge could be incorporated into
the framework of Mart́ınez-Miranda et al. (2012). Later, Hiabu et al. (2016b,c)
showed how prior knowledge could be used most efficiently via a redistribution-to-
the-right approach. The prior knowledge in non-life insurance most often comes
as historical payments of already settled claims and the predicted severities of re-
ported but un-settled claims that are based on expert opinion, see Hiabu et al.
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(2016b,c). Redistributing this information to the right turned out to improve fore-
casts considerably. At the same time, Mart́ınez-Miranda et al. (2013) introduced
the multiplicative model f(x, y) = f1(x)f2(y) as a continuous version of the dis-
crete model where the classical chain-ladder method is based, which is more aligned
with modern statistical analyses. This naturally led to the theoretical works, Mam-
men et al. (2015) and Lee et al. (2015, 2017), which developed sound theoretical
backgrounds for in-sample forecasting mentioned in the introduction.

From the above brief historical outline of the development of in-sample fore-
casting, it is clear why redistribution-of-mass algorithms are interesting for the
future. While redistribution-of-mass is equivalent to the maximum likelihood prin-
ciple when the latter is relevant and the maximum likelihood is a purely statistical
concept requiring observations analysed via statistical distributions, redistribution-
of-mass lends to an analysis beyond mathematical statistics that incorporates prior
knowledge. Malani (1995) briefly indicated how disease markers could be added to
the redistribution-to-the right algorithm. Many applications of this type of method-
ology have been introduced later, see e.g. Chen and Zhao (2013a,b) that also add
the element of estimating various health costs when complicated missing data prob-
lems are present. The latter problem seems related to the insurance cost problem
mentioned above. Future research might lead to a framework incorporating both
insurance costs and health care costs in the same kind of in-sample forecasting
model. Redistribution-of-mass algorithms might be a key element in such develop-
ments. In the next section a data set is considered that is relevant from both the
points of view of health care costs and insurance costs.

3. An illustrative forecasting example

To illustrate an in-sample forecasting exercise we present an illustrative applica-
tion where we analyse an asbestos data set that is double-truncated and has year of
birth as a potential covariate. The data set we consider here is on UK mesothelioma
mortality. In this application a death case is only observed if it happened after the
study began and before the study ended. This is a case of double truncation. Year
of birth is driving the timing of the two truncations and could potentially play
the role as a covariate. One study is considered where year of birth is indeed a
covariate defining operational time and another study is presented where year of
birth is not used as a covariate. Double truncation is related to double censor-
ing. The latter is perhaps easier to analyze. For studies of double censoring, see
Gehan (1965), Turnbull (1974), Chang and Yang (1987), Gu and Zhang (1993),
Efron and Petrosian (1999) and the elegant self-consistency algorithm of Mykland
and Ren (1996). Redistribution of mass to the censored areas is one elegant ap-
proach to tackling censoring and double censoring and it is closely related to all
the above algorithms solving the double censoring challenges. Double truncation
might be more tricky, see Moreira and de Uña Álvarez (2012), Moreira et al. (2016)
and Moreira and Van Keilegom (2013) for studies of double truncation including
smoothing. Our case allows for double truncation while at the same time lacking
exposure data. Our problem is therefore a really complicated missing data prob-
lem. It is treated below in the estimation part of our in-sample forecasting problem.
We consider forecasting of asbestos related deaths, following the earlier works of
Mart́ınez-Miranda et al. (2015); Mart́ınez-Miranda et al. (2016) based on discrete
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data. Compared to these earlier studies we consider continuous rather than a dis-
crete modelling approach while implementing the generalised structured densities
f(x, y) = f1(x)f2(xφ(y)), where φ represents an unknown operational effect, see
Lee et al. (2017).

The UK mesothelioma mortality data set consists of the counts of deaths caused
by exposure to asbestos, given by year (1968–2012) and age (25–94) at the time of
death. The total number of deaths during the period and in the range of age is
49,447. Basically, for this data set one may take the variable X to be the cohort
and Y the age at death. Thus X = (year of death)− Y . To put the support of the
data as a subset of the unit rectangle, we made the following transformation.

Y =
(AGE)− 25 + U2

70
, X =

(YEAR)− 1968 + U1 + 70− 70Y

70 + 45
,

with two independent U1 and U2 that are uniformly distributed on [0, 1]. In the
above transformation, the lowest possible year of birth, 1968− 94 = 1874 for those
who died in 1968 at the age 94, is transformed to the cohort value X = 0 and the
highest, 2012 − 25 = 1987 for those who died in 2012 at the age 25, to X = 1.
The support set I of the transformed (X,Y ) is a parallelogram surrounded by the
four lines represented by the equations y = 0, y = 1, x = (70 − 70 y)/115 and
x = (115− 70 y)/115.

The results of the application of our method to the mortality data are shown
in Figures 3.1. For the result in Figure 3.1 we used the 10-fold cross-validated
bandwidths described in Section 6 of Lee et al. (2017). The (operational) age
component f2 looks like we would expect and reflects an exponentially increasing
mortality with age. Here, we note that f2, sitting on the values of {yφ(x) : (x, y) ∈
I}, is not fully supported on the unit interval [0, 1] because of the operational time
φ and the shape of I. The estimated density f2 drops to zero near the end point

1.0 since the values of Yiφ̂(Xi) ranges from 0.2 to 0.97. Thus, it is due to the
low density near the end point rather than due to a boundary bias. The asbestos
exposure part, f1, also looks as we would expect from earlier studies using UK
import of asbestos as a surrogate for exposure, see Peto et al. (1995) for example.
See also Hodgson et al. (2005), Rake et al. (2009) and Tan et al. (2010, 2011)
for other recent inputs to the modeling of asbestos related death in the UK. The
operational time component is increasing for the most part indicating that time was
going slow at the beginning, where exposure first should take place before a long
duration period towards dying of asbestos. Later asbestos exposure already took
place and time to dying of asbestos is shorter. The non-increasing parts around
close to the two boundaries do not represent many actual deaths. That operational
time at first is slowing down might be because this is early days and people have to
become old enough to be able to die. The slowing down in the later cohort might
be due to heterogeneity or the advance in medical technologies. If we think of it as
all the individuals having an unobserved frailty parameter, then the right boundary
of operational time represents the few with very low frailty leading to a slow down
in operational time at the right boundary.

One may use our estimated model to forecast the density on an unobserved
area. In general, let S be a subset of [0, 1]2, outside of the observed area I, where

one wants to forecast the density. With the estimated density model f̂(x, y) =

f̂1(x)f̂2(yφ̂(x)), the relative mass of the probability on S with respect to that on I
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is estimated by

A(S) =

∫
S

f̂1(x)f̂2(yφ̂(x)) dx dy. (3.1)

The number of future observations that fall in the area S is then forecasted by
N(S) = n ·A(S), where n is the sample size, i.e., the total number of observations
in I.

To apply the forecasting method to the mortality data set and evaluate its ac-
curacy, we re-estimated the model f(x, y) = f1(x)f2(yφ(x)), now using the data
observed until the year 2010. In this case, we note that the cohort on the scale
[0, 1] is given by

X =
(YEAR)− 1968 + U1 + 70− 70Y

70 + 43
.

We forecasted the number of deaths for the years 2011 and 2012 according to the
formula at (3.1). In this application of the formula,

S = {(x, y) ∈ [0, 1]2 : (112 + α− 70 y)/113 < x ≤ (113 + α− 70 y)/113},

where α = 1 corresponds to the year 2011 and α = 2 to the year 2012. The
actual numbers of deaths in the years 2011 and 2012 were 2,311 and 2,535, respec-
tively. Our approach produced fairly accurate forecasting results, 2,316 and 2,465,
respectively.

The forecasting based on the simple product model f(x, y) = f1(x)f2(y), without
considering the operational time, gave results that are far off the targets. The
predicted counts of death were 1,721 for the year 2011 and 1,693 for the year 2012,
which shows the great benefit of using the model with the operational time.
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Figure 3.1. Estimates of the time transformation φ(left), the first
component function f1 (middle) and the second component func-
tion f2 (right) obtained by applying the model of Example 2.3 to
the mortality data.
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4. A super-simulation-algorithm

This section introduces a simpler, faster and more flexible algorithm to calcu-
late the basic estimator of the multiplicative density f(x, y) = f1(x)f2(y). The
suggested estimator of Mart́ınez-Miranda et al. (2013) and Mammen et al. (2015)
requires a two-dimensional local linear density estimator as its starting point before
projecting it down on the multiplicative density model. The suggested estimator
of this section is more flexible and it only uses one-dimensional density estimators.
The underlying idea of the algorithm is to redistribute mass to truncated areas and
it is inspired by the interpretation of the Kaplan-Meier estimator discussed in Efron
(1967) and Dinse (1985) as were briefly described in Section 2. In the algorithm,
at any given step in the iteration the two independent densities are estimated as if
all data would be available, both the past data and the future data. Before each
iteration step simulated data are added to the data representing future values. The
reason this simple algorithm converges is that future data are lifted from first noth-
ing at all to contain something and then after a few more steps to finally contain the
best estimate available. Basically, the main idea of the algorithm can be applied to
various problems when we want to estimate a model with truncated data. In this
paper, we explore the idea for the multiplicative density model.

Let the density f(x, y) = f1(x)f2(y) be supported on the unit rectangle [0, 1]2,
where fj are univariate densities supported on [0, 1]. We wish to estimate this
simple model based on truncated observations (Xi, Yi) ∈ I. We assume that the

projections of I onto x- and y-axis equal [0, 1]. Define the sections of I and Ĩ as
follows.

I1(y) = {x ∈ [0, 1] : (x, y) ∈ I}, I2(x) = {y ∈ [0, 1] : (x, y) ∈ I},

Ĩ1(y) = {x ∈ [0, 1] : (x, y) ∈ Ĩ}, Ĩ2(x) = {y ∈ [0, 1] : (x, y) ∈ Ĩ}.

We note that I1(y) ∪ Ĩ1(y) = [0, 1] for all y ∈ [0, 1], and I2(x) ∪ Ĩ2(x) = [0, 1] for
all x ∈ [0, 1]. The main advantage of the methods we propose is that they are
based only on one-dimensional estimation. Let ĝ1 and ĝ2 be any one-dimensional
estimators of f1 and f2 based on the marginal observations {Xi : 1 ≤ i ≤ n} and
{Yi : 1 ≤ i ≤ n}, respectively.

Algorithm S: Let D[0] = {(Xi, Yi) : 1 ≤ i ≤ n}. Set f̂
[0]
1 = ĝ1 and f̂

[0]
2 = ĝ2. For

k = 0, 1, 2, . . ., do the following steps until convergence.

(1) Generate nk pseudo observations in the region Ĩ according to the density

f̂
[k]
1 and f̂

[k]
2 , where

nk = n ·
∫
Ĩ f̂

[k]
1 (x)f̂

[k]
2 (y) dx dy∫

I f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy

. (4.1)

(2) Add the pseudo observations in (1) to D[0] and let D[k+1] denote the com-
bined data.

(3) Construct f̃
[k+1]
1 and f̃

[k+1]
2 using the marginal observations {Xi} and {Yi},

respectively, with (Xi, Yi) ∈ D[k+1].

(4) Repeat steps (1)-(3) L-times and denote the average values of f̃
[k+1]
1 and

f̃
[k+1]
2 by f̂

[k+1]
1 and f̂

[k+1]
2 .
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We used this algorithm with L = 1 where it already gave reasonable results. For
large values of L, the main idea of Algorithm S leads to the following mathematical
formulation, which gives rise to an alternative algorithm. Put

A = P ((X,Y ) ∈ I) =

∫
I
f1(x)f2(y) dx dy. (4.2)

First, we note that the pseudo observations, say (Xs
i , Y

s
i ), added to D[0], have a

joint density f̃(· | Ĩ) defined as

f̃(x, y | Ĩ) =

[ ∫
Ĩ
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy

]−1
f̂
[k]
1 (x)f̂

[k]
2 (y), (x, y) ∈ Ĩ. (4.3)

Their marginal densities are given by

f̃1(x | Ĩ) =

[ ∫
Ĩ
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy

]−1 ∫
Ĩ2(x)

f̂
[k]
1 (x)f̂

[k]
2 (y) dy, x ∈ [0, 1],

f̃2(y | Ĩ) =

[ ∫
Ĩ
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy

]−1 ∫
Ĩ1(y)

f̂
[k]
1 (x)f̂

[k]
2 (y) dx, y ∈ [0, 1].

On the other hand, the marginal densities fj restricted to the region I, say fj(· | I),

are estimated from the original observations (Xi, Yi) by f̃j(· | I). This means that
the marginal density estimators of fj may be updated according to

f̂
[k+1]
1 (x) = Â[k] · f̃1(x | I) + (1− Â[k]) · f̃1(x | Ĩ),

f̂
[k+1]
2 (y) = Â[k] · f̃2(y | I) + (1− Â[k]) · f̃2(y | Ĩ),

(4.4)

where Â[k] is an estimator of A defined at (4.2) in the kth update. Taking

Â[k] =

∫
I
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy =

n

n+ nk

gives

f̂
[k+1]
1 (x) =

(∫
I
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy

)
· f̃1(x | I) +

∫
Ĩ2(x)

f̂
[k]
1 (x)f̂

[k]
2 (y) dy,

f̂
[k+1]
2 (y) =

(∫
Ĩ
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy

)
· f̃2(y | I) +

∫
Ĩ1(y)

f̂
[k]
1 (x)f̂

[k]
2 (y) dx.

(4.5)

It is worthwhile to note that, if f̃j(· | I) are densities, i.e., f̃j(· | I) ≥ 0 and∫ 1

0
f̃j(u | I) du = 1, then are all the updates f̂

[k+1]
j for k ≥ 0 as well. This is

clear since ∫
I
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy +

∫
Ĩ
f̂
[k]
1 (x)f̂

[k]
2 (y) dx dy = 1.

The algorithm (4.5) is basically equivalent to Algorithm S. The only difference

is that Algorithm S actually generates pseudo data from f̃(· | Ĩ) at (4.3), while

(4.5) uses f̃(· | Ĩ) directly, to update the estimators of the marginal densities fj =

Afj(· | I) + (1−A)fj(· | Ĩ). Contrary to Algorithm S, the algorithm (4.5) does not

require simulating pseudo data in Ĩ. In our theoretical development to be presented
in the next section, we focus on the latter.

Define

fw,1(x) =

∫
I2(x)

f1(x)f2(v) dv, fw,2(y) =

∫
I1(y)

f1(u)f2(y) du.
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With these definitions we note that A =
∫ 1

0
fw,1(x) dx =

∫ 1

0
fw,2(y) dy. For nota-

tional convenience we set gj = fj(· | I) and ĝj = f̃j(· | I). Thus,

g1(x) = A−1 · fw,1(x), g2(y) = A−1 · fw,2(y), (4.6)

The estimating equation for f̂j as estimators of fj that corresponds to the iteration
scheme (4.5) is given by

f̂1(x) =

(∫
I
f̂1(x)f̂2(y) dx dy

)
· ĝ1(x) +

∫
Ĩ2(x)

f̂1(x)f̂2(y) dy,

f̂2(y) =

(∫
I
f̂1(x)f̂2(y) dx dy

)
· ĝ2(y) +

∫
Ĩ1(y)

f̂1(x)f̂2(y) dx.

(4.7)

The population version of the estimating equation (4.7) is then

f1(x) =

(∫
I
f1(x)f2(y) dx dy

)
· g1(x) +

∫
Ĩ2(x)

f1(x)f2(y) dy,

f2(y) =

(∫
I
f1(x)f2(y) dx dy

)
· g2(y) +

∫
Ĩ1(y)

f1(x)f2(y) dx,

(4.8)

which is clearly satisfied by the true component functions fj . For a triangular
set I = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1} a version of the estimator defined by
(4.7) based on a two-dimensional density estimator has been discussed in Mammen
et al. (2015). In this paper the backfitting algorithm (4.5) has been used for the
calculation of the estimators.

We close this section by reporting a brief simulation result for the new estimators
defined through the equations (4.7). We took {(x, y) ∈ [0, 1]2 : 0 ≤ x + y ≤ 1} for
the support set I. For the marginal density functions, we set f1(x) = (3/2) − x
and f2(y) = (5/4) − (3/4)y2. We generated 100 pseudo samples (Xi, Yi) of sizes
n = 400 and 1, 000 from the joint density p(x, y) = A−1f1(x)f2(y)I((x, y) ∈ I).
We used the local linear estimators for ĝj in (4.7) as defined below. For a baseline
kernel function K and a bandwidth h > 0, let Kh(v) = K(v/h)/h and define

Aj(u) =

∫ 1

0

(
1 (v − u)/hj

(v − u)/hj (v − u)2/h2j

)
Khj (v − u) dv. (4.9)

Also, define

b̂j(u) = n−1
n∑
i=1

(
1

(W
(j)
i − u)/hj

)
Khj

(W
(j)
i − u), (4.10)

where W
(j)
i = Xi for j = 1 and Yi for j = 2. Our estimators ĝj of gj are the

first entries of the vectors A−1j b̂j . We chose the Epanechnikov kernel K(u) =

(3/4)(1− u2)I[−1,1](u).

new algorithm old algorithm
f1 f2 f1 f2

n = 400 0.01279 0.01195 0.01902 0.00579
n = 1000 0.00946 0.00746 0.01870 0.00523

Table 4.1. Mean integrated squared error (MISE) of the component func-

tion estimators f̂j based on 100 MC samples of sizes n = 400 and n = 1, 000.
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Table 1 shows the mean integrated squared errors of the new estimators f̂j
based on the algorithm (4.5) and those based on the two-dimensional local linear
density estimator as in Mammen et al. (2015). The numbers in the table are the
mean integrated squared errors for the optimal bandwidth choices h = h1 = h2
that gave the minimal MISE(f̂1) + MISE(f̂2) in a range of preselected bandwidths.
The optimal bandwidths for the new algorithm were different from those for the
old algorithm. Also, these common optimal bandwidths may be better for one
component, but worse for the other. Indeed, the MISE results indicate that the
new algorithm is better for estimating f1, but not for f2. If we compare the sum

when n = 400, the value of MISE(f̂1) + MISE(f̂2) equals 0.02474 for the new
algorithm and 0.02481 for the old, so there is not much difference between them.
However, when n = 1000, it equals 0.01692 for the new and 0.02393 for the old.

Figure 4.2 depicts the distributions of the computing times in seconds for the
two methods. These results strongly suggest that the new algorithm outperforms
the old one in terms of computing time. There appears a bimodal structure in the
distribution of computing times for both the new and old methods. This is clearer
for the new algorithm but there is some evidence for the old as well. We note that
the area around the first mode for the old algorithm is dominating that around
the second mode. We found that the mass around the second mode was roughly
7%, while it was around 16% in the case of the new algorithm. We also found that
both algorithms converged in 4-7 iterations. This means that the elapsed time for
a single iteration was roughly 0.02 sec for the new algorithm, and roughly 20 sec
for the old. Thus, the gap between the first and second modes in the case of the
new algorithm is just a matter of one or two additional iterations, while the gap in
the case of the old algorithm seems mostly due to a small fluctuation in computing
the two-dimensional local linear density estimates.

0.10 0.12 0.14 0.16

(a)

113.5 114.0 114.5

(b)

Figure 4.2. The distributions of the times (in seconds) for com-
puting the component estimates per sample, based on 100 MC
samples of size n = 1, 000. Panel (a) is for the new algorithm and
(b) for the old one.
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5. Asymptotic theory

We study the statistical properties of the estimators f̂j that satisfy the system
of equations at (4.7). The theory developed in this section generalises the results
of Mammen et al. (2015) to a general class of sets I. In the latter paper only
triangular sets I = {(x, y)> : 0 ≤ x, y ≤ 1, x+ y ≤ 1} have been discussed. We also
consider now estimators of f1 and f2 based on the local linear estimators of g1 and
g2, defined after the equations (4.9) and (4.10).

Basically we make the following assumptions.

(A1) The marginal densities fj are continuous and bounded away from zero and
infinity on [0, 1];

(A2) The projections of I onto x- and y-axis equal [0, 1]. Also, there exist se-
quences x0 = 0 < x1 < ... < xk = 1 and y0 = 1 > y1 > ... > yk = 0 with
(x, yj) ∈ I for xj ≤ x ≤ xj+1, or with (xj , y) ∈ I for yj ≤ y ≤ yj+1, for all
0 ≤ j ≤ k − 1.

The condition (A2) means that the support set I contains a ladder that traverses
the entire interval [0, 1] along the x- or y-axis.

We write f̂ = (f̂1, f̂2)> and f = (f1, f2)>. Let F denote the class of tuples of
univariate functions η ≡ (η1, η2)> such that ηj are nonnegative, continuous on [0, 1]

and
∫ 1

0
ηj = 1. Also, let F0 be the class of tuples of univariate functions such that

ηj are continuous on [0, 1] and
∫ 1

0
ηj = 0. Define F(η) = (F1(η), F2(η))> as a map

from F to F0 by

F1(η)(x) = η1(x)−
(∫
I
η1(u)η2(v) du dv

)
· g1(x)−

∫
Ĩ2(x)

η1(x)η2(v) dv,

F2(η)(y) = η2(y)−
(∫
I
η1(u)η2(v) du dv

)
· g2(y)−

∫
Ĩ1(y)

η1(u)η2(y) du.

Likewise, define F̂ with ĝj replacing gj , respectively. We note that

F(f) = 0, F̂(f̂) = 0. (5.1)

Now, define

G(η) = F(f · (1 + η)), Ĝ(η) = F̂(f · (1 + η)),

where, for vectors a = (a1, a2)> and b = (b1, b2)>, we write a · b for (a1b1, a2b2)>,

a/b for (a1/b1, a2/b2)> and a±b for (a1± b1, a2± b2)>. Both G and Ĝ map S to
F0, where

S = {η ∈ C[0, 1]× C[0, 1] :

∫ 1

0

ηj fj = 0}.

Then, the two equations at (5.1), respectively, are equivalent to

G(0) = 0, Ĝ((f̂ − f)/f) = 0. (5.2)

Both the maps G and Ĝ are nonlinear. To analyze δ̂ := (f̂ − f)/f as the solution

of the second equation at (5.2), we consider the linear approximation of Ĝ based

on its Fréchet derivative. Let Ĝ′(0) : S → F0 denote the Fréchet derivative of Ĝ
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at 0. It is given by

Ĝ′(0)1(δ)(x) = δ1(x)f1(x)− ĝ1(x) ·
∫
I

[δ1(u) + δ2(v)] f1(u)f2(v) du dv

−
∫
Ĩ2(x)

[δ1(x) + δ2(v)] f1(x)f2(v) dv,

Ĝ′(0)2(δ)(y) = δ2(y)f2(y)− ĝ2(y) ·
∫
I

[δ1(u) + δ2(v)] f1(u)f2(v) du dv

−
∫
Ĩ1(y)

[δ1(u) + δ2(y)] f1(u)f2(y) du.

(5.3)

Similarly, we get G′(0)(δ) by simply replacing ĝj by gj in the expression for Ĝ′(0).

We note that with δ̂ = (f̂ − f)/f

0 = Ĝ(δ̂) ' Ĝ(0) + Ĝ′(0)(δ̂)

' Ĝ(0) + G′(0)(δ̂)

= Ĝ(0)−G(0) + G′(0)(δ̂).

(5.4)

Recall the definitions of A at (4.2) and gj at (4.6). We get

−
[
Ĝ(0)−G(0)

]
= A · (ĝ − g).

The approximation (5.4) motivates an approximation of f̂ , which is easier to ana-
lyze. Define f̄ = (f̄1, f̄2)> by

G′(0)(δ̄) = A · (ĝ − g), (5.5)

where δ̄ = (f̄ − f)/f . Our first theorem demonstrates that G′(0) is invertible, so
that δ̄ and thus f̄ are well-defined. The theorem requires an additional assumption.

(A3) For j = 1 and 2, mes(Ij(u)) > 0 except for a finite number of points
u ∈ [0, 1].

Before stating the theorem, we introduce some terminologies that are used
throughout this section. Note that g1 and thus fw,1 equal zero only at points
u such that mes(I2(u)) = 0 due to assumption (A1), where mes(I) for a set I de-
notes its Lebesgue measure. Similarly, g2 and thus fw,2 equal zero only at points u
such that mes(I1(u)) = 0. Define

Io1 = {x ∈ [0, 1] : mes(I2(x)) > 0}, Io2 = {y ∈ [0, 1] : mes(I1(u)) > 0}.

In the case of the run-off triangular support I = {(x, y) ∈ [0, 1]2 : 0 ≤ x+ y ≤ 1},
which is typical for insurance claim data, Ioj = [0, 1) for j = 1 and 2. In the case

of the asbestos data example, I is a parallelogram such that I = {(x, y) ∈ [0, 1]2 :
−ax+ 1 ≤ y ≤ −ax+ a} for some a > 1. In this case Io1 = (0, 1) but Io2 = [0, 1].

Theorem 5.1. Assume the conditions (A1)–(A3). Then, the linear operator
G′(0) : S → F0 is invertible.

Our next theorem demonstrates that δ̂ = (f̂ − f)/f is well approximated by
δ̄ = (f̄ − f)/f defined to be the solution of the equation (5.5).
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Theorem 5.2. Assume that the conditions of Theorem 5.1 hold. Furthermore,
assume that fj are continuously differentiable. Suppose that supu∈[0,1]

∣∣ĝj(u) −
gj(u)

∣∣ = Op(εn), j = 1, 2, for some sequence of real numbers εn → 0. Then,

sup
x∈[0,1]

∣∣f̂j(x)− f̄j(x)
∣∣ = Op(ε

2
n), j = 1, 2.

Next, we discuss the asymptotic distribution of f̂j . For ĝj , we consider the

local linear estimators that are the first entries of the vectors A−1j b̂j , respectively,

where Aj and b̂j are defined at (4.9) and (4.10), respectively. From the standard
theory of local linear kernel smoothing, it holds that supu∈[0,1]

∣∣ĝj(u) − gj(u)
∣∣ =

Op(n
−2/5√log n) with hj ∼ n−1/5.

To state the theorem, define

g̃Bj (u) =
1

2

(∫
u2K

)
c2j g
′′
j (u),

where cj � n1/5hj . Also, define β ∈ S to be the solution of G′(0)(β) = A · g̃B . Let

σ2
1(x) = c−11

∫
K2/g1(x) and σ2

2(y) = c−12

∫
K2/g2(y).

Theorem 5.3. Assume that the conditions of Theorem 5.1 hold. Furthermore,
assume that fj are twice continuously differentiable, that K is supported on [−1, 1],

symmetric and Lipschitz continuous, and that n1/5hj → cj for some 0 < cj < ∞.

Let x and y be fixed points in Io1 ∩ (0, 1) and Io2 ∩ (0, 1). Then, n2/5(f̂1(x) −
f1(x))/f1(x) and n2/5(f̂2(y) − f2(y))/f2(y), respectively, converges to

N(β1(x), σ2
1(x)) and N(β2(y), σ2

2(y)). Furthermore, n2/5(f̂1(x)− f1(x))/f1(x) and

n2/5(f̂2(y)− f2(y))/f2(y) are asymptotically independent.

6. Concluding remarks

In-sample forecasting, as reviewed in this paper, is a recent generalisation of
a long list of practitioner methods - often based on discrete histogram type of
methodology - to a modern structured nonparametric smoothing approach. The
term in-sample forecasting is new and adds one more method in one single concept
to our toolbox of forecasting procedures. The two other major methods of forecast-
ing are time series forecasting and simple deterministic extrapolation. We believe
that the stability of in-sample forecasting, that do not extrapolate any parameters
used for forecasting, will serve as a useful alternative to the often less stable time
series methodology. Clearly, however, in-sample forecasting cannot model every-
thing, and sometimes there really is a time series to be estimated and forecasted.
One can even imagine a latent time series to be present within an in-sample fore-
casting study, for example a calendar effect. This time series is best dealt with the
traditional time series methodology. One can therefore imagine a future blend of
in-sample forecasting and time series methodology and using the best from both
worlds of forecasting to provide an output that is stable as well as flexible. One
can also imagine much more flexible in-sample forecasting methods in the future
involving many more structured nonparametric models than those considered in
this paper. This in turn asks for the development of a general statistical testing
rules to pick among the available model options.
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Appendix

A.1. Proof of Theorem 5.1. Let δ ∈ S. Then,
∫ 1

0
δj fj = 0. From the versions of

the two equations at (5.3) for G′(0), we get that

G′(0)1(δ)(x)

fw,1(x)
= δ1(x) +

∫
I2(x)

δ2(v)
f1(x)f2(v)

fw,1(x)
dv

−
∫ 1

0

δ1(u)g1(u) du−
∫ 1

0

δ2(v)g2(v) dv, x ∈ I01 ,

G′(0)2(δ)(y)

fw,2(y)
= δ2(y) +

∫
I1(y)

δ1(u)
f1(u)f2(y)

fw,2(y)
du

−
∫ 1

0

δ1(u)g1(u) du−
∫ 1

0

δ2(v)g2(v) dv, y ∈ Io2 .

(A.1)

Due to assumption (A3), for each of the two functions G′(0)j(δ)/fw,j there exists
a unique function that is continuous on the whole interval [0, 1] and coincides with
G′(0)j(δ)/fw,j on Ioj . We continue to denote the extended continuous functions by
G′(0)j(δ)/fw,j . Let

S ′ = {η ∈ C[0, 1]× C[0, 1] :

∫ 1

0

ηj gj = 0}.

Then, writing fw = (fw,1, fw,2)>, it holds that G′(0)1(δ)/fw ∈ S ′ for all δ ∈ S.
We now consider a linear operator L : S → S ′ such that L(η) = (L1(η1), L2(η2))>

and

Lj(ηj) = ηj −
∫ 1

0

ηj gj , j = 1, 2.

Its inverse map L−1 : S ′ → S is given by L−1(η) = (L−11 (η1), L−12 (η2))> with

L−1j (ηj) = ηj −
∫ 1

0

ηj fj , j = 1, 2.

We define T : S ′ → S ′ by

T(η) =
G′(0)(L−1(η))

fw
. (A.2)

Then, it follows from (A.1) that

T1(η)(x) = η1(x) +

∫
I2(x)

η2(v)
f1(x)f2(v)

fw,1(x)
dv,

T2(η)(y) = η2(y) +

∫
I1(y)

η1(u)
f1(u)f2(y)

fw,2(y)
du.

(A.3)

From the definition of the map T at (A.2), the invertibility of G′(0) is equivalent
to the invertibility of T. We prove T is invertible. We endow S ′ with an inner
product 〈·, ·〉 defined by

〈η, δ〉 =

∫
[0,1]2

η(x, y)>
(
fw,1(x) 0

0 fw,2(y)

)
δ(x, y) dx dy.

Suppose that T(η) = 0 for some η ∈ S ′. Then, it holds that

0 = 〈η,T(η)〉 =

∫
I

[η1(x) + η2(y)]
2
f1(x)f2(y) dx dy. (A.4)
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This implies that
η1(x) + η2(y) = 0 for all (x, y) ∈ I. (A.5)

Because of assumption (A2), either η1 or η2 is piecewise constant, so that either

η1 or η2 is a zero function since ηj are continuous and satisfy
∫ 1

0
ηj gj = 0. This

implies that both are zero functions. This proves that T is one-to-one.
Now, we prove T is onto. Similarly as in deriving (A.4), we get that, for any

η, δ ∈ S ′,

〈η,T(δ)〉 =

∫
I

[η1(x) + η2(y)] [δ1(x) + δ2(y)] f1(x)f2(y) dx dy

= 〈T(η), δ〉.
(A.6)

This implies that T is self-adjoint, so that Image(T)⊥ = Null(T) = {0}. It suffices
to show that Image(T) is closed. Suppose that {δn} ⊂ S ′ and T(δn)→ η for some
η ∈ S ′. We prove that η ∈ Image(T). Note that T : S ′ → Image(T) is invertible.
Its inverse denoted by T−1 : Image(T) → S ′ is also linear and continuous due to
Banach Inverse Theorem. Thus, δn = T−1(T(δn)) is Cauchy in S ′ so that there
exists δ ∈ S ′ such that δn → δ. Now,

T(δ) = T
(

lim
n→n

δ
)

= lim
n→n

T(δn) = η.

This completes the proof of the invertibility of T, and thus of G′(0).

A.2. Proof of Theorem 5.2. Clearly from the expression of Ĝ′(0) in (5.3) it follows
that there exists a constant 0 < C1 <∞ such that∥∥Ĝ′(0)(δ)−G′(0)(δ)

∥∥
∞ ≤ C1 · ‖ĝ − g‖∞ · ‖δ‖∞,

where ‖η‖∞ = supx∈[0,1] |η1(x)|+ supy∈[0,1] |η2(y)|. Thus,

sup
‖δ‖∞=1

∥∥Ĝ′(0)(δ)−G′(0)(δ)
∥∥
∞ = Op(εn). (A.7)

We may also prove that there exist constants 0 < r,C2 < ∞ such that, with
probability tending to one,

sup
‖δ‖∞=1

∥∥Ĝ′(η1)(δ)−Ĝ′(η2)(δ)
∥∥
∞ ≤ C2‖η1−η2‖∞ for all η1,η2 ∈ Br(0), (A.8)

where Br(0) denotes the ball in S with radius r centered at 0. Along the lines of
the proof of Theorem 3 in Lee et al. (2015) with (A.7) and (A.8), we may prove
the theorem.

A.3. Proof of Theorem 5.3. Due to Theorem 5.2, the asymptotic distributions of

f̂j are determined by f̄j . For a given ε > 0, put

Iε1 = {x ∈ [0, 1] : mes(I2(x)) ≥ ε, inf
y∈I2(x)

mes(I1(y)) ≥ ε},

Iε2 = {y ∈ [0, 1] : mes(I1(y)) ≥ ε, inf
x∈I1(y)

mes(I2(x)) ≥ ε}.

We note that for the triangular support Iε1 = Iε2 = [ε, 1−ε], and for the parallelogram
support Iε1 = [c · ε, 1− c · ε] and Iε2 = [C · ε, 1− C · ε] for some 0 < c,C <∞.

To analyze f̄j , we recall that δ̄ is defined by G′(0)(δ̄) = A · (ĝ − g), see (5.5).
We decompose ĝj − gj as ĝj − gj = ĝAj + ĝBj , where

ĝAj = ĝj − E(ĝj), ĝBj = E(ĝj)− gj .
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Note that ĝBj are non-stochastic. For s = A and B, define δ̄s to be the solution of

G′(0)(δ̄s) = A · ĝs. Then, it holds that

δ̄ = δ̄A + δ̄B . (A.9)

We may prove that, for any ε > 0,∫
I2(x)

ĝA2 (v)

(∫
I1(v)

f1(u) du

)−1
dv = op(n

−2/5),

∫
I1(y)

ĝA1 (u)

(∫
I2(u)

f2(v) dv

)−1
du = op(n

−2/5)

uniformly for (x, y) ∈ Iε1 × Iε2. The latter may be proved as in the proof of Lemma

2 in Lee et al. (2015). From this and the expression of G′(0), a version of Ĝ′(0) at
(5.3) with ĝj being replaced by gj , it holds that, for any ε > 0,

δ̄A = G′(0)−1(A · ĝA) = ĝA/g + op(n
−2/5) (A.10)

uniformly for (x, y) ∈ Iε1 × Iε2.
Now, let x and y be fixed points in Io1 and Io2 , respectively. Then, there exists

ε0 > 0 such that x ∈ Iε01 and y ∈ Iε02 . Because of (A.10) this implies that

δ̄A1 (x) = ĝA1 (x)/g1(x) + op(n
−2/5), δ̄A2 (y) = ĝA2 (y)/g2(y) + op(n

−2/5). (A.11)

The first-order asymptotic properties of δ̄A1 (x) and δ̄A2 (y) are readily obtained from
those of ĝA1 (x) and ĝ2(y), respectively.

Next, we consider δ̄B in the decomposition (A.9). We first note that ĝBj =

n−2/5g̃Bj + rj for j = 1, 2, where rj are generic terms such that

sup
u∈[0,1]

|rj(u)| = O(n−2/5), sup
u∈[h,1−h]

|rj(u)| = o(n−2/5).

Writing r = (r1, r2)>, we get that, for any ε > 0, δ̄B = n−2/5 · β + r uniformly
for (x, y) ∈ Iε1 × Iε2. Now, let x and y be fixed points in Io1 ∩ (0, 1) and Io2 ∩ (0, 1),
respectively. Then, it holds that

δ̄B1 (x) = n−2/5 · β1(x) + o(n−2/5), δ̄B2 (y) = n−2/5 · β2(y) + o(n−2/5). (A.12)

The expansions (A.11) and (A.12) give the theorem.
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