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Abstract. The Poland-Scheraga model for DNA denaturation, besides playing a
central role in applications, has been widely studied in the physical and mathemat-
ical literature over the past decades. More recently a natural generalization has
been introduced in the biophysics literature (see in particular Garel and Orland,
2004) to overcome the limits of the original model, namely to allow an excess of
bases – i.e. a different length of the two single stranded DNA chains – and to allow
slippages in the chain pairing. The increased complexity of the model is reflected in
the appearance of configurational transitions when the DNA is in double stranded
form. In Giacomin and Khatib (2017) the generalized Poland-Scheraga model has
been analyzed thanks to a representation in terms of a bivariate renewal process.
In this work we exploit this representation further and fully characterize the path
properties of the system, making therefore explicit the geometric structures – and
the configurational transitions – that are observed when the polymer is in the dou-
ble stranded form. What we prove is that when the excess of bases is not absorbed
in a homogeneous fashion along the double stranded chain – a case treated in Gia-
comin and Khatib (2017) – then it either condensates in a single macroscopic loop
or it accumulates into an unbound single strand free end.
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1. Introduction

The Poland-Scheraga (PS) model (Poland and Scheraga, 1970; Blake and Del-
court, 1998; T. R. Einert and Netz, 2011) played and still plays a central role in
the analysis of DNA denaturation (or melting): double stranded DNA melts into
two single stranded DNA polymer chains at high temperature. The success of the
model is partly due to the fact that it is exactly solvable when the heterogeneous
character of the DNA is neglected. Moreover, solvability has an interest on its own,
from a more theoretical standpoint: phase transition and critical phenomena in the
PS model are completely understood (Fisher, 1984; Giacomin, 2007). However, the
PS model is an oversimplification in many respects: it deals with two strands of
equal length and it does not allow slippages of the two chains. These simplifications
make the model one dimensional, and solvability becomes less surprising. What is
instead surprising is that a natural generalization (Garel and Orland, 2003, 2004;
Neher and Gerland, 2006) – called generalized Poland-Scheraga (gPS) model – fully
overcomes these limitations, retaining the solvable character in spite of the substan-
tially richer variety of structures that it displays. In Giacomin and Khatib (2017) a
mathematical approach to the gPS model is developed and it is pointed out that it
can be represented in terms of a two dimensional renewal process, much like the PS
model can be represented in terms of a one dimensional renewal. The solvable char-
acter of both models is then directly related to their renewal structure. The growth
in complexity from PS to gPS models is nevertheless considerable: the key feature
of PS and gPS is the presence of a localization transition, corresponding to the
passage from separated to bound strands, and for the gPS there are three, not only
one, types of localized trajectories (or configurations). This has been first pointed
out, at least in part, in Neher and Gerland (2006), where one can find theoretical
arguments (based also on a Bose-Einstein condensation analogy) and numerical
evidence that “suggest that a temperature-driven conformational transition occurs
before the melting transition” (Neher and Gerland, 2006, p.3).

In this work we fully characterize the possible localized configurations. The tran-
sitions between different types of configurations have been already studied at the
level of the free energy in Giacomin and Khatib (2017) where these phenomena
have been mathematically identified and interpreted in a Large Deviations frame-
work in terms of Cramér and non-Cramér strategies. This will be explained in
detail below. Here we content ourselves with pointing out that a full analysis of the
Cramér regimes is given in Giacomin and Khatib (2017). However, the non-Cramér
regime, where the condensation phenomena happen, requires a a substantially finer
analysis – moderate deviations and local limit estimates – at the level of the bi-
variate renewals. These estimates, to which much attention has been devoted in
the literature in the one dimensional set-up (see Armendáriz and Loulakis, 2011;
Denisov et al., 2008 and references therein), are lacking to the best of our knowledge
for higher dimensional renewals and they are not straightforward generalizations.
They represent the technical core of this paper.

1.1. The Model and some basic results. We introduce the model in detail only from
the renewal representation. The link with the original representation of the model
is summed up in Fig. 1.1 and its caption, and we refer to Giacomin and Khatib
(2017) for more details.
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We consider a persistent bivariate renewal process τ = {(τ (1)n , τ
(2)
n )}n≥0, that is

a sequence of random variables such that τ0 = (0, 0), {τn − τn−1}n=0,2,... is IID and

such that the inter-arrival law – i.e. the law of τ1 –, takes values in N2 := {1, 2, · · · }2.
We set P(τ1 = (n,m)) = K(n+m) with

K(n) :=
L(n)

n2+α
, (1.1)

for some α > 0 and some slowly varying function L(·). Moreover
∑
n,mK(n+m) =

1 since we assumed the process to be persistent.
We consider two versions of the model: constrained and free. The partition

function of the constrained model, or constrained partition function, can be written
as

ZcN,M,h :=

N∧M∑
n=1

∑
l∈Nn
|l|=N

∑
t∈Nn
|t|=M

n∏
i=1

exp(h)K(li + ti) , (1.2)

where h ∈ R is the binding energy, or pinning parameter.
The partition function of the free model, or free partition function, is defined by

ZfN,M,h :=

N∑
i=0

M∑
j=0

Kf (i)Kf (j)ZcN−i,M−j,h , (1.3)

where Kf (n) := L(n)n−α for some α ∈ R and slowly varying function L(·). We
assume that Kf (0) = 1 just to prevent this constant from popping up in vari-
ous formulas: this choice has the side effect of making clear that Kf (·) is not a
probability.

In Giacomin and Khatib (2017) it is shown that for every h and every γ > 0

fγ(h) := lim
N,M→∞
M/N→γ

1

N
logZcN,M,h = lim

N,M→∞
M/N→γ

1

N
logZfN,M,h <∞ , (1.4)

which says that the free energy (density) of free and constrained models, with
binding energy h and strand length asymptotic ratio equal to γ, coincide. A number
of basic properties of h 7→ fγ(h) are easily established, notably that it is a convex
non decreasing function, equal to zero for h ≤ 0 and positive for h > 0. This already
establishes that h = 0 is a critical point, in the sense that fγ(·) is not analytic at
the origin.

But Giacomin and Khatib (2017) is not limited to results on the free energy:

associated to ZcN,M,h and ZfN,M,h there are two probability measures, that we denote

respectively by Pc
N,M,h and Pf

N,M,h. They are point measures, like the renewal

processes on which they are built. It is standard to see that ∂hfγ(h) (which exists
except possibly for countably many values of h) yields the N → ∞ limit of the

expected density of points (under Pc
N,M,h or Pf

N,M,h). Hence for h < 0 the density
is zero, while for h > 0 the density is positive. This tells us that we are stepping
from a regime in which the two strands are essentially fully unbound to a regime
in which they are tightly bound. In Giacomin and Khatib (2017) results go well
beyond this: it is in particular proven that for h < 0 the number of renewal points is
O(1) and these points are all close to (0, 0) or (N,M) (see Fig. 1.2). In the polymer
representation, this means that the two DNA strands are completely unbound,
except for a few contacts between the bases just close to the extremities. More
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Figure 1.1. A configuration of the free gPS model, with one
strand containing 22 bases and the other 14, is represented in two
fashions: the natural (or polymer) one and the renewal one. In
particular we see that (1, 1) renewal increments (or inter-arrivals)
correspond to bound base pairs and all other increments (i, j) cor-
respond to unbound regions in the bulk, that we call loops (of total
length i + j, with length i in the first strand and j in the second
strand). The term unbound is rather reserved to the terminal por-
tion of the polymer: we refer to the free ends as unbound strands.
Throughout this work, a polymer trajectory is always given in the
renewal representation: it is therefore just a point process in the
plane.

precisely, it was found in Giacomin and Khatib (2017) that in the free case, if
α < 1 + α/2 the two strands are free except for O(1) contacts close to the origin,
and if α > 1 + α/2 the two free ends are of length O(1) and a large loop appears
in the system, see Fig 1.2.

On the other hand for h > 0 the situation is radically different. This has been
analyzed in Giacomin and Khatib (2017) but only in the Cramér regime. We are
now going to discuss this in details.

1.2. Binding strategies. A way to get a grip on what is going on for h > 0 is to
observe that we can make the elementary manipulation: for every non negative λ1
and λ2

ZcN,M,h = eNλ1+Mλ2

N∧M∑
n=1

∑
l∈Nn
|l|=N

∑
t∈Nn
|t|=M

N∏
i=1

exp (h− λ1li − λ2ti)K(li + ti) . (1.5)
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Figure 1.2. A schematic image of the two types of observable
trajectories of the free gPS model in the delocalized (denaturated,
melted) regime, according to whether the exponent α is smaller
(left picture) or larger (right picture) than 1 + α/2. In the con-
strained case only the trajectory on the right is observed, and the
small free tails are reduced to zero. This case is treated in Gia-
comin and Khatib (2017).

Since h > 0 we identify a family, in fact a curve in [0,∞)2, of values of (λ1, λ2)
such that

∞∑
l,t=1

exp (h− λ1l − λ2t)K(l + t) = 1 , (1.6)

and (1.6) clearly defines a probability distribution that is an inter-arrival distribu-
tion for a new bivariate renewal process. At this point is not too difficult to get
convinced that ZcN,M,h is equal to eNλ1+Mλ2 times the probability that this new

renewal hits (N,M) (we call this probability target probability). If we are able
to choose (λ1, λ2) so that the logarithm of the target probability is o(N), then
of course fγ(h) = λ1 + γλ2. This can actually be done: it amounts to solving a
variational problem and the uniqueness of the optimal (λ1, λ2) follows by convexity
arguments. However the solution may be qualitatively different for different values
of h:

(1) the optimal (λ1, λ2) belong to (0,∞)2, so both components of the inter-
arrival law of the arising renewal have distributions that decay exponen-
tially. We call this Cramér regime because the tilt of the measure (in both
components) is efficient in targeting the point (N,M) to which we are aim-
ing at;

(2) either λ1 or λ2 is zero, so only one component of the arising inter-arrival
law is exponentially tight. For the sake of conciseness we call this for now
non-Cramér regime because the tilt of the measure (in only one of the
component) is only partially successful in making the renewal τ reach and
visit the point (N,M). To be precise there is in reality a boundary region
between the two regimes, and the notion of non-Cramér regime will be
made more precise just below – this regime is the main issue of this work
– so we will not dwell further on this right now.
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A full treatment of the Cramér regime is given in Giacomin and Khatib (2017),
and the results can be resumed as follows: all loops are small, in fact the largest
is O(logN), and the unbound strands (the free ends) are of length O(1) – see the
leftmost case in Fig 1.3. In the present work, we focus on the non-Cramér regime
and the reader who wants to have an anticipation on the results can have a look
Fig 1.3.

1.3. The non-Cramér regime. In order to make as explicit as possible for which
values of h > 0 the system is in the non-Cramér regime, let us define n(h) > 0 as
the unique solution of

∞∑
n,m=1

K(n+m) exp (−nn(h)) = exp(−h) . (1.7)

This computation amounts to solving the variational problem we were after, in the
case in which the problem is not solvable in (0,∞)2 and the optimal tilt of the
measure involves only one of the two components. From (1.7) one can extract a
number of properties of n(·): it is a real analytic, positive, convex and increasing
function (Giacomin and Khatib, 2017). We insist on the fact that, in spite of
being defined for every h > 0, n(h) is not always equal to the free energy. More
precisely in Giacomin and Khatib (2017) it is shown that fγ(h) = n(h) if and only
if γ /∈ (1/γc(h), γc(h)), where

γc(h) :=

∑
n,mmK(n+m) exp(−nn(h))∑
n,m nK(n+m) exp(−nn(h))

. (1.8)

We refer to Giacomin and Khatib (2017) for more details on the form of the func-
tion γc(·) and the switching phenomena between the Cramér and the non-Cramér
regime. In this work, and without loss of generality (by symmetry), we will consider
only the case γ > γc(h). To be precise we will rather consider the case γ ≥ γc(h)
because the phenomenology observed for γ > γc(h), that is for M − γc(h)N ≥ cN
for some c > 0 persists also in a part of the window M − γc(h)N = o(N) and we
will analyze the model also in this window. In different terms: the analysis in the
Cramér regime is a Large Deviations analysis, but the whole non-Cramér regime is
equivalent from the Large Deviations viewpoint (the issues there are about sharp
deviations). So there isn’t much conceptual difference between M − γc(h)N ≥ cN
and M − γc(h)N = o(N), up to when M − γc(h)N grows too slowly, as we shall
see.

Crucial for us is the probability distribution K̂h(·, ·) defined by

K̂h(n,m) = K(n+m)eh−nn(h) , (1.9)

which, as announced informally just above, allows to write the partition function
as

ZcN,M,h = exp(Nn(h))P ((N,M) ∈ τ̂h) , (1.10)

where τ̂h is the bivariate renewal process with inter-arrival distribution K̂h(·, ·), i.e.

P
(
(τ̂h)1 = (n,m)

)
= K̂h(n,m) =

L(n+m)

(n+m)1+α
eh−nn(h) . (1.11)

Next, we are going to have a closer look at this renewal process.
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1.4. On the bivariate renewal τ̂h. Let us write for conciseness n(h) = nh (a practice
that we will pick up again in the proofs), and drop the dependence on h in τ̂h:
τ̂ = (τ̂ (1), τ̂ (2)). In view of (1.11), it is clear that the distribution of this process is
not symmetric, we have the marginals

P
(
τ̂
(1)
1 = n

)
=
∑
m≥1

K(n+m) exp(h− nhn)
n→∞∼ exp(h)

(1 + α)

L(n)

n1+α
e−nhn ,

P
(
τ̂
(2)
1 = m

)
=
∑
n≥1

K(n+m) exp(h− nhn)
m→∞∼ exp(h)

exp(nh)− 1

L(m)

m2+α
.

(1.12)

Let us also denote (the dependence in h is implicit)

µ̂1 := E[τ̂
(1)
1 ] < +∞, µ̂2 := E[τ̂

(2)
1 ] < +∞ , (1.13)

so that γc(h) = µ̂2/µ̂1, cf. (1.8).

We notice that the process τ̂ (1) has moments of all orders, and so {τ̂ (1)n }n=0,1,...

is in the domain of attraction of a normal law: we denote a
(1)
n :=

√
n the scaling

sequence for τ̂
(1)
n . On the other hand, the process {τ̂ (2)n }n=0,1,... is in the domain of

attraction of an α2-stable law, with α2 := (1 +α)∧ 2 > 1: its scaling sequence a
(2)
n

verifies

L(a(2)n )(a(2)n )−α2 ∼ 1

n
if α2 < 2 and σ(a(2)n )(a(2)n )−2 ∼ 1

n
if α2 = 2

(1.14)
where

σ(n) := E
[(
τ̂
(2)
1

)2
1{τ̂(2)

1 6 n}

]
, (1.15)

and diverges as a slowly varying function if E[(τ̂
(2)
1 )2] = +∞ (with σ(n)/L(n) →

+∞, see Bingham et al., 1987). Note that σ(n) converges if α > 1. In particular,

a
(2)
n is regularly varying with exponent 1/α2 = (1 + α)−1 ∨ (1/2).

As an additional relevant definition, we select a sequence {m(2)
n }n=1,2,... satisfying

P
(
τ̂
(2)
1 > m(2)

n

) n→∞∼ 1

n
, (1.16)

so that m
(2)
n gives the order of max1 6 j 6 n{τ̂ (2)j − τ̂ (2)j−1}. We stress that m

(2)
n is

regularly varying with exponent (1 + α)−1, and that m
(2)
n /a

(2)
n ∈ [1/c, c] for some

c ≥ 1 if α < 1, but m
(2)
n /a

(2)
n → 0 when α > 1: in any case, there is a constant

c > 0 such that m
(2)
n 6 ca

(2)
n for every n, i.e. m

(2)
n = O(a

(2)
n ).

1.5. Non-Cramér regime and big-jump domain. We drop the dependence of γc(h)
on h, and we set

tN := M − γcN . (1.17)

Of course, having γ > γc means that tN/N ≥ c for some c > 0. But it is natural
and essentially not harder to tackle the problem assuming only

tN/a
(2)
N → +∞ as N →∞, (1.18)

with additionally, in the case α > 1 (recall the definition of σ(n) after (1.14))( tN
a
(2)
N

)2 σ(aN )

σ(tN )

N→∞∼ t2N
Nσ(tN )

> C0 logN for a suitable choice of C0 > 0 . (1.19)
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If α > 1, as well as if α = 1 and σ(n) = O(1) (i.e. if E[(τ̂
(2)
1 )2] <∞), (1.19) simply

means that tN > C ′0
√
N logN with C ′0 easily related to C0. Note also that (1.18)

implies tN �
√
N logN if E[(τ̂

(2)
1 )2] =∞.

We stress that the constants C0 depends only on K(·) and, for the interested
reader, it can be made explicit by tracking the constants in (3.34) and (3.43) where
the value of C0 is used. This assumption is made to be sure that we lie in the
so called big-jump domain, as studied for example in the one-dimensional setting
in Denisov et al. (2008): in our model it simply means that deviations – and the
event we focus on is (N,M) ∈ τ̂ – are realized by an atypical deviation on just
one of the increment variables τ̂i+1 − τ̂i. As we shall, this happens just under the
assumption (1.18) for α < 1 and this condition is optimal (see Appendix B.1). For
the case α ≥ 1 the extra condition (1.19) is not far from being optimal, but it is
not: we discuss this point in Appendix B.2, but we do not treat it in full generality
because it is a technically demanding issue that leads far from our main purposes.

1.6. Main results I: polymer trajectories. Let us now introduce two fundamental
events in an informal, albeit precise, fashion. The two events will be rephrased
in a more formal way in (2.9), once further notations will have been introduced.
Choose sequences of positive numbers {uN}N=1,2,..., {m+

N}N=1,2,..., {a+N}N=1,2,...

and {ã+N}N=1,2,... such that

uN � 1 , tN � m+
N � m

(2)
N , tN � a+N � a

(2)
N and tN � ã+N � a

(2)
N . (1.20)

In practice, and to optimize the result that follows, uN , m+
N/m

(2)
N , a+N/a

(2)
N and

ã+N/a
(2)
N should be chosen tending to ∞ in an arbitrarily slow fashion.

We then define the Big Loop event E
(N)
BL to be the set of trajectories such that

(1) there is one loop of size larger than tN − a+N and smaller than tN + a+N , so
that, to leading order, it is of size tN ;

(2) all other loops are smaller than m+
N (hence there is only one largest loop);

(3) the length of neither of the two unbound strands is larger than uN .

The (large or macroscopic) Unbound Strand event E
(N)
US is instead the set of

trajectories such that

(1) all loops are smaller than m+
N ;

(2) the length of the unbound portion of the shorter strand does not exceed
uN ;

(3) the length of the unbound portion of the longer strand is larger than tN−ã+N
and smaller than tN + ã+N , so that, to leading order, it is of size tN .

Note that E
(N)
BL ∩ E(N)

US = ∅ except, possibly, for finitely many N : the two
conditions (1) are incompatible. We refer to Fig. 1.3 for a schematic image of these
two events.

Theorem 1.1. Under assumptions (1.18), (1.19) and (1.20) we have that

lim
N→∞

Pf
N,M,h

(
E

(N)
BL ∪ E(N)

US

)
= 1 . (1.21)

(1) Moreover, if α < 1 (and hence
∑
j Kf (j) =∞) then

lim
N→∞

Pf
N,M,h

(
E

(N)
US

)
= 1 . (1.22)
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(2) If
∑
j Kf (j) <∞ (and hence α ≥ 1) then

Pf
N,M,h

(
E

(N)
US

) N→∞∼ 1

1 +QN
and Pf

N,M,h

(
E

(N)
BL

) N→∞∼ QN
1 +QN

, (1.23)

with

QN := chN (tN )−(2+α)+α
L(tN )

L(tN )
and ch :=

eh
∑∞
j=0Kf (j)

µ̂1(en(h) − 1)
. (1.24)

For conciseness the case α = 1 with
∑
j Kf (j) = +∞ is not included in Theo-

rem 1.1, but its is treated in full in Appendix A. It is a marginal case in which an
anomalous behavior appears: a big loop and a large unbound strand may coexist.

Figure 1.3. Schematic image of the observable trajectories of
the free gPS model in the Cramér regime (left), and in the non-
Cramér regime (cf. Theorem 1.1): the Large Unbound Strand
event (center, occurring when α < α+ 1) and the Big Loop event
(right, occurring when α > α + 1). In the constrained case the
Unbound Strand event is not observed, and the free tails are of
course absent. What cannot be appreciated in this schematic view
is the fact that the small loop distribution has exponential tail
in the Cramér regime (hence the largest is O(logN)) and that it
has power law tail in the non-Cramér regime (hence the largest is
O(Na) for some a ∈ (0, 1): O(mN ) to be precise).

It is worth pointing out that, in most of the cases, the expressions in (1.23)
have a limit – at least if {tN}N=1,2,... is not too wild (regularly varying is largely
sufficient) – and it is either one or zero. In particular when tN ∼ cN for some c > 0
we have

lim
N→∞

Pf
N,M,h

(
E

(N)
US

)
=

1 if α < α+ 1 or if α = α+ 1 and L(t)
t→∞� L(t),

0 if α > α+ 1 or if α = α+ 1 and L(t)
t→∞� L(t).

(1.25)
(This is true also in the case α = 1 with

∑
j Kf (j) = +∞, see (A.6)-(A.7)). Note

that in the case in which α = α+1 and the ratio of the two slowly varying function
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has a limit which is neither 0 nor ∞, the limit of the probability of the unbound
strand event exists and it is an explicit value in (0, 1).

Let us also give the following complement to Theorem 1.1 for the constrained
case.

Theorem 1.2. Under assumptions (1.18) (and additionally (1.19) if α ≥ 1) and
(1.20) we have that

lim
N→∞

Pc
N,M,h

(
E

(N)
BL,0

)
= 1 , (1.26)

where E
(N)
BL,0 is the event E

(N)
BL with the more stringent condition that the the length

of both the unbound strands is 0.

2. Main results II: sharp estimates on the partition functions

In this section, we give the asymptotic behavior of e−NnhZcN,M,h = P((N,M) ∈
τ̂) in the big-jump domain. Then we present the asymptotic behavior of ZfN,M,h.
Both in the constrained and free case we also give more technical estimates that
identify some events to which we can restrict the partition functions without mod-
ifying them in a relevant way. Theorem 1.1 turns out to be a corollary of these
technical estimates, as we explain in the final part of the section.

In this section and in the rest of the paper we deal with order statistics and we
introduce here the relative definitions. Consider the (non-increasing) order statistics{
M1,k,M2,k, . . . ,Mk,k

}
of the IID family {τ̂ (2)j − τ̂

(2)
j−1}j=1,...,k. In particularM1,k

is a maximum of this finite sequence. We will consider the order statistics also for
k random, notably for k = κN , with

κN := max{i : τ̂
(1)
i ∈ [0, N ]}. (2.1)

2.1. On the constrained partition function. We start with an important estimate
for the constrained partition function (more precisely for P((N,M) ∈ τ̂), the the
renewal mass function), that is essential for the study of the free partition function,
as one can imagine from its definition (1.3). It is worth insisting on the link between
P and the measure we are interested in for the constrained case:

Pc
N,M,h(·) = P( · |(N,M) ∈ τ̂) . (2.2)

Theorem 2.1. Assume that α > 0 and that (1.18) holds. Moreover if α > 1
assume also (1.19). Recall that τ̂ has inter-arrival distribution (1.11). Then (recall
that M = γcN + tN ) we have that

P
(
(N,M) ∈ τ̂

)
= P

(
τ̂ (1)κN = N, τ̂ (2)κN = M

)
N→∞∼ N

µ̂2
1

P
(
τ̂
(2)
1 = dtNe

)
. (2.3)

Moreover, for every η ∈ (0, 1) there exist ε0 > 0 such that for every ε ∈ (0, ε0) and
N sufficiently large (how large may depend on ε), we have

P

(
M1,κN − tN ∈

[
− a

(2)
N

ε
,
a
(2)
N

ε

]
,M2,κN ≤

m
(2)
N

ε
, τ̂ (1)κN = N, τ̂ (2)κN = M

)
≥

≥ (1− η)
N

µ̂2
1

P
(
τ̂
(2)
1 = dtNe

)
. (2.4)
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Let us stress that the bivariate renewal process τ̂h falls in the domain of attraction
of an (α1 = 2, α2) stable distribution (see e.g. Resnick and Greenwood, 1979

or de Haan et al., 1984). We have, as n → ∞, that
{(

τ̂(1)
n −µ̂1n

a
(1)
n

,
τ̂(2)
n −µ̂2n

a
(2)
n

)}
n≥1

converges in distribution to a non-degenerate (2, α2)-bivariate stable law.
We mention that a bivariate local limit theorem is given in Doney (1991) and

multivariate (d-dimensional) renewals are further studied in Berger (2018): local
large deviation estimates are given, as well as strong renewal theorems, i.e. asymp-
totics of P((n,m) ∈ τ) as (n,m)→∞, when (n,m) is close to the favorite direction
– i.e. the line t 7→ tE[τ1], close to meaning at distance of the order of the fluctu-
ations around that direction. We refer to Berger (2018) for further details (rough
estimates when (n,m) is away from the favorite direction are also given). We stress
that the multivariate case we consider is very special, and that here we need and
obtain estimates that are (much) sharper than what one finds in the literature we
have cited.

2.2. On the free partition function. We now give the behavior of the free partition
function and identify trajectories contributing the most to it. Let us introduce
some notations:

V
(N)
1 := N − τ̂ (1)κN , V

(N)
2 := M − τ̂ (2)κN , (2.5)

the lengths of the free parts, see Fig 1.1.

For a set A of allowed trajectories, we define ZfN,M,h(A) the partition func-

tion restricted to trajectories in A (by restricting the summation over subsets of

{1, . . . N}×{1, . . .M} to those in A). For example, ZfN,M,h((N,M) ∈ τ̂) = ZcN,M,h.

We set K :=
∑∞
j=1Kf (j) if the sum is finite, and we set K = 0 if

∑
j Kf (j) = +∞.

Theorem 2.2. Assume that α > 0 and (1.18). Moreover if α > 1 assume also
(1.19) and if α = 1 assume that

∑
j Kf (j) <∞. Then for N →∞

e−Nn(h)ZfN,M,h = (1 + o(1))K
N

µ̂2
1

(∑
i≥0

Kf (i)e−in(h)
)

P
(
τ̂
(2)
1 = dtNe

)
+ (1 + o(1))

1

µ̂1

(∑
i > 0

Kf (i)e−inh
)
Kf (tN ) . (2.6)

Moreover, for every η ∈ (0, 1) there exist ε0 > 0 such that for every ε ∈ (0, ε0) and
N sufficiently large (how large may depend on ε), such that

e−NnhZfN,M,h

(
V

(N)
1 , V

(N)
2 6

1

ε
,M1,κN ∈

[
tN −

a
(2)
N

ε
, tN +

a
(2)
N

ε

]
,M2,κN ≤

m
(2)
N

ε

)
> (1− η)K

N

µ̂2
1

(∑
i > 0

Kf (i)e−inh
)

P
(
τ̂
(2)
1 = tN

)
; (2.7)

e−NnhZfN,M,h

(
V

(N)
1 6

1

ε
, V

(N)
2 ∈

[
tN −

a
(2)
N

ε
, tN +

a
(2)
N

ε

]
,M1,κN 6

m
(2)
N

ε

)
> (1− η)

1

µ̂1

(∑
i > 0

Kf (i)e−inh
)
Kf (tN ) . (2.8)
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We remark that when α < 1 (so K = 0), the right-hand side of (2.6) reduces
to one term and (2.7) becomes trivial. The case α = 1 with

∑
j Kf (j) = +∞ is

treated in Theorem A.1.

2.3. Back to the Big Loop and Unbound Strand events. The notations we have
introduced allow a compact formulation of the two key events of Theorem 1.1:

E
(N)
BL =

{
M1,κN ∈ [tN − a+N , tN + a+N ],M2,κN < m+

N , max
(
V

(N)
1 , V

(N)
2

)
≤ uN

}
,

E
(N)
US =

{
M1,κN < m+

N , V
(N)
1 ≤ uN , V (N)

2 ∈ [tN − ã+N , tN + ã+N ]
}
.

(2.9)

Proof of Theorems 1.1 and 1.2. This is just a book-keeping exercise using the three
estimates in Theorem 2.2 (or Theorem 2.1 for Theorem 1.2), together with the

definition of Kf (tN ) and the estimate of P(τ̂
(2)
1 = dtNe) in (1.12). �

2.4. A word about the arguments of proof and organization of the remaining sec-
tions. As we pointed out at the beginning of the introduction, condensation phe-
nomena are widely studied in the mathematical literature (see Denisov et al., 2008;
Armendáriz and Loulakis, 2011 and references therein), but not in the multivariate
context. The full multivariate context is the object of Berger (2018), where renewal
estimates, i.e. estimates on P((n1, . . . , nd) ∈ τ̂), are given: the big-jump domain in
treated in much greater generality, but not with the precision we require. Here we
deal only with the very special bivariate case motivated by the application – which
has the simplifying feature of being highly asymmetric so in the end we can reduce
to a one dimensional renewal – and we need and find the exact local asymptotic
behavior of the renewal function. One of the main difficulties we face is that, on
the event (N,M) ∈ τ̂ , the number κN of renewal points is random and highly con-
strained by this event. We show that in the big-jump domain considered in Section
1.5, the main contribution to the probability P((N,M) ∈ τ̂) comes from trajecto-

ries with a number of renewal points that is approximately κN = N/µ̂1 +O(
√
N).

For this number κN , τ̂
(1)
κN does not have to deviate from its typical behavior to be

equal to N , but τ̂
(2)
κN has to deviate from its typical behavior to reach M and it does

so by making one single big jump, of order tN +O(a
(2)
N ). In this sense, if we accept

that κN is forced to be N/µ̂1 +O(
√
N) by the condition N ∈ τ̂ (1), we can focus on

M ∈ τ̂ (2) and the problem becomes almost one dimensional. This turns out to be
a lower bound strategy: for a corresponding upper bound we have to show that all
other trajectories bring a negligible contribution to P((N,M) ∈ τ̂).

In the rest of the paper, we estimate separately the constrained and free partition
functions. We deal with the constrained partition function in Section 3: the main
term (2.4) in Section 3.1 and the remaining negligible contributions in Section 3.2.
The free partition function is dealt with in Section 4: the main terms (2.7) and
(2.8) in Section 4.1 and the remaining negligible contributions in Section 4.2. In
Appendix A we complete the analysis of the case α = 1. In Appendix B we discuss
the transition from the big-jump regime (a single big jump, with a big deviation of
just one of the two components) to the Cramér deviation strategy (no big jump).

To keep things simpler in the rest of the paper, and with some abuse of notation,
we will systematically omit the integer part in the formulas.
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3. The constrained partition function: proof of Theorem 2.1

3.1. Proof of the lower bound (2.4). We start by decomposing the event of interest
according to κN = k. The probability of such an event, restricted to {κN = k},
becomes (recall that M = γcN + tN )

P
(
|M1,k − tN | ≤

a
(2)
N

ε
,M2,k ≤

m
(2)
N

ε
, τ̂

(1)
k = N, τ̂

(2)
k = M

)
=

P

( k⋃
j=1

{
τ̂
(2)
j − τ̂ (2)j−1 ∈ tN + IN , max

i 6=j

(
τ̂
(2)
i − τ̂ (2)i−1

)
≤ m

(2)
N

ε
, τ̂

(1)
k = N, τ̂

(2)
k = M

})
,

(3.1)

where we defined IN := {−a(2)N /ε, . . . , a
(2)
N /ε}. Since tN − a

(2)
N /ε is larger than

m
(2)
N /ε (recall that m

(2)
n 6 ca

(2)
n for every n, and (1.18)) for N sufficiently large,

the union in the right-hand side of (3.1) is a union of disjoint events that have all
the same probability. This term is equal to

kP
(
τ̂
(2)
1 ∈ tN +IN , max

i=2,...,k

(
τ̂
(2)
i − τ̂ (2)i−1

)
≤ m

(2)
N

ε
, τ̂

(1)
k = N, τ̂

(2)
k = γcN+tN

)
=

k
∑
y∈IN

∑
x∈N

P
(
τ̂
(2)
1 = tN + y, τ̂

(1)
1 = x

)

P
(
M1,k−1 6

m
(2)
N

ε
, τ̂

(1)
k−1 = N − x, τ̂ (2)k−1 = γcN − y

)
, (3.2)

where we have used that {(τ̂ (1)j −τ̂
(1)
1 , τ̂

(2)
j −τ̂

(2)
1 )}j=2,...,k and {(τ̂ (1)j , τ̂

(2)
j )}j=1,...,k−1

have the same law.
Since we are after a lower bound we may and do restrict the sum over x between

1 and 1/ε and y ∈ IN := {−a(2)N /ε, . . . , a
(2)
N /ε}. And using that P(τ̂

(2)
1 = n) is

regularly varying, we have that uniformly for such x and y ∈ IN

P
(
τ̂
(2)
1 = tN + y, τ̂

(1)
1 = x

)
≥ (1− δN ) P

(
τ̂
(2)
1 = tN

)
P
(
τ̂
(1)
1 = x

∣∣∣ τ̂ (2)1 = tN + y
)
,

(3.3)
where δN = δN (ε) ≥ 0 is such that limN→∞ δN = 0. If now we set ph(x) :=
(enh − 1)e−xnh , by using (1.12) we have that

P
(
τ̂
(1)
1 = x

∣∣ τ̂ (2)1 = tN + y
)

=
P
(
τ̂
(1)
1 = x, τ̂

(2)
1 = tN + y

)
P
(
τ̂
(2)
1 = tN + y

)
≥ (1− δN )

ph(x)K (tN + x+ y)

K (tN + y)
≥ (1− δN )

2
ph(x) , (3.4)
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possibly for a different choice of δN = δN (ε). Therefore, going back to (3.1) we see
that (again, by redefining δN )

P
(
M1,k ∈ tN + IN ,M2,k ≤

m
(2)
N

ε
, τ̂

(1)
k = N, τ̂

(2)
k = M

)
≥

(1− δN )kP
(
τ̂
(2)
1 = tN

)
1/ε∑
x=1

ph(x)P
(
M1,k−1 6

m
(2)
N

ε
, τ̂

(1)
k−1 = N − x, τ̂ (2)k−1 − γcN ∈ IN

)
. (3.5)

We now sum over the values of k and we restrict to k ∈ [(N/µ̂1)−
√
N/ε, (N/µ̂1) +√

N/ε] ∩ Z := JN . Hence, redefining δN , the left-hand side of (2.4) is bounded
from below by

(1− δN )P
(
τ̂
(2)
1 = tN

)N
µ̂1

1/ε∑
x=1

ph(x)Pε(x) , (3.6)

where we defined, with n+N := max JN ,

Pε(x) :=
∑
k∈JN

P

(
max

i=1,...,n+
N

(
τ̂
(2)
i − τ̂ (2)i−1

)
6
m

(2)
N

ε
, τ̂

(1)
k−1 = N−x, τ̂ (2)k−1−γcN ∈ IN

)
(3.7)

For Pε(x), we observe right away that by introducing also n−N := min JN – note

that n±N are equal to (N/µ̂1)±
√
N/ε – we have

Pε(x) ≥
∑
k∈JN

P

(
M1,n+

N
6
m

(2)
N

ε
, τ̂

(1)
k−1 = N − x

)

−
∑
k∈JN

P

(
M1,n+

N
6
m

(2)
N

ε
, τ̂

(1)
k−1 = N − x, τ̂ (2)

n+
N

− γcN >
a
(2)
N

ε

)

−
∑
k∈JN

P

(
M1,n+

N
6
m

(2)
N

ε
, τ̂

(1)
k−1 = N − x, τ̂ (2)

n−N
− γcN <

a
(2)
N

ε

)
> P (E1 ∩ E2(x))−P

(
E+

3

)
−P

(
E−3
)
,

(3.8)

where

E1 :=
{
M1,n+

N
6
m

(2)
N

ε

}
, E2(x) :=

{
∃k ∈ JN such that τ̂

(1)
k−1 = N − x

}
,

(3.9)
and

E+
3 :=

{
τ̂
(2)

n+
N

− γcN >
a
(2)
N

ε

}
, E−3 :=

{
τ̂
(2)

n−N
− γcN <

a
(2)
N

ε

}
. (3.10)

We now estimate separately the probability of these events.

3.1.1. E1 has probability close to one. For this, we use that P(τ̂
(2)
1 > n) is regularly

varying with index (1 + α)−1 together with the definition (1.16) of m
(2)
n to obtain

that for N larger than some N0 = N0(ε) we have P
(
τ̂
(2)
1 > 1

εm
(2)
N

)
6 2ε1+αN−1.
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Therefore, we have for N > N0

P (E1) >
(
1− 2ε1+αN−1

)n+
N > e−3ε

1+α

. (3.11)

where we used that n+N 6 N and ε small.

3.1.2. E2(x) has probability close to 1/µ̂1. The probability of E2(x) is estimated
by writing

P (E2(x)) = P(N − x ∈ τ̂ (1))−
∑
k<n−N

P
(
τ̂
(1)
k = N − x

)
−
∑
k>n+

N

P
(
τ̂
(1)
k = N − x

)
> P(N − x ∈ τ̂ (1))−P

(
τ̂
(1)

n−N
> N − 1

ε

)
−P

(
τ̂
(1)

n+
N

6 N
)
. (3.12)

For the second term we used that P
(
∃ k < n−N s.t. τ̂

(1)
k = N−x

)
6 P

(
τ̂
(1)

n−N
> N−x

)
together with the fact that x 6 1/ε (and similarly for the last term).

First, because the inter-arrivals of τ̂ (1) are exponentially integrable, |P(N ∈
τ̂ (1)) − 1/µ̂1| ≤ exp(−cN) for N ≥ N0 with c > 0 and N0 that depend on the
inter-arrival law (Kendall, 1959). Therefore, uniformly in x = 1, . . . , 1/ε, we have
that for N sufficiently large P(N − x ∈ τ̂ (1)) > 1/µ̂1 − e−cN/2.

For the remaining terms in (3.12) it is just a matter of using the Central Limit

Theorem. In fact, recalling that n−N = N/µ̂1 −
√
N/ε, we have

P
(
τ̂
(1)

n−N
> N − 1

ε

)
= P

(
τ̂
(1)

n−N
− µ̂1n

−
N > µ̂1ε

−1/2
√
N − 1

ε

)
6 e−cε

−1

, (3.13)

for N larger than some N0 = N0(ε). On the other hand, we also have that

P
(
τ̂
(1)

n+
N

6 N
)

= P
(
τ̂
(1)

n+
N

− µ̂1n
+
N 6 − µ̂1ε

−1/2
√
N
)
6 e−c

′ε−1

, (3.14)

provided again that N is large enough.
Therefore we have proven that for every η ∈ (0, 1) there exists ε0 and N0 :

(0, 1)→ N such that for ε ∈ (0, ε0) and N ≥ N0(ε) we have

min
x=1,...,1/ε

P (E2(x)) ≥ 1− η
µ̂1

. (3.15)

3.1.3. E±3 have a small probability. This is a consequence of the convergence to

stable limit law. In fact, using that γc = µ̂2/µ̂1 so that γcN = µ̂2n
+
N − µ̂2

√
N/ε,

we get

E+
3 =

{
τ̂
(2)

n+
N

− µ̂2n
+
N >

a
(2)
N

ε
− µ̂2

√
N/ε

}
⊂
{
τ̂
(2)

n+
N

− µ̂2n
+
N >

a
(2)
N

2ε

}
, (3.16)

where the last inclusion holds provided that ε is sufficiently small, since there is a

constant c such that a
(2)
N > c

√
N for all N (we actually simply need N to be large

if a
(2)
N /
√
N → +∞ for N → ∞, which is the case when E[(τ̂

(2)
1 )2] = +∞). Very

much in the same way we get also to

E−3 ⊂
{
τ̂
(2)

n−N
− µ̂2n

−
N < −a

(2)
N

2ε

}
. (3.17)
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Since (τ̂
(2)

n±N
− µ̂2n

±
N )/a

(2)

n±N
converges in law for N →∞ to a stable limit variable Y ,

and using that a
(2)
N /a

(2)

n±N
→ µ̂

1/α2

1 (since n±N ∼ N/µ1 and a
(2)
N is regularly varying

with exponent α−12 , recall α2 := min(1 + α, 2)), it is straightforward to see that

lim sup
N→∞

P(E+
3 ) ≤ P

(
Y ≥ µ̂

1/α2

1

2ε

)
and lim sup

N→∞
P(E−3 ) ≤ P

(
Y ≤ − µ̂

1/α2

1

2ε

)
,

(3.18)
which are both vanishing as ε↘ 0.

We therefore see that (3.11), (3.15) and (3.18) yield that, provided that ε0 is
small enough, for every ε < ε0 and N large enough (how large depends on ε),
Pε(x) > (1− η)/µ̂1 uniformly for x ∈ {1, . . . , 1/ε}. If we now go back to (3.6) and
(3.8), and using that

∑
x > 1 ph(x) = 1, we obtain(2.4). �

3.2. Proof of (2.3). In view of (2.4), we simply need to give an upper bound on
the probability P ((N, γcN + tN ) ∈ τ̂). Fix some ε > 0.

First step. We control

P
(
M1,κN > (1− ε)tN , τ̂ (1)κN = N, τ̂ (2)κN = γcN + tN

)
≤

N∑
k=1

k
∑

y>−εtN

∑
x∈N

P
(
τ̂
(2)
1 = tN + y, τ̂

(1)
1 = x

)
P
(
τ̂
(1)
k−1 = N − x, τ̂ (2)k−1 = γcN − y

)
.

(3.19)

Recalling (1.11) and (1.12), we have that there is some N0 = N0(ε) and some
η = ηε (with ηε → 0 as ε ↓ 0), such that for all N > N0, x 6 1/ε and y > −εtN we
have

P
(
τ̂
(2)
1 = tN +y, τ̂

(1)
1 = x

)
=

L (tN + y + x)

(tN + y + x)
2+α e

h−xnh 6 (1+η)P
(
τ̂
(2)
1 = tN

)
ph(x),

(3.20)
where we recall that ph(x) := (enh − 1)e−xnh . Note that we also have that there is
a constant c such that uniformly for x ∈ N

P
(
τ̂
(2)
1 = z, τ̂

(1)
1 = x

)
6 cL(z)z−(2+α)ph(x) . (3.21)

We can use that to get that uniformly for y > − tN/2 (so that tN + y > tN/2) we
have that for any x > 1

P
(
τ̂
(2)
1 = tN + y, τ̂

(1)
1 = x

)
6 c′ph(x)P

(
τ̂
(2)
1 = tN

)
. (3.22)

Then, dividing (3.19) according to whether x ≤ 1/ε or x > 1/ε (and summing
over y > εtN ), we obtain the following upper bound

(1 + η)

1/ε∑
x=1

ph(x)P
(
τ̂
(2)
1 = tN

) N∑
k=1

kP
(
τ̂
(1)
k−1 = N − x

)
+ c

N∑
x=1/ε

ph(x)P
(
τ̂
(2)
1 = tN

) N∑
k=1

kP
(
τ̂
(1)
k−1 = N − x

)
. (3.23)
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The second term is bounded from above by (using also k 6 n)

cNP
(
τ̂
(2)
1 = tN

) ∑
x>1/ε

ph(x) = ce−nh/ε ×NP
(
τ̂
(2)
1 = tN

)
. (3.24)

In the first term (3.23), we split the sum according to whether k is smaller or
greater than (1 + ε)N/µ̂1: we get that

N∑
k=1

kP
(
τ̂
(1)
k−1 = N − x

)
≤ (1 + ε)

N

µ̂1
P
(
N − x ∈ τ̂ (1)

)
+NP

(
∃k > (1 + ε)N/µ̂1 s.t. τ̂

(1)
k−1 = N − x

)
≤ (1 + ε)2

N

µ̂2
1

+NP
(
τ̂
(1)
(1+ε)N/µ̂1

6 N − x
)
, (3.25)

where we used that in the first part k 6 (1 + ε)N/µ̂1, and the renewal theorem
to get that P

(
N − x ∈ τ̂ (1)

)
6 (1 + ε)N/µ̂1 uniformly for x ≤ 1/ε and N large

enough (how large depends on ε). The second term is exponentially small since it is
a large deviation for τ̂ (1) (x here is bounded by 1/ε). Recalling that

∑
ph(x) = 1,

the first term (3.23) is therefore bounded from above by

(1 + η)
(
(1 + ε)2 + e−cεN

) N
µ̂2
1

P
(
τ̂
(2)
1 = tN

)
, (3.26)

In the end, the left-hand side of (3.19) is bounded by

(1 + η′ε)
N

µ̂2
1

P
(
τ̂
(2)
1 = tN

)
with η′ε

ε→0→ 0 . (3.27)

Second step. It remains to control

P
(
M1,κN 6 (1− ε)tN , τ̂ (1)κN = N, τ̂ (2)κN = γcN + tN

)
= P

(
M1,κN ∈ (εtN , (1− ε)tN ) , τ̂ (1)κN = N, τ̂ (2)κN = γcN + tN

)
(3.28)

+ P
(
M1,κN ≤ εtN , τ̂ (1)κN = N, τ̂ (2)κN = γcN + tN

)
. (3.29)

The first term in the right-hand side, that is (3.28), is smaller than

N∑
k=1

k

(1−ε)tN∑
z=εtN

∑
x∈N

P
(
τ̂
(2)
1 = z, τ̂

(1)
1 = x

)
P
(
τ̂
(2)
k−1 = γcN + tN − z, τ̂ (1)k−1 = N − x

)

6 cε−(2+α)NP
(
τ̂
(2)
1 = tN

)∑
x∈N

ph(x)

N∑
k=1

P
(
τ̂
(2)
k−1 > γcN + εtN , τ̂

(1)
k−1 = N − x

)
(3.30)

where we used (3.21) uniformly for z > εtN and then summed over z to get the first

inequality. Then, we split the last sum into two parts. For k 6 k(ε)N := N/µ̂1+ε2tN ,
we have

k
(ε)
N∑
k=1

P
(
τ̂
(2)
k−1 > γcN + εtN , τ̂

(1)
k−1 = N − x

)
6 P

(
τ̂
(2)

k
(ε)
N

> γcN + εtN

)
, (3.31)
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since the events on the left side are disjoints. Then, provided that ε has been fixed

small enough so that γcN + εtN > µ̂2k
(ε)
N + 1

2εtN , and since tN/a
(2)
N → +∞ (and

a
(2)

k
(ε)
N

6 a(2)N ), we have

lim sup
N→∞

P
(
τ̂
(2)

k
(ε)
N

> γcN + εtN

)
= 0 . (3.32)

On the other hand, for k > k(ε)N , we have

N∑
k=k

(ε)
N +1

P
(
τ̂
(1)
k−1 = N − x

)
6 P

(
τ̂
(1)

k
(ε)
N

6 N − x
)
6 P

(
τ̂
(1)

k
(ε)
N

6 µ̂1k
(ε)
N − µ̂1ε

2tN

)
,

(3.33)

and since tN/
√
N → +∞, also this terms goes to 0 as N →∞. In the end, we get

that the term (3.28) is negligible compared to NP
(
τ̂
(2)
1 = tN

)
.

Then, it remains to bound (3.29), and a first observation is that we can restrict
it to having κN 6 k

+
N := N/µ̂1 + tN/(4µ̂2). Indeed, we have that

P
(
M1,κN 6 εtN , τ̂

(1)
κN = N, τ̂ (2)κN = γcN + tN , κN > k

+
N

)
≤ P

(
τ̂ (1)κN = N,κN > k

+
N

)
6 P

(
τ̂
(1)

k+N
6 N = µ̂1k

+
N − (N − µ̂1k

+
N )
)

≤ exp
(
− c (N − µ̂1k

+
N )2/k+N

)
≤ exp

(
− c′ (tN )2/N

)
.

(3.34)

We mention that the bound for P
(
τ̂
(1)

k+N
6 µ̂1k

+
N − j

)
comes from the fact that −τ̂ (1)1

is bounded (so it has exponential moments and one can use a Chernov bound,
leading to this Gaussian bound).

Now, the last term decays faster than NP
(
τ̂
(2)
1 = tN

)
because of assumption

(1.19), provided that C0 had been chosen large enough.

It remains to control

k+N∑
k=1

P
(
M1,k 6 εtN , τ̂

(1)
k = N, τ̂

(2)
k = γcN + tN

)
. (3.35)

We write that each term in the sum is

qn∑
j=log2(1/ε)

P
(
M1,k ∈ (2−(j+1)tN , 2

−jtN ], τ̂
(1)
k = N, τ̂

(2)
k = γcN + tN

)
, (3.36)

where qN is the smallest integer such that 2−(qN+1)tN < 1, so qN = O(log2N).
Then, using (3.21), each term in the sum (i.e. for every k and j) is bounded by a



DNA melting structures in the gPS model 1011

constant (not depending on j and k) times

k

2−jtN∑
z=2−(j+1)tN

∑
x∈N

L(2−jtN )

(2−jtN )(2+α)
ph(x)×

P
(
τ̂
(1)
k−1 = N − x, τ̂ (2)k−1 = γcN + tN − z,M1,k−1 6 2−jtN

)
6
NL(tN )

t2+αN

∑
x∈N

ph(x)2j(3+α)P
(
τ̂
(1)
k−1 =N − x, τ̂ (2)k−1>γcN +

tN
2
,M1,k−162−jtN

)
,

(3.37)

where we used that provided that tN is large enough, L(2−jtN ) 6 2jL(tN ) (this is
a direct consequence of Potter’s bound for slowly varying functions, see Bingham
et al., 1987, Th. 1.5.6) and summed over z. Recovering the sum over k and j, we
therefore need to show that

k+N∑
k=1

qn∑
j=log2(1/ε)

∑
x∈N

ph(x)2j(3+α)

P
(
τ̂
(1)
k−1 = N − x, τ̂ (2)k−1 > γcN + tN/2,M1,k−1 6 2−jtN

)
(3.38)

is small for N large.
Then, for every j, we define {τ̄k}k=0,1,... (with law P̄(j), carrying the dependence

on j) as an i.i.d. sum of k variables with distribution (τ̂
(1)
1 , τ̂

(2)
1 1{τ̂(2)

1 6 2−jtN}
): we

therefore obtain that for k 6 k+N

P
(
τ̂
(1)
k−1 = N − x, τ̂ (2)k−1 > γcN + tN/2,M1,k−1 6 2−jtN

)
6 P̄(j)

(
τ̄
(1)
k−1 = N − x, τ̄ (2)k−1 > γcN + tN/2

)
6 P̄(j)

(
τ̄
(1)
k−1 = N − x, τ̄ (2)

k+N
> γcN + tN/2

)
.

Using this inequality and summing it over k in (3.38), (and then using that∑
x ph(x) = 1), we obtain that (3.38) is smaller than

qn∑
j=log2(1/ε)

2j(3+α)P̄(j)
(
τ̄
(2)

k+N
> µ̂2k

+
N + tN/4

)
, (3.39)

where we used that γcN ≥ µ̂2k
+
N− 1

4 tN . Then, we may use a Fuk-Nagaev inequality,
see for example in Nagaev (1979), to control the last probability – we regroup the
inequalities we need under the following lemma.

Lemma 3.1. Let {Xi}i=1,2,... be a sequence of i.i.d. non negative r.v. with P(X1 >
x) ∼ ϕ(x)x−ρ with ρ > 1 and ϕ(·) a slowly varying function. Denote µ := E[X]
and σ(y) = E[X2

11{X1 6 y}]. We have that there exist constants c, c′ > 0 such that
for any y 6 x

P
( n∑
i=1

Xi1{Xi 6 y} − µn > x
)
6
(

1 + c′
x

nϕ(y)y1−ρ

)−cx/y
+ e−cx

2/nσ(y)1{ρ > 2}.

(3.40)
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Moreover, for any u > 0 there is a constant cu such that, if x/(nϕ(y)y1−ρ) 6 u,
then

P
( n∑
i=1

Xi1{Xi 6 y} − µn > x
)
6 exp

(
− cu

x2

nσ(y)

)
. (3.41)

The first term on the right hand side of (3.40) roughly corresponds to the proba-
bility to make x/y anomalous jumps of order y, and the second term to a collective
Cramér strategy, with no exceptional jump.

Lemma 3.1 can be extracted from Nagaev (1979): (3.40) is taken from Nagaev
(1979, Theorem 1.2) (ρ ∈ (1, 2)) and Nagaev (1979, Corollary 1.6) (ρ > 2); (3.41)
comes from Theorem 1.3 in Nagaev (1979)—we use that σ(y) = E[X2

11{X1 6 y}] is

larger than c′′y2−ρϕ(y), so that log(1 + c′x/(nϕ(y)y1−ρ)) > δuxy/nσ(y) provided
that c′x/(nϕ(y)y1−ρ) 6 u (this is condition (1.4) in Nagaev, 1979, Theorem 1.3).

Applying (3.40) to X1 = τ̂
(2)
1 (i.e. ρ = 1 + α and ϕ(·) a constant times L(·)),

and x = εtN , y = 2−jtN (so y ≤ x in the summation range for j, cf. (3.39)), we get
that (using that σ(y) ≤ σ(x) and k+N 6 N for the term α > 1)

P̄(j)
(
τ̄
(2)

k+N
> µ2k

+
N+tN/4

)
6

(
1+c′

ε2j

NP(τ
(2)
1 > 2−jtN )

)−cε2j
+e
−c′′ε2 t2N

Nσ(tN ) 1{α>1} .

(3.42)
The second term poses no issue: summing it for j ∈ [log2(1/ε), qn], we get that

qn∑
j=log2(1/ε)

2j(3+α)e−c
′′t2N/Nσ(tN )1{α > 1} 6 N

3+αe−c
′′t2N/Nσ(tN )1{α > 1} , (3.43)

and this is small when N → +∞ thanks to assumption (1.19), provided that the
constant C0 has been fixed large enough in the case α > 1.

For the first term in (3.42), let jε = jε(tN ) be the first j such that NP
(
τ
(2)
1 >

2−jtN
)
> c′εA2j for some constant A large enough (the precise choice is made

below): note that 2−jεtN is larger than a
(2)
N (since NP(τ

(2)
1 > a

(2)
N ) → 1), so that

jε > log2(tn/a
(2)
N )→ +∞. Summing over j ∈ [log2(1/ε), jε) the first term in (3.42),

we get with the choice c(A− 1) > 4 + α and ε sufficiently small

jε−1∑
j=log2(1/ε)

2j(3+α)
(
1 + ε1−A

)−cε2j
6

jε−1∑
j=log2(1/ε)

2j(3+α)εc(A−1)ε2
j

6
∞∑
j=0

2(3+α)(j+log2(1/ε))−(4+α)(2
j−1) log2(1/ε)−(4+α) log2(1/ε)

= ε

∞∑
j=0

2(3+α)j−(4+α)(2
j−1) log2(1/ε) 6 2ε . (3.44)

For j > jε, we use (3.41). In the case α > 1, we therefore have the same
reasoning as in (3.43): the sum for j ∈ [jε, qn] is small. If α < 1, then σ(y) =
E[X2

11{X1 6 y}] 6 c̃y2ϕ(y)y−ρ, and (3.42) becomes, for j > jε

P̄(j)
(
τ̄
(2)

k+N
> µ2k

+
N+tN/4

)
6 exp

(
−cε22j(NP(τ

(2)
1 > 2−jtN ))−1

)
6 exp

(
−c′ε22j

)
,
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where we used in the second inequality that (NP(τ
(2)
1 > 2−jtN ))−1 is bounded

above by a constant if j ≥ jε. Then, summing over j ∈ [jε, qN ], we get

qN∑
j=jε(tN )

2j(3+α)e−c
′
ε2

2j → 0 as N → +∞. (3.45)

All together, we have shown that (3.39) is small. �

4. The free partition function: proof of Theorem 2.2

We will first prove (2.6) for the case
∑
j Kf (j) <∞. Many estimates are in com-

mon with the case
∑
j Kf (j) =∞ that we treat right after, and we will stress along

the proof when the estimates are dependent or not on the fact that
∑
j Kf (j) <∞.

Also, the proof of the lower bounds (2.7) and (2.8) are contained in the proof of
(2.6) as we explain along the way.

Proof of Theorem 2.2. As announced, we start with the proof of (2.6) and assume∑
j Kf (j) <∞. Let us fix η > 0, and ε > 0 small, how small depends on η as will

be stressed in the proof.
We decompose the free partition function into several parts:

ZfN,M,h = I + II + III + IV + V

with I = ZfN,M,h

(
V

(N)
1 > 1/ε

)
II = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 6 1/ε

)
III = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ (1/ε, tN − 1

εa
(2)
N )
)

IV = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ [tN − 1

εa
(2)
N , tN + 1

εa
(2)
N ]
)

V = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 > tN + 1

εa
(2)
N

)
.

(4.1)

The main contribution comes from the terms II and IV. We first estimate these
terms, before showing that all the other ones are negligible compared to max(II, IV).

4.1. Main terms, and proof of (2.7) and (2.8).

4.1.1. Analysis of II and proof of (2.7). Recall (1.3) and (1.10). The term II can
be written as

II :=
∑
i<1/ε

∑
j 6 1/ε

Kf (i)Kf (j)e(N−i)nhP((N − i,M − j) ∈ τ̂), (4.2)

and it is just a matter of estimating P((N − i,M − j) ∈ τ̂) uniformly for
0 6 i, j 6 1/ε. We have from Theorem 2.1, uniformly for i, j 6 1/ε,

P((N − i,M − j) ∈ τ̂)
N→∞∼ N − i

µ̂2
1

P(τ̂
(2)
1 = M − j−γc(N − i)) ∼

N

µ̂2
1

P(τ̂
(2)
1 = tN ) .

(4.3)
(Recall tn := M − γcN and (1.12).) Hence,

II ∼ N

µ̂2
1

P(τ̂
(2)
1 = tN )eNnh

∑
i 6 1/ε

e−inhKf (i)
∑

j 6 1/ε

Kf (j) . (4.4)
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Hence, if K =
∑
j∈NKf (j) < +∞, we get that provided that ε has been fixed

small enough (depending on η), for all N sufficiently large,

II ≥ (1− η)K
N

µ̂2
1

eNnh
(∑
i≥0

e−inhKf (i)
)
P(τ̂

(2)
1 = tN ) ,

II ≤ (1 + η)K
N

µ̂2
1

eNnh
(∑
i≥0

e−inhKf (i)
)
P(τ̂

(2)
1 = tN ) .

(4.5)

The lower bound (2.7) is obtained simply by using the estimate (2.4) instead of
(2.3) in (4.2): the straightforward details are left to the reader.

4.1.2. Analysis of IV and proof of (2.8). It can be written as

IV =
∑

i 6 1/ε

tN+
1
ε a

(2)
N∑

j=tN−
1
ε a

(2)
N

Kf (i)Kf (j)e(N−i)nhP((N − i,M − j) ∈ τ̂). (4.6)

We have that uniformly for j ∈ [tN − 1
εa

(2)
N , tN + 1

εa
(2)
N ], Kf (j) ∼ Kf (tN ). We can

therefore focus on estimating, uniformly for i 6 1/ε

tN+
1
ε a

(2)
N∑

j=tN−
1
ε a

(2)
N

P
(
(N − i,M − j) ∈ τ̂

)
= P

(
for some k, τ̂

(1)
k = N − i, τ̂ (2)k ∈ [γcN − 1

εa
(2)
N , γcN + 1

εa
(2)
N ]
)
,

and now we prove that this term is close to 1/µ̂1. In fact we have

P
(

for some k, τ̂
(1)
k = N − i, τ̂ (2)k ∈ [γcN − 1

εa
(2)
N , γcN + 1

εa
(2)
N ]
)

= P(N−i ∈ τ̂ (1))−P
(

for some k, τ̂
(1)
k = N−i, τ̂ (2)k /∈ [γcN− 1

εa
(2)
N , γcN+ 1

εa
(2)
N ]
)
,

and we now show that, provided that ε had been fixed small enough, uniformly for
i 6 1/ε and N large enough:

P
(
τ̂
(1)
k = N − i, τ̂ (2)k < γcN − 1

εa
(2)
N for some k

)
≤ η , (4.7)

P
(
τ̂
(1)
k = N − i, τ̂ (2)k > γcN + 1

εa
(2)
N for some k

)
≤ η . (4.8)

This will be enough, since by the Renewal Theorem we have that P(N−i ∈ τ̂ (1))→
µ̂−11 uniformly for i 6 1/ε.

To treat (4.7), define kN := 1
µ̂1
N − 1

2µ̂2ε
a
(2)
N : we have uniformly for i ≤ 1/ε

P
(

for some k, τ̂
(1)
k = N − i, τ̂ (2)k < γcN − 1

εa
(2)
N

)
= P

(
for some k 6 kN , τ̂

(1)
k = N − i, τ̂ (2)k < γcN − 1

εa
(2)
N

)
+ P

(
for some k > kN , τ̂

(1)
k = N − i, τ̂ (2)k < γcN − 1

εa
(2)
N

)
6 P

(
τ̂
(1)
kN
> N − 1/ε

)
+ P

(
τ̂
(2)
kN

< γcN − 1
εa

(2)
N

)
.

(4.9)
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Now, it is easy to see that the two terms in the last line are small: we indeed have
that for arbitrary η′ > 0, one can choose ε small enough so that for all N large
enough,

P
(
τ̂
(1)
kN
> N − 1/ε

)
= P

(
τ̂
(1)
kN
> µ̂1kN +

µ̂1

2µ̂2ε
a
(2)
N − 1/ε

)
≤ η′,

and P

(
τ̂
(2)
kN

< γcN −
1

ε
a
(2)
N

)
= P

(
τ̂
(2)
kN

< µ̂2kN −
1

2ε
a
(2)
N

)
≤ η′ .

(4.10)

For the first line, we used that µ̂1

2µ̂2ε
a
(2)
N − 1/ε ≥ ε−1/2

√
N ≥ ε−1/2

√
kN provided

that N is large enough (and ε small), and then simply Chebichev’s inequality. For

the second line, we used that γc = µ̂2/µ̂1 to get that γcN = µ̂2kN + 1
2εa

(2)
N , and

then the approximation of (a
(2)
kN

)−1(τ̂kN − kN µ̂2) by an α2-stable distribution, as

done in (3.18).

For (4.8), we define k′N = 1
µ̂1
N + 1

2µ̂2ε
a
(2)
N , and similarly to what is done above,

we have

P
(

for some k, τ̂
(1)
k = N − i,τ̂ (2)k > γcN + 1

εa
(2)
N

)
6 P

(
τ̂
(1)
k′N
6 N − i

)
+ P

(
τ̂
(2)
k′N

> γcN + 1
εa

(2)
N

)
,

and both terms are smaller than η′ provided that ε had been fixed small enough
and N is large, for the same reasons as in (4.10).

In the end, we get that provided that ε had been fixed small enough, for all
sufficiently large N

IV ≥ (1− η)
1

µ̂1
Kf (tN )eNnh

∑
i≤1/ε

e−inhKf (i) ,

IV ≤ (1 + η)
1

µ̂1
Kf (tN )eNnh

∑
i≤1/ε

e−inhKf (i) .

(4.11)

Obviously, since the last sum converges, we can replace it with the infinite sum,
and simply replace η by 2η provided that ε is small enough. This competes the
analysis of IV.

For what concerns (2.8) we simply need to show that

IVb := ZfN,M,h

(
V

(N)
1 ≤ 1

ε
, V

(N)
2 ∈

[
tN − 1

εa
(2)
N , tN + 1

εa
(2)
N

]
,M1,κN > 1

εm
(2)
N

)
=

∑
i 6 1/ε

tN+
1
ε a

(2)
N∑

j=tN−
1
ε a

(2)
N

Kf (i)Kf (j)e(N−i)nhP
(

(N − i,M − j) ∈ τ̂ ,M1,κN > 1
εm

(2)
N

)
.

is negligible compared to (4.11). But again, uniformly for the range of j considered,
we have Kf (j) ≤ 2Kf (tN ) (provided that N is large enough). Then, dropping the

event N − i ∈ τ̂ (1), and summing over j, we get that

IVb ≤ 2Kf (tN )eNnh
( ∑
i≤1/ε

Kf (i)e−inh
)
P
(
M1,κN > 1

εm
(2)
N

)
.
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Then, using that κN ≤ N , we get that

P
(
M1,κN > 1

εm
(2)
N

)
≤ P

(
max

1≤k≤N
(τ̂

(2)
k − τ̂ (2)k−1) >

1

ε
m

(2)
N

)
≤ NP

(
τ̂
(2)
1 > 1

εm
(2)
N

)
,

which can be made arbitrarily small by choosing ε small (uniformly in N), thanks

to the definition (1.16) of m
(2)
N . Hence IVb is negligible compared to IV. We also

stress here that to estimate IV – in particular to obtain (4.11) –, we did not make
use of the assumption

∑
Kf (i) < +∞.

4.2. Remaining terms. It remains to estimate the terms I, III and V in (4.1), and
show that they are negligible compared to (4.4) or (4.11). We start by parts III
and V.

4.2.1. Analysis of III. Assume that N is large enough, so that 1
εa

(2)
N 6 1

2 tN we
write

III 6 ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ (1/ε, 12 tN )

)
(denoted IIIa)

+ ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ ( 1

2 tN , tN − 1
εa

(2)
N )
)

(denoted IIIb) (4.12)

The first term is

IIIa =
∑
i<1/ε

tN/2∑
j=1/ε

Kf (i)Kf (j)e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
. (4.13)

Now we can bound, uniformly for i < 1/ε and j 6 tN/2 (so that (M − j)− γc(N −
i) > tN/4 for N sufficiently large, and we can apply Theorem 2.1)

P
(
(N − i,M − j) ∈ τ̂

)
6 cN sup

m > tN/4

P(τ̂
(2)
1 = m) 6 c′NP(τ̂

(2)
1 = tN ). (4.14)

Hence we get

IIIa ≤ c′NP
(
τ̂
(2)
1 = tN

)
eNnh

∑
i

e−inhKf (i)

tN/2∑
j=1/ε

Kf (j), (4.15)

and in the case when
∑
Kf (j) < +∞, the last sum can be made arbitrarily small

by choosing ε small. Hence, recalling (4.4), we get that IIIa ≤ η × II for all N
sufficiently large, provided that ε is small enough.

For the term IIIb, we use that Kf (j) 6 cKf (tN ) for j between tN/2 and tN −
ε−1a

(2)
N 6 2tN (Kf (·) is regularly varying), to get that

IIIb ≤
∑

i 6 1/ε

tN−
1
ε a

(2)
N∑

j=tN/2

Kf (i)cKf (tN )e(N−i)nhP ((N − i,M − j) ∈ τ̂)

≤ cKf (tN )eNnh
∑

i 6 1/ε

e−inhKf (i)P
(
for some k, τ̂

(1)
k = N − i, τ̂ (2)k > γcN + 1

εa
(2)
N

)
.

Since we have seen in (4.8) that the last probability is smaller than some arbitrary
η′ for all N large enough (provided that ε > 0 is small enough), uniformly for all
i ≤ 1/ε we have that IIIb ≤ η × IV (recall (4.11)). We stress that, here again, we
do not make use of the assumption

∑
Kf (i) < +∞.

In the end, we obtain that III ≤ η× (II + IV) (provided that N is large enough).



DNA melting structures in the gPS model 1017

4.2.2. Analysis of V. Let us split V into two parts:

Va = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ (tN + 1

εa
(2)
N , 2tN )

)
,

Vb = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 > 2tN

)
.

Let us start with Va. We proceed as above: using that Kf (j) 6 cKf (tN )
uniformly for j ∈ (tN , 2tN ), we get that

Va 6
∑

i 6 1/ε

∑
j > tN+

1
ε a

(2)
N

Kf (i)cKf (tN )e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
6 cKf (tN )eNnh

∑
i 6 1/ε

e−inhKf (i)P
(
for some k, τ̂

(1)
k = N − i, τ̂ (2)k < γcN − 1

εa
(2)
N

)
.

Now we again recall (4.7), which tells that the last probability is smaller than some
arbitrary η′ for all N large enough (provided that ε > 0 is small enough, uniformly
for all i ≤ 1/ε). In the end, in view of (4.11), we get that Va ≤ η × IV, and here
again we did not make use of the assumption

∑
Kf (i) < +∞.

For the term Vb, we write

Vb =
∑

i 6 1/ε

∑
j > 2tN

Kf (i)Kf (j)e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
. (4.16)

Then, we estimate the last probability: by setting kN := 1
µ̂1
N − 1

2µ̂2
j (for some

small c0), we obtain as in (4.9)-(4.10) that

P
(
(N − i,M − j) ∈ τ̂

)
6 P

(
τ̂
(1)
kN
> N − 1/ε

)
+ P

(
τ̂
(1)
kN
6 γcN − j

)
6 P

(
τ̂
(1)
kN
> µ̂1kN +

µ̂1

2µ̂2
j − 1/ε

)
+ P

(
τ̂
(2)
kN
6 µ̂2kN − j/2

)
.

(4.17)

Then, the two terms are bounded by e−cj
2/kN : recall that τ̂ (1) has an exponential

tail, and that −τ̂ (2) is bounded above, so that they have some exponential moments
(and we may use standard Chernov bounds, as in (3.34)). All together, we get that

Vb 6 eNnh
( ∑
i 6 1/ε

Kf (i)e−inh
)( M∑

j=2tN

Kf (j)e−cj
2/N
)
6 CN c+1 exp

(
− ct2N/N

)
,

(4.18)
where we used that Kf (j) is bounded by N c for all j 6M , for some c > 0. Then, if

α < 1 then there is a δ > 0 such that tN > a
(2)
N > N

1/2+δ, so that exp(−c(tN )2/N)
decays faster than any power of N . In the case α > 1, we get thanks to (1.19) that

exp(−c(tN )2/N) decays faster than N−c
′C0 : hence choosing C0 arbitrarily large,

we get that (4.18) is negligible compared to IV.
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4.2.3. Analysis of I. We separate it into two parts: V
(N)
1 > (logN)2, and V

(N)
1 ∈

(1/ε, (logN)2). We have

ZfN,M,h

(
V

(N)
1 > (logN)2

)
=

∑
i > (logN)2

M∑
j=0

Kf (i)Kf (j)e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
6
( M∑
j=0

Kf (j)
)
eNnh

N∑
i=(logN)2

e−inhKf (i) 6 cN2c+2eNnhe−(logN)2nh , (4.19)

where we first simply bounded the probability by 1, and also that there is some
constant c > 0 such that Kf (i) ≤ cN c for i ≤ N,M . Clearly, in view of (4.11)

(or (4.4)), we get that ZfN,M,h(V
(N)
1 > (logN)2) = o(IV), since 1/Kf (tN ) and

1/P(τ̂
(2)
1 = tN ) are O(N c′) for some c′ > 0. Again, we did not use that

∑
Kf (i) <

+∞, even if it would have simplified the upper bound.

We now turn to the case when V
(N)
1 ≤ (logN)2. We write

ZfN,M,h

(
V

(N)
1 ∈ [1/ε, (logN)2)

)
= ZfN,M,h

(
V

(N)
1 ∈ [1/ε, (logN)2), V

(N)
2 6 tN/2

)
+ ZfN,M,h

(
V

(N)
1 ∈ [1/ε, (logN)2), V

(N)
2 > tN/2

)
.

For the first term, and using that P
(
(N − i,M − j) ∈ τ̂

)
6 cNP(τ̂

(2)
1 = tN )

uniformly for i 6 (logN)2 and j 6 tN/2 (since then we have M − j−N − i ≥ tN/4
for N large enough, similarly to (4.14)), we have

ZfN,M,h

(
V

(N)
1 ∈ [1/ε, (logN)2), V

(N)
2 6 tN/2

)
6

∑
i > 1/ε

tN/2∑
j=0

Kf (i)Kf (j)e(N−i)nhcNP(τ̂
(2)
1 = tN )

6 c
( tN/2∑
j=0

Kf (j)
)
NP(τ̂

(2)
1 = tN )eNnh

∑
i≥1/ε

Kf (i)e−inh . (4.20)

When
∑
j Kf (j) < +∞, then recalling (4.4), this term is smaller than η×II provided

that ε is small enough.

For the second term, similarly to term V, we split it according to whether V
(N)
2 ∈

(tN/2, 2tN ) or V
(N)
2 > 2tN . The first contribution is

ZfN,M,h

(
V

(N)
1 ∈ (1/ε, (logN)2), V

(N)
2 ∈ (tN/2, 2tN )

)
=

∑
i > 1/ε

2tN−1∑
j=tN/2+1

Kf (i)Kf (j)e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
6 cKf (tN )eNnh

∑
i≥1/ε

Kf (i)e−inh , (4.21)

where we used that Kf (j) 6 cKf (tN ) for j ∈ (tN/2, 2tN ), and that the sum over
j of P

(
(N − i,M − j) ∈ τ̂

)
is bounded by 1. Then, the last sum can be made
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arbitrarily small by choosing ε small, so that in view of (4.11), this term can be
bounded by η × IV.

The second contribution is

ZfN,M,h

(
V

(N)
1 ∈ (1/ε, (logN)2), V

(N)
2 > 2tN

)
=

∑
i > 1/ε

M∑
j=2tN

Kf (i)Kf (j)e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
6 CeNnh

M∑
j=2tN

Kf (j)e−cj
2/kN 6 CeNnhN c+1e−ct

2
N/N , (4.22)

where we used (4.17), and (4.18). Then, this term decays faster than IV, provided
that C0 has been fixed large in (1.19), as for the term Vb.

4.2.4. Conclusion in the case of
∑
j Kf (j) <∞. We have therefore proven that for

any η > 0, we can choose ε > 0 small such that, for all N large enough (how large
depend on ε),

II + IV ≤ ZfN,M,h ≤ (1 + 2η)II + (1 + 4η)IV (4.23)

and the two terms behave asymptotically respectively as (4.4) and (4.11): this
proves (2.6) for

∑
j Kf (j) <∞.

4.2.5. The case of
∑
j Kf (j) = ∞, with α < 1. This time we have to show that

IV dominates. We go through the various terms, but as pointed out during the
proof, we have not used

∑
j Kf (j) <∞ in estimating IV, so (4.11) still holds. We

retain, for local use, that IV behaves (and, in particular, is bounded from below
by) a constant times Kf (tN ) exp(Nnh).

The estimate (4.4) for II is still valid. This term can be dealt directly without
troubles, but it is more practical to observe that II (and the right side of (4.15),
which bounds IIIa) is bounded (for N large) by a constant times

NP
(
τ̂
(2)
1 = tN

)
exp(Nnh)

∑
j≤tN/2

Kf (j) . (4.24)

Therefore, in view of the behavior of IV that we have just recalled, this term is
negligible if

NtNP
(
τ̂
(2)
1 = tN

)
� 1 , (4.25)

since
∑
j≤tN/2Kf (j) ≤ cst.tNKf (tN ) if α < 1.

But the left-hand side is equivalent to NL(tN )/t1+αN and hence (4.25) directly

follows by recalling the definition (1.14) of a
(2)
N and that tN � a

(2)
N . This shows that

both II and of the right side of (4.15) (which bounds IIIa) are negligible compared
to IV.

The estimates for IIIb and V, as already pointed out, are valid without assuming
that

∑
j Kf (j) < ∞, so we are left with controlling I. Recall that we split the

contribution of I into three parts: (4.19), (4.20) and (4.21). As noticed above, the
fact that

∑
j Kf (j) < ∞ was not used in estimating (4.19) and (4.21). Moreover

(4.20) we can be bounded like (4.15) (in fact, it is much smaller), that was found
above to be negligible compared to IV. We therefore conclude that I is also negligible
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compared to IV, and this completes the analysis of the case
∑
j Kf (j) = ∞, and

of the proof of Theorem 2.2. �
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Appendix A. The case α = 1 and
∑
j Kf (j) = +∞

Recall the definition (2.9) of the Big Loop and Unbound strand, and when α = 1

with
∑
j Kf (j) = +∞, define the new event E

(N)
mixed

E
(N)
mixed =

{M1,κN

tN
∈
[
1−εN , 1+εN

]
,M2,κN <m

+
N , V

(N)
1 6uN , V

(N)
2 ∈

[
vN , εN tN

]}
(A.1)

where vN � 1 and εN � 1 are chosen such that

K(vN )� K(εN tN ) , K(εN tN )
N→∞∼ K(tN ) . (A.2)

The event E
(N)
mixed is therefore a set of trajectories with both a big loop (of order

tN ), and a large unbound strand (of large order, but much smaller than tN ) – to
optimize the interval for the length of the unbound strand, one can take vN → +∞
and εN → 0 as fast as possible, with the limitation given by (A.2).

Theorem A.1. Suppose that α > 0 and (1.18), and if α > 1 assume additionally
(1.19). We assume that α = 1 and that

∑
j Kf (j) = +∞, and we denote K(x) :=∑x

j=1Kf (j). Then, as N →∞,

ZfN,M,h = (1 + o(1))ZfN,M,h

(
E

(N)
mixed

)
+ (1 + o(1))ZfN,M,h

(
E

(N)
US

)
, (A.3)

with

e−NnhZfN,M,h

(
E

(N)
mixed

)
N→∞∼ N

µ̂2
1

P(τ̂
(2)
1 = tN )K(tN )

(∑
i≥0

Kf (i)e−inh
)
, (A.4)

e−NnhZfN,M,h

(
E

(N)
US

)
N→∞∼ 1

µ̂1

(∑
i > 0

Kf (i)e−inh
)
Kf (tN ) . (A.5)

Obviously, this theorem can easily be translated in term of path properties.

Indeed, since P(τ̂
(2)
1 = tN ) ∼ cst. t−1N P(τ̂

(2)
1 > tN ) and Kf (tN ) = L(tN )t−1N , we

have the asymptotic of the ratio

Q̃N = Q̃N (tN ) :=
ZfN,M,h

(
E

(N)
mixed

)
ZfN,M,h

(
E

(N)
US

) N→∞∼ cst.NP(τ̂
(2)
1 > tN )

K(tN )

L(tN )
, (A.6)

with K(x)/L(x)→ +∞ as a slowly varying function. Therefore, we obtain

Pf
N,M,h(E

(N)
US )

N→∞∼ 1

1 + Q̃N
and Pf

N,M,h(E
(N)
mixed)

N→∞∼ Q̃N

1 + Q̃N
. (A.7)

We stress that, when α > 1, the ratio Q̃N always goes to 0 as N →∞: indeed, in

that case NP(τ̂
(2)
1 > tN ) decays faster than any slowly varying function. However,

in the case α ∈ (0, 1], the ratio Q̃N diverges when tN → +∞ slowly enough, showing
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that there is a regime under which the mixed trajectories described in the event

E
(N)
mixed occur, in the sense that Pf

N,M,h(E
(N)
mixed)→ 1 as N →∞.

Proof : We treat this case in a concise way because most of the technical work has
already been done above. To summarize – recall the different contributions in (4.1)
– the term IV is well estimated in (4.11) and the terms I, IIIb and V were found to
be negligible compared to it – this was valid even when

∑
j Kf (j) = +∞. When∑

j Kf (j) = +∞, then the term II is found to be negligible compared to the right

side of (4.15) (which bounds IIIa), and we therefore focus on this last term.
We can again decompose IIIa into two contributions:

IIIa = ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ (1/ε, εtN )

)
+ ZfN,M,h

(
V

(N)
1 < 1/ε;V

(N)
2 ∈ (εtN , tN/2)

)
.

The second one, exactly in the same manner as for IIIb, can be shown to be negli-
gible compared to IV as N →∞. Then, the first term is equal to

IIIa′ :=
∑
i<1/ε

εtN∑
j=1/ε

Kf (i)Kf (j)e(N−i)nhP
(
(N − i,M − j) ∈ τ̂

)
.

Then, thanks to Theorem 2.1, for every η > 0 we can choose ε > 0 small enough
and Nε large enough so that uniformly for the range of i and j considered, and
N ≥ Nε

P
(
(N − i,M − j) ∈ τ̂

){≥ (1− η) N
µ̂2
1
P(τ̂

(2)
1 = tN ) ,

≤ (1 + η) N
µ̂2
1
P(τ̂

(2)
1 = tN ) ,

and we stress that the main contribution to this probability comes from a big loop
event, of length larger than (1− ε)tN . We therefore get that, for N large enough,
and denoting K(x) :=

∑x
j=1Kf (j) which is a slowly varying function,

IIIa′ ≥ (1− η)
N

µ̂2
1

P(τ̂
(2)
1 = tN )eNnh

( εtN∑
j=1/ε

Kf (j)
) ∑
i<1/ε

Kf (i)e−inh

≥ (1− η)
N

µ̂2
1

P(τ̂
(2)
1 = tN )K(tN )eNnh

(∑
i≥0

Kf (i)e−inh
)
,

and similarly for an upper bound with 1− η replaced by 1 + η.

We are actually able to narrow the condition V
(N)
2 ∈ (1/ε, εtN ) in IIIa′ to a

smaller interval (vN , εN tN ) without changing the estimates, provided that vN →
+∞ and εN → 0 slowly enough, so that condition (A.2) holds. �

Appendix B. About the transition between Cramér and non-Cramér
regimes

In this Appendix, we discuss the condition (1.18)-(1.19) ensuring that one lies
in the big-jump regime described by Theorem 2.1. We focus on the constrained
partition function – or rather the probability P((N,M) ∈ τ̂) – to study the tran-
sition between the condensation phenomenon that we highlighted and the Cramér
regime, but all the observations made here could also apply to the other results.
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Like in Section 4 we omit integer parts, so γcN stands for the (upper or lower, as
one wishes) integer part of γcN .

B.1. Between Cramér and non-Cramér regimes I. If one sets M = γcN , or in other
words if tN = 0, then Berger (2018) proves that

P
(
(N, γcN) ∈ τ̂

) N→∞∼ c0

a
(2)
N

, (B.1)

where the constant c0 > 0 is explicit. The heuristics of this result can be easily
understood: the typical number of renewal is kN = N/µ̂1+O(

√
N) and, for each k in

that range, Doney’s Local Limit Theorem (Doney, 1991) gives that P(τ̂k = (N,M))

is equivalent up to a multiplicative constant to (a
(2)
N

√
N)−1. Hence, neither τ̂ (1)

nor τ̂ (2) have to make an atypical deviation, and the term (a
(2)
N )−1 simply comes

from a local limit theorem: there is no condensation phenomenon, i.e. the typical
trajectories contributing to the event (N, γcN) ∈ τ̂ do not exhibit a big jump.
However, we are not in the Cramér regime – one component of the inter-arrivals
does not have exponential tails, so there are jumps that are luch larger than logN
– and we can see this critical situation as a moderate Cramér regime, because
(moderate) deviations are carried by both components, like in the Cramér regime
the (large) deviations are carried by both components.

A behavior like (B.1) also holds when tN/a
(2)
N → t ∈ R: the constant c0 is simply

replaced by a constant ct depending on t. When α ∈ (0, 1), the fact that one lies in

the big-jump regime (and Theorem 2.1 holds) as soon as tN/a
(2)
N → +∞ is optimal,

in the sense that when supN tN/a
(2)
N < +∞, then the typical trajectories do not

exhibit a condensation phenomenon.

B.2. Between Cramér and non-Cramér regimes II. When α ≥ 1, the situation is

more involved because the condition tN/a
(2)
N → +∞ alone is not enough to ensure

that the model is in the big-jump domain.
We conjecture that when α > 1, there is some ac = ac(α) – that we give explicitly

below – such that the big-jump regime holds when tN > a
√
N logN with a > ac (i.e.

Theorem 2.1 holds), and a moderate Cramér regime holds when tN < a
√
N logN

with a < ac (we give an explicit conjectured analogue of Theorem 2.1, see (B.5)
below). Note that having tN > a

√
N logN corresponds to our condition (1.19),

except that our constant C0 is not optimal. Finding the correct threshold when
α = 1 is even more involved and we prefer to leave it aside.

So let us now focus on the case α > 1, and develop some heuristic arguments to
conjecture the asymptotic behavior of P

(
(N,M) ∈ τ̂

)
, and the typical behavior of

trajectories contributing to this event. We take a
(2)
N =

√
N , and we are considering

the case tN/
√
N → ∞ (the case tN/

√
N → t ∈ R being given in Appendix B.1),

with tN ≤ C0

√
N logN (otherwise we already know we are in the big-jump domain).

Writing

P
(
(N, γcN + tN ) ∈ τ̂

)
=

N∑
k=1

P
(
τ̂
(1)
k = N, τ̂

(2)
k = γcN + tN

)
, (B.2)

then, the k’s bringing the main contribution to the sum are either k = N/µ̂1 +

O(
√
N), in which case the deviation is entirely carried by τ̂ (2); k = N/µ̂1 + tN/µ̂2 +
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O(
√
N), in which case the cost is brought by τ̂ (1); or more generally k = N/µ̂1 +

θtN/µ̂2 + O(
√
N) with some θ ∈ R (it is natural to expect θ ∈ [0, 1], but θ /∈

[0, 1] should not be excluded), in which case the cost is shared jointly by the two
coordinates τ̂ (1), τ̂ (2).

Then, having a look at Nagaev’s Theorem 1.9 in Nagaev (1979) suggests that

for any k, only two possible behavior can contribute to P(τ̂
(1)
k = N, τ̂

(2)
k = γcN +

tN ): having one large jump (in which case, and since τ̂ (2) has a heavier tail, the

probability is maximal when k = N/µ̂1 + O(
√
N) so that only τ̂ (2) has to make a

large jump), or using a collective joint strategy with no big jump (i.e. a moderate
Cramér regime). The first possible behavior is therefore the big-jump strategy that
we already identified, and we would therefore have that

P
(
(N, γcN + tN ) ∈ τ̂

)
= (1 + o(1))

N

µ̂2
1

P
(
τ̂
(2)
1 = tN

)
+ (1 + o(1))

N∑
k=1

P
(
τ̂
(1)
k = N, τ̂

(2)
k = γcN + tN , “with no big jump”

)
, (B.3)

where by “no big jump” we mean that all jumps are O(mN ).
Using a local moderate deviation theorem for the probability when no big jump

occurs (such a local moderate deviation theorem should hold because tN is not too
large, tN ≤ C0

√
N logN), we would have that, for k = N/µ̂1 + θtN/µ̂2

P
(
τ̂
(1)
k = N, τ̂

(2)
k = γcN + tN , “no big jump”

)
=

1 + o(1)

k
g

(
N − µ̂1k√

k
,
γcN + tN − µ̂2k√

k

)
=

(1 + o(1))µ̂1

2πN
√

(1− ρ2)σ2
1σ

2
2

exp

(
− µ̂1t

2
N

2(1− ρ2)N

{ θ2

γ2cσ
2
1

− 2ρ
θ(1− θ)
γcσ1σ2

+
(1− θ)2
σ2
2

})
,

(B.4)

where g(·, ·) is the bivariate normal density of the limit 1√
k

(
τ̂k−(µ̂1, µ̂2)k

)
, which is

centered with normalized covariance ρ = (σ1σ2)−1Cov(τ̂
(1)
1 , τ̂

(2)
1 ) ∈ (−1, 1) — and

σ2
1 , σ

2
2 are the respective variances of τ̂

(1)
1 , τ̂

(2)
1 . For the second equality, we used

that N − µ̂1k = γ−1c θtN , γcN + tN − µ̂2k = (1− θ)tN and k = (1 + o(1))N/µ̂1.
Hence, in the sum over k in (B.3), the main contribution should be for k =

N
µ̂1

+ θ0
µ̂2
tN +O(

√
N), with θ0 minimizing Q(θ) := θ2

γ2
cσ

2
1
− 2ρ θ(1−θ)γcσ1σ2

+ (1−θ)2
σ2
2

— after

some calculation we find that minQ(θ) = (1 − ρ2)(γ2cσ
2
1 + 2ργcσ1σ2 + σ2

2)−1. We

end up with the following conjecture in the case α > 1, when tN/
√
N → +∞

P
(
(N, γcN + tN ) ∈ τ̂

)
=(1 + o(1))

N

µ̂2
1

P
(
τ̂
(2)
1 = tN

)
+ (1 + o(1))

c1√
N

exp
(
−c

t2N
N

)
,

(B.5)

with c := µ̂1

2 (γ2cσ
2
1 + 2ργcσ1σ2 + σ2

2)−1, and the constant c1 could in principle be
made explicit.

Plugging tN = a
√
N logN in (B.5), we find that the first term is regularly

varying with index −α/2 and that the second term has index −1/2− ca2. Hence,
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depending on a we can identify the dominant term in (B.5):

1st term is dominant if a >

√
α− 1

2c
and 2nd term is dominant if a <

√
α− 1

2c
.

We therefore interpret this as ac =
√

(α− 1)/2c, where ac is the critical value men-
tioned at the beginning of Appendix B.2, separating a big-jump domain (when tN >
a
√
N logN with a > ac) from a moderate Cramér regime (when tN < a

√
N logN

with a < ac).

Cramér
Cramér

Cramér
Cramér

non-Cramér

non-Cramér

moderate

moderate

α < 1

α > 1
tN = (γ − γc)N

tN = (γ − γc)N tN = O(a
(2)
N )

−tN ≪ N

−tN ≪ N
tN ≫ a

(2)
Nγ < γc

γ < γc

tN < ac

√
N log N tN > C0

√
N log N

big-jump

Conjecture:
ac = C0

Figure B.4. A schematic sum-up of the correspondence of the
the values of tN = (γ − γc)N with the different regimes. We treat
the big-jump domain and it is the one to the right of the right-
most dashed line. We believe that to the right of the moderate
Cramér regime there is the big-jump domain – put otherwise, the
non-Cramér regime coincides with the big-jump domain – but this
is proven only for α < 1.

Notice that, when tN/
√
N → −∞, one could develop an identical argument

(except that the big-jump term disappears), provided that a local moderate devi-

ation theorem as (B.4) holds – i.e. provided that |tN |/
√
N is not too large, how

large depend mostly on the tail exponent 1 + α > 2 of τ̂ (2). In the end, the sharp
asymptotics of P

(
(N, γcN + tN ) ∈ τ̂

)
should also be given by the second term in

(B.5) – as already seen in the case tN/
√
N → t ∈ R in Appendix B.1.
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