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Abstract. We discuss the asymptotic behaviour of random critical Boltzmann
planar maps in which the degree of a typical face belongs to the domain of attraction
of a stable law with index α ∈ (1, 2]. We prove that when conditioning such
maps to have n vertices, or n edges, or n faces, the vertex-set endowed with the
graph distance suitably rescaled and the uniform probability measure converges
in distribution in the so-called Gromov–Hausdorff–Prokhorov topology towards
the celebrated Brownian map when α = 2, and, after extraction of a subsequence,
towards another ‘α-stable map’ when α < 2, which improves on a first result due to
Le Gall and Miermont who assumed slightly more regularity.

Figure 0.1. Simulation of a large 1.9-stable Boltzmann map (some
very thin parts do not appear); courtesy of Nicolas Curien.
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1. Introduction and main result

This work deals with scaling limits of large random planar maps viewed as metric
measured spaces. We assume that the reader is already acquainted with this theory;
let us describe the precise model that we consider before stating our main results.

We study rooted planar maps, which are finite (multi-)graphs embedded in
the two-dimensional sphere, viewed up to homeomorphisms, and equipped with a
distinguished oriented edge called the root-edge. For technical reasons, we restrict
ourselves to bipartite maps which are those maps in which all faces have even degree.
Given a sequence q = (qk)k≥1 of non-negative numbers such that qk 6= 0 for at least
one k > 3 (in order to discard trivial cases), we define a Boltzmann measure wq on
the set M of all finite bipartite maps by assigning a weight:

wq(M) =
∏

f∈Faces(M)

qdeg(f)/2,

to each such map M . We shall also consider rooted and pointed maps in which we
distinguish a vertex ? in a map M ; we then define a pointed Boltzmann measure
on the set M• of pointed maps by setting wq,•(M,?) = wq(M). Let Wq = wq(M)
and Wq,• = wq,•(M•) be the total mass of these measures; obviously the latter is
greater than the former, but Bernardi et al. (2018+) have shown that

Wq <∞ if and only if Wq,• <∞.

When this holds, we say that the sequence q is admissible and we normalise our
measures into probability measures Pq and Pq,• respectively. We assume further
that q is critical, which means that the number of vertices of a map has infinite
variance under Pq, or equivalently infinite mean under Pq,•.

Such models of random maps have been first considered by Marckert and Miermont
(2007) who gave analytic admissibility and criticality criteria, recast by Marzouk
(2018b), and which we shall recall later. Following the terminology introduced in
the very recent work of Curien and Richier (2018), we further assume that there
exists α ∈ (1, 2] such that our distributions are discrete stable with index α, which
we define as follows. Let µq be the law of the half-degree of the face adjacent to
the right of the root-edge (called the root-face) under Pq,•. Then we assume that
µq belongs to the domain of attraction of a stable law with index α ∈ (1, 2], which
means that either it has finite variance:

∑∞
k=0 k

2µq(k) <∞ and then α = 2, or the
tail can be written as

∑∞
k=j µq(k) = j−αl(j), where l is a slowly varying function

at infinity which means that for every c > 0, it holds that limx→∞ l(cx)/l(x) = 1.
It can be checked that the degree of the root-face under the non-pointed law Pq

is more regular, and under this assumption has finite variance for every α ∈ (1, 2].
We shall interpret µq as the law of the half-degree of a typical face in a large pointed
or non-pointed Boltzmann random map. Such an assumption was first formalised
by Richier (2018) (except that the case α = 2 was restricted to finite variance) and
is more general than the one used e.g. by Le Gall and Miermont (2011); Marzouk
(2018b).

For every integer n > 2, let ME=n, MV=n and MF=n be the subsets of M of
those maps with respectively n− 1 edges, n+ 1 vertices (these shifts by one will
simplify later statements) and n faces. For every S = {E, V, F} and every n > 2,
we define

Pq
S=n(M) = Pq(M |M ∈MS=n), M ∈MS=n,
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the law of a rooted Boltzmann map conditioned to have ‘size’ n. We define similarly
pointed laws Pq,•

S=n. Let us denote by ζ(Mn) the number of edges of the map Mn

sampled from such a law; note that it equals n − 1 if S = E but it is random
otherwise. We shall implicitly assume that the support of q generates the whole
group Z, not just a strict subgroup, so these laws are well-defined for every n large
enough; the general case only requires mild modifications. We consider limits of
large random maps in the following sense: given a finite map M , we endow its
vertex-set (which we still denote by M) with the graph distance dgr and the uniform
probability measure pgr; the topology we use is then that given by the so-called
Gromov–Hausdorff–Prokhorov distance which makes the space of compact metric
measured spaces (viewed up to isometries) a Polish space, see e.g. Miermont (2009).

Theorem 1.1. There exists an increasing sequence (Bn)n>1 such that the following
holds. Fix S ∈ {E, V, F} and for every n > 2, sample Mn from Pq

S=n or from Pq,•
S=n,

then:
(1) If α = 2, then we have the convergence in distribution in the sense of

Gromov–Hausdorff–Prokhorov(
Mn, B

−1/2
ζ(Mn)dgr, pgr

)
(d)−→
n→∞

(M, D,m),

where (M, ( 9
8 )1/4D,m) is the (standard) Brownian map.

(2) If α < 2, then from every increasing sequence of integers, one can extract
a subsequence along which we have the convergence in distribution in the
sense of Gromov–Hausdorff–Prokhorov,(

Mn, B
−1/2
ζ(Mn)dgr, pgr

)
(d)−→
n→∞

(M, D,m),

where (M, D,m) is a random compact measured metric space with Hausdorff
dimension 2α.

This result is reminiscent of the work of Duquesne (2003) and Kortchemski (2012)
on size-conditioned Bienaymé–Galton–Watson trees (see Equation (4.1) below) and
indeed, the sequence (Bn)n>1 is the same as there; it is of order n1/α up to a slowly
varying function, and in the finite-variance regime, it takes the form Bn = (nσ2/2)1/2

for some σ2 ∈ (0,∞).

Remark 1.2. We shall see in Remark 4.1 that under Pq
S=n or Pq,•

S=n we have for some
constant Zq > 1

n−1ζ(Mn)
P−→

n→∞
Zq if S = V and n−1ζ(Mn)

P−→
n→∞

(1− Z−1
q )−1 if S = F,

so the factor B−1/2
ζ(Mn) may be replaced by Z−1/(2α)

q B
−1/2
n and (1− Z−1

q )1/(2α)B
−1/2
n

respectively.

In the Gaussian case α = 2, tightness in the sense of Gromov–Hausdorff of
rescaled uniform random 2κ-angulations (all faces have degree 2κ fixed) with n faces
was first obtained by Le Gall (2007). The Brownian map was then characterised
independently by Le Gall (2013) and Miermont (2013) which yields the convergence
of these maps; building upon the pioneer work of Marckert and Miermont (2007),
Le Gall (2013) also includes Boltzmann planar maps conditioned by the number
of vertices, assuming exponential moments. This assumption was then reduced to
a second moment by Marzouk (2018b), as a corollary of a more general model of



1092 Cyril Marzouk

random maps ‘with a prescribed degree sequence’. Let D∗ = ( 9
8 )1/4D, then in this

finite variance regime, Theorem 1.1 reads thanks to the preceding remark:(
Mn,

(
9

4σ2ζ(Mn)

)1/4

dgr, pgr

)
(d)−→
n→∞

(M, D∗,m),

which recovers Marzouk (2018b, Theorem 3).
In the case α < 2, Theorem 1.1 extends a result due to Le Gall and Miermont

(2011) who studied the Gromov–Hausdorff convergence of such maps conditioned
by the number of vertices in the particular case where µq(k) = Ck−α−1(1 + o(1))
for some constant C > 0. Because the conjectured ‘stable maps’ have not yet
been characterised, the extraction of a subsequence is needed in Theorem 1.1.
Nonetheless, as Le Gall and Miermont (2011), we derive some scaling limits which
do not necessitate such an extraction: in Theorem 5.4 below, we give the limit of the
maximal distance to the distinguished vertex in a pointed map, or to a uniformly
chosen vertex in a non-pointed map, as well as the profile of the map, given by the
number of vertices at distance k to such a vertex, for every k > 0. Let us finally
mention the work of Richier (2018) and more recently Kortchemski and Richier
(2018+) who analyse the geometric behaviour of the boundary of the root-face
when conditioned to be large, and so, roughly speaking, the geometric behaviour of
macroscopic faces of the map.

Remark 1.3. (1) As Marzouk (2018b), the proof of Theorem 1.1 actually shows
that we can also take as notion of size of a map the number of faces whose
degree belongs to a fixed subset A ⊂ 2N, at least when either A or its
complement is finite.

(2) As observed by Marzouk (2018b, Theorem 4), the conditioning by the
number of edges is special since ME=n is a finite set for every n fixed so we
may define the law Pq

E=n even when q is not admissible and our results still
holds under appropriate assumptions.

(3) As Le Gall and Miermont (2011), Theorem 1.1 and the other main results
below hold when conditioning the maps to have ‘size’ at least n, the references
cover this case and the proofs only require mild modifications.

The proof of convergences as in Theorem 1.1 by Le Gall (2013); Le Gall and
Miermont (2011) relied on a bijection due to Bouttier et al. (2004) which shows
that a pointed map is encoded by a ‘two-type’ labelled tree and one of the key steps
was to prove that this labelled tree, suitably rescaled, converges in distribution
towards a ‘continuous’ limit which similarly describes the limit (M, D,m). Marzouk
(2018b) studied this two-type tree by further relying on a more recent work of
Janson and Stefánsson (2015) who established a bijection between such ‘two-type’
trees and ‘one-type’ trees which are much easier to control. The scheme of the
proof of the analogous statement of Marzouk (2018b) was first to prove that this
‘one-type’ labelled tree converges towards a continuous object, then transporting this
convergence to the two-type tree and finally conclude from the arguments developed
by Le Gall (2013); Le Gall and Miermont (2011).

In this paper, we bypass the bijection of Bouttier et al. (2004) and only work
with the one-type tree of Janson and Stefánsson (2015); we prove the convergence
of this object in Theorem 4.2 and deduce Theorem 1.1 by recasting the arguments
of Le Gall (2013); Le Gall and Miermont (2011). On the one-hand, the advantage
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of the bijection of Bouttier et al. (2004) is that it also applies to non-bipartite maps
(but it yields a ‘three-type’ tree even more complicated to study) so in principle, one
may use it to prove the convergence of such maps, whereas the bijection of Janson
and Stefánsson (2015) only applies to bipartite maps. On the other hand, the latter
bijection reduces the technical analysis of the tree, which opens the possibility to
study more general models of random bipartite maps, such as those of Marzouk
(2018b) in more complicated ‘large faces’ regimes. In particular, our proof does not
necessitate a tight control on the geometry of the tree, since it mostly relies on its
Łukasiewicz path which is rather simple to study.

The rest of this paper is organised as follows: In Section 2, we recall the key
bijection with labelled trees which in our case are randomly labelled size-conditioned
Bienaymé–Galton–Watson trees. We recall their scaling limits in Section 3, then we
state and prove their convergence in Theorem 4.2 in Section 4 which contains most
of the technical parts and novelties of this work. Finally, in Section 5, we state and
prove Theorem 5.4 on the profile of distances and then prove Theorem 1.1.

2. Maps and labelled trees

In this first section we briefly recall the notion of labelled (plane) trees and
introduce some useful notation. We also describe the bijection between a pointed
planar map and such a tree.

2.1. Plane trees. Following the notation of Neveu (1986), we view discrete trees
as words. Let N = {1, 2, . . . } be the set of all positive integers and set N0 = {∅}.
Then a (plane) tree is a non-empty subset T ⊂

⋃
n>0 Nn such that:

(1) ∅ ∈ T , it is called the root of T ;
(2) if v = (v1, . . . , vn) ∈ T , then pr(v) = (v1, . . . , vn−1) ∈ T ;
(3) if v = (v1, . . . , vn) ∈ T , then there exists an integer kv > 0 such that

vi = (v1, . . . , vn, i) ∈ T if and only if 1 6 i 6 kv.
We shall view each vertex v of a tree T as an individual of a population for which
T is the genealogical tree. For every v = (v1, . . . , vn) ∈ T , the vertex pr(v) is its
parent, kv is the number of children of v (if kv = 0, then v is called a leaf, otherwise,
v is called an internal vertex ), and v1, . . . , vkv are these children from left to right,
χv = vn is the relative position of v among its siblings, and |v| = n is its generation.
We shall denote by Ju, vK the unique non-crossing path between u and v.

Fix a tree T with N + 1 vertices, throughout this work, we shall list the vertices
in the lexicographical order as ∅ = u0 < u1 < · · · < uN . We describe two discrete
paths which each encode T , depicted in Figure 2.2. First, its Łukasiewicz path
W = (W (j); 0 6 j 6 N + 1) is defined by W (0) = 0 and for every 0 6 j 6 N ,

W (j + 1) = W (j) + kuj − 1.

One easily checks that W (j) > 0 for every 0 6 j 6 N but W (N + 1) = −1. Next,
we define the height process H = (H(j); 0 6 j 6 N) by setting for every 0 6 j 6 N ,

H(j) = |uj |.
The next lemma, whose proof is left as an exercise, gathers some deterministic

results that we shall need (we refer to e.g. Le Gall, 2005 for a thorough discussion
of such results). In order to simplify the notation, we identify the vertices of a tree
with their index in the lexicographic order.
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Figure 2.2. A tree on the left, with its vertices listed in lexico-
graphical order, and on the right, its Łukasiewicz path W on top
and its height process H below.

Lemma 2.1. Let T be a plane tree and W be its Łukasiewicz path. Fix a vertex
u ∈ T , then

W (uku) = W (u), W (uj′) = inf
[uj,uj′]

W and j′ − j = W (uj)−W (uj′)

for every 1 6 j 6 j′ 6 ku.

Note that W (u)−W (pr(u)) equals the number of siblings of u which lie to its
right, so W (u) equals the total number of individuals branching off to the right of
the ancestral line J∅, uJ.

2.2. Labelled trees. For every k > 1, let us consider the following set of discrete
bridges

B
+
k = {(x1, . . . , xk) : x1, x2 − x1, . . . , xk − xk−1 ∈ {−1, 0, 1, 2, . . . } and xk = 0} .

(2.1)
A labelling ` of a plane tree T is a function defined on its set of vertices to Z such
that

(1) the root of T has label `(∅) = 0,
(2) for every vertex u, with ku > 1 children, the sequence of increments (l(u1)−

l(u), . . . , l(uku)− l(u)) belongs to B+
ku
.

We stress that the last child of every internal vertex carries the same label as its
parent, for example, the right-most branch in the tree only contains zeros. Define
the label process L(k) = `(uk), where (u0, . . . , uN ) is the sequence of vertices of T in
lexicographical order; the labelled tree is encoded by the pair (H,L), see Figure 2.3.

Without further notice, throughout this work, every Łukasiewicz path shall
be viewed as a step function, jumping at integer times, whereas height and label
processes shall be viewed as continuous functions after interpolating linearly between
integer times.
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Figure 2.3. A labelled tree on the left, and on the right, its height
process on top and its label process below.

2.3. Labelled trees and pointed maps. Bouttier et al. (2004) proved that pointed
maps are in two-to-one correspondence with some labelled trees, different from the
preceding section; in the bipartite case, Janson and Stefánsson (2015) then related
these trees to trees as in the preceding section. Let us describe a direct construction
of this correspondence between our labelled trees and pointed bipartite maps and
leave to the reader as an exercise to verify that it indeeds corresponds to the two
previous bijections (one may compare the figures here and those of Marzouk, 2018b).

Let us start with the construction of a pointed map from a labelled tree (T, `),
depicted in Figure 2.4; the construction contains two steps. Let (u0, . . . , uN ) be the
vertices of T listed in lexicographical order. For every 0 6 i 6 N , set uN+1+i = ui.
We add an extra vertex ? labelled minu∈T `(u)−1 outside of the tree T and construct
a first planar graph G on the vertex-set of T and ? by drawing edges as follows: for
every 0 6 i 6 N − 1,

• if `(ui) > min06k6N `(uk), then we draw an edge between ui and uj where
j = min{k > i : `(uk) = `(ui)− 1},

• if `(ui) = min06k6N `(uk), then we draw an edge between ui and ?.
We stress that we exclude the last vertex uN in this construction; it indeed yields a
planar graph G. In a second step, we merge every internal vertex of the tree T with
their last child; then G becomes a map M with labelled vertices. We shift all labels
by subtracting minu∈T `(u)− 1; it can be checked that these new labels are just the
graph distance to ? in the map M . We also distinguish the image after the merging
operation of the first edge that we drew, for i = 0. The latter is non-oriented; let e+

and e− be its extremities so that dgr(e−, ?) = dgr(e+, ?)− 1, then we orient the edge
either from e− to e+ or from e+ to e−; these maps are called positive and negative
respectively by Marckert and Miermont (2007).

Let us next construct a labelled tree from a negative pointed map (M,?), as
depicted in Figure 2.5. First, label all vertices by their graph distance to ?. In
every face of M , place a new unlabelled vertex and mark each corner when the next
vertex of M in clockwise order1 has a smaller label. Then start with the root-face,

1When drawn in the plane instead of the sphere, the clockwise order in the exterior face appears
as counter-clockwise.
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Figure 2.4. The negative pointed map associated with a labelled
tree. Labels indicate, up a to a shift, the graph distance to the
distinguished vertex, which is the one carrying the smallest label.

adjacent to the right of the root-edge. Link the new vertex in this face to every
marked corner if it is the only marked corner of this vertex, otherwise, erase the
mark and link the new vertex to the one in the face which contains the next marked
corner of this vertex in clockwise order. Proceed recursively with the new vertices
attached to the one in the root-face: link each of them to the marked corners in
their face if they are the only remaining ones around their vertex, otherwise, remove
the mark and link the new vertex to the next one in clockwise order around the
vertex. Once all faces have been considered we obtain a planar tree that we root at
the new vertex in the root-face. Since the map is negative, the corner of the origin
e+ of the root-edge in the root-face is marked, then the last child of the root of
the tree is either e+ or the new vertex in the face which contains the next marked
corner of this vertex in clockwise order around it if any. Then assign to each new
vertex the label of its last child and finally shift all labels so the root of the tree has
label 0 to get a labelled tree as in the preceding section.

We claim that these constructions are the inverse of one another and yield a
bijection between labelled trees and negative maps (the construction is very close
to that of Bouttier et al. (2004), one can thus follow their detailed proof). Recall
that the root-face of a map is the face adjacent to the right of the root-edge. This
bijection enjoys the following properties:

(1) The leaves of the tree are in one-to-one correspondence with the vertices
different from the distinguished one in the map, and the label of a leaf minus
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Figure 2.5. The labelled tree associated with a negative map. In
the map, marked corners are indicated in fat red. The oriented
edge in the tree goes from the root to its last child; unlabelled black
vertices then receive each the label of their last child.

the infimum over all labels, plus one, equals the graph distance between the
corresponding vertex of the map and the distinguished vertex.

(2) The internal vertices of the tree are in one to one correspondence with the
faces of the map, and the number of children of the vertex is half the degree
of the face.

(3) The root-face of the map corresponds to the root-vertex of the tree.
(4) The number of edges of the map and the tree are equal.

In order to have a bijection between labelled trees and positive maps, one just
reverse the root-edge in order to get a negative map. Note that Property (3) above
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does not hold anymore and it does not seem clear which internal vertex of the
tree corresponds to the original root-face. Nonetheless, by ‘mirror symmetry’ of
the map (which preserves positivity or negativity of the map), the degree of the
faces on both sides of the root-edge have the same distribution, so in both cases
of positive or negative maps, the half-degree distribution of the root-face is the
offspring distribution of the root of the tree.

Property (1) above explains how to partially translate the metric properties of
the map to the labelled tree, whereas Property (2) is important because it gives us
the distribution of the tree when the map is a random Boltzmann map, as described
below.

2.4. Random labelled trees. Let us introduce the law of the labelled tree associated
with a pointed map sampled from Pq,•. Let q0 = 1 and define the power series

gq(x) =
∑
k>0

xk
(

2k − 1

k − 1

)
qk, x > 0.

Then gq is convex, strictly increasing and continuous until its radius of convergence,
and gq(0) = 1. In particular, it has at most two fixed points, and if it has exactly
one, then at that point, the graph of gq either crosses the line y = x, or is tangent
to it. It was argued by Marzouk (2018b, Section 7.1), recasting the discussion from
Marckert and Miermont (2007, Section 1.2) in the present context, that the sequence
q is admissible and critical exactly when gq falls into the last case; we denote then
by Zq the only fixed point, which satisfies g′q(Zq) = 1. Let us mention that Zq

equals (Wq,• + 1)/2 > 1. Such a sequence q thus induces a probability measure on
Z+ = {0, 1, 2, . . . } with mean one, given by:

µq(k) = Zk−1
q

(
2k − 1

k − 1

)
qk, k > 0. (2.2)

We shall consider random labelled trees, sampled as follows. First, let T be a
Bienaymé–Galton–Watson tree with offspring distribution µq, which means that
the probability that T equals a given finite tree τ is

∏
u∈τ µq(ku). For every subset

A ⊂ Z+ such that µq(A) 6= 0 and for every n > 1, we let TA,n be such a tree
conditioned to have exactly n vertices with offspring in A; scaling limits of such trees
have been investigated by Kortchemski (2012) and Rizzolo (2015) (who also considers
a different model of trees satisfying a ‘Markov branching’ property). We shall be
particularly interested in the sets A = Z+, A = {0}, and A = N corresponding
respectively to conditioning on the total progeny, on the number of leaves, and on
the number of internal vertices. We let ζ(TA,n) be the number of edges of TA,n.

Next, conditional on the tree T (or TA,n), we sample uniformly random labels
(`(u))u∈T satisfying the conditions described in Section 2.1: the root has label
`(∅) = 0 and the sequences (`(ui) − `(u))16i6ku are independent when u ranges
over all internal vertices of T and are distributed respectively uniformly at random
in B+

ku
. Let us observe that the cardinal of B+

k is precisely the binomial factor(
2k−1
k−1

)
in the definition of µq in (2.2). Also, it is well-known and easy to check that

a uniform random bridge in B+
k has the law of the first k steps of a random walk

conditioned to end at 0, with step distribution
∑
i>−1 2−i−2δi, which is centred and

with variance 2.
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One easily checks (see e.g. Marzouk, 2018b, Proposition 11) that this labelled
tree (T, (`(u))u∈T ) is the one associated, in the bijection described previously, with
a pointed Boltzmann map sampled from Pq,•. Finally, the tree is conditioned to
have n vertices, or n internal vertices, or n leaves, when the map is conditioned to
have n− 1 edges, n faces, and n+ 1 vertices respectively. Thanks to Property (3)
of the bijection in the preceding section, µq is the law of the half-degree of the
root-face under Pq,•. For the rest of this paper, we further assume that it belongs to
the domain of attraction of a stable law with index α ∈ (1, 2]. We refer the reader
to Curien and Richier (2018, Proposition 4) for three equivalent assumptions. Let
us remark, using the notation from this reference, that the root-face under Pq has
degree 2k with probability proportional to qkW

(k)
q which, under our assumption,

behaves as qkr−kq k−α−1/2. Using the fact that qkr−kq is almost νq(k) and that νq
has regularly varying tails with index α−1/2, we see that, informally, νq(k) behaves
as k−α−1/2, so finally qkW

(k)
q ≈ k−2α−1 and so the root-face under Pq has regularly

varying tails with index 2α > 2. This can be made rigorous using similar arguments
to Curien and Richier (2018, Proposition 4).

3. Continuous labelled trees

In this short section, we briefly describe the continuous limits of labelled size-
conditioned Bienaymé–Galton–Watson trees, the statement and proof of the conver-
gence are given in Section 4.

For the rest of this paper, we fix an admissible and critical sequence q such that
its support generates the whole group Z and such that µq defined by (2.2) belongs
to the domain of attraction of a stable law with index α ∈ (1, 2]; the dependence
in α shall mostly be in what follows. By the standard theory of stable domains of
attraction (see e.g. Feller, 1971, Chapter XVII), there exists an increasing sequence
(Bn)n>1 such that if (ξn)n>1 is a sequence of i.i.d. random variables sampled from
µq, then B−1

n (ξ1 + · · · + ξn − n) converges in distribution to a random variable
X whose law is given by the Laplace exponent E[exp(−λX)] = exp(λα) for every
λ > 0. Recall that n−1/αBn is slowly varying at infinity and that if µq has variance
σ2
q ∈ (0,∞), then this falls in the case α = 2 and we may take Bn = (nσ2

q/2)1/2.
We stress that with this normalisation, X(2) has the centred Gaussian law with
variance 2.

3.1. The stable trees. The continuous objects analogous to Bienaymé–Galton–Watson
trees are the so-called stable Lévy trees. Let X = (Xt; t ∈ [0, 1]) denote the nor-
malised excursion of the α-stable Lévy process with no negative jump whose value
at time 1 has the law of X, and let further H= (Ht; t ∈ [0, 1]) be the associated
height function; we refer to e.g. Duquesne (2003) for the definition of this object.
In the case α = 2, the two processes X and H are equal, both to

√
2 times the

standard Brownian excursion. In any case, H is a non-negative, continuous function,
which vanishes only at 0 and 1. As any such function, it encodes a ‘continuous tree’
called the α-stable Lévy tree T of Duquesne (2003); Le Gall and Le Jan (1998),
which generalises the celebrated Brownian tree of Aldous (1993) in the case α = 2.
Precisely, for every s, t ∈ [0, 1], set

d(s, t) = Hs + Ht − 2 min
r∈[min(s,t),max(s,t)]

Hr.
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One easily checks that d is a random pseudo-distance on [0, 1], we then define an
equivalence relation on [0, 1] by setting s ∼ t whenever d(s, t) = 0. Consider the
quotient space T= [0, 1]/ ∼, we let π be the canonical projection [0, 1]→ T; then
d induces a distance on T that we still denote by d. The space (T, d) is a so-called
compact real-tree, naturally rooted at π(0) = π(1).

3.2. The continuous distance process. We construct next another process L =
(Lt; t ∈ [0, 1]) called the continuous distance process on the same probability space
as H which is intrinsically different according as wether α = 2 or α < 2. Let us
start with the latter case which is analogous to the discrete setting. Indeed, in
the discrete setting, the label increment between a vertex and its parent was given
by the value of a random discrete bridge of length equal to the offspring of the
parent, at a time given by the position of the child, and these last two quantities
are encoded by the Łukasiewicz path (recall Lemma 2.1). Loosely speaking, we do
the same when α < 2, by taking random Brownian bridges.

Precisely, suppose that α < 2 and let (bi)i>1 be i.d.d. standard Brownian
bridges of duration 1 from 0 to 0 defined on the same probability space as X and
independent of the latter; by the scaling property, for every x > 0, the process
(x1/2b1(t/x); t ∈ [0, x]) is a standard Brownian bridge of duration x. For every
0 6 s 6 t 6 1, put

Is,t = inf
r∈[s,t]

Xr.

For every t ∈ (0, 1), let ∆Xt = Xt −Xt− > 0 be the ‘jump’ of X at time t and let
(ti)i>1 be a measurable enumeration of those times t such that ∆Xt > 0. We then
put for every t ∈ [0, 1]:

Lt =
√

2
∑
i>1

∆X
1/2
ti bi

(
Iti,t −Xti−

∆Xti

)
1{Iti,t>Xti−}1{ti6t}. (3.1)

According to Le Gall and Miermont (2011, Proposition 5 and 6), this series converges
in L2 and the process L admits a continuous modification, even Hölder continuous
for any index smaller than 1/(2α). The factor

√
2 is added here in the definition of

L in order to have statements without constants.
When α = 2, the process X is

√
2 times the Brownian excursion so it has

continuous paths. To understand the definition, imagine that in the discrete setting,
the tree Tn is binary: internal vertices always have two children, then the label
increment between such an internal vertex and its first child equals −1, 0, or 1 with
probability 1/3 each (and the label increment between this internal vertex and its
second child is 0), and for a ‘typical’ vertex, each of its ancestors is either the first
or the second child of its parent, with probability roughly 1/2 each, so the sequence
of increments along an ancestral line resembles a centred random walk with step
−1 or 1 with probability 1/6 each and 0 with probability 2/3. In the continuous
setting of the Brownian tree, we define the process L conditional on H as a centred
Gaussian process satisfying for every s, t ∈ [0, 1],

E
[
|Ls −Lt|2

∣∣ H] =
2

3
· d(s, t)

or, equivalently,

E [LsLt | H] =
2

3
min

r∈[min(s,t),max(s,t)]
Hr.
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Again, the factor 2/3 removes the constants in our statements and will be explained
below. This process is called the head of Brownian snake driven by H, Le Gall (1999);
Duquesne and Le Gall (2002); it is known, see, e.g. Le Gall (1999, Chapter IV.4)
that it admits a continuous version.

In all cases α ∈ (1, 2], without further notice, we shall work throughout this
paper with the continuous version of L. Observe that, almost surely, L0 = 0 and
Ls = Lt whenever s ∼ t so L can be seen as a random motion indexed by T by
setting Lπ(t) = Lt for every t ∈ [0, 1]. We interpret Lx as the label of an element
x ∈ T so the pair (T, (Lx;x ∈ T)) is analogous to labelled plane trees.

Remark 3.1. We point out that, when α = 2, the process L is loosely speaking a
Brownian motion indexed by the Brownian tree, which is denoted by S by Marzouk
(2018a), but it is not a Brownian motion indexed by the stable tree in the case
α < 2 (along an ancestral line, it may jump at the branch-points); such a Brownian
motion is studied by Marzouk (2018a).

4. Scaling limits of labelled trees

Throughout this section, we fix A ⊂ Z+ such that either A or Z+ \ A is finite
and µq(A) 6= 0 and for every n > 1, we let TA,n be a Bienaymé–Galton–Watson tree
with offspring distribution µq conditioned to have exactly n vertices with offspring
in A; recall that ζ(TA,n) denotes the number of edges of TA,n. Then conditional on
TA,n, we sample uniformly random labels (`(u))u∈TA,n as in Section 2.4.

Duquesne (2003) in the case A = Z+ (so ζ(TA,n) = n− 1) and then Kortchemski
(2012) in the general case, proved the convergence of the Łukasiewicz path and
height process:(

1

Bζ(TA,n)
Wn(ζ(TA,n)t),

Bζ(TA,n)

ζ(TA,n)
Hn(ζ(TA,n)t)

)
t∈[0,1]

(d)−→
n→∞

(Xt,Ht)t∈[0,1],

(4.1)
in D([0, 1],R)⊗ C([0, 1],R). Let us point out that Kortchemski (2012) focuses on
the case A = {0} and most of the results we shall need are developed in this case,
but as explained in Section 8 there, the arguments extend to the general case, at
least as long as either A or its complement is finite.

Remark 4.1. As observed by Kortchemski (2012), see e.g. Corollary 3.3 there for a
stronger result, it holds that

n−1ζ(TA,n)
P−→

n→∞
µq(A)−1.

Therefore, we may replace ζ(TA,n) by µq(A)−1n in (4.1) above and Theorem 4.2
below; moreover, since (n−1/αBn)n>1 is slowly varying, we may replace Bζ(TA,n)

by µq(A)1/αBn. In the cases A = {0} and A = N, recall that TA,n is related to a
Boltzmann map conditioned to have n+ 1 vertices and n faces respectively. Since
µq(0) = 1− µq(N) = Z−1

q , this explains Remark 1.2.

As alluded in the introduction, the key to prove Theorem 1.1 is the following
result.

Theorem 4.2. The convergence in distribution(
B
−1/2
ζ(TA,n)Ln(ζ(TA,n)t)

)
t∈[0,1]

(d)−→
n→∞

(Lt)t∈[0,1],
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holds in C([0, 1],R) jointly with (4.1).

The proof of the convergence of Ln occupies the rest of this section. We first
prove that it is tight and then we characterise the finite dimensional marginals,
using two different arguments for the non-Gaussian case α < 2 and the Gaussian
case α = 2, since the limit process L is defined in two different ways. Indeed, let us
comment on this statement and on the constants in the definition of L. We assume
A = Z+ to ease the notation in this informal discussion.

For a vertex u ∈ TA,n, the label increments between consecutive ancestors are
independent and distributed as Xk,j when an ancestor has k > 1 children and the
one on the path to u is the j-th one, where (Xk,1, . . . , Xk,k) is uniformly distributed
in B+

k , as defined in (2.1). Since the latter has the law of a random walk conditioned
to be at 0 at time k, with step distribution

∑
i>−1 2−i−2δi which is centred and with

variance 2, then a conditional version of Donsker’s invariance principle for random
bridges (see e.g. Bettinelli, 2010, Lemma 10 for a detailed proof of the latter) yields(

(2k)−1/2Xk,kt

)
t∈[0,1]

(d)−→
k→∞

(bt)t∈[0,1], (4.2)

where, as usual, on the left we have linearly interpolated, and b is the standard
Brownian bridge. The factor

√
2 is the same as in the definition of L for α < 2

in (3.1) and one must check that the k’s and j’s converge towards the ∆Xti ’s and
the Xti −Iti,t’s.

In the case α = 2, suppose furthermore that the variance σ2
q of µq is finite,

so Bn = (nσ2
q/2)1/2. Then one can calculate the variance of Xk,j , which equals

2j(k − j)/(k + 1), and as we will see, there is typically a proportion about µq(k) of
corresponding ancestors, so `(u) has variance about∑

k>1

k∑
j=1

|u|µq(k)
2j(k − j)
k + 1

= |u|
∑
k>1

µq(k)
k(k − 1)

3
≈ |u|

σ2
q

3
.

If u is the vertex visited at time bntc in lexicographical order, then, by (4.1) we have
|u| ≈ (n/Bn)Ht so we expect Ln(nt), once divided by B1/2

n , to be asymptotically
Gaussian with variance

1

Bn

n

Bn
Ht
σ2
p

3
=

2

3
Ht,

which exactly corresponds to Lt. The case α = 2 but µq has infinite variance is
more involved, but this sketch can be adapted by taking the truncated variance.

4.1. Tightness of the label process. The first step towards the proof of Theorem 4.2
is to show that the sequence of processes(

B
−1/2
ζ(TA,n)Ln(ζ(TA,n)t)

)
t∈[0,1]

is tight. This was proved by Marzouk (2018b, Proposition 7) in a slightly different
context of trees ‘with a prescribed degree sequence’ in a finite variance regime but the
argument are easily adapted to our case. The main point is to apply Kolmogorov’s
tightness criterion; thanks to the properties of uniform random bridges in B+

k , we
can see that the increment of labels between a vertex u and one of its ancestors v is
about the square-root of the numbers of vertices branching off of the path Ju, vJ,
which can be described in terms of the Łukasiewicz path. We thus shall need later
the following tail bounds.
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Lemma 4.3. Fix any θ ∈ (0, 1/α). There exists c1, c2 > 0 such that for every n
large enough, for every 0 6 s 6 t 6 1, every x > 0, and every δ ∈ (0, α/(α− 1)), we
have

P
(
Wn(ζ(TA,n)s)− min

s6r6t
Wn(ζ(TA,n)r) > Bζ(TA,n)|t− s|θx

)
6 c1 exp(−c2xδ).

Consequently, all the moments of the random variable

B−1
ζ(TA,n)|t− s|

−θ
(
Wn(ζ(TA,n)s)− min

s6r6t
Wn(ζ(TA,n)r)

)
are uniformly bounded.

Proof : First note that we may restrict ourselves to times |t− s| 6 1/2. Let us start
with the more familiar case A = Z+. It is well-known that Wn is an excursion of
a random walk S with i.i.d. steps distributed as

∑
k>−1 µq(k + 1)δk in the sense

that we condition the path to hit −1 for the first time at time n + 1. Moreover,
such an excursion can be obtained by cyclicly shifting a bridge Sn of this walk
(i.e. conditioning the walk to be at −1 at time n + 1, but without the positivity
constraint) at the first time it realises its overall minimum, see e.g. Figure 6 of
Marzouk (2018a); this operation is called a discrete Vervaat transform, see e.g.
Pitman (2006, Chapter 6.1) for details. Our claim holds when Wn is replaced
by S, in which case we may take s = 0; indeed, according to Kortchemski (2017,
Proposition 8), it holds that

P
(
S(ns)− min

s6r6t
S(nr) > xBn|t−s|

)
6 c1 exp(−c2xδ).

Since n−1/αBn is slowly varying at infinity, the so-called Potter bounds (see e.g.
Björnberg and Stefánsson, 2015, Lemma 4.2 or Kortchemski, 2017, Equation 9)
assert that for every ε > 0, there exists a constant c depending only on ε such that
for every n large enough,

(n|t− s|)−1/αBn|t−s|

n−1/αBn
6 c · |t− s|−ε,

and so

P
(
S(ns)− min

s6r6t
S(nr) > c · x · |t− s|−ε+1/α ·Bn

)
6 c1 exp(−c2xδ).

One can then transfer this bound to Sn; an argument based on the Markov property
applied to S indeed results in an absolute continuity between the first n/2 steps of S
and of Sn, see e.g. Kortchemski (2017), near the end of the proof of Theorem 9 there.
Finally, we can transfer this bound from Sn to Wn using the preceding construction
from a cyclic shift, see e.g. the end of the proof of Equation 7 of Marzouk (2018a).

In the case A = {0}, the construction of Wn from a bridge Sn is discussed by
Kortchemski (2012, Section 6.1), and as explained in Section 8 there, and it extends
mutatis mutandis to the general case A either finite or co-finite. Here, the bridge
Sn is obtained by conditioning the walk S the be at −1 after its n-th jump in the
set A− 1. Therefore, it suffices again to prove our claim when Wn is replaced by
Sn and |t− s| < 1/2. Again, we may cut the path of Sn at the time it realises its
(n/2)-th jump in the set A−1 and this path is absolutely continuous with respect to
that of the unconditioned walk S cut at the analogous stopping time. This follows
from the same argument as alluded above, appealing to the strong Markov property.
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So finally, we have reduced our claim to showing that it holds when Wn is replaced
by S, when s = 0, and ζ(TA,n) is replaced by the time of the n-th jump of S in the
set A− 1. This random time, divided by n converges almost surely towards µq(A),
see e.g. Kortchemski (2012, Lemma 6.2) so we may replace it by (1 ± γ)µq(A)n
with a fixed γ ∈ (0, 1) arbitrarily small and conclude from the previous bound on S
(it only affects the constants). �

We next turn to the proof of tightness of the label process. Recall that we may
replace Bζ(TA,n) by Bn. Our argument closely follows the proof of Proposition 7 of
Marzouk (2018b).

Proof of the tightness in Theorem 4.2: Fix q > 2α
α−1 and β ∈ (1, q(α−1)

2α ). We aim
at showing that for every n large enough, for every pair 0 6 s 6 t 6 1, it holds that

E [|Ln(ζ(TA,n)s)− Ln(ζ(TA,n)t)|q] 6 C(q) ·Bq/2n · |t− s|β , (4.3)

where here and in all this proof, C(q) stands for some constant, which will vary from
one equation to the other, which depends on q, β, and the offspring distribution,
but not on n nor s nor t. Tightness follows from (4.3) appealing to the standard
Kolmogorov’s criterion.

Without loss of generality, we may, and do, restrict to those times s and t such
that |t−s| 6 1/2 and both ζ(TA,n)s and ζ(TA,n)t are integers. Let us then denote by
u and v the vertices corresponding to the times ζ(TA,n)s and ζ(TA,n)t respectively
in lexicographical order, so Ln(ζ(TA,n)s)−Ln(ζ(TA,n)t) = `(u)− `(v). Let u∧ v, be
the most recent common ancestor of u and v and further û and v̂ be the children of
u∧ v which are respectively ancestor of u and v. We stress that u and v correspond
to deterministic times, whereas u ∧ v, û and v̂ correspond to random times which
are measurable with respect to TA,n. We write:

`(u)−`(v) =

 ∑
w∈Kû,uK

`(w)− `(pr(w))

+(`(û)−`(v̂))+

 ∑
w∈Kv̂,vK

`(pr(w))− `(w)

 .

Recall the notation 1 6 χû 6 χv̂ 6 ku∧v for the relative position of û and v̂
among the children of u ∧ v. By construction of the labels on TA,n, conditional
on the tree, the difference `(û)− `(v̂) is distributed as Xp,i −Xp,j with p = ku∧v,
i = χû and j = χv̂ and where Xp has the uniform distribution on the set of bridges
B+
p . According to Le Gall and Miermont (2011, Lemma 1), we thus have

E [|`(û)− `(v̂)|q | TA,n] 6 C(q) · (χv̂ − χû)q/2.

Next, fix w ∈ Kû, uK; since `(pr(w)) = `(pr(w)kpr(w)), similarly, we have

E [|`(w)− `(pr(w))|q | TA,n] 6 C(q) · (kpr(w) − χw)q/2,

and, for every w ∈ Kv̂, vK,

E [|`(pr(w))− `(w)|q | TA,n] 6 C(q) · χq/2w .

It was argued by Marzouk (2018b, Equation 20), appealing to the so-called
Marcinkiewicz–Zygmund inequality, that if Y1, . . . , Ym are independent and centred
random variables which admit a finite q-th moment, then

E

[∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
q]
6 C(q) ·

(
m∑
i=1

E [|Yi|q]
2/q

)q/2
.
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In our context, this reads

E [|`(u)− `(v)|q | TA,n]

6 C(q) ·

 ∑
w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû) +
∑

w∈Kv̂,vK

χw

q/2

6 C(q) ·


 ∑
w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû)

q/2

+

 ∑
w∈Kv̂,vK

χw

q/2
 . (4.4)

Let us first consider the first term in (4.4). Appealing to Lemma 2.1, we have

χv̂ − χû = Wn(û)−Wn(v̂),

and similarly, for every w ∈ Kû, uK,

kpr(w) − χw = Wn(w)−Wn(pr(w)kpr(w)) = Wn(wkw)−Wn(pr(w)kpr(w)),

so ∑
w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû) = Wn(u)−Wn(v̂) = Wn(u)− inf
[u,v]

Wn.

Then Lemma 4.3 applied with θ = 2β/q < 1/α yields

E


 ∑
w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû)

q/2
 6 C(q) ·Bq/2n · |t− s|β .

We next focus on the second term in (4.4). We would like to proceed symmetrically
but there is a technical issue: on the branch Kû, uK, we relied on the fact that
`(wkw) = `(w) in order to only count the number of vertices branching off of
this path strictly to the right, but this is not the case on Kv̂, vK: we do not have
`(w1) = `(w) in general so we must also count the vertices on this path. Let T−A,n
be the ‘mirror image’ of TA,n, i.e. the tree obtained from TA,n by flipping the order
of the children of every vertex; let us write w− ∈ T−A,n for the mirror image of a
vertex w ∈ TA,n; make the following observations:

(1) T−A,n has the same law as TA,n, so in particular, their Łukasiewicz paths
have the same law;

(2) for every w ∈ Kv̂, vK, the quantity χw−1 in TA,n corresponds to the quantity
kpr(w−) − χw− in T−A,n;

(3) the lexicographical distance between the last descendant in T−A,n of respec-
tively v̂− and v− is smaller than the lexicographical distance between v̂ and
v in TA,n (the elements of Kv̂, vK = Kv̂−, v−K are missing).

With theses observations, the previous argument used to control the branch Kû, uK
shows that

E


 ∑
w∈Kv̂,vK

(χw − 1)

q/2
 6 C(q) ·Bq/2n · |t− s|β .
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Finally, as proved recently (for the conditioning A = Z+ but the general case follows
similarly) by Marzouk (2018a): for every γ < (α− 1)/α,

E
[
#Kv̂, vKq/2

]
6 C(q) ·

(
Bζ(TA,n)

ζ(TA,n)

)q/2
· |t− s|γq/2, (4.5)

which is smaller than the bound we are looking for; indeed, since we assume that
both ζ(TA,n)s and ζ(TA,n)t are integers, then ζ(TA,n)−q/2 6 |t − s|q/2 6 1 and γ
can be chosen close enough to (α− 1)/α to ensure that |t− s|(γ+1)q/2 6 |t− s|β . �

Let us mention that we have hidden the technical difficulties in (4.5). Nevertheless,
there is a different argument which does not necessitate any control on the length
of the branches. Indeed the bound (4.5) answers in this context of size-conditioned
Bienaymé–Galton–Watson trees Remark 3 of Marzouk (2018b) on trees with a
prescribed degree sequence. We could have argued instead as in the proof of
Proposition 7 there that, if χw > 2, then χw 6 2(χw − 1), so in order to control
the moments of

∑
w∈Kv̂,vK χw, it suffices to bound those of #{w ∈ Kv̂, vK : χw = 1}.

But according to Marzouk (2018a, Lemma 2) (which recasts Marzouk (2018b,
Corollary 3) in the context of size-conditioned Bienaymé–Galton–Watson trees),
with high probability, uniformly for all pair of vertices v̂, v such that v̂ is an ancestor
of v,2 there is a proportion at most 1− µq(0)/2 < 1 of individuals w ∈ Kv̂, vK such
that χw = 1. Then the bound (4.3) holds under the conditional expectation with
respect to this event, so tightness of the label process holds conditional on this event,
and so also unconditionally.

4.2. Finite dimensional marginals in the non-Gaussian case. In this subsection, we
assume that α < 2, and prove the following result which, together with the tightness
obtained in the preceding subsection, concludes the proof of Theorem 4.2 in this
case.

Proposition 4.4. For every k > 1 and every 0 6 r1 < · · · < rk 6 1, it holds that(
B
−1/2
ζ(TA,n)Ln(bζ(TA,n)ric)

)
16i6k

(d)−→
n→∞

(Lri)16i6k,

jointly with (4.1).

Our argument follows closely that of Le Gall and Miermont (2011, proof of
Proposition 7) who considered the two-type tree associated with the maps via the
Bouttier–Di Francesco–Guitter bijection, whereas we use the Janson–Stefánsson
bijection which eliminates several technicalities. The argument relies of the conver-
gence of the Łukasiewicz path in (4.1) which we assume for the rest of this subsection
to hold almost surely, appealing to Skorokhod’s representation Theorem. To ease
the exposition, we start with the one-dimensional marginals.

Proof in the case k = 1: Fix t ∈ [0, 1] and recall the notation Is,t = infr∈[s,t] Xr for
every s ∈ [0, t]. Let (si)i>1 be those times s ∈ [0, t] such that

Xs− < Is,t,

2And the path Jv̂, vK has length at least of order lnn, but shorter paths do not cause any issue.
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which are ranked in decreasing order of the values of the jumps of X: ∆Xs1 >
∆Xs2 > . . . Similarly, let κn be the number of integers k ∈ {0, . . . , bζ(TA,n)tc − 1}
such that

Wn(k) = min
r∈[k,bζ(TA,n)tc]

Wn(r),

and let us denote by an,1, . . . , an,κn these integers, ranked so that

Wn(an,1 + 1)−Wn(an,1) > . . . >Wn(an,κn + 1)−Wn(an,κn).

It follows from the almost sure version of (4.1) that almost surely, for every i > 1,
we have

1

ζ(TA,n)
an,i −→

n→∞
si,

1

Bζ(TA,n)
(Wn(an,i + 1)−Wn(an,i)) −→

n→∞
∆Xsi ,

1

Bζ(TA,n)

(
min

k∈[an,i+1,bζ(TA,n)tc]
Wn(k)−Wn(an,i)

)
−→
n→∞

Isi,t −Xsi−,

(4.6)

Let u0, u1, . . . , uζ(TA,n) be the vertices of TA,n listed in lexicographical order.
Observe that the an,i’s are exactly the indices of the strict ancestors of ubζ(TA,n)tc.
We may then write

Ln(bζ(TA,n)tc) = `(ubζ(TA,n)tc) =

κn∑
i=1

(`(uψ(an,i))− `(uan,i)),

where uψ(an,i) is the only child of uan,i which is an ancestor of ubζ(TA,n)tc. We claim
that only the first values of i matters. Indeed, by classical results on fluctuation
theory, it is well known that

Xt =
∑
i>1

(Isi,t −Xsi−),

whence, for every ε > 0, there exists an integer N > 1 such that with probability at
least 1− ε, it holds that

Xt −
∑
i6N

(Isi,t −Xsi−) 6 ε/2.

Then (4.6) and (4.1) imply that for every n sufficiently large, with probability at
least 1− 2ε, it holds that

1

Bζ(TA,n)

(
Wn(bζ(TA,n)tc)−

N∧κn∑
i=1

min
k∈[an,i+1,bζ(TA,n)tc]

Wn(k)−Wn(an,i)

)
< ε.

Observe that the left-hand side equals

1

Bζ(TA,n)

κn∑
i=N+1

min
k∈[an,i+1,bζ(TA,n)tc]

Wn(k)−Wn(an,i),

which is therefore arbitrarily small when fixing N large enough. Now recall that,
conditional on TA,n, the label increments `(uψ(an,i))− `(uan,i) for 1 6 i 6 κn are
independent and distributed as Xki,χi where (Xki,1, . . . , Xki,ki) is a uniform random
bridge in B+

ki
defined in (2.1), where ki = Wn(an,i + 1)−Wn(an,i) + 1 is the number

of children of an,i, and where χi = Wn(an,i + 1)−Wn(ψ(an,i)) + 1 is the position of
ψ(an,i) amongst its siblings; note that Wn(ψ(an,i)) = minj∈[an,i+1,bζ(TA,n)tc]Wn(j).
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As in the preceding section, according to Le Gall and Miermont (2011, Equation 17),
there exists some universal constant K > 0 such that

E
[
|`(uψ(an,i))− `(uan,i)|

2
∣∣ TA,n] = K

χi(ki − χi)
ki

6 K

(
min

j∈[an,i+1,bζ(TA,n)tc]
Wn(j)−Wn(an,i)

)
.

Since, conditional on TAn , these increments are centred and independent, we conclude
that the variance

E

∣∣∣∣∣B−1/2
ζ(TA,n)

κn∑
i=N+1

(`(uψ(an,i))− `(uan,i))

∣∣∣∣∣
2
∣∣∣∣∣∣ TA,n


is bounded by

K

Bζ(TA,n)

κn∑
i=N+1

min
j∈[an,i+1,bζ(TA,n)tc]

Wn(j)−Wn(an,i),

which, on a set of probability at least 1− 2ε for every n large enough, is bounded
by Kε according to the preceding discussion.

We next focus on an,1, . . . , an,N . Conditional on X, let (γi)16i6N be independent
Brownian bridges of length ∆Xsi respectively; it follows from (4.6) and (4.1) together
with Donsker’s invariance principle for random bridges (4.2) that

B
−1/2
ζ(TA,n)

N∑
i=1

(`(uψ(an,i))− `(uan,i))
(d)−→
n→∞

√
2

N∑
i=1

γi(Xsi −Isi,t),

and the right-hand side further converges in distribution as N → ∞ towards√
2
∑
i>1 γi(Xsi −Isi,t) which has the same law as Lt =

√
2
∑
i>1 γi(Isi,t −Xsi−)

by the time-reversal property of the Brownian bridge. �

We next briefly sketch the argument for the multi-dimensional marginals.

Proof in the case k > 2: To ease the notation, we only treat the case k = 2, but
the arguments are valid in the more general case. Let us fix 0 < s < t; let us
denote by 0 = a′n,0 < · · · < a′n,κ′n the indices of the strict ancestors of ubζ(TA,n)sc,
and let similarly 0 = a′′n,0 < · · · < a′′n,κ′′n be the indices corresponding to the
ancestors of ubζ(TA,n)tc. Let j(n) ∈ {0, . . . , bζ(TA,n)sc} be the index such that uj(n)

is the last common ancestor of ubζ(TA,n)sc and ubζ(TA,n)tc; we implicitly assume that
j(n) < bζ(TA,n)sc but this case is treated similarly. Let i(n) ∈ {0, . . . κ′n ∧ κ′′n} be
the index such that j(n) = a′n,i(n) = a′′n,i(n). Note that j(n) is the unique time such
that

Wn(j(n)) 6 min
k∈[bζ(TA,n)sc,bζ(TA,n)tc]

Wn(k) < min
k∈[j(n)+1,bζ(TA,n)sc]

Wn(k).

By analogy with the discrete setting, we interpret the times r ∈ [0, s] such that
Xr− < Ir,s as the times of visit of the ancestors of the vertex visited at time s, and
similarly for t. Introduce then the unique time r0 ∈ [0, s] such that

Xr0− < Is,t < Ir0,s,

which intuitively corresponds to the time of visit of the last common ancestor of the
vertices visited at time s and t, and indeed, from the almost sure version of (4.1),
r0 is the almost sure limit of ζ(TA,n)−1j(n). Let us consider the label increments
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at the branch-point: conditional on X, let γ be a Brownian bridge of length ∆Xr0 ,
then similar arguments as in the one-dimensional case show that the pair

B
−1/2
ζ(TA,n)

(
Ln(a′n,i(n)+1)− Ln(j(n)), Ln(a′′n,i(n)+1)− Ln(j(n))

)
converges in distribution as n→∞ towards

√
2 · (γ(Xr0 −Ir0,s), γ(Xr0 −Ir0,t)).

If one removes the branch-point from the subtree of TA,n spanned by its root and
the vertices ubζ(TA,n)sc and ubζ(TA,n)tc, then one gets three branches and the label
increments between their root and their leaf are independent; we may apply the
arguments of the previous proof to prove that these three increments, divided by
B

1/2
ζ(TA,n) converge in distribution towards the ‘label increments’ given by L. Details

are left to the reader, we refer to the end of the proof of Proposition 7 of Le Gall
and Miermont (2011). �

4.3. Finite dimensional marginals in the Gaussian case. We now focus on the
Gaussian regime α = 2. As opposed to the other regimes, we consider random
marginals. Precisely, we prove the following result.

Proposition 4.5. For every k > 1, sample U1, . . . , Uk i.i.d. uniform random
variables in [0, 1] independently of the labelled trees, then the convergence(

B
1/2
ζ(TA,n)Ln(bζ(TA,n)Uic)

)
16i6k

(d)−→
n→∞

(LUi)16i6k,

holds jointly with (4.1), where the process L is independent of U1, . . . , Uk.

Since we know that the sequence of continuous processes B−1/2
ζ(TA,n)Ln(ζ(TA,n) ·)

is tight, this suffices to characterise the subsequential limits as L. Indeed, given
any finite collection of fixed times in [0, 1], one can approximate them by sampling
sufficiently many i.i.d. uniform random variables in [0, 1]; then the equicontinuity
given by the tightness shows that the images of Ln at these random times ap-
proximate well the values at the deterministic times, and the same holds for the
uniformly continuous limit L, see e.g. Addario-Berry and Albenque (2017, proof of
Proposition 6.1) for a detailed argument.

As previously, we first treat the one-dimensional case.

Proof in the case k = 1: Sample U uniformly at random in [0, 1] independently of
the rest and note that the vertex un visited at the time dζ(TA,n)Ue in lexicographical
order has the uniform distribution in Tn \ {∅} (we shall omit the fact that ∅ is
excluded for the sake of clarity). Let us write(

1

Bζ(TA,n)

)1/2

`(un) =

(
Bζ(TA,n)

ζ(TA,n)
|un|

)1/2

·

(
ζ(TA,n)

B2
ζ(TA,n)|un|

)1/2

`(un).

It follows from (4.1) that the first term on the right converges in distribution
towards HU , it is therefore equivalent to show that, jointly with (4.1), we have the
convergence in distribution(

3ζ(TA,n)

2B2
ζ(TA,n)|un|

)1/2

`(un)
(d)−→
n→∞

G (4.7)
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whereG has the standard Gaussian distribution. Recall that according to Remark 4.1,
we may, and do, replace ζ(TA,n) by µq(A)−1n and Bζ(TA,n) by µq(A)−1/2Bn.

For every k > j > 1, let us denote by Ak,j(un) the number of strict ancestors of
un with k children, among which the j-th one is again an ancestor of un:

Ak,j(un) = # {v ∈ J∅, unJ : kv = k and vj ∈ K∅, unK} .

The idea is to decompose `(un) as the sum of the label increments between two
consecutive ancestors w and pr(w); conditionally on Tn and un, these random
variables are independent and, whenever kpr(w) = k and w = pr(w)j, the label
increment has the law of j-th marginal of a uniform random bridge in B+

k , which
is centred and has variance, say, σ2

k,j . This variance is known explicitly, see e.g.
Marckert and Miermont (2007, page 16643): we have

σ2
k,j =

2j(k − j)
k + 1

, so
k∑
j=1

σ2
k,j =

k(k − 1)

3
. (4.8)

Let ∆(TA,n) denote the largest offspring of a vertex of TA,n. As in the classical
proof of the central limit theorem, we may write for every z ∈ R,

E

[
exp

(
iz

(
3n

2B2
n|un|

)1/2

`(un)

) ∣∣∣∣∣ Tn, un
]

=

∆(TA,n)∏
k=1

k∏
j=1

(
1− z2

2

3nσ2
k,j

2B2
n|un|

+ o

((
n

B2
n|un|

)2
))Ak,j(un)

= exp

−z2

2

∆(TA,n)∑
k=1

k∑
j=1

Ak,j(un)

 3nσ2
k,j

2B2
n|un|

+O

( nσ2
k,j

B2
n|un|

)2
 .

We claim that
∆(TA,n)∑
k=1

k∑
j=1

3nσ2
k,j

2B2
n|un|

Ak,j(un)
P−→

n→∞
1,

and
∆(TA,n)∑
k=1

k∑
j=1

(
nσ2

k,j

B2
n|un|

)2

Ak,j(un)
P−→

n→∞
0.

Then an application of Lebesgue’s Theorem yields our claim. First, since ∆(TA,n)
is the largest jump plus one of the Łukasiewicz path, from (4.1) in which X is a
Brownian excursion, it suffices to work on the event ∆(TA,n) 6 ηBn for any η > 0
fixed.

A short argument uses the following very recent spinal decomposition due to
Kortchemski and Richier (2018+). For every 0 6 i < |un|, let ai(un) be the ancestor
of un with height |ai(un)| = i, let ki(un) = kai(un) be its number of children,
and χi(un) = χai+1(un) be the position of its only child which is an ancestor of
un. Then according to Kortchemski and Richier (2018+, Theorem 3), the vector
((ki(un), χi(un)); 0 6 i < |un|) approaches in total variation distance the vector

((Ki, Ji)); 0 6 i < bRnB−1
n c),

3Note that they consider uniform random bridges in B+k+1!
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where (Ki)i>0 is a sequence of i.i.d. random variables sampled from the size-biased
law µ∗q =

∑
k>1 kµq(k)δk, conditional on this sequence, the Ji’s are independent and

sampled uniformly at random in {1, . . . ,Ki} respectively, and R is independent and
has the Rayleigh distribution 2xe−x

2

dx on (0,∞). For every h > 1 and k > j > 1,
let us set

Nk,j(h) := #{1 6 i 6 h : (Ki, Ji) = (k, j)}.

For η ∈ (0, 1), let us set In,η = [η1/2nB−1
n , η−1/2nB−1

n ]; then we may reduce our
claim to proving that for any ε > 0, we have

lim
η↓0

lim sup
n→∞

sup
h∈In,η

P

∣∣∣∣∣∣
ηBn∑
k=1

k∑
j=1

3nσ2
k,j

2B2
nh

Nk,j(h)− 1

∣∣∣∣∣∣ > ε

 = 0, (4.9)

and

lim
η↓0

lim sup
n→∞

sup
h∈In,η

P

ηBn∑
k=1

k∑
j=1

(
nσ2

k,j

B2
nh

)2

Nk,j(h) > ε

 = 0, (4.10)

which we do by simple moment calculations. Indeed, we have first

E

ηBn∑
k=1

k∑
j=1

3nσ2
k,j

2B2
nh

Nk,j(h)

 =
3n

2B2
n

ηBn∑
k=1

k∑
j=1

σ2
k,jP ((K1, J1) = (k, j))

=
3n

2B2
n

ηBn∑
k=1

k∑
j=1

σ2
k,jµq(k).

Let ξ have the law µq, with unit expectation, then according to (4.8), the preceding
expectation equals

3n

2B2
n

ηBn∑
k=1

k(k − 1)

3
µq(k) =

n

2B2
n

(
Var

(
ξ1{ξ6ηBn}

)
+ o(1)

)
.

Recall that the function x 7→ Var(ξ1{ξ6x}) is slowly varying so the term η can be
removed and the next convergence follows from Feller (1971, Theorem XVII.5.3):

E

ηBn∑
k=1

k∑
j=1

3nσ2
k,j

2B2
nh

Nk,j(h)

 ∼
n→∞

n

2B2
n

Var
(
ξ1{ξ6Bn}

)
−→
n→∞

1.

Next, by independence

Var

ηBn∑
k=1

k∑
j=1

3nσ2
k,j

2B2
nh

Nk,j(h)

 = h

(
3n

2B2
nh

)2 ηBn∑
k=1

k∑
j=1

σ4
k,jVar

(
1{(K1,J1)=(k,j)}

)
.

Let us simply bound the last variance by the second moment, which equals µq(k);
according to (4.8), we have σ2

k,j 6 k/2 for every pair 1 6 j 6 k, so, from the
preceding argument, the right-hand side is bounded by

h

(
3n

2B2
nh

)2
ηBn

2

ηBn∑
k=1

k∑
j=1

σ2
k,jµq(k) ∼

n→∞
h

(
3n

2B2
nh

)2
ηBn

2

2B2
n

3n
=

3ηn

4Bnh
,
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which is bounded by 3η1/2/4 uniformly for η1/2nB−1
n 6 h 6 η−1/2nB−1

n , which
proves the convergence (4.9). The preceding calculations also yield

E

ηBn∑
k=1

k∑
j=1

(
nσ2

k,j

B2
nh

)2

Nk,j(h)

 = h

(
n

B2
nh

)2 ηBn∑
k=1

k∑
j=1

σ4
k,jµq(k) 6

η1/2

3
(1 + o(1)),

uniformly for η1/2nB−1
n 6 h 6 η−1/2nB−1

n and the convergence (4.10) follows. �

As in the case α < 2, we close this section by sketching the argument for the
multi-dimensional marginals. One of the differences is that now the contribution of
the branch-points vanishes.

Lemma 4.6. We have the convergence in probability

B
−1/2
ζ(TA,n) max

u∈Tn

∣∣∣∣ max
16i6ku

`(ui)− min
16i6ku

`(ui)

∣∣∣∣ P−→
n→∞

0.

Proof : Note that again, we may, and shall, replace Bζ(TA,n) by Bn. We follow the
proof of Marzouk (2018b, Proposition 2) which dealt with trees ‘with a prescribed
degree sequence’ in the finite-variance regime. Recall that a uniform random
bridge Xk in B+

k has the same law as the first k steps of a random walk with
step distribution

∑
i>−1 2−i−2δi conditioned on being at 0 at time k. According

to Lemma 6 of Marzouk (2018b), there exists two constants c, C > 0 such that for
every k > 1 and x > 0, we have

P
(

max
16i6k

Xk,i − min
16i6k

Xk,i > x

)
6 Ce−cx

2/k.

Let ζk(TA,n) denote the number of individuals in TA,n with k offsprings and let
∆(TA,n) be the largest offspring in TA,n. Fix ε > 0 and recall the bound ln(1−x) >
− x

1−x for x < 1. We then have

P
(

max
u∈Tn

∣∣∣∣ max
16i6ku

`(ui)− min
16i6ku

`(ui)

∣∣∣∣ 6 εB1/2
n

∣∣∣∣ TA,n)

=

∆(TA,n)∏
k=1

P
(

max
16i6k

Xk,i − min
16i6k

Xk,i 6 εB
1/2
n

∣∣∣∣ TA,n)ζk(TA,n)

> exp

−C ∆(TA,n)∑
k=1

ζk(TA,n)e−cε
2Bn/k(1 + o(1))

 ,

and the claim reduces to showing the convergence in probability

∆(TA,n)∑
k=1

ζk(TA,n)e−cε
2Bn/k P−→

n→∞
0.

As we have seen, the ratio ∆(TA,n)/Bn tends to 0 in probability; since x 7→ x2e−x

is decreasing on [2,∞), we have on a set of high probability as n→∞,

∆(TA,n)∑
k=1

ζk(TA,n)e−cε
2Bn/k 6

∆(TA,n)∑
k=1

k2ζk(TA,n)

B2
n

× B2
n

∆(TA,n)2
e−cε

2Bn/∆(TA,n),
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and the last term (Bn/∆(TA,n))2 exp(−cε2Bn/∆(TA,n)) tends to 0 in probability
so it only remains to prove that the sequence

∑∆(TA,n)
k=1 k2ζk(TA,n)/B2

n is bounded
in probability in the sense that

lim
K→∞

lim sup
n→∞

P

∆(TA,n)∑
k=1

k2ζk(TA,n)

B2
n

> K

 = 0.

Let us intersect the preceding event with {∆(TA,n) 6 Bn} whose probability tends
to one. Let us translate our probability in terms of the Łukasiewicz path: write
Xn(i) = Wn(i+ 1)−Wn(i), then we aim at showing

lim
K→∞

lim sup
n→∞

P


ζ(TA,n)∑
i=1

Xn(i)2

B2
n

> K

 ∩
{

max
16i6ζ(TA,n)

Xn(i) 6 Bn

} = 0.

We then use the same reasoning as in the proof of Lemma 4.3. For a path S and
n > 1, let us denote by ςA,n the time such that the n-th jump of S with values in the
set A−1 is its ςA,n-th jump in total. Note that our event is shift-invariant so we may
replace the excursion Wn by the bridge Sn obtained by conditioning the random
walk S with step distribution

∑
k>−1 µq(k+ 1)δk to be at −1 after its ςA,n-th jump.

Then, by cutting the time interval in two and using a time-reversibility property for
the second half due to Kortchemski (2012, Proposition 6.8), we may in fact only
consider the first half of the bridge, i.e. up to time ςA,n/2. The latter is absolutely
continuous with respect to the unconditioned random walk so, if (ξi)i>1 are i.i.d.
copies of a centred random variable ξ sampled from

∑
k>−1 µq(k + 1)δk and if now

ςA,n denotes the least time j > 1 such that #{i ∈ {1, . . . , j} : ξi ∈ A− 1} = n, then
there exists C > 0 such that for every n large enough, the probability

P


ζ(TA,n)∑
i=1

Xn(i)2

B2
n

> K

 ∩
{

max
16i6ζ(TA,n)

Xn(i) 6 Bn

}
is bounded by C times

P

({ςA,n/2∑
i=1

ξ2
i

B2
n

> K

}
∩
{

max
16i6ςA,n/2

ξi 6 Bn

})
6 P

(ςA,n/2∑
i=1

ξ2
i

B2
n

1{ξi6Bn} > K

)
.

Since ςA,n/2/n converges almost surely to 1/(2µq(A)) (see e.g. Kortchemski, 2012,
Lemma 6.2), we may replace ςA,n/2 by n/(2µq(A)). Markov’s inequality then yields

P

n/(2µq(A))∑
i=1

ξ2
i

B2
n

1{ξi6Bn} > K

 6 n

2Kµq(A)B2
n

E
[
ξ21{ξ6Bn}

]
,

which converges to 1/(Kµq(A)) thanks to Feller (1971, Theorem XVII.5.3) and our
claim follows. �

Proof of Proposition 4.5 in the case k > 2: Let us only restrict ourselves to the case
k = 2 to ease the notation since the general case hides no extra difficulty. We sample
two independent uniform random vertices of Tn, say, un and vn, and we let wn be
their most recent ancestor, we denote by ûn and v̂n the children of wn which are
respectively an ancestor of un and vn in order to decompose

`(un) = `(wn) + (`(ûn)− `(wn)) + (`(un)− `(ûn)),
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and similarly for vn. The important observation is that, conditional on TA,n, un and
vn, the random variables `(wn), `(un)− `(ûn) and `(vn)− `(v̂n) are independent.
Let U and V be i.i.d uniform random variables on [0, 1] independent of H and set
mH(U, V ) = minr∈[U,V ] Hr. According to (4.1), the triplet

Bζ(TA,n)

ζ(TA,n)
(|wn|, |un| − |ûn|, |vn| − |v̂n|)

converges in distribution to

(mH(U, V ),HU −mH(U, V ),HV −mH(U, V )) , (4.11)

and we claim that, jointly with (4.1), we have(
3ζ(TA,n)

2B2
ζ(TA,n)

)1/2(
`(wn)√
|wn|

,
`(un)− `(ûn)√
|un| − |ûn|

,
`(vn)− `(v̂n)√
|vn| − |v̂n|

)
(d)−→
n→∞

(G1, G2, G3) ,

(4.12)
where G1, G2, G3 are i.i.d. standard Gaussian random variables. This actually
follows from the arguments used in the proof of Proposition 4.5 in the case k = 1
which show not only the convergence of `(un), but also that if an is an ancestor
of un such that the ratio |an|/|un| converges in probability to some a ∈ (0, 1) as
n→∞, then(

3ζ(TA,n)

2B2
ζ(TA,n)

)1/2
`(an)√
|an|

and

(
3ζ(TA,n)

2B2
ζ(TA,n)

)1/2
`(un)− `(an)√
|un| − |an|

both converge to a standard Gaussian random variable. This implies the convergence
of the first two components in (4.12). The convergence of the last one also holds
since the role of un and vn is symmetric and so (4.12) holds by independence.

Since Lemma 4.6 implies that

B
−1/2
ζ(TA,n) (`(ûn)− `(wn), `(v̂n)− `(wn))

P−→
n→∞

(0, 0) ,

We conclude from (4.11) and (4.12) that the pair

B
−1/2
ζ(TA,n)(`(un), `(vn))

converges in distribution as n→∞ towards
2

3

√
mH(U, V ) (G1, G1) +

2

3

√
HU −mH(U, V ) (G2, G3) ,

which is indeed distributed as (LU ,LV ). �

5. Scaling limits of maps

The main goal of this section is to prove Theorem 1.1, we also state and prove
scaling limits on the profile of distances in Theorem 5.4 below. We first prove
that large pointed and non-pointed maps are close, in order to focus on the former
and use the description of such maps by labelled trees. Then we state and prove
Theorem 5.4 and finally, we prove Theorem 1.1 in the last three subsections, relying
on the functional convergence in Theorem 4.2 as in the pioneer work of Le Gall
(2007) who considered maps pointed at the origin of the root-edge, see also Le Gall
(2013); Le Gall and Miermont (2011) for maps pointed as here; all these references
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rely on a different labelled tree obtained by the bijection of Bouttier et al. (2004).
We recast their proof using the bijection of Janson and Stefánsson (2015).

Throughout this section, we fix S ∈ {V,E, F}, and for every n > 1, we sample a
pointed map (Mn, ?) from Pq,•

S=n. Recall that ζ(Mn) denotes the number of edges
of Mn. Recall that we associate with (Mn, ?) a labelled tree (Tn, `) with the same
amount of edges, and, as discussed in Section 2.4, Tn has the law of TA,n where
A = Z+ if S = E, and A = 0 if S = V , and A = N if S = F .

5.1. On the behaviour of leaves in a large Bienaymé–Galton–Watson tree. Recall
that the leaves of the tree are in one-to-one correspondence with the vertices of Mn

different from the distinguished one; we shall need the following two estimates. First,
let λ(Tn) be the number of leaves of Tn. For every 0 6 j 6 ζ(Tn), let further Λ(Tn, j)
denote the number of leaves amongst the first j vertices of Tn in lexicographical
order, and make Λ a continuous function on [0, ζ(Tn)] after linear interpolation.

Lemma 5.1. We have the convergence in probability(
Λ(Tn, ζ(Tn)t)

λ(Tn)
; t ∈ [0, 1]

)
P−→

n→∞
(t; t ∈ [0, 1]).

Proof : Fix ε > 0; we claim that

lim
n→∞

P
(

sup
06t61

∣∣∣∣Λ(Tn, ζ(Tn)t)

ζ(Tn)µ(0)
− t
∣∣∣∣ > ε

)
= 0.

Indeed, let η = εµ(0)/2, since for any 0 6 t 6 η, we have −η 6 Λ(Tn,ζ(Tn)t)
ζ(Tn)µ(0) − t 6

η/µ(0), then we may restrict ourselves to η 6 t 6 1 in the preceding probability
and then this follows from Corollary 3.3 of Kortchemski (2012) (again for trees
conditioned by the number of leaves, but it extends to the general case). Moreover,
taking t = 1, we see that λ(Tn)/(ζ(Tn)µ(0)) converges in probability to 1 and our
claim follows. �

The preceding result states that the leaves of the tree are homogeneously spread.
Note that we could replace the leaves by the vertices with offspring in a given set
B ⊂ Z+. The next result states that the inverse of the number of leaves, normalised
to have expectation 1, converges to 1 in L1.

Lemma 5.2. We have the convergence in probability

lim
n→∞

E

[∣∣∣∣∣ 1

λ(Tn)

1

E[ 1
λ(Tn) ]

− 1

∣∣∣∣∣
]

= 0.

This convergence is Lemma 8 of Marzouk (2018b) in the finite-variance regime;
the proof applies mutatis mutandis in our case since the arguments used there,
which are due to Kortchemski (2012), hold in the more our general case. Following
arguments due to Abraham (2016); Bettinelli et al. (2014); Bettinelli and Miermont
(2017), it was then shown by Marzouk (2018b, Proposition 12) that Lemma 5.2
yields the following comparison between pointed and non-pointed maps.

Proposition 5.3. Let φ : M• → M : (M,?) 7→ M and let φ∗Pq,•
S=n be the push-

forward measure induced on M by Pq,•
S=n, then∥∥Pq

S=n − φ∗P
q,?
S=n

∥∥
TV

−→
n→∞

0,

where ‖ · ‖TV refers to the total variation norm.
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Indeed, one can bound this total variation distance by the expectation in
Lemma 5.2 with λ(Tn) + 1 instead of λ(Tn). Observe that if (Mn, ?) is sampled
from Pq,•

S=n, then, conditional on Mn, the vertex ? is uniformly distributed in Mn.

5.2. Radius and profile. Although for α ∈ (1, 2), we shall only obtain a convergence
along subsequences of the metric spaces, still we do obtain some information about
distances in large maps. Recall that we work with pointed maps (Mn, ?) sampled
from Pq,•

S=n, but according to the preceding section, this pair is close to a non-pointed
map sampled from Pq

S=n, in which we sample a vertex uniformly at random so the
next result also holds in this context. Recall that ζ(Mn) denotes the number of
edges of Mn, let us denote by υ(Mn) its number of vertices.

Let
R(Mn) = max

x∈Mn

dgr(x, ?)

be the radius of the map; define also a point measure on Z+, called the profile of
distances, by

ρMn
(k) = #{x ∈Mn : dgr(x, ?) = k}. k ∈ Z+.

Finally, let ∆(Mn) be the longest distance in Mn between ? and the two extremities
of the root-edge (the other extremity is at distance ∆(Mn)− 1).

Theorem 5.4. Let L= supt∈[0,1] Lt and L= inft∈[0,1] Lt and observe that L and
−L have the same law by symmetry. Then the following convergences in distribution
hold as n→∞:

(1) B−1/2
ζ(Mn)R(Mn)→ L−L;

(2) B−1/2
ζ(Mn)∆(Mn)→ L;

(3) For every continuous and bounded function φ,

1

υ(Mn)

∑
k>0

φ(B
−1/2
ζ(Mn)k)ρMn

(k)
(d)−→
n→∞

∫ 1

0

φ(Lt −L)dt.

Proof : We rely on the bijection with the labelled tree (Tn, `). Let us set Ln =
min16i6ζ(Tn) Ln(i)− 1; in this bijection, we have

R(Mn) = max
06i6ζ(Tn)

Ln(i)− Ln.

Similarly, the farthest extremity of the root-edge of Mn from ? corresponds to the
last leaf of Tn, which has label 0 so

∆(Mn) = −Ln,
and the first two convergences are immediate consequences of Theorem 4.2. We
need a little more work for the third assertion. Our argument shall also serve later
in Section 5.5 and 5.6.

Recall the notation λ(Tn) for the number of leaves of Tn, which equals υ(Mn)−
1, and Λ(Tn, j) for the number of leaves amongst the first j vertices of Tn in
lexicographical order. For every 1 6 i 6 λ(Tn), let g(i) ∈ {1, . . . , ζ(Tn)} be the
index such that ug(i) is the i-th leaf of Tn. Since j 7→ Λ(Tn, j) is non-decreasing,
Lemma 5.1 is equivalent to(

g(λ(Tn)t)

ζ(Tn)
; t ∈ [0, 1]

)
P−→

n→∞
(t; t ∈ [0, 1]), (5.1)
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where as usual, we have linearly interpolated g between integer values.
Then observe that

1

υ(Mn)− 1

∑
k>0

φ(B
−1/2
ζ(Mn)k)ρMn

(k)

=
1

λ(Tn)
φ(0) +

1

λ(Tn)

λ(Tn)∑
i=1

φ
(
B
−1/2
ζ(Tn) (Ln(g(i))− Ln)

)
=

1

λ(Tn)
φ(0) +

∫ 1

0

φ
(
B
−1/2
ζ(Tn) (Ln(g(dλ(Tn)te))− Ln)

)
dt,

which converges in law to
∫ 1

0
φ(Lt −L)dt according to (5.1) and Theorem 4.2. �

5.3. The Gromov–Hausdorff–Prokhorov topology. Let us next briefly define this
topology used in Theorem 1.1 in a way that is tailored for our purpose. Let
(X, dx,mx) and (Y, dY ,my) be two compact metric spaces equipped with a Borel
probability measure. A correspondence between these spaces is a subset R ⊂ X × Y
such that for every x ∈ X, there exists y ∈ Y such that (x, y) ∈ R and vice-versa.
The distortion of R is defined as

dis(R) = sup {|dX(x, x′)− dY (y, y′)| ; (x, y), (x′, y′) ∈ R} .

Then we define the Gromov–Hausdorff–Prokhorov distance between these spaces as
the infimum of all those ε > 0 such that there exists a coupling ν between mX and
mY and a compact correspondence R between X and Y such that

ν(R) > 1− ε and dis(R) 6 2ε.

This definition is not the usual one and is due to Miermont (2009, Proposition 6).
We refer to Section 6 there for more details on the Gromov–Hausdorff–Prokhorov
distance. Let us only recall that it makes separable and complete the set of
measure-preserving isometry classes of compact metric spaces equipped with a Borel
probability measure.

If (Mn \ {?}, dgr, pgr) is the metric measured space given by the vertices of
Mn different from ?, their graph distance in Mn and the uniform probability
measure, then the Gromov–Hausdorff–Prokhorov distance between (Mn, dgr, pgr),
and (Mn \ {?}, dgr, pgr) is bounded by one so it suffices to prove that from every
increasing sequence of integers, one can extract a subsequence along which the
convergence in distribution(

Mn \ {?}, B−1/2
ζ(Mn)dgr, pgr

)
(d)−→
n→∞

(M, D,m), (5.2)

holds for the Gromov–Hausdorff–Prokhorov topology.

5.4. Tightness of distances. Recall that the leaves of the labelled tree (Tn, `) associ-
ated with (Mn, ?) are in bijection with the vertices of Mn different from ?. As for
the internal vertices of Tn, they are each identified with their last child and so to
each such internal vertex corresponds a leaf (the end of the right-most ancestral line
starting from them) and therefore a vertex of Mn \ {?}. Let ϕ : Tn →Mn \ {?} be
the map which associates with each vertex of Tn its corresponding vertex of Mn.
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Let us list the vertices of Tn as u0 < u1 < · · · < uζ(Mn) in lexicographical order and
for every i, j ∈ {0, . . . , ζ(Mn)}, we set

dn(i, j) = dgr(ϕ(ui), ϕ(uj)),

where dgr is the graph distance of Mn. We then extend dn to a continuous function
on [0, n]2 by ‘bilinear interpolation’ on each square of the form [i, i+ 1]× [j, j + 1]
as Le Gall (2013, Section 2.5) or Le Gall and Miermont (2011, Section 7).

Define for every t ∈ [0, 1]:

H(n)(t) =
Bζ(Mn)

ζ(Mn)
Hn(ζ(Mn)t), and L(n)(t) = B

−1/2
ζ(Mn)Ln(ζ(Mn)t),

and for every 0 6 s 6 t 6 1:

d(n)(s, t) = B
−1/2
ζ(Mn)dn(ζ(Mn)s, ζ(Mn)t),

DL(n)
(s, t) = L(n)(s) + L(n)(t)− 2 max

{
min
r∈[s,t]

L(n)(r); min
r∈[0,s]∪[t,1]

L(n)(r)

}
,

and set d(n)(t, s) = d(n)(s, t) and DL(n)
(t, s) = DL(n)

(s, t). Using the triangle
inequality at a vertex where a geodesic from ϕ(ui) to ? and a geodesic from ϕ(uj)
to ? in Mn merge, Le Gall (2013, Equation 4) (see also Le Gall, 2007, Lemma 3.1
for a detailed proof) obtained the bound

d(n)(s, t) 6 DL(n)
(s, t) + 2B

−1/2
ζ(Mn), (5.3)

for every s, t ∈ [0, 1] such that both ζ(Mn)s and ζ(Mn)t are integers, but then also
in the other cases. Let us point out that this bound was obtained using the coding
of the Bouttier–Di Francesco–Guitter bijection, where Ln is the so-called white
label function of the two-type tree in the contour order. Nonetheless, as proved by
Marzouk (2018b, Lemma 1), this process equals (deterministically) our process Ln
when the trees are related by the Janson–Stefánsson bijection.

Recall from Section 2.4 that Tn has the law of TA,n where A = Z+ if S = E, and
A = 0 if S = V , and A = N if S = F . Then Theorem 4.2 yields the convergence in
distribution of continuous paths(

H(n)(t), L(n)(t), DL(n)
(s, t)

)
s,t∈[0,1]

(d)−→
n→∞

(Ht,Lt, DL(s, t))s,t∈[0,1],

where, similarly to the discrete setting,

DL(s, t) = Ls + Lt − 2 max

{
min

r∈[s∧t,s∨t]
Lr; min

r∈[0,s∧t]∪[s∨t,1]
Lr

}
.

The bound (5.3) then easily shows that d(n) is tight. Therefore, from every increasing
sequence of integers, we can extract a subsequence along which we have(

H(n)(t), L(n)(t), d(n)(s, t)
)
s,t∈[0,1]

(d)−→
n→∞

(Ht,Lt, D(s, t))s,t∈[0,1], (5.4)

where (D(s, t))s,t∈[0,1] depends a priori on the subsequence and satisfies D6 DL,
see Le Gall (2007, Proposition 3.2) for a detailed proof in a similar context.

In the next subsections, we implicitly restrict ourselves to a subsequence along
which (5.4) holds.
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5.5. Tightness of metric spaces. Appealing to Skorokhod’s representation Theorem,
let us assume that the convergence (5.4) holds almost surely (along the appropriate
subsequence). We claim that, deterministically, the convergence (5.2) then holds.
Let us first construct the limit space. As limit of the sequence (d(n))n>1, the
fonction D, which is continuous on [0, 1]2, is a pseudo-distance. We then define an
equivalence relation on [0, 1] by setting

s ≈ t if and only if D(s, t) = 0,

and we let M be the quotient [0, 1]/ ≈, equipped with the metric induced by D,
which we still denote by D. We let Π be the canonical projection from [0, 1] to M

which is continuous (since D is) so (M, D) is a compact metric space, which finally
we endow with the Borel probability measure m given by the push-forward by Π of
the Lebesgue measure on [0, 1].

Recall our definition of the Gromov–Hausdorff–Prokhorov distance. Recall from
Section 5.2 that for every 1 6 i 6 λ(Tn), we denote by g(i) ∈ {1, . . . , ζ(Tn)} the
index such that ug(i) is the i-th leaf of Tn, so the sequence (ϕ(ug(i)))16i6λ(Tn) lists
without redundancies the vertices of Mn different from ?. The set

Rn =
{(
ϕ(ug(dλ(Tn)te)),Π(t)

)
; t ∈ [0, 1]

}
.

is a correspondence between (M?
n \ {?}, B

−1/2
ζ(Mn)dgr, pgr) and (M, D,m). Let further

ν be the coupling between pgr and m given by∫
M?
n\{?}×M

φ(v, x)dν(v, x) =

∫ 1

0

φ
(
ϕ(ug(dλ(Tn)te)),Π(t)

)
dt,

for every test function φ. Then ν is supported by Rn by construction. Finally, the
distortion of Rn is given by

sup
s,t∈[0,1]

∣∣∣∣d(n)

(
g(dλ(Tn)se)

ζ(Tn)
,
g(dλ(Tn)te)

ζ(Tn)

)
− D(s, t)

∣∣∣∣ ,
which, appealing to (5.1), tends to 0 whenever the convergence (5.4) holds, which
concludes the proof of the tightness.

5.6. Characterisation of the limit in the Brownian case. In this last subsection, we
assume that α = 2 and we prove that (5.4) holds without extracting a subsequence,
and then so does (5.2), with a limit which we next recall, following Le Gall (2007) to
which we refer for details. First, we view DL as a function on the tree T by setting

DL(x, y) = inf {DL(s, t); s, t ∈ [0, 1], x = π(s) and y = π(t)} ,
for every x, y ∈ T, where we recall the notation π : [0, 1] → T= [0, 1]/ ∼ for the
canonical projection. Then we put

D∗(x, y) = inf

{
k∑
i=1

DL(ai−1, ai); k > 1, (x = a0, a1, . . . , ak−1, ak = y) ∈ T

}
.

The function D∗ is a pseudo-distance on Twhich can be seen as a pseudo-distance
on [0, 1] by setting D∗(s, t) = D∗(π(s), π(t)) for every s, t ∈ [0, 1].

As functions on T2, we clearly have D∗ 6 DL and in fact, D∗ is the largest
pseudo-distance on T satisfying this property. Indeed, if D is another such pseudo-
distance, then for every x, y ∈ T, for every k > 1 and every a0, a1, . . . , ak−1, ak ∈ T

with a0 = x and ak = y, by the triangle inequality, D(x, y) 6
∑k
i=1D(ai−1, ai) 6
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∑k
i=1DL(ai−1, ai) and so D(x, y) 6 D∗(x, y). Furthermore, if we view D∗ as

a function on [0, 1]2, then for all s, t ∈ [0, 1] such that π(s) = π(t) we have
D∗(π(s), π(t)) = 0. We deduce from the previous maximality property that D∗ is
the largest pseudo-distance D on [0, 1] satisfying the following two properties:

D 6 DL and π(s) = π(t) implies D(s, t) = 0.

We point out that since H is
√

2 times the standard Brownian excursion, then
our process L corresponds to ( 8

9 )1/4Z where Z is used to define the Brownian
map by Le Gall (2007) and in subsequent papers so the standard Brownian map is
(M, ( 9

8 )1/4D∗,m).
Let D be a limit in (5.4) and note that it satisfies the two preceding properties;

we claim that

D = D∗ almost surely.

Our argument is adapted from the work of Bettinelli and Miermont (2017, Lemma 32).
It actually suffices to prove that if X,Y are i.i.d. uniform random variables on [0, 1]
such that the pair (X,Y ) is independent of everything else, then

D(X,Y )
(d)
= D∗(X,Y ). (5.5)

Indeed, according to the maximality property of D∗, the bound D 6 D∗ holds
almost surely, which strengthens this identity to an almost sure one, and a density
argument then strengthens it to any deterministic pair of times in [0, 1].

It is known, see e.g. Le Gall (2013, Corollary 7.3), that the right-hand side is
distributed as D∗(s?, Y ) = LY −Ls? , where s? is the (a.s. unique, Le Gall and
Weill, 2006) point at which L attains its minimum. The point is that, in the discrete
setting, dn describes the distances in the map between the vertices (ϕ(ui))06i6ζ(Mn),
and some vertices ofMn may appear more often that others in this sequence so if one
samples two uniform random times, they do not correspond to two uniform random
vertices of the map. Nonetheless, this effect disappears at the limit, according
to (5.1). Indeed, set x = ϕ(ug(dλ(Tn)Xe)) and y = ϕ(ug(dλ(Tn)Y e)). Note that x and
y are uniform random vertices of Mn \ {?}, they can therefore be coupled with
two independent uniform random vertices x′ and y′ of Mn in such a way that the
conditional probability given Mn that (x, y) 6= (x′, y′) is at most 2/υ(Mn)→ 0 as
n→∞; we implicitly assume in the sequel that (x, y) = (x′, y′). Since ? is also a
uniform random vertex of Mn, we obtain that

dgr(x, y)
(d)
= dgr(?, y). (5.6)

By definition,

dgr(x, y) = dn(g(dλ(Tn)Xe), g(dλ(Tn)Y e)).

Recall that the labels on Tn describe the distances from ? in Mn, we therefore have

dgr(?, y) = Ln(g(dλ(Tn)Y e))− min
06j6ζ(Tn)

Ln(j) + 1.

We obtain (5.5) by letting n→∞ in (5.6) along the same subsequence as in (5.4),
appealing also to (5.1).
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