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Abstract. We derive normal approximation bounds by the Stein method for sto-
chastic integrals with respect to a Poisson random measure over Rd, d > 2. This
approach relies on third cumulant Edgeworth-type expansions based on derivation
operators defined by the Malliavin calculus for Poisson random measures. The use
of third cumulants can exhibit faster convergence rates than the standard Berry-
Esseen rate for some sequences of Poisson stochastic integrals.

1. Introduction

Normal approximation bounds for stochastic integrals with respect to a Poisson
random measure have been obtained by the Stein method in Peccati et al. (2010),
using finite difference operators on the Poisson space. Recent results in this direc-
tion include the proof of a fourth moment theorem (see Diébler and Peccati, 2018
and Dobler et al., 2018), as an extension of the result of Nualart and Peccati (2005)
to the setting of Poisson point processes.

In this paper we derive related bounds for compensated Poisson stochastic inte-
grals 6(u) := [pq ug(y(dx) — X(dx)) of processes (uy) era With compact support in
R?, with respect to a Poisson random measure y(dz) with intensity the Lebesgue
measure A\(dz) on RY, d > 2. In contrast with Peccati et al. (2010), our approach
is based on derivation operators and Edgeworth-type expansions that involve the
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third cumulant of Poisson stochastic integrals, and can result into faster conver-
gence rates, see e.g. (1.5) below.

Edgeworth-type expansions have been obtained on the Wiener space in Nour-
din and Peccati (2009a), Campese (2013), by a construction of cumulant operators
based on the inverse L~! of the Ornstein-Uhlenbeck operator, extending the results
of Nourdin and Peccati (2009b) on Stein approximation and Berry-Esseen bounds.

In Proposition 4.1 we derive Edgeworth-type expansions of the form
E[5(u)g(6(w))] = E[[ulfzgag (6(w))] (1.1)

+ SB[ )T 1] + B [o0 (5 R
k=2

when the random field (u;),cgre is predictable with respect to a given total order
on R, where I'} is a cumulant-type operator and R;: is a remainder term, defined
using the derivation operators of the Malliavin calculus on the Poisson space. In
comparison with the results of Peccati et al. (2010), our bounds apply to a different
stochastic integral representation of random variables, and they allow for random
integrands (uz)gegra. In particular, this allows us to deal with random variables
d(u) having infinite chaos expansions.

Based on (1.1), in Corollary 5.1 we deduce Stein approximation bounds of the
form

dw (5(u),N) < |1 = Var[s(u)| + /Var[[[ull32ga)]

/ ud \(dx) + <u, D[ u? )\(da:)>
R? R? L2(R?)

where D is a gradient operator acting on Poisson functionals, and A" ~ A(0,1) is
a standard Gaussian random variable, see also Proposition 5.1. Here,

dw (F,G) := sup | E[R(F)] - E[R(G)]|

+IE + B[R],

is the Wasserstein distance between the laws of two random variables F' and G,
where £ denotes the class of 1-Lipschitz functions on R.

In particular, when f is a differentiable deterministic function on the closed
centered ball B(R) := B(0; R) in R? with radius R > 0, vanishing on the sphere
S(0;R) := {x € R? : |z| = R}, we obtain bounds of the form

aw ([ 10000 =A@ ) < [ Bagen] + | [ P M)

d
(K qvaR) )l 2 |V £ g

where vy denotes the volume of the unit ball in R and Ky > 0 is a constant
depending only on d > 2. The bound (1.2) can be compared to the classical Stein
bound

v ([ 1000 = X)) < 1= 15 Began] + [ 1P @M@, (13)

(1.2)
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for compensated Poisson stochastic integrals, see Corollary 3.4 of Peccati et al.
(2010), which involves the L3*(R?) norm of f instead of third cumulant /i?{ =
Jra F2(x) Mdx) of [L. f(x)(y(dz) — A(dx)), and relies on the use of finite differ-
ence operators, see Theorem 3.1 of Peccati et al. (2010) and § 4.2 of Bourguin and
Peccati (2016).

For example when f, k > 1, is a radial function given on B(k'/?R) by

1 a
fi(@) = =7 (',fl'“fd) . wEBHR),

where g € C1([0, R]) is continuously differentiable on [0, R] with g(R) = 0, and
R
C? = / g (r)yrttdr < oo,
0

so that | fllL2(pi/er)y) = 1, the bound (1.3) yields the standard Berry-Esseen
convergence rate

Ud

R
- X r S,rdfl r
dw (/B(kl/dR) fi(@)(v(dz) — A(d )),N> <@l lg(r)] dr, k>1,

(1.4)
as k tends to infinity. While (1.2) does not improve on (1.3) when the function f
has constant sign, if ¢g satisfies the condition

R
/ G (r)yritdr =0,
0

then the third cumulant bound (1.2) yields the O(1/k) convergence rate

2(2KqvqR)?d
i ([ ae - A ) < 2CER e s,
B(k'/4R) kC

(1.5)
which improves on the standard Berry-Esseen rate, see Section 5 for more examples.

In Sections 2 and 3 we recall some background material on the Malliavin calculus
and differential geometry on the Poisson space, by revisiting the approach of Prat
and Privault (1999), Privault (2001) using the recent constructions of Acosta and
Duran (2017) and references therein on the solution of the divergence problem. In
Section 4 we derive Edgeworth-type expansions for the compensated Poisson sto-
chastic integral 6(u), based on a family of cumulant operators that are associated
to the random field (uy),cre. In Section 5 we obtain Stein-type approximation
bounds for stochastic integrals using deterministic examples of integrands.

The d-dimensional setting of this paper requires d > 2 and a bounded domain
in R? in order to construct a gradient operator D for Poisson functionals by ker-
nel inversion of the divergence operator on R? using results of Acosta and Durdn
(2017) and references therein. Consequently it does not cover the case d = 1 of
the standard Poisson process on the half line R, which requires a significantly
different treatment, see Privault (2018+). In particular, the one-dimensional case
is technically easier as it does not require Laplace inversion for the construction
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of the gradient operator D, while stronger conditions on the integrands f in Pois-
son stochastic integrals have to be imposed in the case d > 2 through the norm

||def||L°°(Rd;Rd)~

Preliminaries. Let d > 2 and 0 < R < R’ := 2R. We let C§°(B(R’)) denote the
space of C* functions on B(R') which vanish on the sphere S(0; R') = {z € R :
|z| = R'}. Givenn € C3°(B(R')) such that fB(R) n(z)dx = 1, we recall the existence

of a C* kernel function G, : B(R') x B(R') — R? defined as
1
T — x— ds
Gy(,y) ::/ -y, <y+ y) 0 oy EBER),
0

s s
see Acosta and Durdn (2017), and satisfying the following properties:
i) The kernel G, (z,y) satisfies the bound

Kq

o —ylgat
for a constant Ky > 0 depending only on d, see Lemma 2.1 of Acosta and
Duran (2017), by choosing K4 and the function 1 € C2°(B(R')) therein so that
[1lloc < (d = 1)Ka(R')~".

ii) For any p > 1 and g € LP(B(R’)) the function

fa) = / Gy(z.9)g(W) Mdy), = € B(R),
B(R')

satisfies the bound

|G77(‘T7y)|Rd < JJ,yEB(R/), (16)

[fllzr By < KavaR' ||gllLrsrry)y, > 1, (1.7)
which follows from Young’s inequality and (1.6), c¢f. Theorem 2.4 in Acosta
and Duran (2017).

iii) For any h € C§°(B(R’)) we have the relation
d
o) - | M@ M) = [ (Gyfay), VE o)) a(de), y € B
B(R)\B(R) B(R)

(1.8)
cf. Lemma 2.2 in Acosta and Durdn (2017), by taking n € C°(B(R’) \ B(R)).
In particular, when h € C§°(B(R)) we have

ho) = [ (G ERa)md),  ye BR). (19
B(R!)

An extension of the framework of this paper, by replacing B(R) with a compact
d-dimensional Riemannian manifold M and A(dz) with the volume element of M,
would require the Laplacian £ = div V™ to be invertible on C°(M) with

L) = [ glopu)Mdy)  x € M, ue ),
M
where g(z,y) is the heat kernel on M. In this case we can define G, (z,y) € R? as
Gy(z,y) = V¥g(z,y), A ® ANdz, dy) — a.e.,
with the relation

VML=ty(x) = / w(y)Gy(z,y) A(dy) € T, M, x €M, ueCX(M),
M
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from which the divergence inversion relation (1.9) holds by duality.

2. Gradient, divergence and covariance derivative

There exists different notions of gradient and divergence operators for function-
als of Poisson random measures. The operators of Albeverio et al. (1998), Privault
and Torrisi (2011), Clausel et al. (2016), and their associated integration by parts
formula rely on an R%valued gradient for random functionals and a divergence
operator which is associated to the non-compensated Poisson stochastic integral of
the divergence of R%valued random fields. This particularity, together with a lack
of a suitable commutation relation between gradient and divergence operators on
Poisson functionals, makes this framework difficult to use for a direct analysis of
Poisson stochastic integrals, while it has found applications to statistical estimation
and sensitivity analysis, see Clausel et al. (2016), Privault and Torrisi (2011).

In this paper we use the construction of Prat and Privault (1999), Privault (2001)
which relies on real-valued tangent processes and on a divergence operator that di-
rectly extends the compensated Poisson stochastic integral. This framework also
allows for simple commutation relations between gradient and divergence opera-
tors using the deterministic inner product in L2(R%, \), see Proposition 2.3, and it
naturally involves the Poisson cumulants, see Definition 3.1 and Relation (3.6).

Gradient operator. In the sequel we consider a Poisson random measure y(dz) on
B(R), constructed on a probability space (Q, F, P), and we let {X1, ..., X, } denote
the configuration points of v(dx) when B(R) contains n points in the configuration
7, i.e. when v(B(R)) = n.

Definition 2.1. Given A a closed subset of B(R’), we let S4 denote the set of
random functionals F'4 of the form

FA = Zl{'y(B(R)):n}fn (Xlu"'an)a (21)
n=0

where fo € R and (f,,)n>1 is a sequence of functions satisfying the following condi-
tions:

- foralln > 1, f, € C°(A™) is a symmetric function in n variables,
- foralln >1and ¢ =1,...,n we have the continuity condition
fo (@1, mn) = foo1 (T, Tim1, Tiga, -, T) (2.2)
for all z1,...,x, € B(R') such that |z;|ga > R.
We also let S denote the union of the sets S4 over the closed subsets A of B(R’).

The gradient operator D is defined on random functionals F' € & of the form
(2.1) as

o0 n 4
DyF := > 1(ys(r)=n} _(Gn(Xi,), Vi, [ (X1, ., X))o, (2.3)
n=1 i=1

y € B(R). For any F € S, by (1.6) we have DF € L'(Q x B(R)) from the bound

E

/ IDzFIA(d@]SIIIVRdeRdIIOOIE[/ / |Gy (2, y) |ray(dz)A(dy)
B(R) B(R) JB(R)
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IV Sl [ [ (Gy(almeNdn)A @)
B(R) J B(R)

d 1
— Kl flaall [ [ A d)
B(R) JB(R) [& — Ylpa

d
< KR RY||V® flral o

< 00.

Poisson-Skorohod integral. We let Uy denote the space of simple random fields of
the form

u= ZgiGi, n>1, (2.4)
i=1

with G; € Sa, and g; € C°(B(R)), i =1,...,n.

Definition 2.2. We define the Poisson-Skorohod integral o(u) of u € Uy of the
form (2.1) as

n

S(u) =3 (Gi /

0:(@)(7(dw) = N(d2)) = {90 DGi)rapmy). (25
i=1 B(R)

In particular, for h € C3°(B(R)) we have
50 = [ h(@)2(do) ~ Ade))
B(R)
The proof of the next proposition, cf. Proposition 8.5.1 in Prat and Privault (1999)
and Proposition 5.1 in Privault (2001), is given in the appendix.
Proposition 2.1. The operators D and § satisfy the duality relation
E[<U7DF>L2(B(R))] :]E[F(S(U)]a FesS, wuel. (26)

As a consequence of Proposition 2.1 and the denseness of S in L!(Q2) and that
of Uy in LY(Q x B(R)), the gradient operator D is closable in the sense that if
(Fy)nen C S tends to zero in L(2) and (DF, ),en converges to U in L*(Q x B(R)),
then U = 0 a.e.. Similarly, the divergence operator ¢ is closable in the sense that
if (Un)nen C Up tends to zero in L?(Q x B(R)) and (6(uy))nen converges to G in
LY(2), then G =0 a.s..

The gradient operator D defines the Sobolev space D! with the Sobolev norm

[Fllpyy o= [Fllzz@) + IDFlzi@xpry.  FE€S.

In the sequel we fix a total order < on B(R) and consider the space Py C Uy of
simple predictable random field of the form

U= igiFi, (2.7)
i=1

such that the supports of g1, ..., g, satisfy
Supp (g:) = --- 2 Supp (9n) and F; € Sa,,
where Supp (g1)U---USupp (g;—1) C A; C B(R') and A; < Supp (gi), i =1,...,n.
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Such random fields are predictable in the sense of e.g. § 5 of Last (2016) and
references therein.

We will also assume that the order =< is compatible with the kernel G, in the
sense that
Gy(z,y) =0 forall z,y € B(R) such that z <y. (2.8)

Under the compatibility condition (2.8) we have in particular
D,F=0, ye B(R), A=<y, FeS4.

Moreover, if u € Py is a predictable random field of the form (2.7) we note that by
(2.3) and the compatibility condition (2.8) we have

DuE:Oa Aljyu 221,,TL,

hence
Dyu, =0, =2y, z,y€ B(R). (2.9)
Ezxample. The order < defined by
=M, D) <y=uD,. . ¢y = O <y® (2.10)

is compatible with the kernel G,, provided that the support of 7 is contained in
{z=(W,....2P)e B(R)\B(R) : 2V > R}.
The proof of the next Proposition 2.2 is given in the appendix.

Proposition 2.2. The Poisson-Skorohod integral of u = (us),cp(r) in the space Py
of simple predictable random fields satisfies the relation

5(u) = / ua(1(d) — Adx), (2.11)
B(R)

which extends to the closure of Py in L?(Q x B(R)) by density and the isometry
relation

E§(u)?’]=E

/ u? )\(CLT)} , u € Po. (2.12)
B(R)

Covariant derivative. In addition to the gradient operator D, we will also need the
following notion of covariant derivative operator V defined on stochastic processes
that are viewed as tangent processes on the Poisson space €, see Privault (2001).

Definition 2.3. Let the operator V be defined on u € Po as
%yum = Dyuy + (G, (z,v), Vﬂfdummd, x,y € B(R).

We note that from the compatibility condition (2.8) and Relation (2.9) we also
have
Vyu, =0, x =y, wz,y€ B(R). (2.13)
From the bound

B(R)x B(R)

d
< ||DullproxB(rR)xB(R)) + E / (Gy(z,y), Vi tg)pa| A(dz)A(dy)
B(R)xB(R)
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1
< |[DullprvoxBrR)xB(R) + KiIE / ﬁw umle)\(d:v))\(dy)]
B(R)xB(R

|‘T - y|Rd

/ |V§duz|Rd)\(da¢)]
B(R)

d
= | DullLroxB(R)x B(R)) + KavaR'[|[V* ull 11 0% B(R)RY):

< |Dull L1 ex B(R)x B(R)) + KavaR'E

we check that V extends to the Sobolev space ]13)5’1 of predictable random fields
defined as the completion of Py under the Sobolev norm

lullgra == llull 2w Bery)y + IPullLr@x (R < B(R)) u € Po,

where W, ?(B(R)) is the first order Sobolev space completion of Cg°(B(R)) under
the norm

d
I fllwresry) = flzesry + IV flloesr)re, =1

Commutation relation. In the sequel, we denote by HA]%’OO the set of predictable
random fields w in ]D)é"1 that are bounded together with their covariant derivative
Vu.

Proposition 2.3. For u € ﬁ)(l)’oo a predictable random field, we have the commutation
relation

D,d(u) = u(y) +6(Vyu),  ye B(R). (2.14)
Proof. Taking h € C§°(B(R)), we have §(h) € S and
Dys(h) = D / ~ A(dz)

_ / (G (2, ), VE h(x))pary(de)
B(R)

= [ (Gal9), TE b)) sa\(d) + 5T, h)
B(R)

= h(y)+38(Vyh),  ye B(R),

where we applied (1.9). Next, taking u = hF € Py a simple predictable random
field, we check that §(u) € S, and by (2.5) or (6.3) we have

Dy6(Fh) = Dy (F§(h) — (h,DF)12(p(r)))
= Dy (Fi(h))
= §(h)D,F + FD,d(h)
0(h)DyF + F(h(y )+5(V h))
Fh(y) + 6(hDyF + FV,h)

= Fh(y) +3(Vy(Fh))
= u,+0(Vyu), yeB(R).

We conclude by the denseness of Py in ]13)5’1 and by the closability of the operators
V, D and §. O
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3. Cumulant operators

In the sequel, given h in the standard Sobolev space W1P(B(R)) on B(R) and
f € LYB(R)) with1=p~t+¢7 1 p,qel,o0], we define

Ot [ FOT @M = [ F0)(G(r.0). VE o)) miA(dy),
B(R) B(R)

(3.1)
x € B(R). More generally, given k > 1 and u € ]D)é’1 a predictable random field,

we let the operator (Vu)* be defined in the sense of matrix powers with continuous
indices, as

(Vu fy / / vwkuyvik 1 Uzy, vwluwz)f:vl (d$1))\(d$k),
B(R) B(R)

y € B(R), f € L*(B(R)).

Proposition 3.1. Foranyn € Ny p > 1,r €[0,1], h € Wl’p/(l’r)nfl/r(B(R)) and
f € LP/0=1"(B(R)) we have the bound

n

~ d
1T Fll oy < EavaR)" | Fllora-om ey LIV Bl oo oy

(3.2)
Proof. For n =1 we have
iy = | . /| o T DTN )| A
/ [ 5 @(Ga(aw), VE M@ dy)| Ada)
B(R)
-/ < / f(y)Gncr,y)A(dy>,v§dh<x>> Adz)
B(R) | \/B(R) R
R? D -
< /B /B /DG )| VRl
p/(1—7) 1-r ) r
=< Lo | 70600 2 A(dw>> ( [ Ve @R >>
B(R) 2 B(R)
< (KquqR')? HfHM oy IV R ey (3.3)

where we used the bound (1.7). Next, assuming that (3.2) holds at the rank n > 1
and using (3.3), we have

(VR fll Lo mry) = (VR (V) fll Lo (B (my)

~ n d
< (KavaR)™ (VD) fllpora-nm ery TTIVE 2l pora-ni-t/e (soryme
j=1
n+1
<

n d
(KquaR') +1HfHLP/(lfT)”Jrl(B(R)) | | IV hHLp/ﬂ*Tﬂ*l/T(B(R);Rd)’
i=1
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and we conclude to (3.2) by induction on n > 1. (]

In particular, for r = 0, f € LP(B(R)), p > 1, and h € WY (B(R)) the argument
of Proposition 3.1 shows that

. n n d n
I(VR)" fllosery < (KavaR)™ (| flloap VS Al (prymay, 7 €N
We note that for u € ]]3)(1;00 a predictable random field, the random field (Vu)u €
Dy™ is also predictable from (2.13) and (3.1).

In the next definition we construct a family of cumulant operators which differs
from the one introduced in Nourdin and Peccati (2010) on the Wiener space.

Definition 3.1. Given &£ > 2 and u € ﬁ)é’oo a predictable random field we define
the operators I'¥ : Dy 1 — L1(Q) by

F}iF = F<(V’U,) u u>L2(B( R)) + <(%u)k_1u,DF>L2(B(R)), Fe Dl,l-
We note that for h in the space W1°(B(R)) of bounded functions in
WLY(B(R)), and f € LP(B(R)), p > 1, m > 1, we have

<hmv(6h)f>L2(B(R)) = /(R) h (x) /B(R)f(y)<Gn($7y),V;Rdh(x)hadk(dy)/\(dx)

= T Lo o FOG ), TE R ) )

_ m+1 T
- mH/B(R)f( P (1) A(d),

where we applied (1.8), hence

- 1 -
(h™, (Vh)"+1f>L2(B(R)) = m——l—l L(R) hm-i-l(x)(Vh)"f(x) A(dz),

which implies by induction

(VR)"f,h™) 2B (R)) = (m%'n), /B - R () f (@) A(da).

In Lemma 3.2 we generalize this identity to h a random field.

Lemma 3.2. Forn e N, m > 1, u € ]]3)5’00 a predictable random field and f €
LP(B(R)), p > 1, we have

(T ™) 2 »—(m%!n)! g ) M) (3.4
+ Y (Vu)" % f,D m+kA(dx)>
; m+k> < / 12(B(R))

Proof. Using the adjoint V*u of Vu on L2(B(R)) given by
(F*u), ;:/ (V,us)os Ndz),  ye B(R), ve LA(B(R)),
B(R)

with the duality relation
(W, (Vu)h) L2 (p(ry) = (Vu)v, B) 2(5(ry). h,v € L*(B(R)),
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we will show by induction on £k =0,1,...,n that

= / . / u;’flﬁzoum%mlum . '696"71“90" Adzy) -+ A(dxy)
B(R) B(R)

Z m—i—z

=1
« / ... / 6%“11 - %Mﬂ_iluwanmn,iu;”anlJ Adzy) - - AMdzp—i—1)
B(R)
- + k B(R) zn k 0 1 n—k—1 n—k
(3.5)

By (3.1), this relation holds for £ = 0. Next, assuming that the identity (3.5) holds

for some k € {0,1,...,n — 1}, and using the relation

vwnfk: 1Y, = Dwnfk—luwnfk + <G77(x71—/€7 xn—k—l)? vwnfkuwnfk%Rd’
Tn—k—1,ZTn—k € B(R), we have

(e*u)”umo

Z (m+1)! /B(R)/B(R)OUI neimUan— Do ug 0 AMda1)- - A(@nr1-0)

m+kvm Ugy - %m Uy )\d$1 A d:vn_k
m+,€/B(R)/B(R) e Vst A1) N )

= %m x %m P T D;E _m+i )\d )\dn —i
Z m+7/ /B(R) B(R)Ou 1 nfzflu n—i nfwuwn+1,1 ( xl) ( LTn+1 )

m+k /B(R)/B(R) oy nek—2Uxy g xy_p_ Uz, _y ( ‘Tl) ( €L k)

xn—kaxn—k—l)uﬁmn, Ug,, _ > d
m+k /B(R) B(R) | § KR

x umth2y . '6zn—2—k’u’mn—k—1 Adz1): - A(dxp—r)

Ty ke xo Uz

Z (m +1)! /B(R)/B(R)Ou v iUy Doy g Adwy)- - - A(dan 1)

=1
m: m
+m/ /VIOU’JH : vﬂﬂn A2 1DIn k— 1uac,i]z+1 )‘(dxl) : )‘(dwn—k)

m.:
O — Vm z Vm o Up
(m+k+1)!/B(R)/B(R)Ou 1 n—k 2u n—k—1

></ <G,,(a:,xn,k,l),vﬂjdu;”+k+1>RdA(da:)A(dxl)---A(da:n,k,l)
B(R)

+1
m' o . m-+i
m/ e / vmouml' ' 'vmnfifluInfiDInfiuzntl,i )‘(dxl) ! ')‘(dInJrl*i)

(m + k +1)! / / ;Zj_i-‘r}vmr)um' Vo pglz, oy A(dz1) - A(dzn—p-1)
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k+1

| ~ . .
= (VW T D [ s +

m!

(6*u)nfk71u;7?)+k+17

which shows by induction that (3.5) holds at the rank k = n, in particular we have

| ntl I
m m

6* n,m _ . m+n_|_ " 6* n+17iDz/ m+i71/\ d ,
T ; TR W)

x € B(R), which yields (3.4) by integration with respect to € B(R) and duality.
O

As a consequence of Lemma 3.2 we have
i)

k k—1
U 1 ~ )
Iyl = / L — \(dz) + E = <(Vu)klzu,D
—1)! |
B(R) (k 1) i=2 v L2(B(R))

k > 2. Hence when h € WYP(B(R)), p > 1, is a deterministic function such that
[ VE Rl s < 00, we find the relation
1 1
= 7/ h*(2) Mdz) = —— K}, k>2, (3.6)
T (e =1) Jpem (k—1)""
which shows that I'}:1 coincides with the cumulant £} = [, (R hk(x) \(dzx) of order
k > 2 of the Poisson stochastic integral fB(R) h(z)(y(dz) — A(dx)).

B(R)

4. Edgeworth-type expansions

Classical Edgeworth series provide expansion of the cumulative distribution func-
tion P(F < ) of a centered random variable F with IE[F?] = 1 around the Gaussian
cumulative distribution function ®(x), using the cumulants (k,)n>1 of a random
variable F' and Hermite polynomials. Edgeworth-type expansions of the form

- Ki+1 n
E[Fg(F)] =) e Elg" (F)] + E[g" " (F)T, 1 F], n>1,
=1
for F' a centered random variable, have been obtained by the Malliavin calculus
in Nourdin and Peccati (2009a), where I'y,;1 is a cumulant-type operator on the
Wiener space such that n!IE[T',, F] coincides with the cumulant &, of order n+ 1
of F, n € N, c¢f. Nourdin and Peccati (2010), extending the results of Barbour

(1986) to the Wiener space.

In this section we establish an Edgeworth-type expansion of any finite order with
an explicit remainder term for the compensated Poisson stochastic integral 6(u) of
a predictable random field (uz)zep(r)- In the sequel we let (-, -) denote (-, -) L2(p(r))-

Before proceeding to the statement of general expansions in Proposition 4.1,
we illustrate the method with the derivation of an expansion of order one for a
deterministic integrand f. By the duality relation (2.6) between D and §, the chain
rule of derivation for D and the commutation relation (2.14) we get, for g € CZ(R)

and f € W' (B(R)) such that IVE f]l 0o < o0,
E[B(f)g(6(f)) = E[(f, D5(f))g'(5(£))]
= E[f, /g (N +E[(f,6(V"f)g'(6(f))]
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"(6

= E[(f.£)d 0]+ E [(V*f,D(g (5()f))]
g6 +E[(

= E[f.)g G +E (VD))" (6(f)]
— EULNSOUN +5 [ @) Mdo) Blg"(6()
B(R)
E [(VA),6(V" )g"(6(1))]
= LRl (6] + 5o Bl (6(F)] + B [o"GUNST ),

since by Lemma 3.2 we have

O ey MRACECEEE

(
(

2

In the next proposition we derive general Edgeworth-type expansions for predictable
integrand processes (Uz);crd-

Proposition 4.1. Let u € ﬁ)é’oo and n > 0. For all g € C/*'(R) and bounded
G € D1 we have

E [G3(u)g(5(w))] = E [(u, DG)g(5(u))] + Z]E |9 (6T, G
n+2 ntl k
(n+1) u Uy " Nu ntl-k, Uy "
B | Gg ™+ (5( ))(/B(R)(nﬂ)!w >+;<<v yt ’D/B<R>k! A(d >>>]

+ I G (6(w) (Vu)"u, (V)]

Proof. By the duality relation (2.6) between D and §, the chain rule of derivation
for D and the commutation relation (2.14), we get

E [G((Vu)*u, D(u))g(3(u))] — B [G{(Va)* u, Di(u))g' (5(u))]
= E [G{(Vu)*u, 0)g(3(u))] + E [G((V)*u, 6(V*u))g(6(w))]
—IE[G<(VU)k+1 , Dé(u))g'(5(u))]
= B [G((Vu)*u, u)g(5(u))] + E [(V*u, D(Gg(3(w))(Vu)*u)])
—E[G<(VU)k+l Do(u))g'(5(u))]
= E [G((Va) u, u)g(5(u))] + B [(Va)**'u, DG)g(6(u))]
E[Gﬁ*u,D((w )96 ()]
= [9(0(u)Tk12G],
where we used (2.9) and (2.13). Therefore, we have
E[G3(u)g(5(u))] = El{u, D(Gg(6(u))))]
= E[G(u, Dé(u))g'(9(w))] + E[(u, DG)g(6(u))]
—IEKU DG)g(6(u))] + B [Gg" D ((w){(Vu)"u, D5 (u)]

u
u,

+Z Gg* D (3(w)) (V) u, D(w))] — E [Gg**+2 (5(w)) (V) *'u, DS(u))])
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E[(u, DG)g(6(u))] + Z]E (g™ (6(u))T},, G]
+E[Gg" ) (5(u ))<(Vu) u, Dé(u))]
E[(u, DG)g +Z]E (9% (8(u))T},, G

+E[Gyg ”“)(5(U))<(VU) )] + T8 [Gg™ D (5(u))(Vu)"u, 6(V*u))],
and we conclude by Lemma 3.2. O

When f € W, '(B(R)) is a deterministic function such that [VE f]loc < o0, and
g € C°(R), Proposition 4.1 shows that

E[6(f)g(5(/))]

n+1
_ 1 k+1( " (k) (n+1) ~ -,
B kz;:k! /B(R)f (@) Mda) E[g® (5()] + E [¢" TSNV H™ 6V )]
n+1
> nl By WG] + B oGNS ], n>0
k=1

with, by Proposition 3.1 applied with p =2 and r =0,

E[5(VH™ N < VE[S(VH )]
I(VE™ fll L2 (ry)

< (Kdvde)nJrl”f”Lz B(R))”vf”’zi:lB(R) iR4)”

In addition, as n tends to +co we have

E[5(£)g(6(F)] Z% [, 75 M) B o a0
_ v 1 FE () Mda) B [P
> g [ P @M@ B [0

= E [/ F(@)(g(8(f) + f(x)) — 9(5(f))))\(d$)]
B(R)

provided that the derivatives of g decay fast enough, which is a particular instance
of the standard integration by parts identity for finite difference operators on the
Poisson space, see e.g. Lemma 2.9 in Peccati et al. (2010) or Lemma 5 in Bourguin
and Peccati (2016).

5. Stein approximation

Applying Proposition 4.1 with n = 0 and G = 1 to the solution g, of the Stein
equation

L ooa](2) = ®(2) = g,(2) — 202(2), 2z €R,

and letting u € ﬁ)é’l be a predictable random field, this gives the expansion

POu) <a)—®(z) = E[g,(d(u))(u,u) —(u)ge(d(u))] (5.1)
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= B[ (u,u))g,6(w)] + B [(u,6(Va))gs(3(u))],

around the Gaussian cumulative distribution function ®(z), with [|gs|lcc < Vv27/4
and [|gh]lc <1, 2 € R, by Lemma 2.2-(v) of Chen et al. (2011). The next result
follows from the application of Proposition 4.1 with n =1 and G = 1.

Proposition 5.1. For any random field u € ]]3%’00 we have

dw (6(u), N)
<E|[1 - (uu)— <%*u,Du>H +E /B(R) u3 \(dx) + <u,D/B(R) u? )\(dx)>H

+2E [[((Va)u, §(V*u))|]. (5.2)
Proof. For n =1 and G = 1, Proposition 4.1 shows that
E[5(u)g(3(u)] = Elg'(5(w)({u,u) + (V*u, Du))]
1 "(5(u u Ndx u u? \(dx
e »(A%m de>+—<,D Bm)mxw>>>]

+Elg" (5(w)((Va)u, §(Vu))].

Let h : R — [0,1] be a continuous function with bounded derivative. Using the
solution gj, € C}(R) of the Stein equation

h(z) —ERWN)] =¢'(z) - 29(2),  z€R,
with the bounds [|g},|lcc < [|7]leo and [|g7 [|oo < 2|/ ||oos € R, cf. Lemma 1.2-(v)

of Nourdin and Peccati (2009b) and references therein, we have
E[h(3(u))] ~ E[R(N)] = E[5(u)gn(6(w)) — g4 (6(w))]
— Elg},(35(u)) (u, u) + (V*u, Du) — 1)

g"(6(u)) (/B(R) ud \(dzx) + <u, D o) u? )\(d;v)>>]

+2E[gy (5(u))(Vu)u, 6(V*u))],

1
-E
+2

hence

| E[6(u)h(3(w))] = BIRAN)]] < (I [loo B []1 = (u, u) — (V*u, Du)]

+|A |00 B H/B(R) ul \(dx) + <u,D . u? /\(dx)> H

+2|1 oo B [[{(Vu)u, 6(Vu))]],
which yields (5.2). O

As a consequence of Proposition 5.1 and the It6 isometry (2.12) we have the fol-
lowing corollary.

Corollary 5.1. Foru € ]]3)(1)’00 we have

dw (0(u), ) < 1= Vara(u)]| + /Var a3y

/ u3 \(dz) + ( u, D u? \(dx)
B(R) B(R)

+IE




1156 N. Privault

B((V"u, Du)|| + 21 [|((Vu)u, 6(9*w) .

Proof. By the It6 isometry (2.12) we have

2
Var[s(u)] = ( / umwx)—A(dx))) — B[(u, u)),
B(R)
hence
[ (u, u) — (V*u,Du>|]
< B[ - Bl )] + B[l > E[(u, u)]|] + E[|(V*u, Du)
= |1 = Var[s(w)]| + v/E[({w u) — Bl{w )7 + B[ (V*u, Du)|

11 — Var[8(u)]| + \/Var |\u|\L2(B(R))] + E[|(V*u, Du)|l.

In particular, when Var[§(u)] = 1, Corollary 5.1 shows that

dw (0(u), N) < y/Var[[[ull3 ]

/ ud \(dzx) + (u, D u? \(dx)
B(R) B(R)

+ E[[(V*u, Du)[] + 2 [|((Vu)u, §(V:u))]].

+IE

When f € Wy (B(R)) is a deterministic function we have

2
( / £(2)((dz) —A(dw») ] - / £2(2) A(da),
B(R) B(R)

and Corollary 5.1 shows that

1—/B(R)f (z) A(dz)| +

Var[o(f)] = E

dw (3(f),N) < +2E[I5(VF)2f)]-

/ £3(x) Mdz)
B(R)
Given the bound

E [|5((V£)2f)]

VE [5(V5)25)2]
(V)2 fll2cnery)
(KavaR)? |1 £ 2(mn IV* I e 5y

A

IN

obtained from Proposition 3.1 with p = 2 and 7 = 0, f € W™ (B(R)), we also
have the following corollary.

Corollary 5.2. For f € W, ">°(B(R)) we have

dw </B(R)f(x)(7(d$) - /\(dw)),/\/> < 1= £ memy | +

d
+2(KaqvaR' )| fl2smn VY FlI (5(r)ma)-

/ £3(2) A(dz)
B(R)
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In particular, if || f||z2(p(r)) = 1 we find

dw (/ f(w)(w(dw)—A(dw»,N) <
B(R)

JRECRCS
B(R)

d
+2(KavaR')? V¥ f117 < (B(r)ma-

As an example, consider f; given on B(k'/¢R) by

1 T|Rd
fle)i= o (M), ae B,

where g € C1([0, R]) is such that g(R) = 0, and

R
C? = ’Ud/ g (ryrt=tdr,
0

so that fx € L2(B(k'/9R)) with

/d
T —i/kl (o )ledr—E/RQQ(T)ledr_l
LABEVER) — c2k /) k1/d c? J, )

and

) PRVZTS 1 R
3(x)dx = 7/ 3(pk~Ydypd=1gy — / 3(r rdildr,
/B(kl/dmfm el MR e == | @

k > 1. We have

R, 12 lg'lI2.d
V™ fillz oo (B(R)RE) < C2pit2/d

hence

dw ( / ful@) (4(dz) - A(dx»,fv)
B(R)

/ 3(2) Ade)
B(R)

UVd r 3 d—1
C3\/E/ g>(r)r® dr
0

In particular, if g satisfies the condition

R
/ G (r)yrttdr =0,
0

then we find the O(1/k) convergence rate

2(K gvak'/4R")2d

/112
+ k1+2/dC2 Hg ||OO

IN

Q(Kd’vde)2d me
THQ 5

+

2(KvaR)?d | , o
dw </B(R) fi(@)(y(dz) — A(d:c)),/\/') < =E—ldlk. kz1

For example, taking

1 [Zlra) _ 1 |2|Ra |2 |Ra 1/d
fr(z) = C\/Eg</€1/d)_0\/E (h1<k1/d — ahs T ) ) z € B(k'/*R),
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with a € R, hy, hy € C1([0, R]) such that hi(R) = he(R) = 0, and

R
2= r) —aha(r Zpd=1qy
O.—/O(hl() ha(r)) dr >0,

we can choose a € R satisfying the cubic equation

R R
/ Ay tdr = o / R3(r)rd—tdr + 3a2/ hy(r)R3(r)rd=tdr
B(R) 0 0

R R
—3a/ h3(r)hy (r)rdtdr + / B3 (r)rd L dr
0 0
= 0,
which yields the bound

iy (/ fk<x><v<dx>—A<dx>>,N> < dwdinhe) sy
B(kl/4R)

from (1.5), where c(a,d,h1,hs) depends only on a € R, d > 2 and hy,hy €
C*([0, R]), whereas (1.3) can only yield the standard Berry-Esseen convergence rate
(1.4) as [ [g(r)|3ritdr > 0.

6. Appendix

Proof of Proposition 2.1.
As a consequence of (1.8) and (2.2) we have

fn (561,---,wi—layaiﬂiﬂa---ﬁﬁn) — fn-1 (!El,---7$i—1,$i+1,---,$n)

= fn (!El,---,$i—1,y7$i+17---5€n)
—fn—l(561,---,wi—17$i+17---7$n)/ n(x) A(dx)
B(R')\B(R)
= fn (!El,---,$i—1,y7$i+17---5€n)

—/ (@) fr (1, T 1, Ty Tig 1y - -, Tn) A(d2)
B(R")\B(R)
— [ (Gl VE ) dn)

B(R')

— / (G2s,y), VE fo (@1, -, 20))maNdas), (6.1)
B(R)

Xlyeeey Tic1, Yy Tit1, .- -, Tn € B(R'). Recall that for all F' € S of the form (2.1) we
have

=1
E[F] :e*MB(R))Z—'/ / fo(@r, .. ) Mdxy) - - - A(day).
n—o " /B(R) B(R)

Hence, using (6.1), for g € C}(B(R)) and F of the form (2.1) we have

E [ /B o SOIDE A(dw]
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_E lz T Z 0 IICHE RN FHEE ST
(6.2)
o~ MNB(R i 1
n! B(R)
/ / o (@) VE e, ) ga A(dy)A (e ) -~ A(dy)
B(R) ;4 )
1
o~ MB(R 1
z:: n! B(R)
/ / (@1, i1, Yy i1,y - ) A(dxr) - A(dy) -+ - Aday,)
B(R) ;4 B(R)
o~ MNB(R /
Z il /.
- / A(dy) fas (21, 201) A(dr) - (i)
B(R) =1

o~ MB( R))Z |/
Nt JB(R)
"/B(R) (;g($i) —/ g(y)A(dy)> Falat, .. ) Mdz1) - A(dzn)

B(R)

F ( /B L d@0a) - A(dw»ﬂ .

Next, for u of the form (2.4), we check by a standard argument that

=E

E[(u, DF)] E[Gi{gi, DF)]

I

= Z (E[{g:;, D(FG};)) — F(gi, DG})])

Py (6 o) - ) - (6.0G)

Proof of Proposition 2.2. Taking u € Py a predictable random field of the form
(2.7) we note that by (2.3) and the compatibility condition (2.10) we have

gi(y)DyF; =0, yeB(R), i=1,...,n,
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hence by (2.5) we have

5(u)

5 <Z Fg) = Z Fi6(g:) (63)

ZF / 9i(x) (3(dz) = A(d))
_ / us(y(dz) — A(dz)),
B(R)

showing that d(u) coincides with the Poisson stochastic integral of (us),ep(r)-
Regarding the isometry relation (2.12), we have

2
E[5(u (ZF / 0i(@) (y(d) — A(dx»)

= Z EiE; / 9i(x)(v(dz) — A(dx)) / g5(x)(v(dzx) — A(dz))

1,7=1 B(R)

- Y onf ()~ X, /| o HE0) = X(@)

1<i<j<n

ZFQ (/ 6:(2) (7 (dz) — A(dx»)
ZF2/ g7 x)/\(dx)]

B(R)
- E / W2(2) Mda) | |
B(R)
which shows that (2.11) extends to the closure of Py in L?(2 x B(R)) by density
and a Cauchy sequence argument. (I
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