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Abstract. We consider the Brownian tree introduced by Aldous and the associated
Q-process which consists in an infinite spine on which are grafted independent
Brownian trees. We present a reversal procedure on these trees that consists in
looking at the tree downward from its top: the branching points becoming leaves
and leaves becoming branching points. We prove that the distribution of this tree
is invariant under this reversal procedure, which provides a better understanding
of previous results from Bi and Delmas (2016).

1. Introduction

Continuous state branching (CB) processes are stochastic processes that can be
obtained as the scaling limits of sequences of Galton-Watson processes when the
initial number of individuals tends to infinity. They hence can be seen as a model
for a large branching population. The genealogical structure of a CB process can
be described by a forest of continuum random trees (CRT). The notion of CRT was
introduced first in Aldous (1991) for the quadratic critical case, the link with CB
processes can be found in Le Gall and Le Jan (1998) and Duquesne and Le Gall
(2002) for the general critical and sub-critical cases, and Abraham and Delmas
(2012) for the super-critical case. We shall only consider the quadratic case; it is
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characterized by a branching mechanism ψθ:

ψθ(λ) = βλ2 + 2βθλ, λ ∈ [0,+∞),

where β > 0 and θ ∈ R. The sub-critical (resp. critical) case corresponds to θ > 0
(resp. θ = 0). The parameter β can be seen as a time scaling parameter, and θ as
a population size parameter.

In this model the population dies out a.s. in the critical and sub-critical cases. In
order to model branching population with a stationary size distribution, which cor-
responds to what is observed at an ecological equilibrium, one can simply condition
a sub-critical or a critical CB to not die out. This gives a Q-process, see Roelly-
Coppoletta and Rouault (1989) and Lambert (2007), which can also be viewed as
a CB with a specific immigration. The genealogical structure of the Q-process in
the stationary regime is a tree with an infinite spine. This infinite spine has to be
removed if one adopts the immigration point of view, in this case the genealogical
structure can be seen as a forest of trees. For θ > 0, let (Zt, t ∈ R) be this Q-process
in the stationary regime, so that Zt is the size of the population at time t ∈ R. See
Chen and Delmas (2012) for studies on this model in a more general framework. Let
At be the time to the most recent common ancestor of the population living at time
t. According to Chen and Delmas (2012), we have E[Zt] = 1/θ, and E[At] = 3/4βθ,
so that θ is indeed a population size parameter and β is a time parameter.

For s < t, let M t
s be the number of individuals at time s who have descendants

at time t. It is proven in Bi and Delmas (2016), that for fixed θ > 0 a time reversal
property holds: in the stationary regime, the ancestor process ((M s

s−r, r > 0), s ∈
R) is distributed as the descendant process ((M s+r

s , r > 0), s ∈ R), see Remark 3.14.
This paper extends and explains this identity in law by reversing the genealogical
tree. The idea is to see the tree as ranked branches, with each branch being attached
to a longer one (the longest being the infinite spine). Then, re-attach every branch
by its highest point on the same branch. Hence, branching points become leaves
and leaves become branching points. Call this operation the reversal procedure.
Theorem 3.9 states that, for θ ≥ 0, the Brownian CRT distribution is invariant by
the reversal procedure and Corollary 3.13 states that, for θ ≥ 0, the distribution of
the genealogical structure of the Q-process in the stationary regime is also invariant
by the reversal procedure. See a similar result in the discrete setting of splitting
trees in Dávila Felipe and Lambert (2015).

The paper is organized as follows. We first introduce in Section 2 the framework
of real trees and we define the Brownian CRT that describes the genealogy of the
CB in the quadratic case. We define in Section 3 the reversal procedure of a tree and
prove the invariance property of the Brownian CRT under this reversal procedure.
We then extend the result to the Brownian forest that describes the genealogy of
the stationary population in the quadratic (critical and sub-critical) case.

2. Notations

2.1. Real trees. The study of real trees has been motivated by algebraic and geo-
metric purposes. See in particular the survey Dress et al. (1996). It has been first
used in Evans et al. (2006) to study random continuum trees, see also Evans (2008).



Reversal property of the Brownian tree 1295

Definition 2.1 (Real tree). A real tree is a metric space (t, dt) such that:

(i) For every x, y ∈ t, there is a unique isometric map fx,y from [0, dt(x, y)] to
t such that fx,y(0) = x and fx,y(dt(x, y)) = y.

(ii) For every x, y ∈ t, if φ is a continuous injective map from [0, 1] to t such
that φ(0) = x and φ(1) = y, then φ([0, 1]) = fx,y([0; dt(x, y)]).

Notice that a real tree is a length space as defined in Burago et al. (2001). We
say that a real tree is rooted if there is a distinguished vertex ∂ = ∂t which we call
the root. Remark that the set {∂} is a rooted tree that only contains the root.

Let t be a compact rooted real tree and let x, y ∈ t. We denote by [[x, y]] the
range of the map fx,y described in Definition 2.1. We also set [[x, y[[= [[x, y]] \
{y}. We define the out-degree of x, denoted by kt(x), as the number of connected
components of t \ {x} that do not contain the root. If kt(x) = 0, resp. kt(x) > 1,
then x is called a leaf, resp. a branching point. We denote by L(t), resp. B(t),
the set of leaves, resp. of branching points, of t. A tree is said to be binary if the
out-degree of its vertices belongs to {0, 1, 2}. The skeleton of the tree t is the set of
points of t that are not leaves: sk(t) = (t \ L(t)) ∪ {∂}. Notice that cl (sk(t)) = t,
where cl (A) denote the closure of A.

We denote by tx the sub-tree of t above x i.e.

tx = {y ∈ t, x ∈ [[∂, y]]}
rooted at x. We say that x is an ancestor of y, which we denote by x 4 y, if y ∈ tx.
We write x ≺ y if furthermore x 6= y. Notice that 4 is a partial order on t. We
denote by x ∧ y the Most Recent Common Ancestor (MRCA) of x and y in t i.e.
the unique vertex of t such that [[∂, x]] ∩ [[∂, y]] = [[∂, x ∧ y]].

We denote by ht(x) = dt(∂, x) the height of the vertex x in the tree t and by
H(t) the height of the tree t:

H(t) = max{ht(x), x ∈ t}.
We define the set of extremal leaves of t by:

L∗(t) = {y ∈ L(t), ∃x ∈ t s.t. x ≺ y and htx(y) = H(tx)}.
In particular, we can have L∗(t) 6= L(t), see Example 2.5.

For ε > 0, we define the erased tree rε(t) (sometimes called in the literature the
ε-trimming of the tree t) by

rε(t) = {x ∈ t\{∂}, H(tx) ≥ ε} ∪ {∂}.
For ε > 0, rε(t) is indeed a tree and rε(t) = {∂} for ε > H(t). Notice that

⋃

ε>0

rε(t) = sk(t). (2.1)

Lemma 2.2. For every compact rooted real tree t not reduced to the root, and every
ε ∈ (0, H(t)) > 0, the erased tree rε(t) has finitely many leaves.

Proof : Let t be a compact roooted real tree not reduced to the root, and let
ε ∈ (0, H(t)). We set N the number of leaves of rε(t). If N = +∞, there exists
a (pairwise distinct) sequence (yn, n ∈ N) of leaves of rε(t). Then, by definition
the subtrees tyn

of t are pairwise disjoint and have height ε. Hence, if we choose
for every n ∈ N a point xn in tyn

such that htn(xn) = ε, the sequence (xn, n ∈ N)
satisfies

∀i, j ∈ N, i 6= j =⇒ dt(xi, xj) ≥ 2ε
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which contradicts the compactness of the tree t. So N is finite. �

We give a definition of height regularity which implies the uniqueness of the top
of the tree (see Lemma 2.4 for a precise definition).

Definition 2.3 (Height regular). We say that a compact rooted real tree t is
height-regular if, for every ε > 0, for every (x, y) ∈ L(rε(t))2 ∪ B(rε(t))2,

x 6= y =⇒ ht(x) 6= ht(y).

Lemma 2.4. Let t be a compact height-regular tree. For every x ∈ t, there exists
a unique x∗t ∈ tx (or simply x∗ when there is no risk of confusion) such that
htx(x

∗
t) = H(tx).

Proof : If x ∈ L(t), then tx = {x} and the lemma holds trivially.
Let x ∈ sk(t). First, as tx is compact, H(tx) is finite and there exists at least

one point y ∈ tx such that htx(y) = H(tx).
Assume there exists two distinct points y, y′ ∈ tx such that htx(y) = htx(y

′) =
H(tx). Then we have y ∧ y′ ∈ tx and htx(y ∧ y′) < H(tx). We choose ε > 0 such
that ε < H(tx) − htx(y ∧ y′) and we denote by yε (resp. y′ε) the unique point in
[[y ∧ y′, y]] (resp. [[y ∧ y′, y′]]) such that dt(yε, y) = ε (resp. dt(y

′
ε, y

′) = ε). Remark
that these points exist by the particular choice of ε. Then, by definition, yε and
y′ε are distinct leaves of rε(t) and have the same height, which contradicts the fact
that t is height regular. �

Let t be a compact binary height-regular rooted real tree. For x ∈ t, the vertex
x∗ will be called the top of the tree tx. For such a tree, we have the equality:

L∗(t) = {x∗, x ∈ sk(t)}.

By Equation (2.1), we also have

L∗(t) =
⋃

ε>0

{x∗, x ∈ L
(
rε(t)

)
}

and we deduce from Lemma 2.2 that if t is height-regular, then L∗(t) is at most
countable.

For every x ∈ t, we define the branching point of x on [[∂, ∂∗]] as

x = x ∧ ∂∗.

For every y ∈ [[∂, ∂∗]], the sub-tree (possibly reduced to its root) rooted at y which
does not contain neither ∂ nor ∂∗ is given by

t̃y = {z ∈ t, z ∧ ∂∗ = y}.

Notice that t̃y is indeed a tree. Then, for every x ∈ t, we define the maximal height

of the subtree t̃x which is attached on [[∂, ∂∗]] and which contains x by

h′t(x) = H(t̃x) + ht(x).

See Figure 2.1 for a simplified picture of x, x, tx, x
∗, t̃x and h′

t
(x).

Let t be a compact rooted real tree and let (ti, i ∈ I) be a family of trees, and
(xi, i ∈ I) a family of vertices of t. We denote by t◦i = ti \ {∂ti}. We define the
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∂
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x∗
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tx
t̃x H(t̃x)

h′
t
(x)

Figure 2.1. A tree t, with x, x∗
t
and x elements of t, and the

sub-trees tx and t̃x.

tree t⊛i∈I (ti, xi) obtained by grafting the trees ti on the tree t at points xi by

t⊛i∈I (ti, xi) = t ⊔
(
⊔

i∈I

t◦i

)
,

dt⊛i∈I (ti,xi)(y, y
′)

=





dt(y, y
′) if y, y′ ∈ t,

dti(y, y
′) if y, y′ ∈ t◦i ,

dt(y, xi) + dti(∂ti , y
′) if y ∈ t and y′ ∈ t◦i ,

dti(y, ∂ti) + dt(xi, xj) + dtj (∂tj , y
′) if y ∈ t◦i and y′ ∈ t◦j with i 6= j,

∂t⊛i∈I (ti,xi) = ∂t,

whereA⊔B denotes the disjoint union of the sets A and B. Notice that t⊛i∈I (ti, xi)
might not be compact.

Let us finish with an instance of a tree t such that L∗(t) 6= L(t).
Example 2.5. For every positive integer n, let us set tn = [0, 1/n] ⊂ R, viewed as a
rooted real tree when endowed with the usual distance on the real line and rooted
at 0. We consider the tree

t = t1 ⊛n≥2 (tn, 1−
1

n2
).

Then t is a compact height-regular tree and 1 ∈ t1 is a leaf of t that does not
belong to L∗(t).

2.2. The Gromov-Hausdorff topology. In order to define random real trees, we en-
dow the set of (isometry classes of) rooted compact real trees with a metric, the
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so-called Gromov-Hausdorff metric, which hence defines a Borel σ-algebra on this
set.

First, let us recall the definition of the Hausdorff distance between two compact
subsets: let A,B be two compact subsets of a metric space (X, dX). For every
ε > 0, we set:

Aε = {x ∈ X, dX(x,A) ≤ ε}.
Then, the Hausdorff distance between A and B is defined by:

dX,Haus(A,B) = inf{ε > 0, B ⊂ Aε and A ⊂ Bε}.
Now, let (t, dt, ∂t), (t

′, dt′ , ∂t′) be two compact rooted real trees. We define the
pointed Gromov-Hausdorff distance between them, see Gromov (1999); Evans et al.
(2006), by:

dGH(t, t′) = inf{dZ,Haus(ϕ(t), ϕ
′(t)) ∨ dZ(ϕ(∂t), ϕ′(∂t′))},

where the infimum is taken over all metric spaces (Z, dZ) and all isometric embed-
dings ϕ : t −→ Z and ϕ′ : t′ −→ Z.

Notice that dGH is only a pseudo-metric. We say that two rooted real trees t and
t′ are equivalent (and we note t ∼ t′) if there exists a root-preserving isometry that
maps t onto t′, that is dGH(t, t′) = 0. This clearly defines an equivalence relation.
We denote by T the set of equivalence classes of compact rooted real trees. The
Gromov-Hausdorff distance dGH hence induces a metric on T (that is still denoted
by dGH). Moreover, the metric space (T, dGH) is complete and separable, see Evans
et al. (2006). If t, t′ are two-compact rooted real trees such that t ∼ t′, then, for
every ε > 0, we have rε(t) ∼ rε(t

′). Thus, the erasure function rε is well-defined
on T. It is easy to check that the functions rε for ε > 0 are continuous (and in fact
Lipschitz).

Notice that if t is a compact height-regular real tree, so are all the trees equivalent
to t. Let T0 ⊂ T denote the set of equivalence classes of compact binary height-
regular real trees. The next lemma ensures that T0 is a Borel subset of T.

Lemma 2.6. We have that T0 is a dense Borel subset of T.

Proof : Let Tf (resp. Tf
0 ) be the subset of trees of T (resp. T0) with finitely many

leaves. Let ε > 0. By Lemma 2.2, we have rε(T) ⊂ T
f . Conversely, for every

t ∈ T
f , we define

t̃ = t⊛x∈L(t) ([0, ε], x)

where the segment [0, ε] is viewed as a rooted real tree when endowed with the
usual distance on the real line and with root 0. Then we have rε(t̃) = t and hence

rε(T) = T
f . The same arguments also apply to obtain T

f
0 = rε(T0).

Notice that for every n ≥ 1, the subset Tn of trees with less than n leaves is a
closed subset of T and that the subset of binary height-regular trees with exactly
n leaves is an open set (for the induced topology) of Tn. This implies that Tf and

T
f
0 are Borel sets. We consider rε as a function defined on T. By definition, we

have that t ∈ T0 if and only if rε(t) ∈ T0 for all ε > 0, that is T0 =
⋂

ε>0 r
−1
ε (Tf

0 ).
Then use that rε is continuous for all ε > 0 to get that T0 is a measurable subset
of T.

Using Definition 2.3, it is easy to prove that Tf
0 is dense in T

f . Since

dGH(t, rε(t)) ≤ ε
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for t ∈ T and ε > 0, we deduce that T
f is dense in T. This implies that T

f
0 , and

thus T0, is dense in T. �

2.3. Brownian motion, local times and excursion theory. Let θ ≥ 0, β > 0 and

B(θ) = (B
(θ)
t , t ≥ 0) be a Brownian motion with drift −2θ and scale

√
2/β i.e. for

t ≥ 0,

B
(θ)
t =

√
2/βBt − 2θt, (2.2)

where B is a standard real Brownian motion.
For every a ∈ R and every s ≥ 0, we define the local time Λa

s of B(θ) at time s
and level a by approximation:

Λa
s = lim

ε→0

1

ε

∫ s

0

1
{a≤B

(θ)
u ≤a+ε}

du.

Moreover, there exists a continuous version of the bi-variate process (Λa
s , s ≥ 0, a ∈

R) and we always work with this continuous version. The local time process may
also be characterized by the occupation time formula: for every nonnegative mea-
surable function ϕ, we have a.s.

∫ t

0

ϕ(B(θ)
s )ds =

∫

R

ϕ(x)Λx
t dx.

For every a ∈ R, the function s 7−→ Λa
s is a.s. non-decreasing and we denote by

dΛa
s the associated Stieljes measure.
Let E be the set of positive excursions i.e. the set of continuous functions g :

[0,+∞) −→ [0,+∞) with compact support and such that g(0) = 0. For g ∈ E , we
set σ(g) = sup{x, g(x) > 0} the duration or the length of the excursion g.

In order to define the Itô measure of positive excursions of the Brownian motion
with drift, we consider the Brownian motion B(θ) reflected at 0, i.e. the process
H = (Ht, t ≥ 0) defined by:

Ht := B
(θ)
t − I

(θ)
t

where I
(θ)
t is the infimum process of B(θ):

I
(θ)
t = inf

u∈[0,t]
B(θ)

u . (2.3)

The process (−I(θ)t , t ≥ 0) is a continuous non-decreasing process, and the set of
increase points coincides with the set

Z = {t ≥ 0,Ht = 0}
of zeros of H. We introduce the right-continuous inverse of the infimum process,

τu = inf{t ≥ 0, I
(θ)
t < −u}

and we define the set D of discontinuities of τ . For every u ∈ D, we define the
excursion eu = (eu(t), t ≥ 0) ∈ E of H away from 0 associated with the interval
(τu−, τu) by

eu(t) =

{
Hτu−+t if 0 ≤ t ≤ τu − τu−,

0 if t > τu − τu−.

Then the point measure
∑

u∈D δ(u,eu)(ds de) is a Poisson point measure on R+ ×E
with intensity ds ⊗ n(θ)(de) where n(θ)(de) is a σ-finite measure on E called Itô’s
measure of positive excursions of B(θ).
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With that definition, we have for λ ≥ 0:

n(θ)
[
1− e−λσ

]
= ψ−1

θ (λ), (2.4)

where

ψθ(λ) = βλ2 + 2βθλ. (2.5)

Let ζ = ζ(e) = maxs∈[0,σ](es) be the maximum of the excursion. We set cθ(h) =

n(θ)[ζ ≥ h] for h > 0, and we recall, see Section 7 in Chen and Delmas (2012) for
the case θ > 0, that:

cθ(h) =

{
(βh)−1 if θ = 0,

2θ (e2βθh−1)−1 if θ > 0.
(2.6)

2.4. Coding a compact real tree by a function and the Brownian CRT. Let g ∈ E ,
and assume that σ(g) > 0, that is g is not identically zero. For every s, t ≥ 0, we
set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r),

and

dg(s, t) = g(s) + g(t)− 2mg(s, t). (2.7)

It is easy to check that dg is a pseudo-metric on [0,+∞). We then say that s and t
are equivalent iff dg(s, t) = 0 and we set Tg the associated quotient space. We keep
the notation dg for the induced distance on Tg. Then the metric space (Tg, dg) is a
compact real-tree, see Duquesne and Le Gall (2005). We denote by pg the canonical
projection from [0,+∞) to Tg. We will view (Tg, dg) as a rooted real tree with root
∂ = pg(0). We will call (Tg, dg) the real tree coded by g, and conversely that g is
a contour function of the tree Tg. We denote by F the application that associates
with a function g ∈ E the equivalence class of the tree Tg.

Conversely every rooted compact real tree (T, d) can be coded by a continuous
function g (up to a root-preserving isometry), see Duquesne (2006).

For θ ≥ 0, we define the Brownian CRT, τ = F (e), as the (equivalence class of
the) tree coded by the positive excursion e under n(θ). And we define the measure
N

(θ) on T as the “distribution” of τ , that is the push-forward of the measure n(θ)

by the application F . Notice that H(τ) = ζ(e).

Remark 2.7. If we translate the former construction into the framework of Duquesne
and Le Gall (2002), then H is the height process which codes the Brownian CRT
with branching mechanism ψθ and it is obtained from the underlying Lévy process
X = (Xt, t ≥ 0) with Xt =

√
2β Bt − 2βθt.

As for B(θ), we can consider under n(θ)(de) the local time Λa
s of e at time s and

level a. Then we define the local time measure of τ at level a ≥ 0, denoted by
ℓa(dx), as the push-forward of the measure dΛa

s by the map F , see Theorem 4.2 in
Duquesne and Le Gall (2005). We shall define ℓa for a ∈ R by setting ℓa = 0 for
a ∈ R \ [0, H(τ)].
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2.5. Forests. A forest f is a family ((hi, ti), i ∈ I) of points of R × T, where I
is an at most countable index set. Using an immediate extension of the grafting
procedure, for an interval I ⊂ R, we define the real tree fI = I ⊛i∈I,hi∈I (ti, hi).
For I = R, fR is an infinite spine (the real line) on which we graft the compact
trees ti at the points hi respectively. We shall identify the forest f with fR when
the (hi, i ∈ I) are pairwise distinct.

Let us denote, for i ∈ I, by di the distance of the tree ti and by t◦i = ti \ {∂ti}
the tree ti without its root. The distance on fI is then defined, for x, y ∈ fI, by:

df (x, y) =





di(x, y) if x, y ∈ t◦i ,

hti(x) + |hi − hj |+ htj (y) if x ∈ t◦i , y ∈ t◦j with i 6= j,

|x− hj |+ htj (y) if x 6∈ ⋃i∈I t
◦
i , y ∈ t◦j

|x− y| if x, y 6∈ ⋃i∈I t
◦
i .

The next lemma essentially states that fR is locally compact. See Abraham et al.
(2013) and the references therein for the Gromov-Hausdorff topology on the set of
locally compact trees.

Lemma 2.8. Let I ⊂ R be a closed interval. If for every a, b ∈ I, such that a < b,
and every ε > 0, the set {i ∈ I, hi ∈ [a, b], H(ti) > ε} is finite, then the tree fI is
a complete locally compact real tree.

Proof : Let (xn, n ≥ 0) be a bounded sequence of fI. If there exists a sub-sequence
(xnk

, k ≥ 0) which belongs to I (resp. to t◦i for some i ∈ I), then as I is a
closed interval (resp. t◦i ∪ {hi} is compact), this sub-sequence admits at least one
accumulation point.

If this is not the case, without loss of generality, we can suppose that xn ∈ t◦in
with pairwise distinct indices in. Notice that the sequence (hin , n ≥ 0) of elements
of I is bounded, since df (hi0 , hin) ≤ df (x0, xn). Therefore, as I is a closed interval,
there exists a converging sub-sequence (hink

, k ≥ 0). Let us denote by h ∈ I its

limit. Moreover, using the assumption that {i ∈ I, hi ∈ [a, b], H(ti) > ε} is
finite for all a < b, we have limn→+∞ df (xn, hin) = 0. Therefore, the sub-sequence
(xnk

, k ≥ 0) converges to h.
In conclusion, we get that every bounded sequence of fI admits at least one

accumulation point. This implies that fI is complete and locally compact. �

We extend the notion of height of a vertex and of the subtree above a vertex for
a forest: for x ∈ fR, either there exists a unique i ∈ I such that x ∈ ti and we set
hf (x) = hi+hti(x) and tx the subtree above x in ti, or x ∈ R and we set hf (x) = x
and tx = {x}.

3. The reversed tree

3.1. Backbones. For a compact rooted real tree t, we define an increasing family
of backbones (Bn(t))n∈N. We denote by S0(t) = {x ∈ t, ht(x) = H(t)} the set of
leaves with maximal height and we define the initial backbone as the set of ancestors
of S0(t):

B0(t) =
⋃

x∈S0(t)

[[∂, x]].

Notice that if the tree t is height-regular, then S0(t) = {∂∗} and B0(t) = [[∂, ∂∗]] is
just the spine from the root of the tree to its top.
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Let (t̃i, i ∈ I0) be the connected components of t\B0(t). If t
i denotes the closure

of t̃i, we have ti = t̃i ∪ {xi} for a unique xi ∈ B0(t) which can be viewed as the
root of ti. Then, we define the family of backbones recursively: for n ≥ 1, we set

Bn(t) = B0(t)⊛i∈I0

(
Bn−1(t

i), xi
)
.

Remark 3.1. We can also use the alternative recursive definition

Bn(t) = Bn−1(t) ⊛i∈In−1 (B0(t̂
i ∪ {yi}), yi), (3.1)

where the family (t̂i, i ∈ In−1) is the connected components of t \ Bn−1(t) and yi
is the unique vertex of t such that t̂i ∪ {yi} is closed (and yi is then considered as
the root of this tree).

Remark 3.2. It is easy to check that, if t ∼ t′ then, for every n ∈ N, Bn(t) ∼ Bn(t
′).

So the function Bn is well defined on T.

It is easy to check that for t a compact rooted real tree, ε > 0:

rε ◦Bn(t) = Bn ◦ rε(t). (3.2)

By Lemma 2.2, we deduce that for every t ∈ T and ε > 0, there exists an integer
N (that depends on t and ε) such that

rε(t) =

N⋃

n=0

Bn

(
rε(t)

)
= BN ◦ rε(t). (3.3)

Lemma 3.3. Let t be a compact rooted real tree not reduced to the root.

(i) We have cl
(⋃

n∈N
Bn(t)

)
= t.

(ii) If t is height-regular and binary, then we have
⋃

n∈N

L(Bn(t)) = L∗(t).

(iii) We have limn→∞ dGH(Bn(t), t) = 0.

Proof : We prove (i). Let t be a compact rooted real tree not reduced to the root.
Let x ∈ sk(t) and set ε = H(tx) > 0. By definition x ∈ rε(t), and using (3.3) as
well as the inclusion Bn(rε(t)) ⊂ Bn(t), we get x ∈

⋃
n∈N

Bn(t), which proves that
sk(t) ⊂ ⋃n∈N

Bn(t). Then the first point follows from the fact that cl (sk(t)) = t.
We prove (ii). Let us suppose that t is height-regular and binary, and let x ∈

L(Bn(t)) for some n ∈ N. Then, by definition of Bn(t), x is the top of a subtree of
the form ty, with y ≺ x and, as t is height-regular, it therefore belongs to L∗(t).
Conversely, let x ∈ L∗(t). Then there exists y ∈ sk(t) such that y∗ = x. Let us set
ε = d(y, x) > 0. Then y ∈ rε(t) and, by (3.3), y ∈ Bn(t) for some n ∈ N. And by
definition, we have x = y∗ ∈ L(Bn(t)) for the same n.

We prove (iii). Using notation from Remark 3.1, we deduce from (3.1) that

dt,Haus(Bn(t), t) ≤ supi∈In
H(t̂i ∪ {yi}). Then use that t is compact to get:

lim
n→∞

sup
i∈In

H(t̂i ∪ {yi}) = 0. (3.4)

This gives the result. �

3.2. Reversed tree. The reversal of a tree will be defined only on T0. Let t be a
rooted compact height-regular binary trees. As already noticed, since t is height
regular, we have S0(t) = {∂∗} and B0(t) = [[∂, ∂∗]]. Similarly, using the notations of
Section 3.1, for every i ∈ I0, as t

i is also height-regular, we have B0(t
i) = [[xi, x

∗
i ]].
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Figure 3.2. A backbone B3(t) on the left and its reversed tree
R3(t) on the right. The root of each tree is represented by a bullet.

For every i ∈ I0, we set y
′
i the unique point of B0(t) which is at the same height as

x∗i :

y′i ∈ [[∂, ∂∗]], ht(y
′
i) = ht(x

∗
i ).

We then define recursively the reversed backbones as follows. We set, for n ≥ 0,

R0(t) = ([[∂∗, ∂]], d, ∂∗).

(notice that the root of R0(t) is ∂
∗) and for n ≥ 1,

Rn(t) = R0(t)⊛i∈I0

(
Rn−1(t

i), y′i
)
.

The reversal procedure is illustrated on Figure 3.2, the dashed lines show where
the trees are grafted on the reversed tree. Notice that, for aesthetic purpose, inside
a sub-tree, the branches are drawn from left to right in decreasing order of their
height.

Intuitively, the leaves of Rn(t) correspond to branching points of Bn(t) (or to
its root) and conversely. Therefore, it is easy to check that Rn(t) ∈ T0 for every
n ∈ N.

Lemma 3.4. Let t be a compact rooted height-regular binary tree. We have:

Rn ◦Bn(t) = Rn(t), Rn ◦Rn(t) = Bn(t) and Rn ◦ rε(t) = rε ◦Rn(t). (3.5)

Proof : The first two equalities are obvious and the last one is also obvious if t has
a finite number of leaves. We just check that the last equality holds for general
t ∈ T0. We have:

Rn ◦ rε(t) = Rn ◦Bn ◦ rε(t) = Rn ◦ rε ◦Bn(t) = rε ◦ Rn ◦Bn(t) = rε ◦ Rn(t),

where we use the first equality of (3.5) for the first equality, (3.2) for the second,
the last equality of (3.5) which holds for Bn(t) as it is height-regular and has a
finite number of leaves for the third and (3.5) for the last. �

The sequence of trees (Rn(t), n ≥ 0) is non-decreasing. We endow
⋃

n≥0 Rn(t)

with the natural distance denoted by dR and we define the reversed tree R(t) as
the completion of

⋃
n≥0 Rn(t) with respect to the distance dR.
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If t and t′ are equivalent, that is t ∼ t′, we get that Rn(t) ∼ Rn(t
′) for all

n ∈ N and R(t) ∼ R(t′) as well. Thus the functions (Rn, n ∈ N) and R are well
defined on T0. We give some properties of the map R.

Corollary 3.5. We have that R = limn→∞ Rn on (T0, dGH) for the simple con-
vergence. The map R is a one-to-one measurable involution (that is R◦R(t) = t)
defined on T0.

Proof : Let t be a compact rooted height-regular binary tree. Using notation from
Remark 3.1, we deduce from (3.1) that dt,Haus(Bn(t), Bm(t)) ≤ supi∈In

H(t̂i∪{yi})
for m ≥ n. This in turns implies that dR(t),Haus(Rn(t),Rm(t)) ≤ supi∈In

H(t̂i ∪
{yi}) for m ≥ n. Use (3.4) to deduce that (Rn(t), n ∈ N) is a Cauchy sequence in
T0. Thanks to Lemma 2.7 in Evans et al. (2006), we get that

lim
n→∞

dGH(Rn(t),R(t)) = 0,

which implies that R = limn→∞ Rn on (T0, dGH) for the simple convergence.

By construction, for all t ∈ T
f
0 , the set of compact height-regular binary trees

with a finite number of leaves, there exists n ∈ N such that Rn(t) = R(t) and
Bn(t) = t. Thus, thanks to the second equality in (3.5), we deduce that R is an

involution on T
f
0 . Using that rε(T0) ⊂ T

f
0 , we deduce from the third equality in

(3.5) and the continuity of rε that rε ◦ R = R ◦ rε on T0 and thus:

rε ◦ R ◦ R = R ◦R ◦ rε = rε.

As limε→0 rε(t) = t, we deduce from the above equalities, by letting ε goes down
to 0, that R ◦R(t) = t for all t ∈ T0.

It is easy to see that R is continuous when restricted to rε(T0). This gives that
R ◦ rε is measurable. Thus as rε ◦ R = R ◦ rε, we get that rε ◦ R is measurable.
Then, use that R = limε→0 rε ◦ R to deduce that R is measurable on T0. �

Remark 3.6. There is no natural extension of R to T (in particular because R is
not uniformly continuous of T0).

3.3. Reversed CRT. We first check that the Brownian CRT is height-regular.

Lemma 3.7. Let θ ≥ 0. Let τ be a Brownian CRT under the excursion measure
N

(θ). Then, we have that N(θ)-a.e., τ ∈ T0.

Proof : Let h > 0. Following Neveu and Pitman (1989a,b), we say that a process
X admits a h-minimum (resp. a h-maximum) at time t if there exist s < t and
u > t such that Xs = Xu = Xt + h (resp. Xs = Xu = Xt − h) and Xr ≥ Xt (resp.
Xr ≤ Xt) for every r ∈ [s, u].

Then, if we denote by e an excursion under n(θ) and τ the associated real tree,
for a.e. h the branching points of rh(τ) correspond to the h-minima of e and each
leaf of rh(τ) is associated with an h-maxima of e. As n(θ)-a.e., two local extrema
of the excursion e have different levels, we get that rh(τ) belongs a.e. to T0 for all
h > 0 that is, by definition of T0, N

(θ)-a.e., τ ∈ T0. �

Let τ be a Brownian CRT under the excursion measure N
(θ), with θ ≥ 0. We

keep the notations of Section 3.1: we set B0(τ) = [[∂, ∂∗]] and set (τi, i ∈ I0) the
closures of the connected components of τ \ B0(τ) viewed as trees in T rooted
respectively at point xi ∈ B0(τ) so that τ = B0(τ)⊛i∈I0 (τi, xi).
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Lemma 3.8. Let θ ≥ 0. Under N
(θ), the point measure

∑
i∈I0

δ(h−ui−H(τi),τi) on

[0, h]×T is, conditionally given {H(τ) = h}, a Poisson point measure with intensity

2β1(0,h)(u) duN
(θ)[dt, H(t) ≤ h− u]. (3.6)

Proof : By the Williams decomposition, see Abraham and Delmas (2009), the point
measure

∑
i∈I0

δ(ui,τi) is under N
(θ), conditionally given {H(τ) = h}, a Poisson

point measure with intensity (3.6). Then, for every non-negative function ϕ on
[0, h]× T, we have

N
(θ)
[
e−

∑
i∈I0

ϕ(h−ui−H(τi),τi)
∣∣∣ H(τ) = h

]

= exp

(
−
∫ h

0

2βduN(θ)
[(

1− e−ϕ(h−u−H(τ),τ)
)
1{H(τ)≤h−u}

])

= exp

(
−2βN(θ)

[∫ h−H(τ)

0

du
(
1− e−ϕ(h−u−H(τ),τ)

)
1{H(τ)≤h}

])

= exp

(
−2βN(θ)

[∫ h−H(τ)

0

dv
(
1− e−ϕ(v,τ)

)
1{H(τ)≤h}

])

= exp

(
−
∫ h

0

2βdvN(θ)
[(

1− e−ϕ(v,τ)
)
1{H(τ)≤h−v}

])
,

where we performed the change of variables v = h−u−H(τ) for the third equality.
The lemma follows. �

Theorem 3.9. Let θ ≥ 0. Let τ be a Brownian CRT under the excursion measure
N

(θ). Then, R(τ) is distributed as τ .

Proof : To prove the theorem, it suffices to prove, using Lemma 3.3, that for every
n ∈ N, Bn(τ) and Rn(τ) are equally distributed, which we prove by induction.

First, as N
(θ)-a.e. τ ∈ T0, we have B0(τ) = R0(τ) (viewed as equivalence

classes). They have consequently the same distribution.
Suppose now that Bn−1(τ) and Rn−1(τ) are equally distributed for some n ≥ 1.

Recall that

Bn(τ) = B0(τ)⊛i∈I0 (Bn−1(τi), xi) and Rn(τ) = R0(τ)⊛i∈I0 (Rn−1(τi), y
′
i),

where for every i ∈ I0, y
′
i is the unique point of B0(τ) which has the same height

as x∗i i.e. such that hτ (y
′
i) = hτ (xi) +H(τi). Notice that, as a vertex of R0(τ), y

′
i

has height hR0(τ)(y
′
i) = H(τ) − hτ (xi)−H(τi).

Thanks to Lemma 3.8, conditionally given B0(τ), the two families

((hτ (xi), τi), i ∈ I0) and ((hR0(τ)(y
′
i), τi), i ∈ I0)

have the same distribution. By the induction assumption, the families

((hτ (xi), Bn−1(τi)), i ∈ I0) and ((hR0(τ)(y
′
i),Rn−1(τi)), i ∈ I0)

have also the same distribution. This implies that, under N
(θ), Bn(τ) and Rn(τ)

are equally distributed. �

The reversal operation is natural on the Brownian CRT but it has no elementary
representation for the underlying Brownian excursion. Informally, one can think of
a Vervaat transform for every sub-excursion above every level.
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Recall the definition in Section 2.4 of the local time measure ℓa(dx) of a Brownian
CRT τ at level a. We denote by ℓa(τ) the total mass of this measure. We recover the
time-reversal distribution invariance of the local time of the Brownian excursion.

Corollary 3.10. Let θ ≥ 0. N
(θ)-a.e., for every a ≥ 0, ℓa(τ) = ℓH(τ)−a(R(τ)).

Proof : Let a > 0. Using Theorem 4.2 of Duquesne and Le Gall (2005), we have
that N(θ)-a.e.:

ℓa(τ) = lim
ε→0

1

ε
Card {x ∈ rε(τ), hτ (x) = a−ε} = lim

ε→0

1

ε
Card {x ∈ rε(τ), hτ (x) = a}.

But, by construction, we have, for every t ∈ T and every ε > 0,

Card ({x ∈ rε(t), ht(x) = a− ε}) = Card ({x ∈ rε(R(t)), hR(t)(x) = H(t)− a}).

Therefore, we have that for every a > 0, N(θ)-a.e., ℓa(τ) = ℓH(τ)−a(R(τ)). Then,
consider the continuous version of the local time to conclude. �

3.4. Extension to a forest. For θ ≥ 0, we define the Brownian forest as the forest
F = ((hi, τi), i ∈ I) where

∑
i∈I δhi,τi is a Poisson point measure on R × T with

intensity 2βdhN(θ)[dτ ] and we denote by P
(θ) its distribution.

Remark 3.11. This Brownian forest can be viewed as the genealogical tree of a sta-
tionary continuous-state branching process (associated with the branching mecha-
nism ψθ defined in (2.5)), see Chen and Delmas (2012). To be more precise, for

every i ∈ I let (ℓ
(i)
a )a≥0 be the local time measures of the tree τi. For every t ∈ R,

we define the size Zt of the population at time t by

Zt =
∑

i∈I

ℓ
(i)
t−hi

(τi), (3.7)

where we recall that the local time ℓa(τ) of the CRT τ is zero for a 6∈ [0, H(τ)]. For
θ = 0, we have Zt = +∞ a.s. for every t ∈ R. For θ > 0, the process (Zt, t ≥ 0) is
a stationary Feller diffusion, solution of the SDE

dZt =
√
2βZt dBt + 2β(1− θZt)dt.

A forest f = ((hi, ti), i ∈ I) is said to be height-regular if:

• for every i ∈ I, ti ∈ T0;
• for every i, j ∈ I, if i 6= j, then hi 6= hj and hi +H(ti) 6= hj +H(tj).

We define the reverse of a height-regular forest f = ((hi, ti), i ∈ I) as the forest

R(f) = ((−hi −H(ti),R(ti)), i ∈ I).

Lemma 3.12. Let θ ≥ 0. Let ((hi, τi), i ∈ I) be a Brownian forest under P
(θ).

Then the point process
∑

i∈I

δ(−hi−H(τi),τi)(dh, dt)

is a Poisson point process on R× T with intensity 2βdhN(θ)[dt].
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Proof : The proof is similar to the one of Lemma 3.8. For every non-negative
measurable function ϕ on R × T, we have, denoting E

(θ) the expectation under
P
(θ),

E
(θ)
[
e−

∑
i∈I ϕ(−hi−H(τi),τi)

]
= exp

(
−
∫ +∞

−∞

2βdhN(θ)
[
1− e−ϕ(−h−H(τ),τ)

])

= exp

(
−2βN(θ)

[∫ +∞

−∞

(
1− e−ϕ(−h−H(τ),τ)

)
dh

])

= exp

(
−2βN(θ)

[∫ +∞

−∞

(
1− e−ϕ(v,τ)

)
dv

])
,

by an obvious change of variables, which yields the result. �

We deduce from Lemma 3.12, Lemma 3.7 and Theorem 3.9 the following corol-
lary.

Corollary 3.13. Let θ ≥ 0. Let F be a Brownian forest under P
(θ). Then F is

a.s. height regular and the reversed forest R(F) is distributed as F .

Remark 3.14. Recall notation for forests introduced at the end of Section 2.5. For
every real numbers s < t, and every forest F , we set

M t
s(F) = Card ({x ∈ FR, hF(x) = s and H(tx) ≥ t− s})

the number of vertices of F at height s that have descendants at time t (excluding
the infinite spine). Corollary 3.13 allows to straightforward recover (and under-
stand) Theorem 4.3 from Bi and Delmas (2016) that states that, under P(θ) for any
θ > 0, the processes (M s+r

s , s ∈ R, r ≥ 0) and (M s
s−r, s ∈ R, r ≥ 0) are equally

distributed. Indeed, to recover this result, it is enough to notice that a.s.:

(M s+r
s (F), s ∈ R, r ≥ 0) = (M s

s−r(R(F)), s ∈ R, r ≥ 0).

Remark 3.15. Following Section 7.4 in Athreya et al. (2017), the stationary process
(Zt, t ≥ 0) can also be represented as the local time process of W = (Wt, t ∈ R)
defined by:

Wt =

{
B

(θ)
t − 2I

(θ)
t for t ≥ 0,

B′
t
(θ)

+ 2I ′t
(θ)

for t < 0,

where B(θ) = (B
(θ)
t , t ≥ 0) is a Brownian motion with drift defined by (2.2) and

I
(θ)
t its infimum defined by (2.3), and ((B′

t
(θ)
, I ′t

(θ)
), t ≤ 0) is independent of B(θ)

and distributed as ((B
(θ)
−t , I

(θ)
−t ), t ≤ 0). Then, for every s ∈ R and r > 0, the

quantity M s+r
s can be expressed as

M s+r
s (W ) = Card {t ∈ R; Wt = s and ∃t′ > t, Wt′ = s+ r

and inf
u∈(t,t′)

Wu > s}

or equivalently, the number of excursions of W above level s that reach level s+ r.

Then if we set W̃t = −W−t, it is easy to see that for every s ∈ R and r > 0,

M s+r
s (W ) = M s

s−r(W̃ ) which also gives Theorem 4.3 of Bi and Delmas (2016) as

W and W̃ are equally distributed.
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One could therefore ask if the tree coded by any process W that satisfies the

equality in distribution W
(d)
= W̃ also statisfies the reversal property of Corol-

lary 3.13 (which does not correspond to the transformation W 7−→ W̃ on the
contour process as remarked after the proof of Theorem 3.9).
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process. Ann. Probab. 26 (1), 213–252 (1998). MR1617047.

J. Neveu and J. Pitman. The branching process in a Brownian excursion. In
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