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Abstract. This article introduces the operator-scaling random ball model, gen-
eralizing the isotropic random ball models investigated recently in the literature
to anisotropic setup. The model is introduced as a generalized random field and
results on weak convergence are established in the space of tempered distributions.

1. Introduction

In the past ten years, random ball models have appeared as a simple and yet
flexible class of random fields that characterize various types of spatial dependence
structures, see Kaj et al. (2007); Breton and Dombry (2009); Biermé et al. (2010);
Breton and Dombry (2011); Gorgens and Kaj (2014); Gobard (2015); Breton and
Gobard (2015); Biermé and Estrade (2006); Pilipauskaité and Surgailis (2016). In
particular, in several regimes, their scaling limits are self-similar and with long-
range dependence, see Samorodnitsky (2016); Pipiras and Taqqu (2017); Beran
et al. (2013). Such properties are desirable when modeling various real world phe-
nomena and thus such results have a broad range of applications.
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In words, a random ball model consists in a collection of random balls in R? with
locations following a homogeneous Poisson point process and with independent and
identically distributed random radius and weights. Thus, each realization of random
balls on the space can be naturally viewed as a linear functional on an appropriate
space of test functions. Asymptotic behaviors are then of interest, when all the balls
are simultaneously rescaled by a parameter p, and at the same time the intensity of
balls also changes with respect to p. Under mild assumption on the distribution of
the radius, limit theorems can be established for p — 0 or p — o0, corresponding to
the zoom-out or zoom-in cases respectively. In both cases, the qualitative behavior
of the limit random fields, whether exhibiting spatial dependence or not, depends
on whether the random balls are dense or sparse in the limit, in certain sense to be
specified below.

The random ball models can be viewed as generalizations of certain one-
dimensional models based on Poisson point processes that appeared in the study
of Internet traffics, see for example Mikosch et al. (2002); Kaj and Tagqu (2008)
and references therein. However, the extension to high dimensions presents new
technical challenges, and should not be viewed as simple generalization of the one-
dimensional results. In particular, the developments until now have two main limi-
tations. First, results so far in the literature focus on isotropic random ball models
(except for Pilipauskaité and Surgailis, 2016). That is, the random fields have the
same distribution in each different direction. This feature, from the application
point of view, makes the model much less attractive. Second, the tightness of the
scaled random fields is difficult to establish. Usually random ball models are de-
fined as a random field {X (1)} em indexed by a family of measures M on R%. The
tightness of such random fields, after appropriate normalizations, is only established
for very restricted classes of M, see e.g. Breton and Gobard (2015); Breton and
Dombry (2011).

The goal of this paper is to establish limit theorems for a general class of random
ball models, and to remove the aforementioned two limitations.

First, we provide a general framework of random ball models exhibiting
anisotropic features and hence include all previously considered ones as special
cases. It is now well understood that a natural generalization of notion of self-
similarity, widely used in stochastic processes and time series, is the so-called
operator-scaling property for random fields introduced by Biermé et al. (2007).
A random field {Z;},cra is said to be (E, H)-operator-scaling, if

(Zeri}yema S {24}, forall ¢ > 0, (1.1)

where F is an appropriate d x d matrix, cZ := Y}7 (Flogc)¥/k! is also a ma-
trix, and H > 0. Taking F to be the identity matrix, the above says that the
random field Z is self-similar. The motivation of allowing general matrix F is to
generalize this notion to anisotropic random fields. Such random fields are often
of practical importance in various applications, and they also present theoretical
challenges. Families of anisotropic random fields are known, and path properties
have been investigated. See for example Biermé and Lacaux (2009); Li et al. (2015);
Meerschaert et al. (2013); Xiao (2009). At the same time, the development of limit
theorems for anisotropic random fields is still at an early stage. For some recent
results, see for example Biermé et al. (2017); Li and Xiao (2012); Wang (2014); Pu-
plinskaité and Surgailis (2015); Lavancier (2007); Durieu and Wang (2018+); Shen
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and Wang (2017). In this article, we also consider more general random sets than
balls, precisely sets of finite perimeter.

Second, we view the random ball models as distribution-valued random elements,
also known as generalized random fields, and establish weak convergence in the
space of tempered distributions. A complete description of self-similar generalized
Gaussian random fields was obtained by Dobrushin (1979) and allows to obtain
essentially all Gaussian, translation- and rotation-invariant, H-self-similar gener-
alized random field as scaling limits of a random balls model, see Biermé et al.
(2010). Beyond the Gaussian framework, generalized Lévy random field, including
stable generalized random field have been investigated by Unser and Tafti (2014),
where they are named as sparse stochastic processes. Distribution-valued random
variables and stochastic processes are already widely used to describe fluctuations
of empirical measures of complex particle systems, including notably interacting
particle systems (Kipnis and Landim, 1999) and branching particle systems (Hol-
ley and Stroock, 1978; Kipnis and Landim, 1999; Bojdecki et al., 2007; Li and Xiao,
2012), just to mention a few.

The paper is organized as follows. Section 2 presents background on generalized
random fields, the precise definition of the random ball model, and the four regimes
of convergence that we investigate. The limit theorems are stated in Section 3, while
their proofs are postponed in Section 6. In Section 4, we study statistical properties
of the limit random fields. To conclude, a pointwise representation is obtained in
Section 5 and some illustrations are given in the appendix.

Throughout, C' stands for real constants that may change values from line to
line. Without ambiguity, for z € R?, |z| denotes its Euclidean norm. We write
a v b=max(a,b) and a A b = min(a,b) for a,b e R.

2. Background and definitions

2.1. Generalized random fields. The standard references for generalized random
fields include notably Gel'fand and Vilenkin (1964); Gel'fand and Shilov (1964);
Dobrushin (1979); Kallianpur and Xiong (1995); Fernique (1967). In words, these
fields are defined as random variables with values in a space of distributions (or
generalized functions). To this end we consider the Schwartz space S(R?) of all
real-valued infinitely differentiable rapidly decreasing functions on R¢, and S’(R9)
its topological dual, the space of tempered distribution. As usual S(R?) is equipped
with the topology that corresponds to the following notion of convergence: f, — f
if and only if for all N e N:={0,1,2,...} and j = (j1,...,ja) € N¢

Ifn = fln,; = SuRg(l +12DM DY (fu = f) (2)] = 0, asn — o,

where D7 f(z) = % f(z) denotes the partial derivative of order j.
21" 02y

We will actually also consider the space
S1(RY) := {f e SRY); | f(z)dz = 0} :
Rd
Note that Sy(R?) = span {D7 f; f e S(RY),j e {0,1}%, 51 + -+ ja = 1}. For con-

venience, we also write So(R?) = S(R?) and thus we will be able to use S, (R?)
for n € {0,1} in the sequel. We denote by S/ (R¢) the topological dual of S, (R?)
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and by (-,-) the duality bracket. We usually consider two distinct topologies on
S! (R?). The strong topology is induced by the family of semi-norms

q(-) =sup|(-,f), B bounded in S,(R?).
feB

The weak topology on S/, (R?) is the topology induced by the family of semi-norms
1+, F)l, feSn(RY). A first remark is that both topologies generate the same Borel
o-field denoted by B(S!,(R?)), see Biermé et al. (2017).

A generalized random field is an S/,(R?)-valued random variable, that is a mea-
surable mapping X from a probability space (£2,.4,P) to (S, (R?), B(S/,(R%))). For
such a generalized random field X, we let its evaluation at f € S,(R?) be denoted
by X (f), which is a real random variable on the same probability space.

The law of a generalized random field X is uniquely determined by its charac-
teristic functional

Lx(f) ::J X dp, f e Su(RY).
Q
Further, X induces a family of random variables X(f) on ({,.4) indexed by f €
S, (R%), with characteristic functions given by

E (a‘tX(f)) - J XD P = Ly (tf), teR.
Q
By linearity, the finite-dimensional distributions of X are simply obtained with
Lx(arfr+--+arfy) =E (ei[‘“x(fl)+"'+a’“X(f’“)]) )

forall k> 1, ay,...,ap € R and fi,..., fr € Sp(R?).
In practice, however, given a family of real random variables {X (f)} es, (r¢) On
a probability space (2, A, P) satisfying

X(af +bg) =aX(f) +bX(g) a.s. foralla,beR, f,ge S,(R?), (2.1)

a priori it is not clear whether a corresponding S/, (R%)-valued random variable
exists. When this can be achieved, namely if there exists an S/, (R?)-valued random
variable X, possibly defined on another probability space (Q, A, P), such that for
all k=1, fi,..., fre Su(RY), Ay,..., Ay € B(R),

P(X(f1) € A, ..., X(fr) € Ap) :@(X(fl)eAl,...,X(fk)eAk),

we say that X is a version of X = {X(f)} ses, (ray, as in Definition 9.1.1 of Samorod-
nitsky and Taqqu (1994). Let us quote that this notion is weaker than the notion of
regularization from Ito (1983). Actually, a regularization X of X should be defined
on the same probability space (€2, .4, P) than X and satisfies X (f) = X(f) a.s. for
all f €S, (RY). However, when we deal with convergence in law for most of the part
of the paper, the notion of version is enough for our purpose: once the existence
of a version is proved, it suffices to work with the characteristic functionals of the
original individual random variables. At only a few occasions we shall establish
results in the stronger notion of regularization.

We recall below two fundamental theorems when working with limit theorems of
generalized random fields, both based on characteristic functionals. The following
theorem is a direct consequence of Minlos—Bochner’s theorem, see Corollary 2.2 in
Biermé et al. (2017).
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Theorem 2.1. Let X = {X(f)}es,®a) be a collection of real random variables
on (2, A,P) satisfying (2.1). If Lx : Sp(R?) — C is continuous then X admits a
version that is an S! (R%)-valued random variable.

Recall that a sequence of generalized random fields {X,,}m>1 converges in dis-
tribution to X, denoted by X,,, = X, in S/, (R?) given the strong topology if for all
¢ : S8 (RY) — R continuous for the strong topology and bounded,

| e, @) = [ eluaps ),

Sy, (R) me s @)

Similarly, X,, = X in S/ (R9) given the weak topology, if the above holds for all
¢ : 8 (RY) — R that is bounded and continuous with respect to the weak topology.
As a consequence of Lévy’s continuity theorem (Theorem 2.3 in Biermeé et al., 2017),
we can state the following result, see Corollary 2.4 in Biermé et al. (2017).

Theorem 2.2. Let {X,,}m>1, X be S, (RY)-valued random variables. The following
conditions are equivalent:

e X,, = X in S (RY) given the strong topology,

e X,, = X in S (RY) given the weak topology,

© Lx,,(f) = Lx(f) for all f € Su(RY).

Since both notions of convergence are equivalent, we shall just write X,, = X
in S/ (R%) in the sequel.

Proofs of Theorems 2.1 and 2.2: We refer to Fernique (1967) for the stated results
in the more general framework in terms of nuclear spaces. For the special case
S'(RY) = S)(R?), we refer to Biermé et al. (2017) where self-contained and simpli-
fied proofs can be found. These results can then be extended for S;(R?) by following
the idea of Proposition 2.1 from Dobrushin (1979). Let us quote that fixing a func-
tion ¢ € S(R?)\S;(R?), one can define the continuous map U : S} (R?) — S’(R9)
by U(L)(f) = L{r(f)), where for f € S(RY),

w(f) = [ —e(f)v e Si(RY),
with ¢(f) = (zu f(@)dz/ 3. ¢¥(x)dx. Hence any Sf(R%)-valued random variable X
coincides with the restriction of an S’(R%)-valued random variable Y, defined by
Y(f) = X(n(f)), f € S(RY). By using the so-defined map U and applying results
on S&'(R%), the desired results for S} (R?) follow. O

2.2. A generalized random ball model. Now we define the random ball model on R¢.
Throughout, the operator-scaling is associated to a d x d real matrix F, of which
all eigenvalues have strictly positive real parts, denoted by a; = --- = aq > 0. Let
q = tr(E) > 0 be the trace of the matrix E.

We consider the kernel operator defined for (z,7) € R? x (0,00) and f € S(R?),
by

185(w)i= | K@)y with KE(.p)i= 1o, (@) (22)
R L
Here and throughout, Bg(x,r) is the shifted and scaled “ball” given by
Bp(z,r) =z +rPB, zeRY r>0,

based on a fixed bounded measurable set B = R? with 0 € B, vg := Lebg(B) €
(0,00) and Lebg(0B) = 0, where Leb, is the Lebesgue measure on R%. Thus
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vy := Lebg(BEg(x,r)) = rvg. Note that we keep the name “random ball” from the
original model but here the set B can be a much more general set than a ball. We
only assume that B is a set of finite perimeter in the sense that

Per(B) := sup {J divp(z)dz : ¢ e CLHRYRY), ] < 1} < o, (2.3)
B

where C}(R?,R9) is the set of continuously differentiable functions with compact
support (e.g. B can be any bounded convex set). According to Theorem 14 in
Galerne (2011), (2.3) is equivalent to the fact that the covariogram gp : R? 3 x —
Leby(B n (z + B)) of the set B is Lipschitz, and thus there exists C' > 0 such that

Lebg(BA(z + B)) = 2(95(0) — gp(x)) < Clz|, for all z € R% (2.4)

We first define the model as a collection of random variables indexed by f €
S(R?), and then prove the existence of regularizations afterwards. The rescaled
random ball field is defined as

Xf(f) = fRde XRmT,:Ef(x)Np(dx,dr, dm), feSMRY), (2.5)

where N, is a Poisson random measure on R? x R, x R with intensity
X p)dzF(dr/p)G(dm).

Intuitively, the origins of random balls are distributed as a homogeneous Poisson
process with intensity A(p), and each random ball is scaled with a random radius
with distribution Fj,(dr) := F(dr/p), and is associated with a random weight m
with distribution G. Positions, scalings and weights are assumed to be independent.
There are a few natural assumptions on F' and G. First, the expected volume of a
random ball is assumed to be finite. That is,

vB Lh riF(dr) < 0. (2.6)

Moreover, we assume that, for some C'z > 0,
F(dr) =p(r)dr with p(r) ~Csr™ =7 asr — 0777, (2.7)

with the convention, 0° = 0 if § > 0 and 0° = « if § < 0. This condition is
introduced in a compact form for both zoom-in/out scalings to be explained in
Section 2.3. It reads as p(r) is regularly varying at 0 with index —1 — 3, only when
B < g; otherwise (2.6) will be violated. Similarly, p(r) is regularly varying at infinity
with index —1 — 8 when 8 > ¢. Next, for the random weights, their distribution
G is assumed to be integrable and in the domain of attraction of certain stable
distribution S, (c,b,0) with o € (1,2], 0 > 0, b € [—1,1]. That is, for independent

random variables M; with common distribution G,
M +---+ M,
nl/a

= So(0,b,0)  with a € (1,2]. (2.8)

A standard reference for stable distributions and processes is Samorodnitsky
and Taqqu (1994). Under (2.6) and (2.8) with a > 1, the random field (2.5) is
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well-defined and integrable. This follows from the fact

E(IXE(f))) < J

R4XRy X

. [m|T7 | £|(2)X(p)daF (dr/p)G(dm)

<A lfl,. [ o Far)

where M is a real random variable of distribution G' and |f[,, := §za |f(y)|dy.
Hence, a centered rescaled random ball field can be defined by

YO(f) = X7(H) —E(X7(). feSRY.
We come to the generalized random field interpretation of X f and YPE .

Proposition 2.3. Under assumption (2.6), Xf and YpE are almost surely elements

of S'(R?) and therefore of S;(R?). As a consequence, they admit reqularizations in
S'(R?) and therefore in S} (RY).

Proof: Let us quote that f — TF f(z) e &'(R?), and moreover for all k > 0,
IT,7 f(2)] < <f (1+ |y|)_kdy> sup (1 + [2))*] £ (2)]-
Bg(z,r) zeRd

It follows that,
X7 ()] < Ch Suﬂg(l +12)*1f(2)],
ZE

with
CE, = f im| (1 + [yl)~*dyA, (dz, dr, dm).
RIxRy xR Bg(z,r)
Note that
B (CE) = A0 | jml (1 + y]) " dydeF, (dr)G(dm)
RIxR4 xR Bg(z,r)

= Mo E(Mes [ i ([ @ ).

which is finite under assumption (2.6) as soon as k > d. Hence, ka < o a.s. for
k > d, so that X € S'(R?) a.s. Since we also have f — E(XF(f)) € S'(R?) by
taking expectation in the previous computations, it follows that the centered field
YPE is also in S’'(R?) a.s. The last part of the proposition is easy since to obtain a

regularization in S’'(R%) of a process X which is almost surely element of S’(R?),
it suffices to modify it by setting X (w) = 0 for the w € 2 such that X (w) ¢ S’(R?),
see Fernique (1967), p.40. |

The limit theorems will be based on the characteristic functionals of the centered
rescaled random fields

Lyr(f) = Eexp (iY2()) = exp ( J}R ¢G<Tff<x>>A<p>dpr<dr>>  f e Su(RY),

dXR+
(2.9)
with

b (t) = J(eimt —1—imt)G(dm) = Las(t) — 1 —#E(M), teR,  (2.10)

where M is a real random variable of distribution G satisfying (2.8).
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2.3. Zoom-in/out scalings and four regimes. There are two scalings to be considered
in the limit theorems. Recall F,(dr) = F(dr/p). The case p — oo corresponds to
enlarging the size of each ball, and p — 0 corresponds to shrinking the size of each
ball. We refer to the two scalings as the zoom-in and zoom-out scalings, respectively.

Next, for each type of scaling, there are four qualitatively different regimes. Since
the spatial dependence of the random field is essentially determined by overlaps
of random balls, heuristically we compute the expected weight of rescaled balls
covering a fixed point y, denoted by m(p), independent from y by stationarity. It
is natural to expect m(p) — ¢ € [0, 0], and we distinguish oo, (0,00) and 0 as three
different cases. Take the zoom-in scaling case first. Clearly only small balls, say
with radius less than 1 (before the p-scaling and the constant 1 is irrelevant) should
matter, and we compute

min(p) :=E f M1 yen (e, Hr<yNp(de, dr, dm)
RIxRy xR

1

— BN (pJos | 77,

with
1 1
)\(p)f r4F,(dr) ~ (Cﬁj Tqﬂldr) Mp)p? as p— .
0 0

Similarly for the zoom-out case, we compute for number of balls with radius larger
than 1,

Mmout(p) = E J miyeBy (@) =1y Np(dz, dr, dm)
RIxRy xR

o0]

sznww£7wwwx

with

0 0
/\(p)f r9F,(dr) ~ (Cﬁf rqgldr) Mp)p®  asp— 0.
1 1
The calculations above made use of (2.7), and also explain why it is a reasonable
assumption. Notice that the constant is qualitatively irrelevant, only the common
term A\(p)p” matters, and both cases of scaling can be summarized in the compact
form of p — 0774,
In summary, there are naturally three regimes of interest, characterized by

o0 (dense regime),
Mp)p® = { ce(0,00) (intermediate regime), as p — 0779,
0 ((very-)sparse regime),

where within the case A(p)p” — 0 we shall further identify two sub-regimes, named
as sparse and very-sparse regimes in the sequel. We shall establish limit theorems
for different regimes separately, and in each regime our limit theorem and the proof
unify both zoom-in and zoom-out scalings (only zoom-out scaling in the very-sparse
regime). Furthermore, in each regime we specify two parameters, 8 on the tails of
the radius of random balls, and n indicating the zoom-in (n = 1) and zoom-out
(n = 0) scalings.
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3. Scaling limits

We will treat the four regimes separately. In each regime, we first introduce the
limit field as stochastic integral, then show the existence of its generalized random
field version by Minlos—Bochner’s theorem and then prove the weak convergence
by Lévy’s continuity theorem. For easy reading, all the proofs of this section are
postponed to Section 6. The limit fields appearing here are further investigated in
the next sections.

3.1. Dense regime. In the dense regime, we consider
Ap)p® — 0 as p— 0777,
and the admissible range of parameters § and n is

B € (q,aq) n =0 zoom-out scaling,

Be(g—aq,q) mn=1 zoom-in scaling. (3.1)

The following field appears in the limit. Let o € (1,2], 0 > 0 and b € [—1,1]
be given by (2.8) and Cg > 0 be given by (2.7). Let M, g be an a-stable random
measure on R? x R, with control measure aaC’ﬁr*kﬁ drdz, and constant skewness
function b. For f € S,,(R9), let us define the stochastic integral

ZE5(f) = J TEF f(x) M, 5(dr, dz). (3.2)
REIxXRy

See Samorodnitsky and Taqqu (1994) for more background on stochastic integrals
with respect to a-stable random measures.

Proposition 3.1. Let a € (1,2]. For B,n as in (3.1), the process Zfﬁ =
{Zoliﬁ(f)}fesn(Rd) in (3.2) is well-defined, has characteristic functional

Lo, (1) = expd ~Coo® | (TEF) (1 ibe (T8 () tan ) 1P
> R xR, 2
(3.3)
where €(s) = sign(s), and admits a version with values in S! (RY).

Then, we can consider weak convergence in S/, (R?) and state the limit theorem
in the dense regime.

Theorem 3.2. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.1), if n1(p) := pPA(p) — 0 as p — 0579, then
L ye_ g8 pq
Wyp :ZQ,B GSpHO
in S (RY).

Remark 3.3. We let {Zfﬁ (f)} ses, (rey denote the stochastic process indexed by f
via (3.2), and the same notation ZZ ; in Theorem 3.2 for the corresponding version
taking values in S/ (R9). Similar notations are used for the other regimes.
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3.2. Intermediate regime. In the intermediate regime, we consider
Mp)p? —a?™Pasp—0°"7 with ae(0,0). (3.4)

The admissible range of parameters § and n is the same (3.1) as in the dense regime.
In this case, the limit field is represented by a Poisson integral. For a € (0,0) and
f € S(R?), we first define

TES@) = | Laoraten () f(0)dy = T, f(a~Pa) (35)

and we consider the Poisson integral J, f% 5 defined, for f € S, (R?), by
JE () = J mTE, §(2)Ns(dr, de, dm), (3.6)
RIXRy xRy

where J\~/'g is the compensated Poisson random measure on R x R, x R, with
intensity Cgr~!=PdxdrG(dm), with Cg > 0 given in (2.7). For more background
on Poisson integrals, see for example Kallenberg (1997).

Proposition 3.4. Let a € (0,00). For 8,n as in (3.1), the process Jfa,a in (3.6)
is well-defined on S, (R?), has characteristic functional

EJE

a,a,B

(f) = exp { L @(Tﬁf(x))%rlﬁdrdx}, (3.7)

where ¢ is defined by (2.10) and admits a version with values in S! (R9).
The limit theorem in the intermediate regime is the following.

Theorem 3.5. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.1) and (3.4),

YpEzjfaﬁ as p— 0979
in S (RY).

3.3. Sparse regime. The sparse regime correspond to
Mp)p® —0asp—0°"7 with Xp)— 0977, (3.8)
The admissible range of parameters of 5 and n is

B € (q,0q) n =0 zoom-out scaling,

Be(q?/(q+aq),q) n=1 zoom-in scaling. (3.9)

Set v = B/q € (¢/(q + aq),1) U (1,). Let M,sl) be a y-stable random measure
having control measure oy  dx with

1y
01,4 = VB (C’gqlf (1- cos(r))ril*ﬁydrf |m|7G(dm)> ,
Ry R

and constant skewness function
S €(m)|m|"G(dm)

byi= - i [m[G(dm)

We define, for f e S(R?),

ZP() = | f@)M) ().
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Note that ZA(YI)( f) is well-defined since f € S(R?) = L7Y(R?) and its characteristic
functional is given by

L) = e (<ol [ 1@ (L= ibe(f@ ) as). G0

Proposition 3.6. For a € (1,2] and v € (q/(q + aq),1) U (1, ), the process Zf,l)
admits a version with values in Sh(R?) = S;(R?).

Theorem 3.7. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.8) and (3.9) with na(p) := (M(p)/?p)? and v = B/q, we have

YE =z asp— 0P
na(p) * ’

in 8! (RY).

Remark 3.8. Note that the result in the case 8 € (¢?/(q + aaq),q) is also new for the
isotropic case when F = I; (the identity matrix).

3.4. Very-sparse regime. In this regime, consider
Mp)p”® — 0, \(p) — 0 as p — 0. (3.11)
The admissible range of parameters for the very-sparse regime is
B e (ag,0) n=0 zoom-out scaling. (3.12)

Let M(g) be a a-stable random measure having control measure o3 odz with

1/«
09,0 1= 0UB (J To‘qF(dr)>
Ry

and constant skewness function b. For f € S(RY), we set
Z@(f) = | Fa)MP(dz).
Rd
Proposition 3.9. For « € (1,2], the process Z((f) admits a version with values in
Sh(R?).
Theorem 3.10. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.11) and (3.12), with n3(p) := M(p)/*p?,

1
—YF = Z((f) as p— 0
na(p) ¢ ’

in SH(R?).

3.5. Summary. For comparison, we summarize in a single statement the limit the-
orems of the different regimes.
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Theorem 3.11. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
We have the following weak convergence in S.,(R%):

1 E E : 8 I
(dense) WYP =Zy5 if Mp)p® — o0,B,n asin (3.1),
(intermediate) YPE = ijaﬁ if Mp)p® — a8 € (0,:),8,n as in (3.1),
1 . _ L
(sparse) WYPE = Zél/gz if Mp)p® — 0, \(p) — 0978 3, n as in (3.9),

1
(very sparse) WYPE = Z@ if X(p)p® — 0,\(p) — 0, 8,1 as in (3.12),

where in all cases the limit is considered as p — 0579,

4. Properties of the limit fields

In this section, we provide some properties of the limit generalized random fields.
In the dense and intermediate regimes, the limit generalized random fields explicitly
depend on F, and in particular so are their anisotropic properties. For the sparse
and very-sparse regimes, all the dependence structures in the discrete models are
not observable in the limit, and thus the limit generalized random fields have no
specific anisotropic properties. Following Dobrushin (1979), using duality, we can
define the following groups of transformations on S, (R?):

e the group of shift transformations 7 = {73 }j,cpa:
mf(t) = f(t—h), feS,(R?), heR? teR%
e the group of E-operator-scaling transformations A¥ = {§F Fee(0,00):
SEF(t) = c1f(cFt), feS.(RY), ce(0,m), ¢ =tr(E), teR%
Their analogous 7, AF on &/ (R9) are then defined by
T L(f) == L(mf), and 67 L(f) := L(5; f),

for L € S/ (R%). Let us note that when the tempered distribution L is given by a
function g, one recovers that 7, L is given by the function g(- + h) and 6¥ L is given
by the function g(c¥-), thanks to the normalization term.

Proposition 4.1. Let a € (1,2]. For B8,n as in (3.1), the generalized random field
ZE g in (3.2) is
e shift-invariant: Yh € R?,
™mZEs L 25,
e (E, H)-operator-scaling for H = % € (—q(1-1/a),0)u(0,a4/c): Ve > 0,
EyE d HyE
0.2 5 =0C"2Zy g

Let us remark that, following Dobrushin (1979), the first property is called the
stationary n-th increments while the second one with E = [; is the self-similarity

property.
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Proof: 1t suffices to compute the characteristic functional. Observe that for f €
S.(R), one has for all h e R4,

725 S f) = f TE f(x — )My (de, dr) £ ZE (),
RIxR 4

by a change of variable, while for all ¢ > 0,

28 (57 f) = f TSP f(2) Mo p(de, dr)
RIxR 4

J- Trb;cf(c_Ex)Ma,ﬁ(dxa dr)

R xR

d c(q—B)/aJ TP f () My, p(dx, dr) = 9P/ ZE (),
R xR

where the third step also followed from a change of variable argument. O

For the intermediate case, the limit random field .J fa, 5 in (3.6) is not E-operator-
scaling but it has aggregate E-operator-scaling property as described below, gen-
eralizing aggregate similarity property introduced by Biermé et al. (2010).

Proposition 4.2. Under the assumption of Theorem 5.5,

a,a,B?

k
08 Ty 2 Y TED  for all ke N,
=1

,,,,,

1 E E B—

WJ%O{,B:Z%[; (J,S(Z*)O q.
Proof: The first part of the proof follows from straightforward calculation of char-
acteristic functionals, with a similar change of variable argument as above. The
second part of the proof follows from convergence of characteristic functionals for
random variables in the domain of attractions of S, (o, b,0). The details are omit-
ted. O

At last, remark that in the sparse and very-sparse regimes, the limit random fields
have essentially no dependence structure, as the limit random fields are stochastic
integrals with respect to stable random measures with constant control measure
on R?. Thus they inherit no specific anisotropic properties. Nevertheless, for any
E’ satisfying the same assumption as E with possibly different eigenvalues, writing
¢ = tr(E’), it can be shown that

55 740 4 15 70
for i = 1,2 with legitimate parameter 6.

5. Comments on pointwise representation

Given a tempered distribution L € S'(R?), it is a natural question to wonder if
it may be represented by a Borel measurable function g, that is

vFeS®Y. L= [ fatar
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We say that a generalized random field X admits a pointwise reprensentation if
there exists a measurable random field {X (t)};cgre, meaning as in Definition 9.4.1
of Samorodnitsky and Taqqu (1994) that X : Q x RY — R is a jointly measurable
function, such that
X(f) = | R@rwdr, e sE.
R
Conversely, we have the following property.
Proposition 5.1. Let {X(t)}teRd be a measurable random field. If there exists
k e N such that
| @i e @ <o
Rd

then the random field X, defined on S,(RY) by X(f) = (. X () f(t)dt, admits a
regularization that is a generalized random field. Moreover, if)? is (E, H)-operator-
scaling for some H > 0 in the sense of (1.1), then X is (E, H)-operator-scaling in
the sense of Proposition /.1.

Proof: Under the assumption, one checks that for all f € S, (R%),

[ 1R @@l < usup -+ 1D 17

zeR4

where the random constant C = {p.(1 + |t|)’k\)/(\'(t)|dt is a.s. finite. This implies
that the linear random field X is well-defined and a.s. continuous. Hence there exists
a regularization of X on &/ (R%), see Fernique (1967), p.40. The last property of
the proposition is straightforward. O

Our centered rescaled random ball field YpE defined in Section 2 clearly admits

a pointwise representation where ?pE =X f —-EX f and
)A(f(t) = f mKE (z, )N, (dz,dr,dm), teR?,
RIxRy xR

with the same Poisson random measure N, than in (2.5). Let us consider the
limit generalized random field Zo}i 5 of the dense regime in the case of symmetric
weights (b = 0). Actually, there are two situations that we treated separately in
the following sub-sections.

5.1. The case f € (¢ — aq,q) and H = % € (0,a4/c). In this case, as proved in
Proposition 5.2 below, Z f 5 admits a pointwise representation with

Zo]iﬁ(t) = J (]-BE(a:,r)(t) — lBE(m,r)(O))Ma,ﬁ(dra dﬂf), te Rd,
R xR
satisfying (1.1) and M, g is the same as in the representation of Zﬁﬁ. Let us
introduce C,(t) = {(x,r);7~F(z — t) € B} and note that

ZE (1) = Mas (Co(t) 0 C(0)°) — Mag (Co(£)° 1 C(0), teRe

Until here we do not need to assume that M, g has skewness function b = 0.
With the assumption that M, g is symmetric, one can check that

{Zfﬁ(t)} P2t (Mo s (Vi) hyepe (5.1)

teRd
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with V; = C,(t)AC,(0). That is, the random field ZE has a Chentsov’s type
representatlon (see Samorodnitsky and Taqqu, 1994, Chap 8). In particular, for
H= € (0, aq/) the random field Z ‘5 generalizes isotropic self-similar (o, H)-
Takenaka random fields (see p.405 of Samorodnitsky and Taqqu, 1994), defined by
choosing the Euclidean unit ball for B and E = I, with ag = 1.

The representation (5.1) allows us to provide several simulations of our operator-
scaling random ball model with symmetric a-stable (Sa.S) weights, following similar
ideas as in Biermé et al. (2013). See Figures A.1-A.3 in the appendix.
Proposition 5.2. For 8 € (q—aq,q), there exists a measurable version on s also

denoted by 20}?,67 such that ZEﬁ coincides in S| (RY) with the generalized random
field

feSRY) — ) ZE 5(t) f(t)dt. (5.2)
Proof: First note that

| 1 (0 = Loy O = 18P,

with h(z) = Lebg(BA(z 4+ B)). According to (2.4), h satisfies h(z) < C(]z| A 1) for
some constant C > 0. It follows that

J |1BE($ 7“)<t) 1BE (z,r) ( )|a acﬂr 1= ﬁd?“dl‘
Re xR+ ’
< CUC“Cgf ri(jr=Ft| A Dr 1 Pdr
R+

< ca@cﬁf P2 ) A 1) Bdr(1 4 [f])
Ry
= Cop(L+t]),
with C’Eﬁ = Co®Cp {5, (|[r#] A 1)ri=P~tdr < oo and |- || the subordinated norm,

since € (¢ — aq,q). Hence Zg 5(t) is well-defined and is a Sa.S random variable

with scale parameter bounded by (C'f,ﬁ(l + |t|)> Ua, for every t € R?. According
to Theorem 11.1.1 in Samorodnitsky and Taqqu (1994) there exists a measurable
version of 25 5 since
(1) (t,z,r) e RE X R x RY = (1,35, (t) — 1B, (2,r)(0)) € R is measurable;
(2) the control measure 0®Cgr—'=#drdz is o-finite.
Noting that by Property 1.2.17 in Samorodnitsky and Taqqu (1994), we have

~ 1/a
E(1Z25(1)]) <E(Sal) (CE5(1+ 1) (5.3)
with S a SaS random variable of scale parameter 1, we may define f € S (Rd) —
Spa 22 5(t) f(t)dt that is a.s. in S’(R?), thanks to Proposition 5.1.

Now 1t remains to show that the right-hand side of (5.2) has the same stable law
as Zgﬁ(f) = SRde TE f(z)M, s(dx,dr). For this we recall that

f Zop(0)f (t)dt < j (f (Lps (e (D) = Lo (0) (¢ )dt) o, (d dr),
(5.4)
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provided that
J |25,5(t)|f(t)dt < o0 a.s.,
Rd

see Theorem 11.4.1 in Samorodnitsky and Tagqu (1994). Since f decays rapidly, the
above follows from (5.3) and hence (5.4) holds. To complete the proof, it remains
to remark that for f € S;(R%), one has

[ Ao () = 1y @) = TE 5(0)
(|

5.2. The case 5 € (q,0q) and H = % € (—q(1 — 1/a),0). In this case, H < 0
and we do not have direct pointwise representation, but the limit field Z f 5 can be
obtained as the derivative (in the sense of distributions) of a pointwise process. For
all t € R?, following the same idea as for the definition of Zofiﬂ(f) for f e S(RY),
we can define the random variable
Zgﬁ(t) = G(tl) s G(td) f TrEl[O’t] (w)Ma,g(d'l’, d:c),
RIXRy

where the random measure M, g is the same as in (3.2), [0,t] = H?Zl[(),ti], and
€(t;) is the sign of ¢;. The family Zfﬁ = {Zfﬁ (t)}tere 1s a measurable random field

that is for all f € S(R?),
2855 = (-1 |

R
This consideration is analogous to Theorem 2.6 and Lemma 3.7 in Breton and
Dombry (2011) for E = I; and 8 > q = d in D'(R?) the space of distribution
instead of S’(R%). We thus refer to Breton and Dombry (2011) for technical details.

) ZE ;(t)DV f(t)dt.

6. Proofs of the main results

6.1. Preliminary results. The proofs of our limit theorems follow the same scheme
as in Biermé et al. (2010) or Breton and Dombry (2009) to establish the convergence
of the characteristic functions. They use the two following lemmas concerning
conditions (2.7) and (2.8).

Lemma 6.1 (Lemma 2.4 in Biermé et al., 2010, Lemma 3.2 in Breton and Dombry,
2009). Under the assumption (2.7), if {gp}p>0, g are continuous functions on R,
such that

lim |g(r) —g,(r)| = 0, (6.1)
p—08—a
and for some 0 < f_ < 8 < B4 there exists a constant C > 0 such that
lg(r)] < C(rP= A rPt), (6.2)

195(r)| < C(r7= A rP),
for all v > 0, then, for Cg as in (2.7),

[ anrBtar) ~ o [ gt P, as 07,

R, R,



Generalized operator-scaling random ball model 1417

Lemma 6.2 (Lemma 3.1 in Breton and Dombry, 2009). Suppose that M is in the
domain of attraction of S, (0,b,0) for some a > 1, 0 >0 and be R. Then

6G(t) = Lar(t) — 1 — itE(M) ~ —[t|®bapo(t), ast— 0,

with
Dap,o(t) = 0%(1 — ibe(t) tan(am/2)), (6.4)
where €(t) = sign(t). Furthermore, there exists C > 0 such that for all t € R,
[¢a(t)] < CJe[*. (6.5)

The key ingredients for our generalized random ball model are the precise conti-
nuity properties of the operators T)F stated in the following proposition. Recall that
we write v, = Lebq(Bg(0,7)) = rfvp, r > 0, and for v > 0, [ f|7, = §p. [f(z)["dz.

Proposition 6.3. (i) For all v € [1,2], r > 0, and f € S(R?),

ITE £l <ol fllpns (6.6)
and

ITE flly < o711, (6.7)

As a consequence, for v € (1,2] and B € (q,7q), there exists some constant C > 0
such that

TS < OIS S e S, (63)
with If1, =71, v £,
(i) For all y € [1,2], 7 > 1, and f € S;(RY),
ITE£I7, < Cri=®(|logr| v 1)~ £ fRd lyllf (y)ldy, (6.9)

where g < d is the number of eigenvalues of E having the minimal real part aq
(counted with multiplicities). As a consequence, for 5 € (¢ — aq,q) there exists a
constant C' such that

| mEr e < oun | o+l Fesi®D). (610)
Proof: (i) Note that

ITE S, o= [ T8 s@lde < [ [ kP rw)lduds.
]Rd Rd ]Rd
with KF(z,y) = 15, (y) by (2.2). Hence, by Fubini’s theorem,
ITEfl,, <ol fl,.- (6.11)

Moreover,

A2, = [ 1 f@ P < [ o [ KE@)lf)Pdyds = 21712,

where we first applied the Cauchy—Schwarz inequality, and Fubini’s theorem at the
end. According to the Riesz—Thorin interpolation theorem (see Bergh and Lofstrom
(1976)), combining this with (6.11), we get (6.6). Moreover, since by the Cauchy—
Schwarz inequality we also have

TP I, < f f KP (@) f(o)ldyl s de = o]
Rd JRd

L1’
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it follows by Holder’s inequality that, for p > 1 such that v = 1/p + 2(1 — 1/p),
ITEFI, < ITEFIVPITE FIPE-1P) < ol £L ol =2 2012 — o | £,

Since v, = rfvg with ¢ = tr(E) we can conclude that for 8 € (q,vq), by (6.6)
and (6.7),

TEFI v~ dr < ((uslf]7,) v WEI£1” rd=P=t A 9By,
H 1 B 2%
R, L r R,

Therefore we have proved (6.8).

(ii) The assumption that f € Si(R?) implies that {;, f(z)dz = 0 so that
TE (@) = | K@) fo)ds,
with f( (#,9) = 1B, (2;)(¥) — 1B4(2,r)(0). Then, by Holder’s inequality, one has

~

ITE 7, = \ J (Lot (@) — Lo () F)dy| da

<u [ ( f L0000 0) = Lo @' 170y ) do

fRd 15,0 (@) = g0, (x)‘v dx = Leby(Bg(y,7)ABg(0,1)) = r?h(r Fy)

Also,

with h(z) = Lebg(Bg(0,1)ABg(z,1)) = Lebys(BA(z + B)), that does not depend
on E. By (2.4), h(y) < C|y| for all y € R? and it follows that,

TEFIL, < U [ oo Pl . (612)

Recall that according to the Jordan decomposition theorem, given E, there exists
an invertible matrix P such that D = P~'EP has the real canonical form

Ji 0

0 JIp
where p corresponds to the number of distinct real parts of eigenvalues and each
block matrix J is either

(i) a Jordan cell matrix of size ¢

a 0 0
1 a

0
0 1 a

with a a real eigenvalue of F, or
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(ii) a 2¢ x 2¢ matrix in form of

A 0

I A . a b 10
with A_(b a)andlg—<0 1),

0 o A

with a £ b (b # 0) being complex conjugated eigenvalues of E.

In either case, for the subordinated norm |-| of the Euclidean norm on R?, for each
block J with the corresponding real part of eigenvalue denoted by a, it is shown in
Lemma 3.2 of Biermé and Lacaux (2009) that

r* < 7| < V2eer®(|logr| v 1)1, for all r > 0.

(This is slightly different from Lemma 3.2 in Biermé and Lacaux, 2009, but can be
easily established by following the proof carefully.) Recall that it is assumed that
the real parts of eigenvalues of F satisfy a; = --- = aq > 0. Let £; be the size of
the Jordan block associated with aq and note that the other Jordan blocks, if they
exist, are associated with a strictly greater real part. Then, there exists a constant
C > 0, such that

[r®] < Cra(logr| v 1)1, for all r € (0,1).

Now, it follows from (6.12) that for f € S;(R?) one has for r > 1,
ITE £17, < Cromee(jlogr| v D) f]7 ] fRd lyf (y)ldy.

Hence, for B € (¢ — aq,q), f € S1(R?), combining the above inequality for » > 1
with (6.7) for r < 1, we obtain

|2 f17, e Par <O (1A ] @+ [yDIf ()ldy
R4+ L Rd
X J pm BTG A (pr AT (| log | v 1) 5 dr,
Ry
which proves (6.10). O

6.2. Dense regime.

Proof of Proposition 5.1: First, the stochastic integral Zofiﬂ(f) in (3.2) is well-
defined as soon as

f I TF f(x)|*r~ " Pdrde = J ITE flo rPdr < o0
RIXRy

Ry
and this condition follows from Proposition 6.3, with v = «, 8, n as in (3.1).
It is well known (see Samorodnitsky and Taqqu, 1994, Chap. 3) that the charac-
teristic functional ﬁZfﬁ of Zfﬁ on S, (R%) is given by (3.3). Now, according to
Theorem 2.1, to prove the existence of a generalized-random-field version of Z f 8
it suffices to prove that EZC’;{B is continuous on S, (R?), that is, for all {fx}ren and

f in S, (R9) such that fr — f in S, (R?), limg_, o ,CZEﬂ(fk-) = EzEﬁ(f). This shall
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follow from the convergence in distribution of the random variables Z f P (f—f) to
0 as k — o0, or equivalently from

lim ITE(fx = Par™ " Pdr = 0.

k=0 Jrdxgr
By (6.8) and (6.10) of Proposition 6.3 with v = «, this is straightforward, since
fr — f — 0in S, (R?) clearly implies that the upper bounds also tend to 0. |

Proof of Theorem 5.2: Note that, by Theorem 2.2, the result follows from the point-
wise convergence of the characterlstlc functional. Further by (2.9), we clearly have
for f e S, (R9),

2 €T
Loty vy (f) = exp ( oo oo (i) A<p>szp<dr>> .

Since n1(p) — oo, by Lemma 6.2,
T, f(x) 1 a -
&e (()(1/0‘> ~ _nl(p)|TrEf(x)| ¢a,b,o’(TrEf(x))> asp—>05 1,

for ¢up,- defined in (6.4). Hence, under (2.7), one can apply Lemma 6.1 to prove
that

Loy(py-11ove(F) = Lz ().

Indeed, recall the uniform bound (6.5) on ¢¢ and, thanks to Proposition 6.3, the
fact that for n = 0,

1T fI3. < CelfI2, . (7 AT,

LlALe
and for n =1,

Tl < Colflz ([ 0+ DLWy ) 00 a v o)l

We can then apply Lemma 6.1 with g,(r) = n1(p) §za dc(n1(p)"VTE f(z))dz to
both cases 8 € (q,aq) and S € (¢ — aq, q). O

6.3. Intermediate regime.

Proof of Proposition 3./: Recall that the Poisson integral Ja a,p(f) in (3.6) is well-
defined as soon as

f (ImTE, f(z)| A |[mTE, f(2)]?) r ' PdadrG(dm) < .
R xRy xRy ' ’
Let us remark that
imT, f(@)| A mTE, f(2)? < [mTr, f ()],
for any v € [1,2]. Hence, for 8 € (¢ — aq,q) U (g, aq), choosing v € [1, &) such that
B € (¢ — aa,vq), one has
J ImTE, f () P dedrG(dm) < (|M|W)J ITE, f7. v ~Pdr < o,
REIXRy xRy +

in view of Proposition 6.3, since |TZ, f[7, = a?| T/afH (see (3.5)). It follows that
the Poisson integral J, fa p(f) is well-defined for all f € Sn(Rd) and the characteristic
functional £ ;=& . of J «,p 18 given by (3.7).
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Again, to show the existence of a version of J, ; with values in S, (R9), using
Theorem 2.1, it is sufficient to prove that the characteristic functional L ;r . is
continuous on S,(R?). Let 3 € (¢ — aq,q) U (q,q) and assume that fr — 0 in
Sn(R?). We will show that Jfa’ﬁ(fk) converges in LY to 0, which is sufficient to
prove the continuity of £ ;& . Actually, following the proof of Proposition 3.1 in
Breton and Dombry (2011), we can bound y-moments of the real random variable
JE, 5(f) for f e Sy(RY). Since JF, 5(f) is centered, for v € [1,a), following
Gaigalas (2006) page 461 and using Lemma 2 and Lemma 4 of von Bahr and
Esseen (1965),

B (7N < A0) [ (1= [z, 0] ) o7t an,

with A(v) := (7 (1 — cosz)z~'77dz)~ < c0. But

Q0

‘L*,JE (ef)‘ > exp (—0|e|af Ny |Tfaf(x)|a05r_l_5drdx>,

a,o,f R x

using the upper bound on |¢¢| given (6.5). It follows that for v € [1, @) one has

E (|J£a’ﬁ(f)\7) < A(W)J (1 —exp (—20|9|O‘f HTTEafH‘zQ Cgr_l_ﬁdr> 0~17do
0 R+

o]

v/
< A(7)A(0,) (c | |T£af|sacm—1—ﬁdr) ,
R+

with A(a,7) := Sgo(l — exp(—s%))s7177ds < o. Hence the result follows from

Proposition 6.3 since [T}7, f]|?, = aqHTﬁafH‘L)‘a. O

Proof of Theorem 5.5: Again, by Theorem 2.2, the result follows from the conver-
gence of the characteristic functionals. Observe that,

»CJE

a,a,f

() = exp { |, asG(Tfaf(x))cﬁr-l-Bdrdm}

—exp{Cs [ oa(TEf)ar s Pdsdy
RIXRy

by the changes of variables y = a~¥x and s = r/a. The rest of the proof can be

done similarly as for Theorem 3.2, starting from (2.9) and applying Lemma 6.1

with g(r) = g,(r) = §za ¢ (TF f(2))dz and the help of Proposition 6.3. O

6.4. Sparse regime.

Proof of Proposition 3.0: Using Theorem 2.1, it is sufficient to prove that Zf,l)(fk)
converges in distribution to 0 when f;, — 0 in S(R?). This last assertion is obvious
since convergence in S(R?) implies convergence in L (R?). O

To prove Theorem 3.7, we consider the maximal function f* associated to a
function f of S(RY),

*(2) := sup
f ( ) r>0 rivp

j 15pem @) F@)dy, = eRY

and we shall need the following lemma.
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Lemma 6.4. For all f € S(R?) and all o > 1, f* € L*(RY).

Proof: By Lemma 6.1.5 in Meerschaert and Scheffler (2004), there exists a norm
|- o on R? such that the mapping (0,0) x {z € R? | |z = 1} — RN{0},
(t,0) — t¥0, is a homeomorphism. Further, the function t +— [t¥z]y is increasing
for all x € R?. Thus, any 2 € R%\{0} can be uniquely written as z = 7(x)%0(x)
with 7(z) > 0 and [0(x)]|o = 1. The function 7 is a continuous function that can
be extended to R? by setting 7(0) = 0. By Lemma 2.2 in Biermé et al. (2007), one
can find k > 1 such that

T(x+y) <k(r(z) +7(Y)). (6.13)

Therefore we can introduce the function 6(z,y) = 7(y — z), =,y € R?, which is a
quasi-distance on R?. We also introduce the sets

Cp(z,r)={yeRY|é(z,y) <r}, r>0. (6.14)

0)-
With no loss of generality we assume that rqg = 1 and we denote C' := Cg(0,1).
Thus Cg(z,r) = 2 + rPC for all x € R? and r > 0, and Bg(z,7) < Cg(z,7). We
infer that for all « € RY,

)

Since B is a bounded subset of R?, we can find a real ry > 0 such that B < Cg(0,7¢)
(

vc
— sup
vB r>0 rc

(@) < J Lo ey )| (@)]dy.

The desired result is now a consequence of Theorem 1 and Example 2.4 in Stein
(1993). (]

Proof of Theorem 5.7: By Theorem 2.2, it is sufficient to prove the convergence of
the characteristic functionals. The characteristic functional of ns (p)_lYpE is given
by, recalling that F,(dr) = F(dr/p),

2 X
Lostprvp () = exp { [, 2wse (A dvap(dr)}

TE e f(@)
— exp { fRdeJr A(p)de (%) R R (dr)} .

‘We shall show that

TE e f(2)
J Ap)oc (2(p) dzF,,,»-1a(dr)
R xR

na(p)

- Cgf dc(f(x)vprd)r~Pdrde  as p— 0°~9 and A(p) — 0977, (6.15)
RIxR4

From this, we infer that

dxRy

Ly (p)-1ve(f) = exp {Cﬂ J}R ¢G(f($)UB7"q)7”_1_ﬂdex} = ﬁzgn (f),

for £, (f) given in (3.10), which completes the proof. The last equality above

is obtained by following the same lines as in Breton and Dombry (2009) pages
3650-3651.
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To prove (6.15), recalling that \(p)p®na(p)~P/9 = 1, it suffices to check the
conditions of Lemma 6.1 for

TE e f(@)
gp(r) = JRd e (%) dr and g(r J éc(f(x)vprt)dz

First, remark that for f € S, (R?),

T f(x)
na(p)t/ar N q
na(p) p—08~a ver'f(@)

for dz-almost all z, so that
Tr f(x)
na(p)t/r N q
v ( na(p) ) oo 0P I0)
for dz-almost all = by continuity of ¢¢. But, by Lemma 6.2,

b sz(p)l/‘lrf(m) <C sz(p)”‘lrf(m)
n2(p) n2(p)

[e3

< C(upr)® f*(x)*.

Since f* belongs to L*(RY) by Lemma 6.4, Condition (6.1) follows by Lebesgue’s
theorem.

Next, for Condition (6.2), we deal with the cases n = 0 and n = 1 separately.
Now, since |pg(u)| < C(Ju| A |u|¥) and f e L' (R?) n L (RY),

Cf zyoprd| A |f(@)vprd|*de < C(|f] cop v [ f]7.vE) (T A7),

This establishes Condition (6.2) for 5 € (¢, aq) and n = 0 with 5_ = g and 8+ = aq.
Next, when f € §;(R), remark that

g(r) = | ¢c(f(@)vpride = | oa(f(z)vpr)de,

with ¢ (u) = {(e™* —1)G(dm) so that now |¢g (u)| < C(1 A |u|®) for any & € (0, 1].
Hence

lg(r)| < Co I, .

Choosing § = ¢q/(q + aq) € (0,1) and 6 = 1 respectively, we infer that for n = 1,
Condition (6.2) holds for 3 € (¢*/(q + aaq),q) with B_ = ¢*/(q + aq) and B4 = q,
respectively.

It remains to prove that (6.3) holds. We first consider 8 € (¢,aq). Using
ba(w)] < Clul and (6.7),

1
|90(r)] < le\Tri(p)uwaLl < Cf] e (6.16)

Then, using |¢¢(u)| < Clu|®, we can write

TE 1/q f(x)
)| < C'ro‘qf _na(p)Var? 77
9, R

[e3%

z < Cff*] 7. r
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that finishes to prove (6.3) when 3 € (¢, aq). Finally, when 3 € (¢*/(q + aq),q) and
f € S1(RY), we write g, = g,(,l) + 9,82)7 with

— (T ] @)
g5" :=J do | @i gy
() <2rn2(p)Var na(p)

. (TF f(z)
o= | E GO AC A
7(x)>2Kkn2(p) /a7 Tlg(p)

where k > 1 comes from the quasi-triangular inequality given in (6.13). With this
choice we may write for any z € (no(p)"/9r)F B,

and

(@) <k (Tl +2) + 7(2)) < & (T(x o) n2(p)1/qr> ,

where, with no loss of generality, we have again assumed that B < Cg(0,1) (recall

(6.14)). It follows that 7(z + 2z) > Z7(z) for any z € (n2(p)*/9r)PB and z such

that 7(x) > 2kny(p)Y9r. Since f is rapidly decreasing, we get for N > 1,

1
- /
o) Tt f @) < j Lep(2) |fla + nap)02) | dz

-N
< C| 1,25(2) (1 +7(x+ ng(p)E/qz)) dz
Rd

< Cupr?(1+7(z)” ",
where here and below, the constant C = C(f) does not depend on r and p. Using
that |pc(u)| < Clu|® for & € (0,1], choosing N = N(4,q) such that N§ > ¢ + 1, it
follows that

92 ()| < eréf (1+ (@) da < Ore. (6.17)
Rd
Moreover,
§
)g£1>(r)\ < CnQ(p)—éf( e TE e f (@) do
T(x)<Cna(p)-/9r

_ 1-1
< Cna(p) | TE Ly 12, (ma(p)r®) =17,

Lpd

by Hoélder’s inequality for p > 1. When na(p)/9r < 1, we use (6.7) with pd € [1,2].
It follows that

98] < Cna) ™ (nalp)r )" x (na(p)r®)' ™17 < Ca(p)!~*r < v, (6.18)

since ny(p) < 779. When ny(p)Y9r > 1, we use (6.9) for pd € [1,2]. By the
assumption that 3 > ¢2?/(q + aq), we can choose b € (0, aq) such that 8 > ¢?/(q +b)
and

)

(g=b)/p
||TnE2(,))1/qerip5 <C (ng(p)l/qr)
by (6.9) since b < aq. Hence,

|95 ()] < Cma((p) 041y,

Now we can choose § = ¢/(¢+b) € (0,1) and p = (1 + b/q) > 1 such that dp =1
and
40()| < Crr-v/asvin _ gy,
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Combining with the previous bounds (6.17) and (6.18) for the same § = ¢/(q + b),
we get
i l9p(r)] < O /a0,

and we have that (6.3) holds with 8_ = ¢?/(q + b) and B4 = ¢ (which we have
shown in (6.16) when considering the case 5 € (¢, aq)). We have thus proved (6.15)
and the theorem. O
6.5. Very-sparse regime. Proposition 3.9 can be obtained as before using Theo-
rem 2.1. The proof of Theorem 3.10 is similar to the one of Theorem 3.7 (see also
the proof of Theorem 2.19 in Breton and Dombry, 2009). The details of this part
are thus omitted.

Appendix A. Illustrations

We provide several simulations of our operator-scaling random ball model, ob-
tained by following similar ideas as in Biermé et al. (2013) For the sake of simplicity
we choose F = diag(ay,as) with a1 = as :=1 and S € (¢ — aq,q (a1,a1 + 1).

25
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FIGURE A.l. Operator-scaling random ball with a; = 1.2 and
[ = 1.6: the set B is an Euclidean ball, the weights vary according to a

SaS(o) distribution with o = 0.1.
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FIGURE A.2. Operator-scaling random ball in high intensity with
H = W = 0.4 and weights following a SasS(c) distribution with
o = 0.1. Top: a = 2 (Gaussian case). Bottom: o = 1.8.
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L oa b b b oRoo N &

FIGURE A.3. Operator-scaling random ball in high intensity with
H = W = 0.3, a1 = 1.3, weights following a Sa.S(c) distribution
with o = 0.1, and different balls: By = {x € R? : |x1| + |z2| < 1}, By =
{z e R?: |z1]Y? + |22)V? < 1} and By = {z € R? : max(|z1],|z2|) < 1}.
Top: o = 2 (Gaussian case). Bottom: o = 1.9.
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